Index

A
Acceptance tests, 74, 78
Ada, 90–94
Advanced Automation System (FAA), 23, 46
Agent-based planning systems, 104–106
Agile Alliance, 16
Agile Manifesto
 communication and, 35
 described, 2–3, 16–17, 195–196
 responsiveness to change and, 26–27
Agile methods. See also Agile Manifesto; Agility
 application characteristics and, 25, 27–37
 characteristics of, 17–18
 described, 2–7
 examples of, 21–22, 59–89
 finding middle ground and, 22–24
 five critical factors associated with, 54–57
 high-change environments and, 29–31
 history of, 18
 key concepts for, 18–19
 management characteristics and, 25, 31–37
 misconceptions about, 53–54
 personnel characteristics and, 25, 44–50
 primary goals of, 26–31
 purist interpretations and, 8
 revolutionary character of, 50
 risk-based methods and, 99–146
 studies of, 225–233
 technical characteristics and, 25, 37–44
 wide adoption of, 4
AgilePlus, 146, 233
Agile Software Development (Cockburn), 153–155
Agile Software Development Ecosystems (Highsmith), 153
Agility. See also Agile Manifesto; Agile methods
discipline and, balancing, 99–146, 156–158
finding middle ground and, 22–24
need for, in future applications, 151
role of, 1–24
use of the term, 5
Air Force (United States), 15, 90–95, 188
Anchor point milestones, 101, 104, 117, 205–209
Applications, characteristics of, 25, 27–37
Architecture, 13, 15
 BDUF and, 42
 “breakers,” 40, 86
 case studies and, 85–86, 89, 91, 93–95
day-in-the-life examples and, 77
described, 13
determining the optimum quantity of, 220–225
reduced development cycle time and, 41–42
risk-based methods and, 107, 115, 141–143
robust, 77
SAIV process model and, 214
traditional development and, 2
wasted resources and, 42
Army (United States), 28–29, 106. See also Future Combat Systems (United States Army)
ASD (Adaptive Software Development), 21, 166, 170–171, 194

255
Index

A-Skill risks, 102, 110, 119, 122, 124, 126, 127, 133, 136, 138, 145
AT&T/Lucent Architecture Review Board technique, 207

B
“Bad smells,” use of the term, 84–85, 88–87, 97, 104
 Barely sufficient, use of the term, 18
Bate, Roger, 15
Bayer, Sam, 170
BDUF (Big Design Up Front), 42, 55, 219, 222
Beck, Kent, 21, 46
 Agile Manifesto and, 195
 on the cost of change, 217, 219
 on courage, 81
 development of XP by, 175, 176
 on the phrase “planning driven,” 34–35
 on team size, 28
Beedle, Mike, 21, 195
Bennekum, Arie van, 195
Boehm, B., 101
Boeing, 227–228
BRA (Benefits Realization Analysis), 209–212
Britcher, Robert, 46
Brooks, Fred, 18, 148, 151
Browser wars, 22

C
C3 (Chrysler Comprehensive Compensation) project, 8, 45
Carnegie-Mellon University, 188. See also SEI
(Software Engineering Institute)
CCPDS-R (Command Center and Processing
Display System-Replacement), 90–95, 99, 116, 179, 219
CeBASE (Center for Empirically Based Software Engineering), 39, 218, 205
Change
cost of, 94–95, 217–220
dynamism and, 56
embracing, 4, 17, 19
personnel characteristics and, 50
responding to, 94–95
risk-based methods and, 102, 109, 115–116,
131–132, 163
SAIV process model and, 215
speed of, 23, 56, 163
testing and, 43
Chaordic, use of the term, 16
Chaos
 order and, unification of, 16
 thriving on, 56
Charette, Bob, 171
Checklist mentality, 13
Chrysler Corporation, 21. See also C3 (Chrysler Comprehensive Compensation) project
Cleanroom, 8, 15, 167, 192–194
CMMI (Capability Maturity Model Integration), 15, 27, 198, 201, 203
described, 3, 186–187
method comparisons and, 166, 167, 186–187, 194
personnel characteristics and, 50
purist interpretations and, 8
requirements and, 38
CMMs (Capability Maturity Models), 5, 6, 23, 33, 50, 197–203
Coach role, 71, 79
Coad, Peter, 22, 184
Cockburn, Alistair, 21, 47–48, 55, 57
 Agile Manifesto and, 195
 Agile Software Development, 153–155
development of Crystal by, 173
skill levels, 61, 69–70, 97, 118, 156, 169–170, 173–174, 185
COCOMO (Constructive Cost Model), 93–94, 152, 213, 220
COCOMO II (Constructive Cost Model II), 205, 213, 220–225
process improvement and, 226–228
risk-based methods and, 141–142, 152
Code Science, 146, 233
Collins, Jim, 2, 156
Communication, 34–37, 175
case studies and, 87–88
Cockburn on, 155
overall importance of, 46–49, 152, 154–155, 161
Complexity, 148–149, 151
Conformity, 148–149, 151
Continuous
improvement, 20, 40
testing, 93
Contractors, 139–144
Contracts, 32–33, 90–94
Control process, 11, 33–35
Core capability determination, 214
Cost
of change, 94–95, 217–220
overruns, 24
COTS, 48, 207
product coordination, 130
Courage, importance of, 81, 175
CRACK (Collaborative, Representative, Authorized, Committed, and Knowledgeable) performers, 44–46, 87
day-in-the-life examples and, 79
risk-based methods and, 114, 116–119, 121–122, 135
Creativity, 16, 157
Critical factors, 44–45, 54–57
Criticality, 54–57, 160
Crosby, P. B., 3, 12, 188
Crystal, 56, 151, 152
architecture and, 42
described, 21, 173–174
method comparisons and, 166, 167, 173–174, 194
Culture, organizational, 20, 156–161
characteristics of, 25
classification of, as a critical factor, 54–57
inertia and, 50
personnel characteristics and, 49–50
Cunningham, Ward, 21, 175, 195
Curtis, Bill, 152, 153
Customer(s). See also Customers
approaches to, differences in, 80
close relationships with, importance of, 19–20
contracts and, 32
day-in-the-life examples and, 69, 71, 72, 80
expectations management and, 155–156
feedback from, 72, 87, 175
Interface Managers, 61
“is always right” adage, 87
quality assurance and, 5
Customer relations. See also Customers
case studies and, 86–87
overview of, 32–33
personnel characteristics and, 44–46
Cycles, development, 11, 16, 41–44, 80. See also Iterative cycles
BDUF and, 42
mentality of sufficiency and, 18
risk-based methods and, 120, 149
testing and, 42–44
waterfall, 11, 149, 170

D
Daimler Chrysler Corporation, 21. See also C3 (Chrysler Comprehensive Compensation) project
Index

DARPA Future Combat Systems program (United States Army), 28–29, 36, 106, 138
Data collection tools, 62, 65
DeLuca, Jeff, 22, 184
DeMarco, T., 152
Deming, W. Edward, 3, 12, 188
Department of Defense (United States). See DoD (United States Department of Defense)
Design
 architecture-based, 41
 BDUF (Big Design Up Front) and, 42, 55, 219, 222
 Managers, 61
 risk-based methods and, 115
 simple, 18, 39–42, 84, 88, 115, 175–176
Developers, characteristics of, 25, 46–49
Discipline
 agility and, balancing, 99–146, 156–158
 expectations management and, 155
 finding middle ground and, 23
 need for, 2, 151
 role of, 1–24
 use of the term, 5
Diseconomies of scale, 86–88, 115
DMR Consulting Group, 114, 209–212
Documentation, 6, 10–11, 17, 19, 70. See also Contracts
case studies and, 92–93
 minimizing, 19, 20, 36–37
 project communication and, 36–37
 risk-based methods and, 116–117
 standards and, 27
 testing and, 43
DoD (United States Department of Defense), 14–15, 155, 207
 CMMs and, 197, 198
 CCPDS-R project and, 90–95
 -STD-498 standard, 10, 14, 37
 -STD-152 standard, 10, 14
 -STD-1679 standard, 37
 -STD-2167-2 standard, 37, 90, 92–93
 -STD-2167 standard, 10, 14, 37
DSDM (Dynamic Systems Development Method), 151, 167
 architecture and, 42
 Consortium, 177
 described, 176–178
 method comparisons and, 166, 167, 176–178, 194
Dynamism, 54–57, 158, 160

E
Early adopters, 7, 40
E-Cmplx risks, 102, 110, 114–115, 119, 124, 127, 130, 133, 136, 145
ECP (Engineering Change Proposal), 94
Elssamadisy, Amr, 84, 85, 89
Emergence attribute, 17
Environmental risks. See also Risks
 E-Cmplx risks, 102, 110, 114–115, 119, 124, 127, 130, 133, 136, 145
Event planning applications, 121–128, 142, 145
Evolution, 30, 38
Exit criteria, 104
Expectations management, 152, 155–156, 161, 212–213
eXtreme Programming (XP)
 AgilePlus and, 233
case studies and, 84–89
 characteristics of, 79–81
 cost of change and, 217–220
customer relations and, 45
day-in-the-life examples for, 59, 69–76, 79–81

258
Index

described, 21, 174–176
expectations management and, 155
focus on the product at hand and, 29
hacking and, 6
method comparisons and, 167, 174–176, 185, 194
overgeneralization and, 6–7
“planning driven” processes and, 34–35
process improvement and, 230
purist interpretations and, 8
risk-based methods and, 105, 126, 146, 155
simple design and, 39
team size and, 28
YAGNI concept and, 41

Extreme Programming Explained (Beck), 217

F

FAA (United States Federal Aviation Administration), 23, 46, 91
Factory patterns, 88
Fast cycle/frequent delivery, 17
Feature(s)
 -Driven Development (FDD), 22, 42, 151, 167, 183–185, 194
 prioritization, 212, 213
Ferguson, Jack, 15
“Field of Dreams” syndrome, 109–210
Fowler, Martin, 195
Freedom, degrees of, 49
Future Combat Systems (United States Army), 28–29, 36, 106, 138

G

Garmus, David, 226
General Electric, 14
Globalization, 106
Good to Great (Collins), 2, 156–157
GPs (Generic Practices), 199

Grant-Sackman experiments, 152–153
Grenning, James, 195
Gresham’s Law, 36–37
GUIs (graphical user interfaces), 76, 93, 116, 132

H

Hacking, agile methods and, equation of, 6
Hefley, Bill, 153
Hewlett-Packard, 41–42
High assurance, goal of, 27
Highsmith, Jim, 21, 47, 153, 170, 195, 226
Hitachi, 10, 14
Home ground(s), 25–57, 83–98
 critical factors and, 54–57
 risk-based methods and, 102, 111, 123–124, 134, 150, 157–161
 use of the term, 22
Humphrey, Watts, 15, 81, 153, 181, 197
PSP and, 190
SW-CMM and, 188
Hunt, Andrew, 195

I

IBM (International Business Machines), 10, 15, 46, 179, 192
Implementation Managers, 61
Improve process, 11
Incremental development, 17, 214–215
Individualism, 16
Inertia, cultural, 50
Information
 hiding, 115
 -sclerosis” cases, 30
Information Paradox, The (Thorup), 210
Inspection process, 46, 66–68, 77
Institute of Electrical and Electronics Engineers (IEEE), 14, 37
Index

Integration testing, 68–69
International Space Station, 23
Internet Explorer browser (Microsoft), 22
Inventory management, 59–82
Invisibility, 148
IOC (Initial Operational Capability) milestone, 213, 214–215, 206–209
IPPD (integrated process and product development), 186
ISO (International Standards Organization), 14, 198, 201
IT (information technology)
 BRA (Benefits Realization Analysis) and, 210–212
 claims of universality and, 7
 day-in-the-life examples and, 65
Iterative cycles, 72, 74–75, 85–86
 described, 17
 requirements and, 37–38
 risk-based methods and, 119
LCA (Life Cycle Architecture) milestone, 104, 206–208, 207–209
LCO (Life Cycle Objectives) milestone, 206–209
LD (Lean Development), 42, 151, 166–167, 171–172, 194
Lead-bullet techniques, 148, 149
Lease management, 84–89, 99, 105
Legacy systems, 60
Life cycles, development, 11, 16, 41–44, 80. See also
 Iterative cycles
 BDUF and, 42
 mentality of sufficiency and, 18
 risk-based methods and, 120, 149
 testing and, 42–44
 waterfall, 149, 170
Lightweight processes, 17
Limits of Software, The (Britcher), 46
Lister, T., 152
Lockheed Martin, 227–228

J
Jeffries, Ron, 21, 175, 195
Jones, J. D., 171
Juran, J. M., 3, 12, 188

K
Karten, Naomi, 161
Kern, Jon, 195
Knowledge. See also Tacit knowledge
 explicit documented, 36
 types of, 36
KPAs (Key Process Areas), 188–189, 198–200
Kruchten, Philippe, 23

L
Laissez-faire approaches, 26
Late-fix problem, 43

M
Management, 13–14, 16
 characteristics of, 25, 31–37
 cultural change and, 20
 expectations, 152, 155–156, 161, 212–213
 pair programming and, 20
 risk and, 24
 supply chain, 106–121, 127, 145
Managing Technical People (Humphrey), 153
Marick, Brian, 195
Martin, Robert C., 6, 195
Maturity. See also CMMI (Capability Maturity Model Integration); CMMs (Capability Maturity Models)
 organizational, 12
 software process, 3, 32–33
MBASE (Model-Based Architecting and Software Engineering) process, 37, 101–102, 118, 120, 205
Index

Measure process, 11
Meetings, 33–35, 65, 77–79
Mellor, Steve, 195
Metrics, 79, 94
Middle ground, finding, 22–24
Middleware, 93, 94–95
Milestones, 101, 117, 205–209
 IOC (Initial Operational Capability) milestone, 213, 214–215, 206–209
 LCA (Life Cycle Architecture) milestone, 104, 206–208, 207–209
 LCO (Life Cycle Objectives) milestone, 206–209
Miller, Sally, 153
Mills, Harlan, 15, 192
Misconceptions, 53–54, 97
MITRE Corporation, 197
Motorola, 228

N
National Defense Industrial Association (NDIA), 15, 198
National Information System for Crisis Management (NISCM), 127–145
National Science Foundation, 218
Netscape Web browser, 22
NSO (National Survivability Office), 127–129, 135, 139

O
OO (object-oriented programming), 62
Organizational culture, 20, 156–161
 characteristics of, 25
 classification of, as a critical factor, 54–57
 inertia and, 50
 personnel characteristics and, 49–50
Overgeneralization, 6–7

P
Pair programming, 18–20, 33–35, 230–233
day-in-the-life examples and, 70, 72–73, 78
risk-based methods and, 119
testing and, 43
XP and, 175
PAs (Process Areas), 199, 203
Paulk, Mark, 15
P-Change risks, 102, 109–110, 113, 116–117, 119,
 122, 124, 127, 131, 133, 136, 138, 145
PDR (Preliminary Design Review), 92–93
P-Emerge risks, 102, 109–110, 116–117, 119, 122,
 124, 127, 131, 133, 137, 145
People Capability Maturity Model (CMM), 7,
 152–153, 161, 186, 188
Peopleware (DeMarco and Lister), 152
Perform process, 11
Perplexity, 1–24
Personnel, 7, 156–161
case studies and, 85, 93, 95
 characteristics of, 25, 44–50
 classification of, as a critical factor, 54–57
 highly-talented, 47
risk-based methods and, 102, 109, 116, 122, 127
 skill levels of, 47–48
 turnover, 102, 108, 110, 112, 116, 119, 122, 124,
 127, 131, 133, 136, 138, 145
Phillips, Mike, 15
Plan-driven methods, 2–3, 6–16, 51–54. See also Planning
application characteristics and, 25, 27–37
case studies for, 83, 90–95
 characteristics of, 10–13
day-in-the-life examples and, 59–82
described, 9–16
 examples of, 14–15
 finding middle ground and, 22–24
 key concepts for, 12–13
 large projects and, 28–29
Index

Plan-driven methods *(continued)*
- management characteristics and, 25, 31–37
- misconceptions about, 53–54
- personnel characteristics and, 25, 44–50
- primary goals of, 27
- purist interpretations and, 8
- requirements and, 37–38
- risk-based methods and, 99–146
- stability and, 31
- streamlining, 90–95
- studies of, 225–233
- technical characteristics and, 25, 37–44

Planning. *See also* Plan-driven methods
- day-in-the-life examples and, 62, 70–71
- Managers, 61, 69
- as a means to an end, 33–34
- project communication and, 35
- traditional development and, 2

PMAT parameter, 226–227

Pragmatism, 22, 95

Predictability, 12, 27

Preparedness, importance of, 81

Prioritization, 38

Proactive strategies, 27

Process(es). *See also* KPAs (Key Process Areas)
- Areas (PAs), 199, 203
- capability, described, 12
- compliance, 5, 6
- groups, 12–13
- improvement, 11–12, 226–230
- maturity, 3, 32–33
- specificity of, 80

Program Managers, 135–136

Programmers, role of, 61, 69–70, 71

Project Managers, 118

Prototypes, 16, 31–32, 60, 62, 75

P-Skill risks, 102, 110, 119, 127, 133, 137, 138, 145

PSP (Personal Software Process), 167, 181, 183, 194
- day-in-the-life examples for, 59–69, 76–77, 79, 81
- described, 15, 190–191

- expectations management and, 155
- training and, 60–61

Psychology of Computer Programming (Weinberg), 152

Purist interpretations, 8

Q

Quality
- process improvement and, 12
- profiles, 66
- use of the term, 5

R

Rational Corporation, 179

Reactive postures, 27

Rechtin, E., 222

Refactoring, 6, 40, 43
- day-in-the-life examples and, 74, 75, 78
- described, 18
- risk-based methods and, 122, 107

Regression
- analysis, 221
- testing, 43

Reliability, 41

Repeatability, 3, 12

Reports, 36, 69, 72, 76, 78, 80

REQ scripts, 64

Requirements, 31, 39, 76–79, 80
- finding middle ground and, 22
- risk-based methods and, 102, 107
- SAIV process model and, 215
- technical characteristics and, 37–39
- testing and, 43

RESL (Architecture and Risk Resolution) factor, 142, 221–225
Index

Results Chain (DMR Consulting Group), 114, 209–212
Retrospective review, 19
Reuse, 14, 41–42, 78
Reviews, 35, 69, 92–93, 207
Risk. See also Risk-based methods
agent-based planning systems and, 104–106
analysis, 100–104
balancing agility and discipline with, 99–146
case studies and, 90–93
categories of, 102–103
customer representatives and, 44–45
determining planning levels with, 111–113
entrepreneurship, 171
exposure profiles/ratings, 110–113, 132–134, 123–125
key role of, 24
management, 13, 50, 57, 118
mitigation, 119–120
overspecification, 116–117
reactive postures and, 27
requirements and, 38
resolution, 102–103, 113–117
test-first approach and, 43
Risk-based methods. See also Risk
agent-based planning systems and, 104–106
described, 99–146
five-step process to develop, 100–104
NISCM and, 127–143
supply chain management and, 106–121
Robust architecture, 77
Role(s)
Reports, 69
well-described, 80
Roos, D., 171
Royce, Walker, 90
RTCA DO-178B standards, 27
RUP (Rational Unified Process), 37, 101, 118, 120, 144, 152
anchor points and, 101
CCPDS-R and, 90
described, 179–181
method comparisons and, 166, 167, 178, 179–181, 194
S
SAIV (Schedule As Independent Variable) process
model, 139, 212–215
Sales reporting, 59–82
Scalability, 20, 35–36, 39
risk-based methods and, 105, 131
SAIV process model and, 213
Schalliol, Gregory, 84, 85, 89
Schedule(s), 75–77, 81, 213
case studies and, 84, 86–87, 94
range estimation, 213
risk-based methods and, 130, 132, 134
slip, 24, 215
Schwaber, Ken, 21, 168, 195
Scrum
described, 21, 168–169
method comparisons and, 167, 168–169, 194
risk-based methods and, 126
team size and, 28
SEI (Software Engineering Institute), 15, 181, 186, 188, 197, 227
Self
-assessment, 156
-organizing attribute, 17
SEPGs (Software Engineering Process Groups), 13, 50
Sheard, Sarah, 7
Siemens, 10
Silver-bullet concept, 7, 148–149, 154
Simple design, 18, 39–42, 84, 88, 115, 175–176
Size, 28, 54–57, 107, 160, 225–226
Software Productivity Consortium, 7
Software Project Management (Royce), 90
Software systems architecture, 13, 15
BDUF and, 42
"breakers," 40, 86
Index

Software systems architecture (continued)
case studies and, 85–86, 89, 91, 93–95
day-in-the-life examples and, 77
described, 13
determining the optimum quantity of, 220–225
reduced development cycle time and, 41–42
risk-based methods and, 107, 115, 141–143
SAIV process model and, 214
traditional development and, 2
wasted resources and, 42
Specifications, 29, 38. See also Standards
 risk-based methods and, 140, 116–117, 141–142
testing and, 43
Spiral model anchor point milestones, 101, 104, 117, 205–209
Stability, goal of, 27, 31
Standards, 10, 11, 14. See also Specifications
case studies and, 90, 91
IEEE, 14, 37
ISO, 14, 198, 201
project communication and, 37
safety-critical projects and, 27
Stories. See also Story cards
 expressing requirements in terms of, 37, 40
 modifying, 37, 85–86
Story cards, 70–71, 73–74, 84, 85–88. See also Stories
Stovepipes, 30
Stress testing, 74–75
Subcontractors, 139–141
Success
 balancing agility and discipline and, 156–161
 characteristics of, 2
 Collins on, 2
 customer relations and, 45
 requirements for, 13–16, 19
Sufficiency, mentality of, 18
Supply chain management, 106–121, 127, 145
Support Managers, 61
Sutherland, Jeff, 21, 168, 195

SW-CMM (Capability Maturity Model for Software).
 See also CMMs (Capability Maturity Models)
CMMs and, 198–203
described, 2–3, 188–189
method comparisons and, 167, 186, 187–190, 194
personnel characteristics and, 50
primary goals and, 27
process improvement and, 226–227
PSP and, 190
requirements and, 38
traditional approaches and, 2–3
Swim lanes, 117–119

T
Tacit knowledge, 17, 19–20, 33–37
case studies and, 85, 86, 89
risk-based methods and, 116, 131, 148
Tailor-down methods, 36–37, 55, 152
Team(s). See TSP (Team Software Process)
 importance of, 152–153
 leaders, 61, 69
 personnel characteristics and, 50
 planning and, 34
 risk-based methods and, 107, 152–153, 160
 size of, 28, 54–57, 107, 160, 225–226
Technical characteristics, 25, 37–44
Telos, 227–228
Test(s). See also Testing
 acceptance, 74, 78
cases, 43, 73
 -driven development, 19
 -first approach, 43, 80, 175–176
 integration, 68–69
 Managers, 61
 matrices, 43
 regression, 43
 stress, 74–75
 Tester role, 71
Testing. See also Tests
automated, 43
case studies and, 93
day-in-the-life examples and, 61, 73, 80
described, 42–44
eyearly, 43, 44
risk-based methods and, 117
Thomas, Dave, 195
Thorp, John, 210
ThoughtWorks project, 94, 105, 149. See also Lease
management
Throughput, 41
Timeboxing, 115, 139
Time-to-market, crucial role of, 2
Time-tracking systems, 64–65
Tracker role, 71, 75
Traditional development, 2–5, 9–16, 84
Training, 11, 16, 60–61, 69–70
Trust, 32–33, 84, 86–87
TRW CCPDS-R. See CCPDS-R (Command Center
Processing Display System Replacement)
TSP (Team Software Process)
characteristics of, 79–81
day-in-the-life examples for, 60–69, 76–81
described, 15, 181–183
inspection script, 66–68
method comparisons and, 166, 167, 178, 181–183, 194
process improvement and, 228, 230
risk-based methods and, 144
role scripts, 62, 63	
tailor-down methods and, 37
training and, 60–61
Turnkey supply chain management, 106–121

Universality, claims of, 7
University of Maryland, 218
USAF/ESC (United States Air Force Electronic
Systems Center), 90–95
USC Center for Software Engineering, 44–45, 101, 205, 212, 213, 218–219

V
Validation, 10–11, 13, 27, 93
Values, importance of, 154, 161
Verification, 10–11, 13, 27
Vision, shared, 212–213

W
Waterfall development cycle, 11, 149, 170
Weinberg, G., 152
Win-win outcomes, 91, 154, 205, 213
Womack, J., 171
Workstations, setup of, 70

X
XBreed process, 126
XP (eXtreme Programming)
AgilePlus and, 233
case studies and, 84–89
characteristics of, 79–81
cost of change and, 217–220
customer relations and, 45
day-in-the-life examples for, 59, 69–76, 79–81
described, 21, 174–176
expectations management and, 155
focus on the product at hand and, 29
hacking and, 6
method comparisons and, 167, 174–176, 185, 194
overgeneralization and, 6–7
“planning driven” processes and, 34–35

U
UML (Unified Modeling Language), 22, 77, 179
Unit tests, 75, 86
Index

XP (continued)
 process improvement and, 230
 purist interpretations and, 8
 risk-based methods and, 105, 126, 146, 155
 simple design and, 39
 team size and, 28
 YAGNI concept and, 41

Y
 YAGNI (“You Aren’t Going to Need It”) concept, 18, 41. See also A-YAGNI risks
 case studies and, 84, 88, 89, 94
 FDD and, 185
YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-depth features, interviews, and IT reference recommendations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+ fully searchable on line books. For a limited time, you can get your first 14 days free.

Catalog

Review online sample chapters, author biographies and customer rankings and choose exactly the right book from a selection of over 5,000 titles.
Wouldn’t it be great if the world’s leading technical publishers joined forces to deliver their best tech books in a common digital reference platform?

They have. Introducing **InformIT Online Books** powered by Safari.

- **Specific answers to specific questions.**
 InformIT Online Books’ powerful search engine gives you relevance-ranked results in a matter of seconds.

- **Immediate results.**
 With InformIT Online Books, you can select the book you want and view the chapter or section you need immediately.

- **Cut, paste and annotate.**
 Paste code to save time and eliminate typographical errors. Make notes on the material you find useful and choose whether or not to share them with your work group.

- **Customized for your enterprise.**
 Customize a library for you, your department or your entire organization. You only pay for what you need.

Get your first 14 days FREE!
For a limited time, InformIT Online Books is offering its members a 10 book subscription risk-free for 14 days. Visit http://www.informit.com/online-books for details.
If you are interested in writing a book or reviewing manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.awprofessional.com
Barry, Rich, and friends.