
10

Transformation

I
N C H A P T E R 9 we delved into advanced 2D graphics programming. In
this chapter we will explore GDI+ transformations. A transformation

is a process that changes graphics objects from one state to another. Rota-
tion, scaling, reflection, translation, and shearing are some examples of
transformation. Transformations can be applied not only to graphics
shapes, curves, and images, but even to image colors.

In this chapter we will cover the following topics:

• The basics of transformation, including coordinate systems and
matrices

• Global, local, and composite transformations

• Transformation functionality provided by the Graphics class

• Transformation concepts such as shearing, rotation, scaling, and
translation

• The Matrix and ColorMatrix classes, and their role in trans-
formation

• Matrix operations in image processing, including rotation, trans-
lation, shearing, and scaling

• Color transformation and recoloring

• Text transformation

• Composite transformations and the matrix order

475

Any drawing process involves a source and a destination. The source of
a drawing is the application that created it, and the destination is a display
or printer device. For example, the process of drawing a simple rectangle
starts with a command telling GDI+ to draw on the screen, followed by
GDI+ iterating through multiple steps before it finally renders a rectangle
on the screen. In the same way, transformation involves some steps before
it actually renders the transformed object on a device. These steps are
shown in Figure 10.1, which shows that GDI+ is responsible for converting
world coordinates to page coordinates and device coordinates before it can
render a transformed object.

10.1 Coordinate Systems

Before we discuss transformations, we need to understand coordinate sys-
tems. GDI+ defines three types of coordinate spaces: world, page, and
device. When we ask GDI+ to draw a line from point A (x1, y1) to point B
(x2, y2), these points are in the world coordinate system.

Before GDI+ draws a graphics shape on a surface, the shape goes
through a few transformation stages (conversions). The first stage converts
world coordinates to page coordinates. Page coordinates may or may not be
the same as world coordinates, depending on the transformation. The
process of converting world coordinates to page coordinates is called world
transformation.

The second stage converts page coordinates to device coordinates.
Device coordinates represent how a graphics shape will be displayed on a

TRANSFORMATION476

Application

World
Coordinates

Page
Coordinates

Device
Coordinates

Device

Figure 10.1: Steps in the transformation process

device such as a monitor or printer. The process of converting page coordi-
nates to device coordinates is called page transformation. Figure 10.2 shows
the stages of conversion from world coordinates to device coordinates.

In GDI+, the default origin of all three coordinate systems is point (0, 0),
which is at the upper left corner of the client area. When we draw a line
from point A (0, 0) to point B (120, 80), the line starts 0 pixels from the upper
left corner in the x-direction and 0 pixels from the upper left corner in the y-
direction, and it will end 120 pixels over in the x-direction and 80 pixels
down in the y-direction. The line from point A (0, 0) to point B (120, 80) is
shown in Figure 10.3.

10.1 COORDINATE SYSTEMS 477

World
Transformation

Page
Transformation

World Coordinates Page Coordinates Device Coordinates

A(1, 1)

B(2, 2)

x y

x y

A(1, 1)

B(2, 2)

p q

p q

A(1, 1)

B(2, 2)

c d

c d

Figure 10.2: Transformation stages

Figure 10.3: Drawing a line from point (0, 0) to point (120, 80)

Drawing this line programmatically is very simple. We must have a
Graphics object associated with a surface (a form or a control). We can get
a Graphics object in several ways. One way is to accept the implicit object
provided by a form’s paint event handler; another is to use the Create-
Graphics method. Once we have a Graphics object, we call its draw and
fill methods to draw and fill graphics objects. Listing 10.1 draws a line from
starting point A (0, 0) to ending point B (120, 80). You can add this code to
a form’s paint event handler.

Listing 10.1: Drawing a line from point (0, 0) to point (120, 80)

Graphics g = e.Graphics;

Point A = new Point(0, 0);

Point B = new Point(120, 80);

g.DrawLine(Pens.Black, A, B);

Figure 10.3 shows the output from Listing 10.1. All three coordinate sys-
tems (world, page, and device) draw a line starting from point (0, 0) in the
upper left corner of the client area to point (120, 80).

Now let’s change to the page coordinate system. We draw a line from
point A (0, 0) to point B (120, 80), but this time our origin is point (50, 40)
instead of the upper left corner. We shift the page coordinates from point (0,
0) to point (50, 40). The TranslateTransform method of the Graphics
class does this for us. We will discuss this method in more detail in the dis-
cussion that follows. For now, let’s try the code in Listing 10.2.

Listing 10.2: Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40)

Graphics g = e.Graphics;

g.TranslateTransform(50, 40);

Point A = new Point(0, 0);

Point B = new Point(120, 80);

g.DrawLine(Pens.Black, A, B);

Figure 10.4 shows the output from Listing 10.2. The page coordinate sys-
tem now starts at point (50, 40), so the line starts at point (0, 0) and ends at
point (120, 80). The world coordinates in this case are still (0, 0) and (120,
80), but the page and device coordinates are (50, 40) and (170, 120). The

TRANSFORMATION478

device coordinates in this case are the same as the page coordinates because
the page unit is in the pixel (default) format.

What is the difference between page and device coordinates? Device
coordinates determine what we actually see on the screen. They can be rep-
resented in many formats, including pixels, millimeters, and inches. If the
device coordinates are in pixel format, the page coordinates and device
coordinates will be the same (this is typically true for monitors, but not for
printers).

The PageUnit property of the Graphics class is of type GraphicsUnit
enumeration. In Listing 10.3 we set the PageUnit property to inches. Now
graphics objects will be measured in inches, so we need to pass inches
instead of pixels. If we draw a line from point (0, 0) to point (2, 1), the line
ends 2 inches from the left side and 1 inch from the top of the client area in
the page coordinate system. In this case the starting and ending points are
(0, 0) and (2, 1) in both world and page coordinates, but the device coordi-
nate system converts them to inches. Hence the starting and ending points

10.1 COORDINATE SYSTEMS 479

Figure 10.4: Drawing a line from point (0, 0) to point (120, 80) with origin (50, 40)

in the device coordinate system are (0, 0) and (192, 96), assuming a resolu-
tion of 96 dots per inch.

Listing 10.3: Setting the device coordinate system to inches

g.PageUnit = GraphicsUnit.Inch;

g.DrawLine(Pens.Black, 0, 0, 2, 1);

Figure 10.5 shows the output from Listing 10.3. The default width of the
pen is 1 page unit, which in this case gives us a pen 1 inch wide.

Now let’s create a new pen with a different width. Listing 10.4 creates a
pen that’s 1 pixel wide (it does so by dividing the number of pixels we
want—in this case 1—by the page resolution, which is given by DpiX). We
draw the line again, this time specifying a red color.

Listing 10.4: Using the GraphicsUnit.Inch option with a pixel width

Pen redPen = new Pen(Color.Red, 1/g.DpiX);

g.PageUnit = GraphicsUnit.Inch;

g.DrawLine(Pens.Black, 0, 0, 2, 1);

TRANSFORMATION480

Figure 10.5: Drawing with the GraphicsUnit.Inch option

Figure 10.6 shows the output from Listing 10.4.
We can also combine the use of page and device coordinates. In List-

ing 10.5 we transform page coordinates to 1 inch from the left and 0.5 inch
from the top of the upper left corner of the client area. Our new page coor-
dinate system has starting and ending points of (1, 0.5) and (3, 1.5), but the
device coordinate system converts them to pixels. Hence the starting and
ending points in device coordinates are (96, 48) and (288, 144), assuming a
resolution of 96 dots per inch.

Listing 10.5: Combining page and device coordinates

Pen redPen = new Pen(Color.Red, 1/g.DpiX);

g.TranslateTransform(1, 0.5f);

g.PageUnit = GraphicsUnit.Inch;

g.DrawLine(redPen, 0, 0, 2, 1);

Figure 10.7 shows the output from Listing 10.5.

10.1 COORDINATE SYSTEMS 481

Figure 10.6: Drawing with the GraphicsUnit.Inch option and a pixel width

10.2 Transformation Types

There are many types of transformations.
Translation is a transformation of the xy plane that moves a graphics

object toward or away from the origin of the surface in the x- or y-direction.
For example, moving an object from point A (x1, y1) to point B (x2, y2) is a
translation operation in which an object is being moved (y2 – y1) points in
the y-direction.

Rotation moves an object around a fixed angle around the center of the
plane.

In the reflection transformation, an object moves to a position in the
opposite direction from an axis, along a line perpendicular to the axis. The
resulting object is the same distance from the axis as the original point, but
in the opposite direction.

Simple transformations, including rotation, scaling, and reflection are
called linear transformations. A linear transformation followed by trans-
lation is called an affine transformation.

The shearing transformation skews objects based on a shear factor. In
the sample applications discussed throughout this chapter, will see how to
use these transformations in GDI+.

TRANSFORMATION482

Figure 10.7: Combining page and device coordinates

So far we’ve looked at only simple transformations. Now let’s discuss
some more complex transformation-related functionality defined in the
.NET Framework library.

10.3 The Matrix Class and Transformation

Matrices play a vital role in the transformation process. A matrix is a multi-
dimensional array of values in which each item in the array represents one
value of the transformation operation, as we will see in the examples later
in this chapter.

In GDI+, the Matrix class represents a 3×2 matrix that contains x, y, and
w values in the first, second, and third columns, respectively.

We can create a Matrix object by using its overloaded constructors,
which take an array of points (hold the matrix items) as arguments. The fol-
lowing code snippet creates three Matrix objects from different overloaded
constructors. The first Matrix object has no values for its items. The second
and third objects have integer and floating point values, respectively, for
the first six items of the matrix.

Matrix M1 = new Matrix();

Matrix M2 = new Matrix(2, 1, 3, 1, 0, 4);

Matrix M3 =

new Matrix(0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f);

10.3 THE MATRIX CLASS AND TRANSFORMATION 483

What Can You Transform?

You have just seen the basics of transforming lines. We can also transform

graphics objects such as points, curves, shapes, images, text, colors, and

textures, as well as colors and images used in pens and brushes.

NOTE
Before using the Matrix class in your applications, you need to add a
reference to the System.Drawing.Drawing2D namespace.

The Matrix class provides properties for accessing and setting its mem-
ber values. Table 10.1 describes these properties.

The Matrix class provides methods to invert, rotate, scale, and trans-
form matrices. The Invertmethod is used to reverse a matrix if it is invert-
ible. This method takes no parameters.

Listing 10.6 uses the Invert method to invert a matrix. We create a
Matrix object and read its original values. Then we call the Invertmethod
and read the new values.

Listing 10.6: Inverting a matrix

private void InvertMenu_Click(object sender,

System.EventArgs e)

{

string str = "Original values: ";

// Create a Matrix object

Matrix X = new Matrix(2, 1, 3, 1, 0, 4);

// Write its values

for(int i=0; i<X.Elements.Length; i++)

{

TRANSFORMATION484

Table 10.1: Matrix properties

Property Description

Elements Returns an array containing matrix elements.

IsIdentity Returns true if the matrix is an identity matrix; otherwise
returns false.

IsInvertible Returns true if a matrix is invertible; otherwise returns
false.

OffsetX Returns the x translation value of a matrix.

OffsetY Returns the y translation value of a matrix.

NOTE
The Transform property of the Graphics class is used to apply a
transformation in the form of a Matrix object. We will discuss this
property in more detail in Section 10.4.

str += X.Elements[i].ToString();

str += ", ";

}

str += "\n";

str += "Inverted values: ";

// Invert matrix

X.Invert();

float[] pts = X.Elements;

// Read inverted matrix

for(int i=0; i<pts.Length; i++)

{

str += pts[i].ToString();

str += ", ";

}

// Display result

MessageBox.Show(str);

}

The Multiply method multiplies a new matrix against an existing
matrix and stores the result in the first matrix. Multiply takes two argu-
ments. The first is the new matrix by which you want to multiply the exist-
ing matrix, and the second is an optional MatrixOrder argument that
indicates the order of multiplication.

The MatrixOrder enumeration has two values: Append and Prepend.
Append specifies that the new operation is applied after the preceding oper-
ation; Prepend specifies that the new operation is applied before the pre-
ceding operation during cumulative operations. Listing 10.7 multiplies two
matrices. We create two Matrix objects and use the Multiply method to
multiply the second matrix by the first. Then we read and display the
resultant matrix.

Listing 10.7: Multiplying two matrices

private void MultiplyMenu_Click(object sender,

System.EventArgs e)

{

string str = null;

// Create two Matrix objects

Matrix X =

new Matrix(2.0f, 1.0f, 3.0f, 1.0f, 0.0f, 4.0f);

Matrix Y =

new Matrix(0.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f);

// Multiply two matrices

X.Multiply(Y, MatrixOrder.Append);

10.3 THE MATRIX CLASS AND TRANSFORMATION 485

continues

// Read the resultant matrix

for(int i=0; i<X.Elements.Length; i++)

{

str += X.Elements[i].ToString();

str += ", ";

}

// Display result

MessageBox.Show(str);

}

The Reset method resets a matrix to the identity matrix (see Fig-
ure 10.21 for an example of an identity matrix). If we call the Resetmethod
and then apply a matrix to transform an object, the result will be the origi-
nal object.

The Rotate and RotateAt methods are used to rotate a matrix. The
Rotatemethod rotates a matrix at a specified angle. This method takes two
arguments: a floating point value specifying the angle, and (optionally) the
matrix order. The RotateAtmethod is useful when you need to change the
center of the rotation. Its first parameter is the angle; the second parameter
(of type float) specifies the center of rotation. The third (optional) param-
eter is the matrix order.

Listing 10.8 simply creates a Graphics object using the Create-
Graphics method and calls DrawLine and FillRectangle to draw a line
and fill a rectangle, respectively.

Listing 10.8: Drawing a line and filling a rectangle

private void Rotate_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Draw a line

g.DrawLine(new Pen(Color.Green, 3),

new Point(120, 50),

new Point(200, 50));

// Fill a rectangle

g.FillRectangle(Brushes.Blue,

200, 100, 100, 60);

// Dispose of object

g.Dispose();

}

TRANSFORMATION486

Figure 10.8 shows the output from Listing 10.8.
Now let’s rotate our graphics objects, using the Matrix object. In List-

ing 10.9 we create a Matrix object, call its Rotate method to rotate the
matrix 45 degrees, and apply the Matrix object to the Graphics object by
setting its Transform property.

Listing 10.9: Rotating graphics objects

private void Rotate_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a Matrix object

Matrix X = new Matrix();

// Rotate by 45 degrees

X.Rotate(45, MatrixOrder.Append);

// Apply Matrix object to the Graphics object

10.3 THE MATRIX CLASS AND TRANSFORMATION 487

Figure 10.8: Drawing a line and filling a rectangle

continues

// (i.e., to all the graphics items

// drawn on the Graphics object)

g.Transform = X;

// Draw a line

g.DrawLine(new Pen(Color.Green, 3),

new Point(120, 50),

new Point(200, 50));

// Fill a rectangle

g.FillRectangle(Brushes.Blue,

200, 100, 100, 60);

// Dispose of object

g.Dispose();

}

Figure 10.9 shows the new output. Both objects (line and rectangle) have
been rotated 45 degrees.

Now let’s replace Rotate with RotateAt, as in Listing 10.10.

TRANSFORMATION488

Figure 10.9: Rotating graphics objects

Listing 10.10: Using the RotateAt method

private void RotateAtMenu_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a Matrix object

Matrix X = new Matrix();

// Create a point

PointF pt = new PointF(180.0f, 50.0f);

// Rotate by 45 degrees

X.RotateAt(45, pt, MatrixOrder.Append);

// Apply the Matrix object to the Graphics object

// (i.e., to all the graphics items

// drawn on the Graphics object)

g.Transform = X;

// Draw a line

g.DrawLine(new Pen(Color.Green, 3),

new Point(120, 50),

new Point(200, 50));

// Fill a rectangle

g.FillRectangle(Brushes.Blue,

200, 100, 100, 60);

// Dispose of object

g.Dispose();

}

This new code generates Figure 10.10.
If we call the Reset method in Listing 10.10 after RotateAt and before

g.Transform, like this:

X.RotateAt(45, pt, MatrixOrder.Append);

// Reset the matrix

X.Reset();

// Apply the Matrix object to the Graphics object

// (i.e., to all the graphics items

// drawn on the Graphics object)

g.Transform = X;

the revised code generates Figure 10.11, which is the same as Figure 10.8.
There is no rotation because the Reset method resets the transformation.

The Scale method scales a matrix in the x- and y-directions. This
method takes two floating values (scale factors), for the x- and y-axes,

10.3 THE MATRIX CLASS AND TRANSFORMATION 489

TRANSFORMATION490

Figure 10.10: Using the RotateAt method

Figure 10.11: Resetting a transformation

respectively. In Listing 10.11 we draw a rectangle with a width of 20 and
a height of 30. Then we create a Matrix object and scale it by calling
its Scale method with arguments 3 and 4 in the x- and y-directions,
respectively.

Listing 10.11: Scaling graphics objects

private void Scale_Click(object sender,

System.EventArgs e)

{

// Create Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Draw a filled rectangle with

// width 20 and height 30

g.FillRectangle(Brushes.Blue,

20, 20, 20, 30);

// Create Matrix object

Matrix X = new Matrix();

// Apply 3X scaling

X.Scale(3, 4, MatrixOrder.Append);

// Apply transformation on the form

g.Transform = X;

// Draw a filled rectangle with

// width 20 and height 30

g.FillRectangle(Brushes.Blue,

20, 20, 20, 30);

// Dispose of object

g.Dispose();

}

Figure 10.12 shows the output from Listing 10.11. The first rectangle is
the original rectangle; the second rectangle is the scaled rectangle, in which
the x position (and width) is scaled by 3, and the y position (and height) is
scaled by 4.

The Shear method provides a shearing transformation and takes
two floating point arguments, which represent the horizontal and vertical
shear factors, respectively. In Listing 10.12 we draw a filled rectangle
with a hatch brush. Then we call the Shear method to shear the matrix by
2 in the vertical direction, and we use Transform to apply the Matrix
object.

10.3 THE MATRIX CLASS AND TRANSFORMATION 491

Listing 10.12: Shearing graphics objects

private void Shear_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a brush

HatchBrush hBrush = new HatchBrush

(HatchStyle.DarkVertical,

Color.Green, Color.Yellow);

// Fill a rectangle

g.FillRectangle(hBrush,

100, 50, 100, 60);

// Create a Matrix object

Matrix X = new Matrix();

// Shear

X.Shear(2, 1);

// Apply transformation

g.Transform = X;

// Fill rectangle

g.FillRectangle(hBrush,

10, 100, 100, 60);

// Dispose of objects

hBrush.Dispose();

g.Dispose();

}

TRANSFORMATION492

Figure 10.12: Scaling a rectangle

Figure 10.13 shows the output from Listing 10.12. The first rectangle in
this figure is the original; the second is sheared.

The Translate method translates objects by the specified value. This
method takes two floating point arguments, which represent the x and y
offsets. For example, Listing 10.13 translates the original rectangle by 100
pixels each in the x- and y-directions.

Listing 10.13: Translating graphics objects

private void Translate_Click(object sender,

System.EventArgs e)

{

// Create a Graphics obhect

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Draw a filled rectangle

g.FillRectangle(Brushes.Blue,

50, 50, 100, 60);

10.3 THE MATRIX CLASS AND TRANSFORMATION 493

Figure 10.13: Shearing a rectangle

continues

// Create a Matrix object

Matrix X = new Matrix();

// Translate by 100 in the x direction

// and 100 in the y direction

X.Translate(100, 100);

// Apply transformation

g.Transform = X;

// Draw a filled rectangle after

// translation

g.FillRectangle(Brushes.Blue,

50, 50, 100, 60);

// Dispose of object

g.Dispose();

}

Here we draw two rectangles with a width of 100 and a height of 60.
Both rectangles start at (50, 50), but the code generates Figure 10.14. Even
though the rectangles were drawn with the same size and location, the sec-
ond rectangle after translation is now located 100 points away in the x- and
y-directions from the first rectangle.

TRANSFORMATION494

Figure 10.14: Translating a rectangle

10.4 The Graphics Class and Transformation

In Chapter 3 we saw that the Graphics class provides some trans-
formation-related members. Before we move to other transformation-
related classes, let’s review the transformation functionality defined in the
Graphics class, as described in Table 10.2. We will see how to use these
members in the examples throughout this chapter.

The Transform property of the Graphics class represents the world
transformation of a Graphics object. It is applied to all items of the object.
For example, if you have a rectangle, an ellipse, and a line and set the

10.4 THE GRAPHICS CLASS AND TRANSFORMATION 495

Table 10.2: Transformation-related members defined in the Graphics class

Member Description

MultiplyTransform Method that multiplies the world transformation of a
Graphics object and a Matrix object. The Matrix
object specifies the transformation action (scaling,
rotation, or translation).

ResetTransform Method that resets the world transformation matrix of
a Graphics object to the identity matrix.

RotateTransform Method that applies a specified rotation to the trans-
formation matrix of a Graphics object.

ScaleTransform Method that applies a specified scaling operation to
the transformation matrix of a Graphics object by
prepending it to the object's transformation matrix.

Transform Property that represents the world transformation for
a Graphics object. Both get and set.

TransformPoints Method that transforms an array of points from one
coordinate space to another using the current world
and page transformations of a Graphics object.

TranslateClip Method that translates the clipping region of a
Graphics object by specified amounts in the hori-
zontal and vertical directions.

TranslateTransform Method that prepends the specified translation to the
transformation matrix of a Graphics object.

Transform property of the Graphics object, it will be applied to all three
items. The Transform property is a Matrix object. The following code
snippet creates a Matrix object and sets the Transform property:

Matrix X = new Matrix();

X.Scale(2, 2, MatrixOrder.Append);

g.Transform = X;

The transformation methods provided by the Graphics class are
MultiplyTransform, ResetTransform, RotateTransform, Scale-

Transform, TransformPoints, TranslateClip, and TranslateTrans-
form. The MultiplyTransform method multiplies a transformation
matrix by the world transformation coordinates of a Graphics object. It
takes an argument of Matrix type. The second argument, which specifies
the order of multiplication operation, is optional. The following code
snippet creates a Matrix object with the Translate transformation. The
MultiplyTransform method multiplies the Matrix object by the world
coordinates of the Graphics object, translating all graphics items drawn by
the Graphics object.

Matrix X = new Matrix();

X. Translate(200.0F, 100.0F);

g.MultiplyTransform(X, MatrixOrder.Append);

RotateTransform rotates the world transform by a specified angle.
This method takes a floating point argument, which represents the rotation
angle, and an optional second argument of MatrixOrder. The following
code snippet rotates the world transformation of the Graphics object by 45
degrees:

g.RotateTransform(45.0F, MatrixOrder.Append);

The ScaleTransform method scales the world transformation in the
specified x- and y-directions. The first and second arguments of this
method are x- and y-direction scaling factors, and the third optional argu-
ment is MatrixOrder. The following code snippet scales the world trans-
formation by 2 in the x-direction and by 3 in the y-direction:

g.ScaleTransform(2.0F, 3.0F, MatrixOrder.Append);

TRANSFORMATION496

The TranslateClip method translates the clipping region in the hori-
zontal and vertical directions. The first argument of this method represents
the translation in the x-direction, and the second argument represents the
translation in the y-direction:

e.Graphics.TranslateClip(20.0f, 10.0f);

The TranslateTransformmethod translates the world transformation
by the specified x- and y-values and takes an optional third argument of
MatrixOrder:

g.TranslateTransform(100.0F, 0.0F, MatrixOrder.Append);

We will use all of these methods in our examples.

10.5 Global, Local, and Composite Transformations

Transformations can be divided into two categories based on their scope:
global and local. In addition, there are composite transformations. A global
transformation is applicable to all items of a Graphics object. The Trans-
form property of the Graphics class is used to set global transformations.

A composite transformation is a sequence of transformations. For
example, scaling followed by translation and rotation is a composite trans-
lation. The MultiplyTransform, RotateTransform, ScaleTransform,
and TranslateTransform methods are used to generate composite trans-
formations.

Listing 10.14 draws two ellipses and a rectangle, then calls Scale-
Transform, TranslateTransform, and RotateTransform (a composite
transformation). The items are drawn again after the composite trans-
formation.

Listing 10.14: Applying a composite transformation

private void GlobalTransformation_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

10.5 GLOBAL, LOCAL, AND COMPOSITE TRANSFORMATIONS 497

continues

g.Clear(this.BackColor);

// Create a blue pen with width of 2

Pen bluePen = new Pen(Color.Blue, 2);

Point pt1 = new Point(10, 10);

Point pt2 = new Point(20, 20);

Color [] lnColors = {Color.Black, Color.Red};

Rectangle rect1 = new Rectangle(10, 10, 15, 15);

// Create two linear gradient brushes

LinearGradientBrush lgBrush1 = new LinearGradientBrush

(rect1, Color.Blue, Color.Green,

LinearGradientMode.BackwardDiagonal);

LinearGradientBrush lgBrush = new LinearGradientBrush

(pt1, pt2, Color.Red, Color.Green);

// Set linear colors

lgBrush.LinearColors = lnColors;

// Set gamma correction

lgBrush.GammaCorrection = true;

// Fill and draw rectangle and ellipses

g.FillRectangle(lgBrush, 150, 0, 50, 100);

g.DrawEllipse(bluePen, 0, 0, 100, 50);

g.FillEllipse(lgBrush1, 300, 0, 100, 100);

// Apply scale transformation

g.ScaleTransform(1, 0.5f);

// Apply translate transformation

g.TranslateTransform(50, 0, MatrixOrder.Append);

// Apply rotate transformation

g.RotateTransform(30.0f, MatrixOrder.Append);

// Fill ellipse

g.FillEllipse(lgBrush1, 300, 0, 100, 100);

// Rotate again

g.RotateTransform(15.0f, MatrixOrder.Append);

// Fill rectangle

g.FillRectangle(lgBrush, 150, 0, 50, 100);

// Rotate again

g.RotateTransform(15.0f, MatrixOrder.Append);

// Draw ellipse

g.DrawEllipse(bluePen, 0, 0, 100, 50);

// Dispose of objects

lgBrush1.Dispose();

lgBrush.Dispose();

bluePen.Dispose();

g.Dispose();

}

Figure 10.15 shows the output from Listing 10.14.
A local transformation is applicable to only a specific item of a Graph-

ics object. The best example of local transformation is transforming a
graphics path. The Translate method of the GraphicsPath class trans-

TRANSFORMATION498

lates only the items of a graphics path. Listing 10.15 translates a graphics
path. We create a Matrix object and apply rotate and translate transforma-
tions to it.

Listing 10.15: Translating graphics path items

private void LocalTransformation_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a GraphicsPath object

GraphicsPath path = new GraphicsPath();

// Add an ellipse and a line to the

// graphics path

path.AddEllipse(50, 50, 100, 150);

path.AddLine(20, 20, 200, 20);

// Create a blue pen with a width of 2

Pen bluePen = new Pen(Color.Blue, 2);

10.5 GLOBAL, LOCAL, AND COMPOSITE TRANSFORMATIONS 499

Figure 10.15: Composite transformation

continues

// Create a Matrix object

Matrix X = new Matrix();

// Rotate 30 degrees

X.Rotate(30);

// Translate with 50 offset in x direction

X.Translate(50.0f, 0);

// Apply transformation on the path

path.Transform(X);

// Draw a rectangle, a line, and the path

g.DrawRectangle(Pens.Green, 200, 50, 100, 100);

g.DrawLine(Pens.Green, 30, 20, 200, 20);

g.DrawPath(bluePen, path);

// Dispose of objects

bluePen.Dispose();

path.Dispose();

g.Dispose();

}

Figure 10.16 shows the output from Listing 10.15. The transformation
affects only graphics path items (the ellipse and the blue [dark] line).

TRANSFORMATION500

Figure 10.16: Local transformation

10.6 Image Transformation

Image transformation is exactly the same as any other transformation
process. In this section we will see how to rotate, scale, translate, reflect, and
shear images. We will create a Matrix object, set the transformation process
by calling its methods, set the Matrix object as the Transform property or
the transformation methods of the Graphics object, and call DrawImage.

Rotating images is similar to rotating other graphics. Listing 10.16
rotates an image. We create a Graphics object using the CreateGraphics
method. Then we create a Bitmap object from a file and call the DrawImage
method, which draws the image on the form. After that we create a Matrix
object, call its Rotate method, rotate the image by 30 degrees, and apply
the resulting matrix to the surface using the Transform property. Finally,
we draw the image again using DrawImage.

Listing 10.16: Rotating images

private void RotationMenu_Click(object sender,

System.EventArgs e)

{

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

Bitmap curBitmap = new Bitmap(@"roses.jpg");

g.DrawImage(curBitmap, 0, 0, 200, 200);

// Create a Matrix object, call its Rotate method,

// and set it as Graphics.Transform

Matrix X = new Matrix();

X.Rotate(30);

g.Transform = X;

// Draw image

g.DrawImage(curBitmap,

new Rectangle(205, 0, 200, 200),

0, 0, curBitmap.Width,

curBitmap.Height,

GraphicsUnit.Pixel) ;

// Dispose of objects

curBitmap.Dispose();

g.Dispose();

}

Figure 10.17 shows the output from Listing 10.16. The first image is the
original; the second image is rotated.

10.6 IMAGE TRANSFORMATION 501

Now let’s apply other transformations. Replacing the Rotatemethod in
Listing 10.16 with the following line scales the image:

X.Scale(2, 1, MatrixOrder.Append);

The scaled image is shown in Figure 10.18.
Replacing the Rotate method in Listing 10.16 with the following line

translates the image with 100 offset in the x- and y-directions:

X.Translate(100, 100);

The new output is shown in Figure 10.19.
Replacing the Rotate method in Listing 10.16 with the following line

shears the image:

X.Shear(2, 1);

TRANSFORMATION502

Figure 10.17: Rotating images

10.6 IMAGE TRANSFORMATION 503

Figure 10.18: Scaling images

Figure 10.19: Translating images

The new output is shown in Figure 10.20.
You have probably noticed that image transformation is really no dif-

ferent from the transformation of other graphics objects. We recommend
that you download the source code samples from online to see the detailed
code listings.

10.7 Color Transformation and the Color Matrix

So far we have seen the transformation of graphics shapes from one state to
another, but have you ever thought about transforming colors? Why would
you want to transform an image’s colors? Suppose you wanted to provide
grayscale effects, or needed to adjust the contrast, brightness, or even “red-
ness” of an image. For example, images retrieved from video and still
cameras often need correction. In these cases, a color matrix is very useful.

As we discussed in earlier chapters, the color of each pixel of a GDI+
image or bitmap is represented by a 32-bit number, of which 8 bits each are

TRANSFORMATION504

Figure 10.20: Shearing images

used for the red, green, blue, and alpha components. Each of the four com-
ponents is a number from 0 to 255. For red, green, and blue, 0 represents
no intensity and 255 represents full intensity. For the alpha component, 0
represents transparent and 255 represents fully opaque. A color vector
includes four items: A, R, G, and B. The minimum values for this vector are
(0, 0, 0, 0), and the maximum values are (255, 255, 255, 255).

GDI+ allows the use of values between 0 and 1, where 0 represents the
minimum intensity and 1 the maximum intensity. These values are used in
a color matrix to represent the intensity and opacity of color components.
For example, the color vector with minimum values is (0, 0, 0, 0), and the
color vector with maximum values is (1, 1, 1, 1).

In a color transformation we can apply a color matrix on a color vector
by multiplying a 4×4 matrix. However, a 4×4 matrix supports only linear
transformations such as rotation and scaling. To perform nonlinear trans-
formations such as translation, we must use a 5×5 matrix. The element of
the fifth row and the fifth column of the matrix must be 1, and all of the
other entries in the five columns must be 0.

The elements of the matrix are identified according to a zero-based
index. The first element of the matrix is M[0][0], and the last element is
M[4][4]. A 5×5 identity matrix is shown in Figure 10.21. In this matrix the
elements M[0][0], M[1][1], M[2][2], and M[3][3] represent the red, blue,
green, and alpha factors, respectively. The element M[4][4] means nothing,
and it must always be 1.

Now if we want to double the intensity of the red component of a
color, we simply set M[0][0] equal to 2. For example, the matrix shown in
Figure 10.22 doubles the intensity of the red component, decreases the

10.7 COLOR TRANSFORMATION AND THE COLOR MATRIX 505

1 0 0 0 0

0 0 0 0

0000

0 0 0 0

0000

1

1

1

1

Figure 10.21: An identity matrix

intensity of the green component by half, triples the intensity of the blue
component, and decreases the opacity of the color by half (making it semi-
transparent).

In the matrix shown in Figure 10.22, we multiplied the intensity values.
We can also add intensity values by using other matrix elements. For exam-
ple, the matrix shown in Figure 10.23 will double the intensity of the red
component and add 0.2 to each of the red, green, and blue component
intensities.

10.7.1 The ColorMatrix Class
In this section we will discuss the ColorMatrix class. As you might guess
from its name, this class defines a matrix of colors. In the preceding sections
we discussed the Matrix class. The ColorMatrix class is not very different
from the Matrix class. Whereas the Matrix class is used in general trans-
formation to transform graphics shapes and images, the ColorMatrix class
is specifically designed to transform colors. Before we see practical use of
the color transformation, we will discuss the ColorMatrix class, its prop-
erties, and its methods.

TRANSFORMATION506

2 0 0 0 0

0 0 0 0

0000

0 0 0 0

0000

0.5

3

0.5

1

Figure 10.22: A matrix whose components have different intensities

2 0 0 0 0

0 0 0 0

0000

0 0 0 0

00.20.20.2

1

1

1

1

Figure 10.23: A color matrix with multiplication and addition

The ColorMatrix class constructor takes an array that contains the
values of matrix items. The Item property of this class represents a cell of
the matrix and can be used to get and set cell values. Besides the Item prop-
erty, the ColorMatrix class provides 25 MatrixXY properties, which rep-
resent items of the matrix at row (x + 1) and column (y + 1). MatrixXY
properties can be used to get and set an item’s value.

Listing 10.17 creates a ColorMatrix object with item (4, 4) set to 0.5 (half
opacity). Then it sets the values of item (3, 4) to 0.8 and item (1, 1) to 0.3.

Listing 10.17: Creating a ColorMatrix object

float[][] ptsArray ={

new float[] {1, 0, 0, 0, 0},

new float[] {0, 1, 0, 0, 0},

new float[] {0, 0, 1, 0, 0},

new float[] {0, 0, 0, 0.5f, 0},

new float[] {0, 0, 0, 0, 1}};

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

if(clrMatrix.Matrix34 <= 0.5)

{

clrMatrix.Matrix34 = 0.8f;

clrMatrix.Matrix11 = 0.3f;

}

Section 10.8 will describe how to apply color matrices to the transfor-
mation of colors.

10.8 Matrix Operations in Image Processing

Recoloring, the process of changing image colors, is a good example of
color transformation. Recoloring includes changing colors, intensity,
contrast, and brightness of an image. It can all be done via the Image-
Attributes class and its methods.

The color matrix can be applied to an image via the SetColorMatrix
method of the ImageAttributes class. The ImageAttributes object is
used as a parameter when we call DrawImage.

10.8.1 Translating Colors
Translating colors increases or decreases color intensities by a set amount
(not by multiplying them). Each color component (red, green, and blue) has

10.8 MATRIX OPERATIONS IN IMAGE PROCESSING 507

255 different intensity levels ranging from 0 to 255. For example, assume
that the current intensity level for the red component of a color is 100.
Changing its intensity level to 150 would imply translating by 50.

In a color matrix representation, the intensity varies from 0 to 1. The last
row’s first four elements represent the translation of red, green, blue, and
alpha components of a color, as shown in Figure 10.22. Hence, adding a
value to these elements will transform a color. For example, the t1, t2, t3,
and t4 values in the following color matrix represent the red, green, blue,
and alpha component translations, respectively:

Color Matrix = {

{1, 0, 0, 0, 0},

{0, 1, 0, 0, 0},

{0, 0, 1, 0, 0},

{0, 0, 0, 1, 0},

{t1, t2, t3, t4, 1}};

Listing 10.18 uses a ColorMatrix object to translate colors. We change
the current intensity of the red component to 0.90. First we create a
Graphics object using the CreateGraphics method, and we create a
Bitmap object from a file. Next we create an array of ColorMatrix ele-
ments and create a ColorMatrix object from this array. Then we create an
ImageAttributes object and set the color matrix using SetColorMatrix,
which takes the ColorMatrix object as its first parameter. After all that, we
draw two images. The first image has no effects; the second image shows
the result of our color matrix transformation. Finally, we dispose of the
objects.

Listing 10.18: Using ColorMatrix to translate colors

private void TranslationMenu_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a Bitmap object

Bitmap curBitmap = new Bitmap("roses.jpg");

// Color matrix elements

float[][] ptsArray =

{

new float[] {1, 0, 0, 0, 0},

TRANSFORMATION508

new float[] {0, 1, 0, 0, 0},

new float[] {0, 0, 1, 0, 0},

new float[] {0, 0, 0, 1, 0},

new float[] {.90f, .0f, .0f, .0f, 1}

};

// Create a ColorMatrix object

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

// Create image attributes

ImageAttributes imgAttribs = new ImageAttributes();

// Set color matrix

imgAttribs.SetColorMatrix(clrMatrix,

ColorMatrixFlag.Default,

ColorAdjustType.Default);

// Draw image with no effects

g.DrawImage(curBitmap, 0, 0, 200, 200);

// Draw image with image attributes

g.DrawImage(curBitmap,

new Rectangle(205, 0, 200, 200),

0, 0, curBitmap.Width, curBitmap.Height,

GraphicsUnit.Pixel, imgAttribs) ;

// Dispose of objects

curBitmap.Dispose();

g.Dispose();

}

Figure 10.24 shows the output from Listing 10.18. The original image is
on the left; on the right we have the results of our color translation. If you

10.8 MATRIX OPERATIONS IN IMAGE PROCESSING 509

Figure 10.24: Translating colors

change the values of other components (red, blue, and alpha) in the last row
of the color matrix, you’ll see different results.

10.8.2 Scaling Colors
Scaling color involves multiplying a color component value by a scaling
factor. For example, the t1, t2, t3, and t4 values in the following color matrix
represent the red, green, blue, and alpha components, respectively. If we
change the value of M[2][2] to 0.5, the transformation operation will mul-
tiply the green component by 0.5, cutting its intensity by half.

Color Matrix = {

{t1, 0, 0, 0, 0},

{0, t2, 0, 0, 0},

{0, 0, t3, 0, 0},

{0, 0, 0, t4, 0},

{0, 0, 0, 0, 1}};

Listing 10.19 uses the ColorMatrix object to scale image colors.

Listing 10.19: Scaling colors

private void ScalingMenu_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a Bitmap object

Bitmap curBitmap = new Bitmap("roses.jpg");

// Color matrix elements

float[][] ptsArray =

{

new float[] {1, 0, 0, 0, 0},

new float[] {0, 0.8f, 0, 0, 0},

new float[] {0, 0, 0.5f, 0, 0},

new float[] {0, 0, 0, 0.5f, 0},

new float[] {0, 0, 0, 0, 1}

};

// Create a ColorMatrix object

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

// Create image attributes

ImageAttributes imgAttribs = new ImageAttributes();

// Set color matrix

imgAttribs.SetColorMatrix(clrMatrix,

ColorMatrixFlag.Default,

ColorAdjustType.Default);

TRANSFORMATION510

// Draw image with no effects

g.DrawImage(curBitmap, 0, 0, 200, 200);

// Draw image with image attributes

g.DrawImage(curBitmap,

new Rectangle(205, 0, 200, 200),

0, 0, curBitmap.Width, curBitmap.Height,

GraphicsUnit.Pixel, imgAttribs) ;

// Dispose of objects

curBitmap.Dispose();

g.Dispose();

}

Figure 10.25 shows the output from Listing 10.19. The original image is
on the left; on the right is the image after color scaling. If you change the
values of t1, t2, t3, and t4, you will see different results.

10.8.3 Shearing Colors
Earlier in this chapter we discussed image shearing. It can be thought of as
anchoring one corner of a rectangular region and stretching the opposite
corner horizontally, vertically, or in both directions. Shearing colors is the
same process, but here the object is the color instead of the image.

Color shearing increases or decreases a color component by an amount
proportional to another color component. For example, consider the

10.8 MATRIX OPERATIONS IN IMAGE PROCESSING 511

Figure 10.25: Scaling colors

transformation in which the red component is increased by one half the
value of the blue component. Under such a transformation, the color (0.2,
0.5, 1) would become (0.7, 0.5, 1). The new red component is 0.2 + (0.5)(1)
= 0.7. The following color matrix is used to shear image colors.

float[][] ptsArray = {

new float[] {1, 0, 0, 0, 0},

new float[] {0, 1, 0, 0, 0},

new float[] {.50f, 0, 1, 0, 0},

new float[] {0, 0, 0, 1, 0},

new float[] {0, 0, 0, 0, 1}};

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

If we substitute this color matrix into Listing 10.19, the output will look
like Figure 10.26.

10.8.4 Rotating Colors
As explained earlier, color in GDI+ has four components: red, green, blue,
and alpha. Rotating all four components in a four-dimensional space is
hard to visualize. However, such rotation can be visualized in a three-

TRANSFORMATION512

Figure 10.26: Shearing colors

dimensional space. To do this, we drop the alpha component from the color
structure and assume that there are only three colors—red, green, and
blue—as shown in Figure 10.27. The three colors—red, green, and blue—
are perpendicular to each other, so the angle between any two primary col-
ors is 90 degrees.

Suppose that the red, green, and blue colors are represented by points (1,
0, 0), (0, 1, 0), and (0, 0, 1), respectively. If we rotate a color with a green com-
ponent of 1, and red and blue components of 0 each, by 90 degrees, the new
color will have a red component of 1, and green and blue components of 0
each. If we rotate the color less than 90 degrees, the new color will be
located somewhere between green and red.

Figure 10.28 shows how to initialize a color matrix to perform rotations
about each of the three components: red, green, and blue.

Listing 10.20 rotates the colors by 45 degrees from the red component.

Listing 10.20: Rotating colors

private void RotationMenu_Click(object sender,

System.EventArgs e)

{

float degrees = 45.0f;

double r = degrees*System.Math.PI/180;

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a Bitmap object from a file

Bitmap curBitmap = new Bitmap("roses.jpg");

10.8 MATRIX OPERATIONS IN IMAGE PROCESSING 513

Blue

Red
Green

90°

90°

90°

(0,0,1)

(0,1,0)(1,0,0)

Figure 10.27: RGB rotation space

continues

// Color matrix elements

float[][] ptsArray =

{

new float[] {(float)System.Math.Cos(r),

(float)System.Math.Sin(r),

0, 0, 0},

new float[] {(float)-System.Math.Sin(r),

(float)-System.Math.Cos(r),

0, 0, 0},

new float[] {.50f, 0, 1, 0, 0},

new float[] {0, 0, 0, 1, 0},

new float[] {0, 0, 0, 0, 1}

};

// Create a ColorMatrix object

ColorMatrix clrMatrix = new ColorMatrix(ptsArray);

// Create image attributes

ImageAttributes imgAttribs = new ImageAttributes();

// Set ColorMatrix to ImageAttributes

imgAttribs.SetColorMatrix(clrMatrix,

ColorMatrixFlag.Default,

ColorAdjustType.Default);

// Draw image with no effects

g.DrawImage(curBitmap, 0, 0, 200, 200);

// Draw image with image attributes

g.DrawImage(curBitmap,

new Rectangle(205, 0, 200, 200),

0, 0, curBitmap.Width, curBitmap.Height,

GraphicsUnit.Pixel, imgAttribs) ;

// Dispose of objects

curBitmap.Dispose();

g.Dispose();

}

TRANSFORMATION514

cosθ sinθ 0 0 0

–sinθ 0 0 0

0000

0 0 0 0

0000

cosθ

1

1

1

cosθ

sinθ

0 0 0–sinθ

0 0 0

000

0

0 0 0 0

0000

cosθ
1

1

1

Green

Green
GreenBlue

Blue

BlueRed
Red

Red

θθ θ

0 0 00

0 0

00

0

0

0 0 0 0

0000

1

1

1

cosθ sinθ

–sinθcosθ

Figure 10.28: RGB initialization

Figure 10.29 slows the output from Listing 10.20. On the left is the orig-
inal image; on the right is the image after color rotation.

10.9 Text Transformation

In Chapter 5 we discussed how to use the ScaleTransform, Rotate-
Transform, and TranslateTransform methods to transform text. We can
also use a transformation matrix to transform text.

We create a Matrix object with the transformation properties and apply
it to the surface using the Transform property of the Graphics object. List-
ing 10.21 creates a Matrix object and sets it as the Transform property. We
then call DrawString, which draws the text on the form. To test this code,
add the code to a form’s paint event handler.

10.9 TEXT TRANSFORMATION 515

Figure 10.29: Rotating colors

Listing 10.21: Text transformation example

Graphics g = e.Graphics;

string str =

"Colors, fonts, and text are common" +

" elements of graphics programming." +

"In this chapter, you learned " +

" about the colors, fonts, and text" +

" representations in the "+

".NET Framework class library. "+

"You learned how to create "+

"these elements and use them in GDI+.";

// Create a Matrix object

Matrix M = new Matrix(1, 0, 0.5f, 1, 0, 0);

g.RotateTransform(45.0f,

System.Drawing.Drawing2D.MatrixOrder.Prepend);

g.TranslateTransform(-20, -70);

g.Transform = M;

g.DrawString(str,

new Font("Verdana", 10),

new SolidBrush(Color.Blue),

new Rectangle(50,20,200,300));

Figure 10.30 shows the outcome of Listing 10.21.

TRANSFORMATION516

Figure 10.30: Using the transformation matrix to transform text

We can apply shearing and other effects by changing the values of
Matrix. For example, if we change Matrix as follows:

Matrix M = new Matrix(1, 0.5f, 0, 1, 0, 0);

the new code will generate Figure 10.31.
We can reverse the text just by changing the value of the Matrix object

as follows:

Matrix M = new Matrix(1, 1, 1, -1, 0, 0);

with the results shown in Figure 10.32.

10.10 The Significance of Transformation Order

The Matrix object can store a single transformation or a sequence of trans-
formations. As we learned in Section 10.5, a sequence of transformations is
called a composite transformation, which is a result of multiplying the matri-
ces of the individual transformations.

10.10 THE SIGNIFICANCE OF TRANSFORMATION ORDER 517

Figure 10.31: Using the transformation matrix to shear text

In a composite transformation, the order of the individual transforma-
tions is very important. Matrix operations are not cumulative. For example,
the result of a Graphics → Rotate → Translate → Scale → Graphics opera-
tion will be different from the result of a Graphics → Scale → Rotate →
Translate → Graphics operation. The main reason that order is significant is
that transformations like rotation and scaling are done with respect to the
origin of the coordinate system. The result of scaling an object that is cen-
tered at the origin is different from the result of scaling an object that has
been moved away from the origin. Similarly, the result of rotating an object
that is centered at the origin is different from the result of rotating an object
that has been moved away from the origin.

The MatrixOrder enumeration, which is an argument to the transfor-
mation methods, represents the transformation order. It has two values:
Append and Prepend.

Let’s write an application to see how transformation order works.
We create a Windows application and add a MainMenu control and
three menu items to the form. The MatrixOrder class is defined in the
System.Drawing.Drawing2D namespace, so we also add a reference to
this namespace.

TRANSFORMATION518

Figure 10.32: Using the transformation matrix to reverse text

Listing 10.22 draws a rectangle before and after applying a Scale →
Rotate → Translate transformation sequence.

Listing 10.22: Scale → Rotate → Translate transformation order

private void First_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a rectangle

Rectangle rect =

new Rectangle(20, 20, 100, 100);

// Create a solid brush

SolidBrush brush =

new SolidBrush(Color.Red);

// Fill rectangle

g.FillRectangle(brush, rect);

// Scale

g.ScaleTransform(1.75f, 0.5f);

// Rotate

g.RotateTransform(45.0f, MatrixOrder.Append);

// Translate

g.TranslateTransform(150.0f, 50.0f,

MatrixOrder.Append);

// Fill rectangle again

g.FillRectangle(brush, rect);

// Dispose of objects

brush.Dispose();

g.Dispose();

}

Figure 10.33 shows the output from Listing 10.22. The original rectan-
gle is in the upper left; on the lower right is the rectangle after composite
transformation.

Now let’s change the order of transformation to Translate → Rotate →
Scale with Append, as shown in Listing 10.23.

Listing 10.23: Translate → Rotate → Scale transformation order with Append

private void Second_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

10.10 THE SIGNIFICANCE OF TRANSFORMATION ORDER 519

continues

g.Clear(this.BackColor);

// Create a rectangle

Rectangle rect =

new Rectangle(20, 20, 100, 100);

// Create a solid brush

SolidBrush brush =

new SolidBrush(Color.Red);

// Fill rectangle

g.FillRectangle(brush, rect);

// Translate

g.TranslateTransform(100.0f, 50.0f,

MatrixOrder.Append);

// Scale

g.ScaleTransform(1.75f, 0.5f);

// Rotate

g.RotateTransform(45.0f,

MatrixOrder.Append);

// Fill rectangle again

g.FillRectangle(brush, rect);

// Dispose of objects

brush.Dispose();

g.Dispose();

}

TRANSFORMATION520

Figure 10.33: Scale → Rotate → Translate composite transformation

Figure 10.34 shows the output from Listing 10.23. The original rectan-
gle is in the same place, but the transformed rectangle has moved.

Now let’s keep the code from Listing 10.23 and change only the matrix
transformation order from Append to Prepend, as shown in Listing 10.24.

Listing 10.24: Translate → Rotate → Scale transformation order with Prepend

private void Third_Click(object sender,

System.EventArgs e)

{

// Create a Graphics object

Graphics g = this.CreateGraphics();

g.Clear(this.BackColor);

// Create a rectangle

Rectangle rect =

new Rectangle(20, 20, 100, 100);

// Create a solid brush

SolidBrush brush =

new SolidBrush(Color.Red);

10.10 THE SIGNIFICANCE OF TRANSFORMATION ORDER 521

Figure 10.34: Translate → Rotate → Scale composite transformation with Append

continues

// Fill rectangle

g.FillRectangle(brush, rect);

// Translate

g.TranslateTransform(100.0f, 50.0f,

MatrixOrder.Prepend);

// Rotate

g.RotateTransform(45.0f,

MatrixOrder.Prepend);

// Scale

g.ScaleTransform(1.75f, 0.5f);

// Fill rectangle again

g.FillRectangle(brush, rect);

// Dispose of objects

brush.Dispose();

g.Dispose();

}

The new output is shown in Figure 10.35. The matrix order affects the
result.

TRANSFORMATION522

Figure 10.35: Translate → Rotate → Scale composite transformation with Prepend

SUMMARY

In this chapter we first discussed the basics of transformation, coordinate
systems, the role of coordinate systems in the transformation process, and
transformation functionality. We learned

• How to distinguish among global, local, and composite trans-
formations

• How to use the Graphics class transformations in applications

• How to translate, scale, shear, and rotate graphics objects

Matrices play a vital role in transformation. We can customize the trans-
formation process and its variables by creating and applying a transforma-
tion matrix. This chapter showed

• How to use the Matrix and ColorMatrix classes, and their role in
transformation

• How to use the matrix operations for image processing, including
translation, scaling, shearing, and rotation

• How to use recoloring and color transformation to manipulate the
colors of graphics objects

• How to perform color transformations

Transformations can be applied not only to graphics images and objects,
but also to text strings. Drawing vertical or skewed text is one example of
text transformation. This chapter explained how to transform text.

Printing also plays an important part in GDI+. In Chapter 11 you will
learn various components of the System.Drawing.Printing namespace
and how to use them.

SUMMARY 523

