

455

Part II

C# 2.0

Hejlsberg.book Page 455 Friday, October 10, 2003 7:35 PM

Hejlsberg.book Page 456 Friday, October 10, 2003 7:35 PM

457

19.

Introduction to C# 2.0

C# 2.0 introduces several language extensions, the most important of which are generics,
anonymous methods, iterators, and partial types.

• Generics permit classes, structs, interfaces, delegates, and methods to be parameterized
by the types of data they store and manipulate. Generics are useful because they pro-
vide stronger compile-time type checking, require fewer explicit conversions between
data types, and reduce the need for boxing operations and runtime type checks.

• Anonymous methods allow code blocks to be written “in-line” where delegate values
are expected. Anonymous methods are similar to lambda functions in the Lisp pro-
gramming language. C# 2.0 supports the creation of “closures” where anonymous
methods access surrounding local variables and parameters.

• Iterators are methods that incrementally compute and yield a sequence of values. Itera-
tors make it easy for a type to specify how the

foreach

 statement will iterate over its
elements.

• Partial types allow classes, structs, and interfaces to be broken into multiple pieces
stored in different source files for easier development and maintenance. Additionally,
partial types allow separation of machine-generated and user-written parts of types so
that it is easier to augment code generated by a tool.

This chapter introduces these new features. Following the introduction are four chapters
that provide a complete technical specification of the features.

The language extensions in C# 2.0 were designed to ensure maximum compatibility with
existing code. For example, even though C# 2.0 gives special meaning to the words

where

,

yield

, and

partial

 in certain contexts, these words can still be used as identifiers.
Indeed, C# 2.0 adds no new keywords because such keywords could conflict with identifi-
ers in existing code.

19.1

Generics

Generics permit classes, structs, interfaces, delegates, and methods to be parameterized by
the types of data they store and manipulate. C# generics will be immediately familiar to

Hejlsberg.book Page 457 Friday, October 10, 2003 7:35 PM

19.

Introduction to C# 2.0

458

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

users of generics in Eiffel or Ada or to users of C++ templates; however, they do not suffer
many of the complications of the latter.

19.1.1

Why Generics?

Without generics, general-purpose data structures can use type

object

 to store data of
any type. For example, the following simple

Stack

 class stores its data in an

object

array, and its two methods,

Push

 and

Pop

, use

object

 to accept and return data,
respectively.

public class Stack
{

object[] items;
int count;

public void Push(object item) {...}

public object Pop() {...}
}

Although using type

object

 makes the

Stack

 class flexible, it is not without drawbacks.
For example, it is possible to push a value of any type, such as a

Customer

 instance, onto a
stack. However, when a value is retrieved, the result of the

Pop

 method must explicitly be
cast back to the appropriate type, which is tedious to write and carries a performance pen-
alty for runtime type checking.

Stack stack = new Stack();
stack.Push(new Customer());
Customer c = (Customer)stack.Pop();

If a value of a value type, such as an

int

, is passed to the

Push

 method, it is automatically
boxed. When the

int

 is later retrieved, it must be unboxed with an explicit type cast.

Stack stack = new Stack();
stack.Push(3);
int i = (int)stack.Pop();

Such boxing and unboxing operations add performance overhead because they involve
dynamic memory allocations and runtime type checks.

A further issue with the

Stack

 class is that it is not possible to enforce the kind of data
placed on a stack. Indeed, a

Customer

 instance can be pushed on a stack and then acci-
dentally cast to the wrong type after it is retrieved.

Stack stack = new Stack();
stack.Push(new Customer());
string s = (string)stack.Pop();

Hejlsberg.book Page 458 Friday, October 10, 2003 7:35 PM

19.1

 Generics

459

19.

In
tro

d
u

ctio
n

 to
 C

#
 2

.0

Although the previous code is an improper use of the

Stack

 class, the code is technically
speaking correct and a compile-time error is not reported. The problem does not become
apparent until the code is executed, at which point an

InvalidCastException

 is thrown.

The

Stack

 class would clearly benefit from the ability to specify its element type. With
generics, that becomes possible.

19.1.2

Creating and Using Generics

Generics provide a facility for creating types that have

type parameters

. The following
example declares a generic

Stack

 class with a type parameter

T

. The type parameter is
specified in

<

 and

>

 delimiters after the class name. Rather than forcing conversions to and
from

object

, instances of

Stack<T>

 accept the type for which they are created and store
data of that type without conversion. The type parameter

T

 acts as a placeholder until an
actual type is specified at use. Note that

T

 is used as the element type for the internal items
array, the type for the parameter to the

Push

 method, and the return type for the

Pop

method.

public class Stack<T>
{

T[] items;
int count;

public void Push(T item) {...}

public T Pop() {...}
}

When the generic class

Stack<T>

 is used, the actual type to substitute for

T

 is specified. In
the following example,

int

 is given as the

type argument

 for

T

.

Stack<int> stack = new Stack<int>();
stack.Push(3);
int x = stack.Pop();

The

Stack<int>

 type is called a

constructed type

. In the

Stack<int>

 type, every occur-
rence of

T

 is replaced with the type argument

int

. When an instance of

Stack<int>

 is
created, the native storage of the

items

 array is an

int[]

 rather than

object[]

, provid-
ing substantial storage efficiency compared to the nongeneric

Stack

. Likewise, the

Push

and

Pop

 methods of a

Stack<int>

 operate on

int

 values, making it a compile-time error
to push values of other types onto the stack and eliminating the need to explicitly cast val-
ues back to their original type when they are retrieved.

Generics provide strong typing, meaning for example that it is an error to push an

int

onto a stack of

Customer

 objects. Just as a

Stack<int>

 is restricted to operate only on

Hejlsberg.book Page 459 Friday, October 10, 2003 7:35 PM

19.

Introduction to C# 2.0

460

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

int

 values, so is

Stack<Customer> restricted to Customer objects, and the compiler
will report errors on the last two lines of the following example.

Stack<Customer> stack = new Stack<Customer>();
stack.Push(new Customer());
Customer c = stack.Pop();
stack.Push(3); // Type mismatch error
int x = stack.Pop(); // Type mismatch error

Generic type declarations may have any number of type parameters. The previous
Stack<T> example has only one type parameter, but a generic Dictionary class might
have two type parameters, one for the type of the keys and one for the type of the values.

public class Dictionary<K,V>
{

public void Add(K key, V value) {...}

public V this[K key] {...}
}

When Dictionary<K,V> is used, two type arguments would have to be supplied.

Dictionary<string,Customer> dict = new Dictionary<string,Customer>();
dict.Add("Peter", new Customer());
Customer c = dict["Peter"];

19.1.3 Generic Type Instantiations
Similar to a nongeneric type, the compiled representation of a generic type is Intermediate
Language (IL) instructions and metadata. The representation of the generic type of course
also encodes the existence and use of type parameters.

The first time an application creates an instance of a constructed generic type, such as
Stack<int>, the Just-In-Time (JIT) compiler of the .NET Common Language Runtime
converts the generic IL and metadata to native code, substituting actual types for type
parameters in the process. Subsequent references to that constructed generic type then use
the same native code. The process of creating a specific constructed type from a generic
type is known as a generic type instantiation.

The .NET Common Language Runtime creates a specialized copy of the native code for
each generic type instantiation with a value type, but it shares a single copy of the native
code for all reference types (because, at the native code level, references are just pointers
with the same representation).

19.1.4 Constraints
Commonly, a generic class will do more than just store data based on a type parameter.
Often, the generic class will want to invoke methods on objects whose type is given by a
type parameter. For example, an Add method in a Dictionary<K,V> class might need to
compare keys using a CompareTo method.

Hejlsberg.book Page 460 Friday, October 10, 2003 7:35 PM

19.1 Generics

461

19.
In

tro
d

u
ctio

n
 to

 C
#

 2
.0

public class Dictionary<K,V>
{

public void Add(K key, V value)
{

...

if (key.CompareTo(x) < 0) {...} // Error, no CompareTo method
...

}
}

Because the type argument specified for K could be any type, the only members that can be
assumed to exist on the key parameter are those declared by type object, such as
Equals, GetHashCode, and ToString; a compile-time error therefore occurs in the pre-
vious example. It is of course possible to cast the key parameter to a type that contains a
CompareTo method. For example, the key parameter could be cast to IComparable.

public class Dictionary<K,V>
{

public void Add(K key, V value)
{

...

if (((IComparable)key).CompareTo(x) < 0) {...}
...

}
}

Although this solution works, it requires a dynamic type check at runtime, which adds over-
head. It furthermore defers error reporting to runtime, throwing an InvalidCastException
if a key does not implement IComparable.

To provide stronger compile-time type checking and reduce type casts, C# permits an
optional list of constraints to be supplied for each type parameter. A type parameter con-
straint specifies a requirement that a type must fulfill in order to be used as an argument
for that type parameter. Constraints are declared using the word where, followed by the
name of a type parameter, followed by a list of class or interface types and optionally the
constructor constraint new().

For the Dictionary<K,V> class to ensure that keys always implement IComparable,
the class declaration can specify a constraint for the type parameter K.

public class Dictionary<K,V> where K: IComparable
{

public void Add(K key, V value)
{

...

if (key.CompareTo(x) < 0) {...}
...

}
}

Hejlsberg.book Page 461 Friday, October 10, 2003 7:35 PM

19. Introduction to C# 2.0

462

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

Given this declaration, the compiler will ensure that any type argument supplied for K is a
type that implements IComparable. Furthermore, it is no longer necessary to explicitly
cast the key parameter to IComparable before calling the CompareTo method; all mem-
bers of a type given as a constraint for a type parameter are directly available on values of
that type parameter type.

For a given type parameter, it is possible to specify any number of interfaces as constraints,
but no more than one class. Each constrained type parameter has a separate where clause.
In the following example, the type parameter K has two interface constraints, and the type
parameter E has a class constraint and a constructor constraint.

public class EntityTable<K,E>
where K: IComparable<K>, IPersistable
where E: Entity, new()

{
public void Add(K key, E entity)
{

...

if (key.CompareTo(x) < 0) {...}
...

}
}

The constructor constraint, new(), in the previous example ensures that a type used as a
type argument for E has a public, parameterless constructor, and it permits the generic
class to use new E() to create instances of that type.

Type parameter constrains should be used with care. Although they provide stronger com-
pile-time type checking and in some cases improve performance, they also restrict the pos-
sible uses of a generic type. For example, a generic class List<T> might constrain T to
implement IComparable such that the list’s Sort method can compare items. However,
doing so would preclude use of List<T> for types that do not implement IComparable,
even if the Sort method is never actually called in those cases.

19.1.5 Generic Methods
In some cases, a type parameter is not needed for an entire class but is needed only inside a
particular method. Often, this occurs when creating a method that takes a generic type as a
parameter. For example, when using the Stack<T> class described earlier, a common pat-
tern might be to push multiple values in a row, and it might be convenient to write a
method that does so in a single call. For a particular constructed type, such as
Stack<int>, the method would look like this.

void PushMultiple(Stack<int> stack, params int[] values) {
foreach (int value in values) stack.Push(value);

}

Hejlsberg.book Page 462 Friday, October 10, 2003 7:35 PM

19.2 Anonymous Methods

463

19.
In

tro
d

u
ctio

n
 to

 C
#

 2
.0

This method can be used to push multiple int values onto a Stack<int>.

Stack<int> stack = new Stack<int>();
PushMultiple(stack, 1, 2, 3, 4);

However, the previous method only works with the particular constructed type
Stack<int>. To have it work with any Stack<T>, the method must be written as a
generic method. A generic method has one or more type parameters specified in < and >
delimiters after the method name. The type parameters can be used within the parameter
list, return type, and body of the method. A generic PushMultiple method would look
like this.

void PushMultiple<T>(Stack<T> stack, params T[] values) {
foreach (T value in values) stack.Push(value);

}

Using this generic method, it is possible to push multiple items onto any Stack<T>. When
calling a generic method, type arguments are given in angle brackets in the method invoca-
tion. For example

Stack<int> stack = new Stack<int>();
PushMultiple<int>(stack, 1, 2, 3, 4);

This generic PushMultiple method is more reusable than the previous version because it
works on any Stack<T>, but it appears to be less convenient to call because the desired T
must be supplied as a type argument to the method. In many cases, however, the compiler
can deduce the correct type argument from the other arguments passed to the method,
using a process called type inferencing. In the previous example, because the first regular
argument is of type Stack<int>, and the subsequent arguments are of type int, the com-
piler can reason that the type parameter must be int. Thus, the generic PushMultiple
method can be called without specifying the type parameter.

Stack<int> stack = new Stack<int>();
PushMultiple(stack, 1, 2, 3, 4);

19.2 Anonymous Methods

Event handlers and other callbacks are often invoked exclusively through delegates and
never directly. Even so, it has thus far been necessary to place the code of event handlers
and callbacks in distinct methods to which delegates are explicitly created. In contrast,
anonymous methods allow the code associated with a delegate to be written “in-line”
where the delegate is used, conveniently tying the code directly to the delegate instance.
Besides this convenience, anonymous methods have shared access to the local state of the
containing function member. To achieve the same state sharing using named methods

Hejlsberg.book Page 463 Friday, October 10, 2003 7:35 PM

19. Introduction to C# 2.0

464

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

requires “lifting” local variables into fields in instances of manually authored helper
classes.

The following example shows a simple input form that contains a list box, a text box, and a
button. When the button is clicked, an item containing the text in the text box is added to
the list box.

class InputForm: Form
{

ListBox listBox;
TextBox textBox;
Button addButton;

public MyForm() {
listBox = new ListBox(...);
textBox = new TextBox(...);
addButton = new Button(...);

addButton.Click += new EventHandler(AddClick);
}

void AddClick(object sender, EventArgs e) {
listBox.Items.Add(textBox.Text);

}
}

Even though only a single statement is executed in response to the button’s Click event,
that statement must be extracted into a separate method with a full parameter list, and an
EventHandler delegate referencing that method must be manually created. Using an
anonymous method, the event handling code becomes significantly more succinct.

class InputForm: Form
{

ListBox listBox;
TextBox textBox;
Button addButton;

public MyForm() {
listBox = new ListBox(...);
textBox = new TextBox(...);
addButton = new Button(...);

addButton.Click += delegate {
listBox.Items.Add(textBox.Text);

};
}

}

An anonymous method consists of the keyword delegate, an optional parameter list,
and a statement list enclosed in { and } delimiters. The anonymous method in the previ-
ous example does not use the parameters supplied by the delegate, and it can therefore
omit the parameter list. To gain access to the parameters, the anonymous method can
include a parameter list.

Hejlsberg.book Page 464 Friday, October 10, 2003 7:35 PM

19.2 Anonymous Methods

465

19.
In

tro
d

u
ctio

n
 to

 C
#

 2
.0

addButton.Click += delegate(object sender, EventArgs e) {
MessageBox.Show(((Button)sender).Text);

};

In the previous examples, an implicit conversion occurs from the anonymous method to
the EventHandler delegate type (the type of the Click event). This implicit conversion
is possible because the parameter list and return type of the delegate type are compatible
with the anonymous method. The exact rules for compatibility are as follows:

• The parameter list of a delegate is compatible with an anonymous method if one of the
following is true.

- The anonymous method has no parameter list, and the delegate has no out
parameters.

- The anonymous method includes a parameter list that exactly matches the delegate’s
parameters in number, types, and modifiers.

• The return type of a delegate is compatible with an anonymous method if one of the
following is true.

- The delegate’s return type is void, and the anonymous method has no return
statements or only return statements with no expression.

- The delegate’s return type is not void, and the expressions associated with all
return statements in the anonymous method can be implicitly converted to the
return type of the delegate.

Both the parameter list and the return type of a delegate must be compatible with an anon-
ymous method before an implicit conversion to that delegate type can occur.

The following example uses anonymous methods to write functions “in-line.” The anony-
mous methods are passed as parameters of a Function delegate type.

using System;

delegate double Function(double x);

class Test
{

static double[] Apply(double[] a, Function f) {
double[] result = new double[a.Length];
for (int i = 0; i < a.Length; i++) result[i] = f(a[i]);
return result;

}

static double[] MultiplyAllBy(double[] a, double factor) {
return Apply(a, delegate(double x) { return x * factor; });

}

static void Main() {
double[] a = {0.0, 0.5, 1.0};

Hejlsberg.book Page 465 Friday, October 10, 2003 7:35 PM

19. Introduction to C# 2.0

466

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

double[] squares = Apply(a, delegate(double x) { return x * x; });

double[] doubles = MultiplyAllBy(a, 2.0);
}

}

The Apply method applies a given Function to the elements of a double[], returning a
double[] with the results. In the Main method, the second parameter passed to Apply is
an anonymous method that is compatible with the Function delegate type. The anony-
mous method simply returns the square of its argument, and thus the result of that Apply
invocation is a double[] containing the squares of the values in a.

The MultiplyAllBy method returns a double[] created by multiplying each of the val-
ues in the argument array a by a given factor. To produce its result, MultiplyAllBy
invokes the Apply method, passing an anonymous method that multiplies the argument x
by factor.

Local variables and parameters whose scope contains an anonymous method are called
outer variables of the anonymous method. In the MultiplyAllBy method, a and
factor are outer variables of the anonymous method passed to Apply, and because the
anonymous method references factor, factor is said to have been captured by
the anonymous method. Ordinarily, the lifetime of a local variable is limited to execution
of the block or statement with which it is associated. However, the lifetime of a captured
outer variable is extended at least until the delegate referring to the anonymous method
becomes eligible for garbage collection.

19.2.1 Method Group Conversions
As described in the previous section, an anonymous method can be implicitly converted to
a compatible delegate type. C# 2.0 permits this same type of conversion for a method
group, allowing explicit delegate instantiations to be omitted in almost all cases. For exam-
ple, the following statements

addButton.Click += new EventHandler(AddClick);

Apply(a, new Function(Math.Sin));

can instead be written as follows.

addButton.Click += AddClick;

Apply(a, Math.Sin);

When the shorter form is used, the compiler automatically infers which delegate type to
instantiate, but the effects are otherwise the same as the longer form.

Hejlsberg.book Page 466 Friday, October 10, 2003 7:35 PM

19.3 Iterators

467

19.
In

tro
d

u
ctio

n
 to

 C
#

 2
.0

19.3 Iterators

The C# foreach statement is used to iterate over the elements of an enumerable collection.
In order to be enumerable, a collection must have a parameterless GetEnumerator
method that returns an enumerator. Generally, enumerators are difficult to implement, but
the task is significantly simplified with iterators.

An iterator is a statement block that yields an ordered sequence of values. An iterator is
distinguished from a normal statement block by the presence of one or more yield
statements.

• The yield return statement produces the next value of the iteration.

• The yield break statement indicates that the iteration is complete.

An iterator may be used as the body of a function member as long as the return type of the
function member is one of the enumerator interfaces or one of the enumerable interfaces.

• The enumerator interfaces are System.Collections.IEnumerator and types con-
structed from System.Collections.Generic.IEnumerator<T>.

• The enumerable interfaces are System.Collections.IEnumerable and types con-
structed from System.Collections.Generic.IEnumerable<T>.

It is important to understand that an iterator is not a kind of member but is a means of
implementing a function member. A member implemented via an iterator may be overrid-
den or overloaded by other members that may or may not be implemented with iterators.

The following Stack<T> class implements its GetEnumerator method using an iterator.
The iterator enumerates the elements of the stack in top to bottom order.

using System.Collections.Generic;

public class Stack<T>: IEnumerable<T>
{

T[] items;
int count;

public void Push(T data) {...}

public T Pop() {...}

public IEnumerator<T> GetEnumerator() {
for (int i = count – 1; i >= 0; --i) {

yield return items[i];
}

}
}

Hejlsberg.book Page 467 Friday, October 10, 2003 7:35 PM

19. Introduction to C# 2.0

468

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

The presence of the GetEnumerator method makes Stack<T> an enumerable type,
allowing instances of Stack<T> to be used in a foreach statement. The following exam-
ple pushes the values 0 through 9 onto an integer stack and then uses a foreach loop to
display the values in top to bottom order.

using System;

class Test
{

static void Main() {
Stack<int> stack = new Stack<int>();
for (int i = 0; i < 10; i++) stack.Push(i);
foreach (int i in stack) Console.Write("{0} ", i);
Console.WriteLine();

}
}

The output of the example is as follows.

9 8 7 6 5 4 3 2 1 0

The foreach statement implicitly calls a collection’s parameterless GetEnumerator
method to obtain an enumerator. There can only be one such parameterless GetEnumerator
method defined by a collection, yet it is often appropriate to have multiple ways of enumer-
ating and ways of controlling the enumeration through parameters. In such cases, a collec-
tion can use iterators to implement properties or methods that return one of the enumerable
interfaces. For example, Stack<T> might introduce two new properties, TopToBottom
and BottomToTop, of type IEnumerable<T>.

using System.Collections.Generic;

public class Stack<T>: IEnumerable<T>
{

T[] items;
int count;

public void Push(T data) {...}

public T Pop() {...}

public IEnumerator<T> GetEnumerator() {
for (int i = count – 1; i >= 0; --i) {

yield return items[i];
}

}

public IEnumerable<T> TopToBottom {
get {

return this;
}

}

Hejlsberg.book Page 468 Friday, October 10, 2003 7:35 PM

19.3 Iterators

469

19.
In

tro
d

u
ctio

n
 to

 C
#

 2
.0

public IEnumerable<T> BottomToTop {
get {

for (int i = 0; i < count; i++) {
yield return items[i];

}
}

}
}

The get accessor for the TopToBottom property just returns this because the stack itself
is an enumerable. The BottomToTop property returns an enumerable implemented with a
C# iterator. The following example shows how the properties can be used to enumerate
stack elements in either order.

using System;

class Test
{

static void Main() {
Stack<int> stack = new Stack<int>();
for (int i = 0; i < 10; i++) stack.Push(i);

foreach (int i in stack.TopToBottom) Console.Write("{0} ", i);
Console.WriteLine();

foreach (int i in stack.BottomToTop) Console.Write("{0} ", i);
Console.WriteLine();

}
}

Of course, these properties can be used outside of a foreach statement as well. The fol-
lowing example passes the results of invoking the properties to a separate Print method.
The example also shows an iterator used as the body of a FromToBy method that takes
parameters.

using System;
using System.Collections.Generic;

class Test
{

static void Print(IEnumerable<int> collection) {
foreach (int i in collection) Console.Write("{0} ", i);
Console.WriteLine();

}

static IEnumerable<int> FromToBy(int from, int to, int by) {
for (int i = from; i <= to; i += by) {

yield return i;
}

}

Hejlsberg.book Page 469 Friday, October 10, 2003 7:35 PM

19. Introduction to C# 2.0

470

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

static void Main() {
Stack<int> stack = new Stack<int>();
for (int i = 0; i < 10; i++) stack.Push(i);
Print(stack.TopToBottom);
Print(stack.BottomToTop);
Print(FromToBy(10, 20, 2));

}
}

The output of the example is as follows.

9 8 7 6 5 4 3 2 1 0
0 1 2 3 4 5 6 7 8 9
10 12 14 16 18 20

The generic and nongeneric enumerable interfaces contain a single member, a
GetEnumerator method that takes no arguments and returns an enumerator interface. An
enumerable acts as an enumerator factory. Properly implemented enumerables generate
independent enumerators each time their GetEnumerator method is called. Assuming the
internal state of the enumerable has not changed between two calls to GetEnumerator, the
two enumerators returned should produce the same set of values in the same order. This
should hold even if the lifetime of the enumerators overlap as in the following code sample.

using System;
using System.Collections.Generic;

class Test
{

static IEnumerable<int> FromTo(int from, int to) {
while (from <= to) yield return from++;

}

static void Main() {
IEnumerable<int> e = FromTo(1, 10);
foreach (int x in e) {

foreach (int y in e) {
Console.Write("{0,3} ", x * y);

}
Console.WriteLine();

}
}

}

The previous code prints a simple multiplication table of the integers 1 through 10. Note
that the FromTo method is invoked only once to generate the enumerable e. However,
e.GetEnumerator() is invoked multiple times (by the foreach statements) to generate
multiple equivalent enumerators. These enumerators all encapsulate the iterator code spec-
ified in the declaration of FromTo. Note that the iterator code modifies the from parameter.

Hejlsberg.book Page 470 Friday, October 10, 2003 7:35 PM

19.4 Partial Types

471

19.
In

tro
d

u
ctio

n
 to

 C
#

 2
.0

Nevertheless, the enumerators act independently because each enumerator is given its own
copy of the from and to parameters. The sharing of transient state between enumerators is
one of several common subtle flaws that should be avoided when implementing enumera-
bles and enumerators. C# iterators are designed to help avoid these problems and to imple-
ment robust enumerables and enumerators in a simple, intuitive way.

19.4 Partial Types

Although it is good programming practice to maintain all source code for a type in a single
file, sometimes a type becomes large enough that this is an impractical constraint. Further-
more, programmers often use source code generators to produce the initial structure of an
application and then modify the resulting code. Unfortunately, when source code is emit-
ted again sometime in the future, existing modifications are overwritten.

Partial types allow classes, structs, and interfaces to be broken into multiple pieces stored
in different source files for easier development and maintenance. Additionally, partial
types allow separation of machine-generated and user-written parts of types so that it is
easier to augment code generated by a tool.

A new type modifier, partial, is used when defining a type in multiple parts. The follow-
ing is an example of a partial class that is implemented in two parts. The two parts may be
in different source files, for example, because the first part is machine generated by a data-
base mapping tool and the second part is manually authored.

public partial class Customer
{

private int id;
private string name;
private string address;
private List<Order> orders;

public Customer() {
...

}
}

public partial class Customer
{

public void SubmitOrder(Order order) {
orders.Add(order);

}

public bool HasOutstandingOrders() {
return orders.Count > 0;

}
}

Hejlsberg.book Page 471 Friday, October 10, 2003 7:35 PM

19. Introduction to C# 2.0

472

19
.

In
tr

o
d

u
ct

io
n

 t
o

 C
#

 2
.0

When the previous two parts are compiled together, the resulting code is the same as if the
class had been written as a single unit.

public class Customer
{

private int id;
private string name;
private string address;
private List<Order> orders;

public Customer() {
...

}

public void SubmitOrder(Order order) {
orders.Add(order);

}

public bool HasOutstandingOrders() {
return orders.Count > 0;

}
}

All parts of a partial type must be compiled together such that the parts can be merged at
compile time. Partial types specifically do not allow already compiled types to be
extended.

Hejlsberg.book Page 472 Friday, October 10, 2003 7:35 PM

