
Item 37 Validate Inside Your Program with Schemas

Rigorously testing preconditions is an important characteristic of robust,
reliable software. Schemas make it very easy to define the preconditions
for XML documents you parse and the postconditions for XML docu-
ments you write. Even if the document itself does not have a schema, you
can write one and use it to test the documents before you operate on
them. It is quite hard to attach a DTD to a document inside a program.
Fortunately, however, most other schema languages are much more flex-
ible about this.

For example, let’s suppose you’re in charge of a system at TV Guide that
accepts schedule information from individual stations over the Web.
Information about each show arrives as an XML document formatted as
shown in Example 37–1.

Item 37 Validate Inside Your Program with Schemas ❘ 203

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 203

Example 37–1 ❘ An XML Instance Document Containing a Television Program Listing

<Program xmlns="http://namespaces.example.com/tvschedule"

<Title>Reality Bites</Title>

<Description>

Elimination tournament in which contestants eat a

succession of gross items until only one is left standing.

Tonight's episode features rancid apples, insects, and

McDonald's Happy Meals.

</Description>

<Date>2003-11-21</Date>

<Start>08:00:00-05:00</Start>

<Duration>PT30M</Duration>

<Station>KFOX</Station>

</Program>

Every day, around the clock, stations from all over the country send sched-
ule updates like this one that you need to store in a local database. Some of
these stations use software you sold them. Some of them hire interns to
type the data into a password-protected form on your web site. Others use
custom software they wrote themselves. There may even be a few hackers
typing the information into text files using emacs and then telnetting to
your web server on port 80, where they paste in the data. There are about a
dozen different places where mistakes can creep in. Therefore, before you
even begin to think about processing a submission, you want to verify that
it’s correct. In particular, you want to verify the following.

� The root element of the document is Program .
� All required elements are present.
� No more than one of each element is present.
� The Title element is not empty.
� The date is a legal date in the future.
� The Start element contains a sensible time.
� The duration looks like a period of time.
� The station identifier is a four-letter code beginning with either K

or W.
� The station identifier maps to a known station somewhere in the

country, which can be determined by looking it up in a database run-
ning on a different machine in your intranet.

You could write program code to verify all of these statements after the
document was parsed. However, it’s much easier to write a schema that

204 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 204

describes them declaratively and let the parser check them. The W3C
XML Schema Language, RELAX NG, and Schematron can all handle
about 85% of these requirements. They all have problems with the
requirement that the date be in the future and that the station be listed in
a remote database. These will have to be checked using real programming
code written in Java, C++, or some other language after the document has
been parsed. However, we can make the other checks with a schema.
Example 37–2 shows one possible W3C XML Schema Language schema
that tests most of the above constraints.

Example 37–2 ❘ A W3C XML Schema for Television Program Listings

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Program">

<xsd:complexType>

<xsd:all>

<xsd:element name="Title">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:minLength value="1"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Description" type="xsd:string"/>

<xsd:element name="Date" type="xsd:date"/>

<xsd:element name="Start" type="xsd:time"/>

<xsd:element name="Duration" type="xsd:duration"/>

<xsd:element name="Station">

<xsd:simpleType>

<xsd:restriction base="xsd:token">

<xsd:pattern value="(W|K)[A-Z][A-Z][A-Z]"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:all>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Item 37 Validate Inside Your Program with Schemas ❘ 205

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 205

For simplicity, I’ll assume this schema resides at the URL http://www.
example.com/tvprogram.xsd in the examples that follow, but you can
store it anywhere convenient.

There are several different ways to programmatically validate a docu-
ment, depending on the schema language, the parser, and the API. Here
I’ll demonstrate two: Xerces-J using SAX properties and DOM Level 3
validation.

Xerces-J

The Xerces-J SAX parser supports validation with the W3C XML Schema
Language. By default, it reads the schema with which to validate docu-
ments from the xsi:schemaLocation and xsi:noNamespaceSchema
Location attributes in the instance document. However, you can over-
ride these with the http://apache.org/xml/properties/schema/
external-schemaLocation and http://apache.org/xml/properties/
schema/external-noNamespaceSchemaLocation SAX properties.
In this example, the documents being validated have namespaces, so
we’ll set http://apache.org/xml/properties/schema/external-

schemaLocation to http://www.example.com/tvprogram.xsd.
Then, we’ll turn on schema validation by setting the http://apache.
org/xml/features/validation/schema feature to true.

XMLReader parser = XMLReaderFactor.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

parser.setProperty(

"http://apache.org/xml/properties/schema/external-

schemaLocation",

"http://namespaces.example.com/tvschedule"

+ " http://www.example.com/tvprogram.xsd");

parser.setFeature(

"http://apache.org/xml/features/validation/schema",

true);

We’ll also have to register an ErrorHandler to receive any validation
errors that are detected. Because validity errors aren’t necessarily fatal
unless we make them so, we’ll rethrow the SAXParseException passed
to the error() method. Example 37–3 shows an appropriate Error
Handler class.

206 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 206

Example 37–3 ❘ A SAX ErrorHandler That Makes Validity Errors Fatal

import org.xml.sax.*;

public class ErrorsAreFatal implements ErrorHandler {

public void warning(SAXParseException exception) {

// Ignore warnings

}

public void error(SAXParseException exception)

throws SAXException {

// A validity error; rethrow the exception.

throw exception;

}

public void fatalError(SAXParseException exception)

throws SAXException {

// A well-formedness error

throw exception;

}

}

This ErrorHandler also needs to be installed with the parser.

parser.setErrorHandler(new ErrorsAreFatal());

Finally, the document can be parsed. The parser checks it against the
schema as it parses. At the same time, the ContentHandler methods
accumulate the data into the fields. Since SAX parsing interleaves parser
operation with client code, all the data collected should be stored until
the complete document has been validated. Only then can you be sure
the document is valid and the information should be committed. Ex-
ample 37–4 demonstrates one way to build a TVProgram object that
stores this data. The constructor is private, so the only way to build such
an object is by passing an InputStream containing a TVProgram docu-
ment to the readTVProgram() method. The TVProgram object is actually
created before the parsing starts. However, it’s not returned to anything
outside this class until the input document has been parsed and any con-
straints verified. If a constraint is violated, then an exception is thrown.

Item 37 Validate Inside Your Program with Schemas ❘ 207

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 207

Example 37–4 ❘ A Program That Validates against a Schema

import java.util.*;

import java.io.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class TVProgram extends DefaultHandler {

private String title;

private String description;

private Date startTime; // includes both date and time

private int duration; // rounded to nearest second

private String station; // rounded to nearest second

private TVProgram() {

// Data will be initialized in the readTVProgram() method

}

private static XMLReader parser;

// Initialization block. No need to load a new parser for

// each document.

static {

try {

parser = XMLReaderFactory.createXMLReader(

"org.apache.xerces.parsers.SAXParser");

parser.setProperty(

"http://apache.org/xml/properties/schema/external-schemaLocation",

"http://namespaces.example.com/tvschedule"

+ " http://www.example.com/tvprogram.xsd");

parser.setFeature(

"http://apache.org/xml/features/validation/schema",

true);

parser.setErrorHandler(new ErrorsAreFatal());

}

catch (SAXException e) {

throw new RuntimeException(

"Handling exceptions in static initializers is tricky");

}

}

208 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 208

public static TVProgram readTVProgram(String systemID)

throws SAXException, IOException {

TVProgram program = new TVProgram();

parser.setContentHandler(program);

parser.parse(systemID);

// If no exception has been thrown yet, then the document

// must be valid. However, we still have to check the

// constraints the schema couldn't:

checkDateInFuture(program.startTime);

checkStationExists(program.station);

// If we get here, everything's fine.

return program;

}

private static void checkDateInFuture(Date date)

throws SAXException {

// Java code to compare the date to the current time

}

private static void checkStationExists(String station)

throws SAXException {

// JDBC code to look up the station call letters in our

// database

}

// Various ContentHandler methods that will fill in the fields

// of this object. This could be a separate class instead...

// Various setter and getter and other methods...

}

Item 37 Validate Inside Your Program with Schemas ❘ 209

Presumably, after such an object has been read, other code will store it in a
database or otherwise work with it. And, of course, building an object
that exactly matches the data in the document is far from the only way to
model the data. All these details will depend on the business logic in the
rest of the program. However, the input checking through validation will
normally be similar to what’s shown here.

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 209

DOM Level 3 Validation

DOM Level 3 provides a detailed API for validation. This API can be used
to validate against any schema language the parser supports, although
DTDs and W3C XML Schema Language schemas are certainly the most
common options.

Caution This section is based on working drafts of the relevant specifications and
experimental software. The broad picture presented here is correct, but a lot
of details are likely to change before DOM Level 3 is finalized.

Unlike SAX, DOM objects can be validated when the document is first
parsed or at any later point. You can also validate individual nodes
rather than validating the entire document. To validate while parsing, you
set the following features on the document or document builder’s
DOMConfiguration object.

� schema-type: A URI identifying the schema language used to vali-
date. Values include http://www.w3.org/2001/XMLSchema for the
W3C XML Schema Language and http://www.w3.org/TR/REC-xml
for DTDs.

� schema-location: A white-space-separated list of URLs for partic-
ular schema documents used to validate.

� validate: If true, all documents should be validated. If false, no
documents should be validated unless validate-if-schema is true.

� validate-if-schema: Validate only if a schema (in whatever lan-
guage) is available, either one set by the schema-location and
schema-type parameters or one specified in the instance docu-
ment using a mechanism such as a DOCTYPE declaration or an
xsi:schemaLocation attribute.

For example, here’s the DOM Level 3 code to parse the document at
http://www.example.net/kfox.xml while validating it against the
schema at http://www.example.com/tvprogram.xsd.

DOMImplementation impl = DOMImplementationRegistry

.getDOMImplementation("XML 1.0 LS-Load 3.0");

if (impl == null || !impl.hasFeature("Core", "3.0") {

throw new Exception("DOM Level 3 not supported");

}

210 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 210

DOMImplementationLS implLS = impl.getInterface("LS-Load", "3.0");

DOMBuilder builder = implLS.createDOMBuilder(

DOMBuilder.MODE_SYNCHRONOUS,

"http://www.w3.org/2001/XMLSchema");

DOMConfiguration config = builder.getConfig();

config.setParameter("validate", Boolean.TRUE);

config.setParameter("schema-location",

"http://www.example.com/tvprogram.xsd");

config.setParameter("schema-type",

"http://www.w3.org/2001/XMLSchema");

builder.setErrorHandler(new DOMErrorHandler() {

public boolean handleError(in DOMError error) {

System.err.println(error.getMessage());

}

});

Document doc = builder.parseURI(

"http://www.example.net/kfox.xml");

Item 37 Validate Inside Your Program with Schemas ❘ 211

Currently, this API is only experimentally supported by Xerces and the
Xerces-derived XML for Java, but more parsers should support it in the
future.

If you make modifications to a document, DOM3 allows you to revalidate
it to make sure it’s still valid. This is an optional feature, and not all DOM
Level 3 implementations support it. If one does, each Document object
will be an instance of the DocumentEditVal interface as well. Just cast the
object to this type and invoke the validateDocument() method as
shown below.

if (doc instanceof DocumentEditVal) {

DocumentEditVal docVal = (DocumentEditVal) doc;

try {

boolean valid = docVal.validateDocument();

}

catch (ExceptionVAL ex) {

// This document doesn't have a schema

}

}

You can even continuously validate a document as it is modified. If
any change makes the document invalid, the problem will be reported to

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 211

the registered DOMErrorHandler. Just set the continuousValidity
Checking attribute to true.

docVal.setContinuousValidityChecking(true);

This is particularly useful if the modifications are not driven by the pro-
gram but by a human using an editor. In this case, you can even check the
data input for validity before allowing the changes to be made.

If you need to change the schema associated with a document, set the
schema-location and schema-type parameters on the document’s
DOMConfiguration object.

DOMConfiguration config = doc.getConfig();

config.setParameter("schema-type",

"http://www.w3.org/2001/XMLSchema");

config.setParameter("schema-location",

"http://www.example.com/schema.xsd");

To validate this document, you would then call validateDocument() as
described above.

Validation with DOM differs from validation with SAX in that you don’t
actually begin working with the document until after it has been vali-
dated. Thus there’s no need to worry about committing the data in pieces.
This is a common difference between SAX and DOM programs. A second
advantage is that DOM validation can be reversed so that you build the
document in memory and then check for validity before outputting it.
You can even check every node you add to the Document object for adher-
ence to a schema immediately and automatically.

Whether you validate with SAX or DOM, whether you do so continu-
ously or just once when the document is first parsed, and whether the
schema is a DTD, a W3C XML Schema Language schema, or something
else, validation is an extremely useful tool. Even if you don’t reject invalid
documents, you can still use the result of validity checking to determine
what to do with any given document. For instance, you might validate
documents against several known schemas to identify the document’s
type and dispatch the document to the method that processes that type.
Validation is an essential component of robust, reliable systems.

212 ❘ Part 3 Semantics

29837 01 pp001-288 r9ah.ps 8/18/03 4:40 PM Page 212

