
Library 9

Bind

How Does the Bind Library Improve Your Programs?

• Adapts functions and function objects for use with Standard Library
algorithms

• Consistent syntax for creating binders

• Powerful functional composition

When using the algorithms from the Standard Library, you often need to supply
them with a function or a function object. This is an excellent way of customizing
the behavior of algorithms, but you often end up writing new function objects
because you don’t have the tools necessary for functional composition and adapta-
tion of argument order or arity. Although the Standard Library does offer some
productive tools, such as bind1st and bind2nd, this is rarely enough. Even when
the functionality suffices, that often implies suffering from awkward syntax that
obfuscates the code for programmers who are not familiar with those tools. What
you need, then, is a solution that both adds functionality and normalizes the syn-
tax for creating function objects on-the-fly, and this is what Boost.Bind does.

In effect, a generalized binder is a sort of lambda expression, because through
functional composition we can more or less construct local, unnamed functions at
the call site. There are many cases where this is desirable, because it serves three
purposes—reducing the amount of code, making the code easier to understand,
and localizing behavior, which in turn implies more effective maintenance. Note
that there is another Boost library, Boost.Lambda, which takes these properties
even further. Boost.Lambda is covered in the next chapter. Why shouldn’t you just

237

Karlsson_09.qxd 8/2/05 3:04 PM Page 237

skip ahead to that library? Because most of the time, Boost.Bind does everything
you need when it comes to binding, and the learning curve isn’t as steep.

One of the keys to the success of Bind is the uniform syntax for creating
function objects and the few requirements on types that are to be used with the
library. The design takes focus away from how to write the code that works with
your types, and sets it to where we are all most interested—how the code works
and what it actually does. When using adaptors from the Standard Library, such
as ptr_fun and mem_fun_ref, code quickly becomes unnecessarily verbose
because we have to provide these adaptors in order for the arguments to adhere
to the requirements of the algorithms. This is not the case with Boost.Bind,
which uses a much more sophisticated deduction system, and a straightforward
syntax when the automatic deduction cannot be applied. The net effect of using
Bind is that you’ll write less code that is easier to understand.

How Does Bind Fit with the Standard Library?

Conceptually, Bind is a generalization of the existing Standard Library functions
bind1st and bind2nd, with additional functionality that allows for more sophis-
ticated functional composition. It also alleviates the need to use adaptors for
pointers to functions and pointers to class members, which saves coding and
potential errors. Boost.Bind also covers some of the popular extensions to the
C++ Standard Library, such as the SGI extensions compose1 and compose2,
and also the select1st and select2nd functions. So, Bind does fit with the
Standard Library, and it does so very well indeed. The need for such functionali-
ty is acknowledged, and at last in part addressed by the Standard Library, and
also in popular extensions to the STL. Boost.Bind has been accepted for the
upcoming Library Technical Report.

Bind

Header: "boost/bind.hpp”

The Bind library creates function objects that bind to a function (free function or
member function). Rather than supplying all of the arguments to the function
directly, arguments can be delayed, meaning that a binder can be used to create a

238 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 238

function object with changed arity (number of arguments) for the function it
binds to, or to reorder the arguments any way you like.

The return types of the overloaded versions of the function bind are
unspecified—that is, there is no guarantee for what the signature of a returned
function object is. Sometimes, you need to store that object somewhere, rather
than just passing it directly to another function—when this need arises, you want
to use Boost.Function, which is covered in “Library 11: Function.” The key to
understanding what the bind-functions return is to grok the transformation that is
taking place. Using one of the overloaded bind functions—template<class R,

class F> unspecified-1 bind(F f)—as an example, this would be (quoting
from the online documentation), “A function object λ such that the expression
λ(v1, v2, ..., vm) is equivalent to f(), implicitly converted to R.” Thus, the
function that is bound is stored inside the binder, and the result of subsequent
invocations on that function object yields the return value from the function (if
any)—that is, the template parameter R. The implementation that we’re covering
here supports up to nine function arguments.

The implementation of Bind involves a number of functions and classes, but as
users, we do not directly use anything other than the overloaded function bind.
All binding takes place through the bind function, and we can never depend on
the type of the return value. When using bind, the placeholders for arguments
(called _1, _2, and so on) do not need to be introduced with a using declaration
or directive, because they reside in an unnamed namespace. Thus, there is rarely
a reason for writing one of the following lines when using Boost.Bind.

using boost::bind;
using namespace boost;

As was mentioned before, the current implementation of Boost.Bind supports
nine placeholders (_1, _2, _3, and so forth), and therefore also up to nine argu-
ments. It’s instructive to at least browse through the synopsis for a high-level
understanding of how the type deduction is performed, and when/why this does
not always work. Parsing the signatures for member function pointers and free
functions takes a while for the eye to get used to, but it’s useful. You’ll see that
there are overloads for both free functions and class member functions. Also,
there are overloads for each distinct number of arguments. Rather than listing the
synopsis here, I encourage you to visit Boost.Bind’s documentation at
www.boost.org.

Bind 239

Karlsson_09.qxd 8/2/05 3:04 PM Page 239

Usage

Boost.Bind offers a consistent syntax for both functions and function objects,
and even for value semantics and pointer semantics. We’ll start with some simple
examples to get to grips with the usage of vanilla bindings, and then move on to
functional composition through nested binds. One of the keys to understanding
how to use bind is the concept of placeholders. Placeholders denote the argu-
ments that are to be supplied to the resulting function object, and Boost.Bind
supports up to nine such arguments. The placeholders are called _1, _2, _3, _4,
and so on up to _9, and you use them in the places where you would ordinarily
add the argument. As a first example, we shall define a function, nine_
arguments, which is then called using a bind expression.

#include <iostream>
#include "boost/bind.hpp"

void nine_arguments(
int i1,int i2,int i3,int i4,

int i5,int i6,int i7,int i8, int i9) {
std::cout << i1 << i2 << i3 << i4 << i5

<< i6 << i7 << i8 << i9 << '\n';
}

int main() {
int i1=1,i2=2,i3=3,i4=4,i5=5,i6=6,i7=7,i8=8,i9=9;
(boost::bind(&nine_arguments,_9,_2,_1,_6,_3,_8,_4,_5,_7))

(i1,i2,i3,i4,i5,i6,i7,i8,i9);
}

In this example, you create an unnamed temporary binder and immediately
invoke it by passing arguments to its function call operator. As you can see, the
order of the placeholders is scrambled—this illustrates the reordering of argu-
ments. Note also that placeholders can be used more than once in an expression.
The output of this program is as follows.

921638457

This shows that the placeholders correspond to the argument with the place-
holder’s number—that is, _1 is substituted with the first argument, _2 with the
second argument, and so on. Next, you’ll see how to call member functions of a
class.

240 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 240

Calling a Member Function

Let’s take a look at calling member functions using bind. We’ll start by doing
something that also can be done with the Standard Library, in order to compare
and contrast that solution with the one using Boost.Bind. When storing elements
of some class type in Standard Library containers, a common need is to call a
member function on some or all of these elements. This can be done in a loop,
and is all-too-often implemented thusly, but there are better solutions. Consider
the following simple class, status, which we’ll use to show that the ease of use
and power of Boost.Bind is indeed tremendous.

class status {
std::string name_;
bool ok_;

public:
status(const std::string& name):name_(name),ok_(true) {}

void break_it() {
ok_=false;

}

bool is_broken() const {
return ok_;

}

void report() const {
std::cout << name_ << " is " <<

(ok_ ? "working nominally":"terribly broken") << '\n';
}

};

If we store instances of this class in a vector, and we need to call the member
function report, we might be tempted to do it as follows.

std::vector<status> statuses;
statuses.push_back(status("status 1"));
statuses.push_back(status("status 2"));
statuses.push_back(status("status 3"));
statuses.push_back(status("status 4"));

statuses[1].break_it();
statuses[2].break_it();

Usage 241

Karlsson_09.qxd 8/2/05 3:04 PM Page 241

for (std::vector<status>::iterator it=statuses.begin();
it!=statuses.end();++it) {

it->report();
}

This loop does the job correctly, but it’s verbose, inefficient (due to the multi-
ple calls to statuses.end()), and not as clear as using the algorithm from the
Standard Library that exists for exactly this purpose, for_each. To use for_each
to replace the loop, we need to use an adaptor for calling the member function
report on the vector elements. In this case, because the elements are stored by
value, what we need is the adaptor mem_fun_ref.

std::for_each(
statuses.begin(),
statuses.end(),
std::mem_fun_ref(&status::report));

This is a correct and sound way to do it—it is quite terse, and there can be no
doubt as to what the code is doing. The equivalent code for doing this using
Boost.Bind follows.1

std::for_each(
statuses.begin(),
statuses.end(),
boost::bind(&status::report,_1));

This version is equally clear and understandable. This is the first real use of the
aforementioned placeholders of the Bind library, and what we’re telling both the
compiler and the reader of our code is that _1 is to be substituted for an actual
argument by the function invoking the binder. Although this code does save a
few characters when typing, there is no big difference between the Standard
Library mem_fun_ref and bind for this particular case, but let’s reuse this exam-
ple and change the container to hold pointers instead.

std::vector<status*> p_statuses;
p_statuses.push_back(new status("status 1"));
p_statuses.push_back(new status("status 2"));
p_statuses.push_back(new status("status 3"));
p_statuses.push_back(new status("status 4"));

242 Library 9: Bind

1. It should be noted that boost::mem_fn, which has also been accepted for the Library Technical Report, would work just as well
for the cases where there are no arguments. mem_fn supersedes std::mem_fun and std::mem_fun_ref.

Karlsson_09.qxd 8/2/05 3:04 PM Page 242

p_statuses[1]->break_it();
p_statuses[2]->break_it();

We can still use both the Standard Library, but we can no longer use
mem_fun_ref. We need help from the adaptor mem_fun, which is considered a bit
of a misnomer, but again does the job that needs to be done.

std::for_each(
p_statuses.begin(),
p_statuses.end(),
std::mem_fun(&status::report));

Although this works too, the syntax has changed, even though we are trying to
do something very similar. It would be nice if the syntax was identical to the first
example, so that the focus is on what the code really does rather than how it does
it. Using bind, we do not need to be explicit about the fact that we are dealing
with elements that are pointers (this is already encoded in the type of the con-
tainer, and redundant information of this kind is typically unnecessary for mod-
ern libraries).

std::for_each(
p_statuses.begin(),
p_statuses.end(),
boost::bind(&status::report,_1));

As you can see, this is exactly what we did in the previous example, which
means that if we understood bind then, we should understand it now, too. Now
that we have decided to switch to using pointers, we are faced with another prob-
lem, namely that of lifetime control. We must manually deallocate the elements
of p_statuses, and that is both error prone and unnecessary. So, we may decide
to start using smart pointers, and (again) change our code.

std::vector<boost::shared_ptr<status> > s_statuses;
s_statuses.push_back(

boost::shared_ptr<status>(new status("status 1")));
s_statuses.push_back(

boost::shared_ptr<status>(new status("status 2")));
s_statuses.push_back(

boost::shared_ptr<status>(new status("status 3")));
s_statuses.push_back(

boost::shared_ptr<status>(new status("status 4")));

Usage 243

Karlsson_09.qxd 8/2/05 3:04 PM Page 243

s_statuses[1]->break_it();
s_statuses[2]->break_it();

Now, which adaptor from the Standard Library do we use? mem_fun and
mem_fun_ref do not apply, because the smart pointer doesn’t have a member
function called report, and thus the following code fails to compile.

std::for_each(
s_statuses.begin(),
s_statuses.end(),
std::mem_fun(&status::report));

The fact of the matter is that we lucked out—the Standard Library cannot help
us with this task.2 Thus, we have to resort to the same type of loop that we want-
ed to get rid of—or use Boost.Bind, which doesn’t complain at all, but delivers
exactly what we want.

std::for_each(
s_statuses.begin(),
s_statuses.end(),
boost::bind(&status::report,_1));

Again, this example code is identical to the example before (apart from the dif-
ferent name of the container). The same syntax is used for binding, regardless of
whether value semantics or pointer semantics apply, and even when using smart
pointers. Sometimes, having a different syntax helps the understanding of the
code, but in this case, it doesn’t—the task at hand is to call a member function
on elements of a container, nothing more and nothing less. The value of a consis-
tent syntax should not be underestimated, because it helps both the person who is
writing the code and all who later need to maintain the code (of course, we don’t
write code that actually needs maintenance, but for the sake of argument, let’s
pretend that we do).

These examples have demonstrated a very basic and common use case where
Boost.Bind excels. Even though the Standard Library does offer some basic tools
that do the same thing, we have seen that Bind offers both the consistency of
syntax and additional functionality that the Standard Library currently lacks.

244 Library 9: Bind

2. It will do so in the future, because both mem_fn and bind will be part of the future Standard Library.

Karlsson_09.qxd 8/2/05 3:04 PM Page 244

A Look Behind the Curtain

After you start using Boost.Bind, it is inevitable; you will start to wonder how it
actually works. It seems as magic when bind deduces the types of the arguments
and return type, and what’s the deal with the placeholders, anyway? We’ll have a
quick look on some of the mechanisms that drives such a beast. It helps to know
a little about how bind works, especially when trying to decipher the wonderful-
ly succinct and direct error messages the compiler emits at the slightest mistake.
We will create a very simple binder that, at least in part, mimics the syntax of
Boost.Bind. To avoid stretching this digression over several pages, we shall only
support one type of binding, and that is for a member function taking a single
argument. Moreover, we won’t even get bogged down with the details of how to
handle cv-qualification and its ilk; we’ll just keep it simple.

First of all, we need to be able to deduce the return type, the class type, and
the argument type for the function that we are to bind. We do this with a function
template.

template <typename R, typename T, typename Arg>
simple_bind_t<R,T,Arg> simple_bind(

R (T::*fn)(Arg),
const T& t,
const placeholder&) {

return simple_bind_t<R,T,Arg>(fn,t);
}

The preceding might seem a little intimidating at first, and by all rights it is
because we have yet to define part of the machinery. However, the part to focus
on here is where the type deduction takes place. You’ll note that there are three
template parameters to the function, R, T, and Arg. R is the return type, T is
the class type, and Arg is the type of the (single) argument. These template
parameters are what makes up the first argument to our function—that is, R
(T::*f)(Arg). Thus, passing a member function with a single formal parameter
to simple_bind permits the compiler to deduce R as the member function’s
return type, T as the member function’s class, and Arg as the member function’s
argument type. simple_bind’s return type is a function object that is parameter-
ized on the same types as simple_bind, and whose constructor receives a point-
er to the member function and an instance of the class (T). simple_bind simply
ignores the placeholder (the last argument to the function), and the reason why
I’ve included it in the first place is to simulate the syntax of Boost.Bind. In a

Usage 245

Karlsson_09.qxd 8/2/05 3:04 PM Page 245

better implementation of this concept, we would obviously need to make use of
that argument, but now we allow ourselves the luxury of letting it pass into
oblivion. The implementation of the function object is fairly straightforward.

template <typename R,typename T, typename Arg>
class simple_bind_t {
typedef R (T::*fn)(Arg);
fn fn_;
T t_;

public:
simple_bind_t(fn f,const T& t):fn_(f),t_(t) {}

R operator()(Arg& a) {
return (t_.*fn_)(a);

}
};

As we saw in simple_bind’s implementation, the constructor accepts two
arguments: the first is the pointer to a member function and the second is a refer-
ence to const T that is copied and later used to invoke the function with a user-
supplied argument. Finally, the function call operator returns R, the return type
of the member function, and accepts an Arg argument, which is the type of the
argument to be passed to the member function. The somewhat obscure syntax for
invoking the member function is this:

(t_.*fn_)(a);

.* is the pointer-to-member operator, used when the first operand is of class
T; there’s also another pointer-to-member operator, ->*, which is used when the
first operand is a pointer to T. What remains is to create a placeholder—that is, a
variable that is used in place of the actual argument. We can create such a place-
holder by using an unnamed namespace containing a variable of some type; let’s
call it placeholder:

namespace {
class placeholder {};
placeholder _1;

}

Let’s create a simple class and a small application for testing this.

246 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 246

class Test {
public:

void do_stuff(const std::vector<int>& v) {
std::copy(v.begin(),v.end(),

std::ostream_iterator<int>(std::cout," "));
}

};

int main() {
Test t;
std::vector<int> vec;
vec.push_back(42);
simple_bind(&Test::do_stuff,t,_1)(vec);

}

When we instantiate the function simple_bind with the preceding arguments,
the types are automatically deduced; R is void, T is Test, and Arg is a reference
to const std::vector<int>. The function returns an instance of simple_
bind_t<void,Test,Arg>, on which we immediately invoke the function call
operator by passing the argument vec.

Hopefully, simple_bind has given you an idea of how binders work. Now, it’s
time to get back to Boost.Bind!

More on Placeholders and Arguments

The first example demonstrated that bind supports up to nine arguments, but it
will serve us well to look a bit more closely at how arguments and placeholders
work. First of all, it’s important to note that there is an important difference
between free functions and member functions—when binding to a member func-
tion, the first argument to the bind expression must be an instance of the mem-
ber function’s class! The easiest way to think about this rule is that this explicit
argument substitutes the implicit this that is passed to all non-static member
functions. The diligent reader will note that, in effect, this means that for binders
to member functions, only (sic!) eight arguments are supported, because the first
will be used for the actual object. The following example defines a free function
print_string and a class some_class with a member function print_string,
soon to be used in bind expressions.

#include <iostream>
#include <string>
#include "boost/bind.hpp"

Usage 247

Karlsson_09.qxd 8/2/05 3:04 PM Page 247

class some_class {
public:

typedef void result_type;
void print_string(const std::string& s) const {

std::cout << s << '\n';
}

};

void print_string(const std::string s) {
std::cout << s << '\n';

}

int main() {
(boost::bind(&print_string,_1))("Hello func!");
some_class sc;
(boost::bind(&some_class::print_string,_1,_2))

(sc,"Hello member!");
}

The first bind expression binds to the free function print_string. Because
the function expects one argument, we need to use one placeholder (_1) to
tell bind which of its arguments will be passed as the first argument of
print_string. To invoke the resulting function object, we must pass the string
argument to the function call operator. The argument is a const std::string&,
so passing a string literal triggers invocation of std::string’s converting con-
structor.

(boost::bind(&print_string,_1))("Hello func!");

The second binder adapts a member function, print_string of some_class.
The first argument to bind is a pointer to the member function. However, a
pointer to a non-static member function isn’t really a pointer.3 We must have an
object before we can invoke the function. That’s why the bind expression must
state that there are two arguments to the binder, both of which are to be supplied
when invoking it.

boost::bind(&some_class::print_string,_1,_2);

248 Library 9: Bind

3. Yes, I know how weird this sounds. It’s still true, though.

Karlsson_09.qxd 8/2/05 3:04 PM Page 248

To see why this makes sense, consider how the resulting function object can be
used. We must pass to it both an instance of some_class and the argument to
print_string.

(boost::bind(&some_class::print_string,_1,_2))(sc,"Hello member!");

The first argument to the function call operator is this —that is, the instance
of some_class. Note that the first argument can be a pointer (smart or raw) or a
reference to an instance; bind is very accommodating. The second argument to
the function call operator is the member function’s one argument. In this case,
we’ve “delayed” both arguments—that is, we defined the binder such that it
expects to get both the object and the member function’s argument via its func-
tion call operator. We didn’t have to do it that way, however. For example, we
could create a binder that invokes print_string on the same object each time it
is invoked, like so:

(boost::bind(&some_class::print_string,some_class(),_1))
("Hello member!");

The resulting function object already contains an instance of some_class, so
there’s only need for one placeholder (_1) and one argument (a string) for the
function call operator. Finally, we could also have created a so-called nullary
function object by also binding the string, like so:

(boost::bind(&some_class::print_string,
some_class(),"Hello member!"))();

These examples clearly show the versatility of bind. It can be used to delay
all, some, or none of the arguments required by the function it encapsulates. It
can also handle reordering arguments any way you see fit; just order the place-
holders according to your needs. Next, we’ll see how to use bind to create sort-
ing predicates on-the-fly.

Dynamic Sorting Criteria

When sorting the elements of a container, we sometimes need to create function
objects that define the sorting criteria—we need to do so if we are missing rela-
tional operators, or if the existing relational operators do not define the sorting
criteria we are interested in. We can sometimes use the comparison function

Usage 249

Karlsson_09.qxd 8/2/05 3:04 PM Page 249

objects from the Standard Library (std::greater, std::greater_equal, and so
forth), but only use comparisons that already exist for the types—we cannot
define new ones at the call site. We’ll use a class called personal_info for the
purpose of showing how Boost.Bind can help us in this quest. personal_info
contains the first name, last name, and age, and it doesn’t provide any compari-
son operators. The information is immutable upon creation, and can be retrieved
using the member functions name, surname, and age.

class personal_info {
std::string name_;
std::string surname_;
unsigned int age_;

public:
personal_info(

const std::string& n,
const std::string& s,
unsigned int age):name_(n),surname_(s),age_(age) {}

std::string name() const {
return name_;

}

std::string surname() const {
return surname_;

}

unsigned int age() const {
return age_;

}
};

We make the class OutputStreamable by supplying the following operator:

std::ostream& operator<<(
std::ostream& os,const personal_info& pi) {
os << pi.name() << ' ' <<

pi.surname() << ' ' << pi.age() << '\n';
return os;

}

If we are to sort a container with elements of type personal_info, we need to
supply a sorting predicate for it. Why would we omit the relational operators

250 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 250

from personal_info in the first place? One reason is because there are several
possible sorting options, and we cannot know which is appropriate for different
users. Although we could also opt to provide different member functions for dif-
ferent sorting criteria, this would add the burden of having all relevant sorting
criteria encoded in the class, which is not always possible. Fortunately, it is easy
to create the predicate at the call site by using bind. Let’s say that we need the
sorting to be performed based on the age (available through the member function
age). We could create a function object just for that purpose.

class personal_info_age_less_than :
public std::binary_function<

personal_info,personal_info,bool> {
public:

bool operator()(
const personal_info& p1,const personal_info& p2) {
return p1.age()<p2.age();

}
};

We’ve made the personal_info_age_less_than adaptable by publicly inher-
iting from binary_function. Deriving from binary_function provides the
appropriate typedefs needed when using, for example, std::not2. Assuming a
vector, vec, containing elements of type personal_info, we would use the
function object like this:

std::sort(vec.begin(),vec.end(),personal_info_age_less_than());

This works fine as long as the number of different comparisons is limited.
However, there is a potential problem in that the logic is defined in a different
place, which can make the code harder to understand. With a long and descrip-
tive name such as the one we’ve chosen here, there shouldn’t be a problem, but
not all cases are so clear-cut, and there is a real chance that we’d need to supply
a slew of function objects for greater than, less than or equal to, and so on.

So, how can Boost.Bind help? Actually, it helps us out three times for this
example. If we examine the problem at hand, we find that there are three things
we need to do, the first being to bind a logical operation, such as std::less.
This is easy, and gives us the first part of the code.

boost::bind<bool>(std::less<unsigned int>(),_1,_2);

Usage 251

Karlsson_09.qxd 8/2/05 3:04 PM Page 251

Note that we are explicitly adding the return type by supplying the bool
parameter to bind. This is sometimes necessary, both on broken compilers and in
contexts where the return type cannot be deduced. If a function object contains a
typedef, result_type, there is no need to explicitly name the return type.4

Now, we have a function object that accepts two arguments, both of type
unsigned int, but we can’t use it just yet, because the elements have the
type personal_info, and we need to extract the age from those elements and
pass the age as arguments to std::less. Again, we can use bind to do that.

boost::bind(
std::less<unsigned int>(),
boost::bind(&personal_info::age,_1),
boost::bind(&personal_info::age,_2));

Here, we create two more binders. The first one calls personal_info::age
with the main binder’s function call operator’s first argument (_1). The second
one calls personal_info::age with the main binder’s function call operator’s
second argument (_2). Because std::sort passes two personal_info objects to
the main binder’s function call operator, the result is to invoke
personal_info::age on each of two personal_info objects from the vector
being sorted. Finally, the main binder passes the ages returned by the two new,
inner binders’ function call operator to std::less. This is exactly what we need!
The result of invoking this function object is the result of std::less, which
means that we have a valid comparison function object easily used to sort a con-
tainer of personal_info objects. Here’s how it looks in action:

std::vector<personal_info> vec;
vec.push_back(personal_info("Little","John",30));
vec.push_back(personal_info("Friar", "Tuck",50));
vec.push_back(personal_info("Robin", "Hood",40));

std::sort(
vec.begin(),
vec.end(),
boost::bind(

std::less<unsigned int>(),
boost::bind(&personal_info::age,_1),
boost::bind(&personal_info::age,_2)));

252 Library 9: Bind

4. The Standard Library function objects all have result_type defined, so they work with bind's return type deduction
mechanism.

Karlsson_09.qxd 8/2/05 3:04 PM Page 252

We could sort differently simply by binding to another member (variable or
function) from personal_info—for example, the last name.

std::sort(
vec.begin(),
vec.end(),
boost::bind(

std::less<std::string>(),
boost::bind(&personal_info::surname,_1),
boost::bind(&personal_info::surname,_2)));

This is a great technique, because it offers an important property: simple func-
tionality implemented at the call site. It makes the code easy to understand and
maintain. Although it is technically possible to sort using binders based upon
complex criteria, it is not wise. Adding more logic to the bind expressions
quickly loses clarity and succinctness. Although it is sometimes tempting to do
more in terms of binding, strive to write binders that are as clever as the people
who must maintain it, but no more so.

Functional Composition, Part I

One problem that’s often looking for a solution is to compose a function object
out of other functions or function objects. Suppose that you need to test an int
to see whether it is greater than 5 and less than, or equal to, 10. Using “regular”
code, you would do something like this:

if (i>5 && i<=10) {
// Do something

}

When processing elements of a container, the preceding code only works if
you put it in a separate function. When this is not desirable, using a nested bind
can express the same thing (note that this is typically not possible using bind1st
and bind2nd from the Standard Library). If we decompose the problem, we find
that we need operations for logical and (std::logical_and), greater than
(std::greater), and less than or equal to (std::less_equal). The logical and
should look something like this:

boost::bind(std::logical_and<bool>(),_1,_2);

Usage 253

Karlsson_09.qxd 8/2/05 3:04 PM Page 253

Then, we need another predicate that answers whether _1 is less than or equal
to 10.

boost::bind(std::greater<int>(),_1,5);

Then, we need another predicate that answers whether _1 is less than or equal
to 10.

boost::bind(std::less_equal<int>(),_1,10);

Finally, we need to logically and those two together, like so:

boost::bind(
std::logical_and<bool>(),
boost::bind(std::greater<int>(),_1,5),
boost::bind(std::less_equal<int>(),_1,10));

A nested bind such as this is relatively easy to understand, though it has post-
fix order. Still, one can almost read the code literally and determine the intent.
Let’s put this binder to the test in an example.

std::vector<int> ints;

ints.push_back(7);
ints.push_back(4);
ints.push_back(12);
ints.push_back(10);

int count=std::count_if(
ints.begin(),
ints.end(),
boost::bind(

std::logical_and<bool>(),
boost::bind(std::greater<int>(),_1,5),
boost::bind(std::less_equal<int>(),_1,10)));

std::cout << count << '\n';

std::vector<int>::iterator int_it=std::find_if(
ints.begin(),
ints.end(),
boost::bind(std::logical_and<bool>(),

boost::bind(std::greater<int>(),_1,5),

254 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 254

boost::bind(std::less_equal<int>(),_1,10)));

if (int_it!=ints.end()) {
std::cout << *int_it << '\n';

}

It is important to carefully indent the code properly when using nested binds,
because the code can quickly become hard to understand if one neglects sensible
indentation. Consider the preceding clear code, and then look at the following
obfuscated example.

std::vector<int>::iterator int_it=
std::find_if(ints.begin(),ints.end(),

boost::bind<bool>(
std::logical_and<bool>(),
boost::bind<bool>(std::greater<int>(),_1,5),

boost::bind<bool>(std::less_equal<int>(),_1,10)));

This is a general problem with long lines, of course, but it becomes apparent
when using constructs such as those described here, where long statements are
the rule rather than the exception. So, please be nice to your fellow programmers
by making sure that your lines wrap in a way that makes them easy to read.

One of the hard-working reviewers for this book asked why, in the previous
example, two equivalent binders were created, and if it wouldn’t make more
sense to create a binder object and use it two times. The answer is that because
we can’t know the exact type of the binder (it’s implementation defined) that’s
created when we call bind, we have no way of declaring a variable for it. Also,
the type typically is very complex, because its signature includes all of the type
information that’s been captured (and deduced automatically) in the function
bind. However, it is possible to store the resulting function objects using other
facilities—for example, those from Boost.Function. See “Library 11: Function”
for details on how this is accomplished.

The composition outlined here corresponds to a popular extension to the
Standard Library, namely the function compose2 from the SGI STL, also known
as compose_f_gx_hx in the (now deprecated) Boost.Compose library.

Functional Composition, Part II

Another useful functional composition is known as compose1 in SGI STL, and
compose_f_gx in Boost.Compose. These functionals offer a way to call two

Usage 255

Karlsson_09.qxd 8/2/05 3:04 PM Page 255

functions with an argument, and have the result of the innermost function passed
to the first function. An example sometimes says more than a thousand contrived
words, so consider the scenario where you need to perform two arithmetic
operations on container elements of floating point type. We first add 10% to the
values, and then reduce the values with 10%; the example could also serve as a
useful lesson to quite a few people working in the financial sector.

std::list<double> values;
values.push_back(10.0);
values.push_back(100.0);
values.push_back(1000.0);

std::transform(
values.begin(),
values.end(),
values.begin(),
boost::bind(

std::multiplies<double>(),0.90,
boost::bind<double>(

std::multiplies<double>(),_1,1.10)));

std::copy(
values.begin(),
values.end(),
std::ostream_iterator<double>(std::cout," "));

How do you know which of the nested binds will be called first? As you’ve
probably already noticed, it is always the innermost bind that is evaluated first.
This means that we could write the equivalent code somewhat differently.

std::transform(
values.begin(),
values.end(),
values.begin(),
boost::bind<double>(
std::multiplies<double>(),

boost::bind<double>(
std::multiplies<double>(),_1,1.10),0.90));

Here, we change the order of the arguments passed to the bind, tacking on the
argument to the first bind last in the expression. Although I do not recommend
this practice, it is useful for understanding how arguments are passed to bind
functions.

256 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 256

Value or Pointer Semantics in bind Expressions?

When we pass an instance of some type to a bind expression, it is copied, unless
we explicitly tell bind not to copy it. Depending on what we are doing, this can
be of vital importance. To see what goes on behind our backs, we will create a
tracer class that will tell us when it is default constructed, copy constructed,
assigned to, and destructed. That way, we can easily see how different uses of
bind affect the instances that we pass. Here is the tracer class in its entirety.

class tracer {
public:

tracer() {
std::cout << "tracer::tracer()\n";

}

tracer(const tracer& other) {
std::cout << "tracer::tracer(const tracer& other)\n";

}

tracer& operator=(const tracer& other) {
std::cout <<

"tracer& tracer::operator=(const tracer& other)\n";
return *this;

}

~tracer() {
std::cout << "tracer::~tracer()\n";

}

void print(const std::string& s) const {
std::cout << s << '\n';
}

};

We put our tracer class to work with a regular bind expression like the one
that follows.

tracer t;
boost::bind(&tracer::print,t,_1)

(std::string("I'm called on a copy of t\n"));

Running this code produces the following output, which clearly shows that
there is copying involved.

Usage 257

Karlsson_09.qxd 8/2/05 3:04 PM Page 257

tracer::tracer()
tracer::tracer(const tracer& other)
tracer::tracer(const tracer& other)
tracer::tracer(const tracer& other)
tracer::~tracer()
tracer::tracer(const tracer& other)
tracer::~tracer()
tracer::~tracer()
I'm called on a copy of t

tracer::~tracer()

If we had been using objects where copying was expensive, we probably could
not afford to use bind this way. There is an advantage to the copying, however. It
means that the bind expression and its resulting binder are not dependent on the
lifetime of the original object (t in this case), which is often the exact behavior
desired. To avoid the copies, we must tell bind that we intend to pass it a refer-
ence that it is supposed to use rather than a value. We do this with boost::ref
and boost::cref (for reference and reference to const, respectively), which are
also part of the Boost.Bind library. Using boost::ref with our tracer class, the
testing code now looks like this:

tracer t;
boost::bind(&tracer::print,boost::ref(t),_1)(

std::string("I'm called directly on t\n"));

Executing the code gives us this:

tracer::tracer()
I'm called directly on t
tracer::~tracer

That’s exactly what’s needed to avoid unnecessary copying. The bind expres-
sion uses the original instance, which means that there are no copies of the
tracer object. Of course, it also means that the binder is now dependent upon
the lifetime of the tracer instance. There’s also another way of avoiding copies;
just pass the argument by pointer rather than by value.

tracer t;
boost::bind(&tracer::print,&t,_1)(

std::string("I'm called directly on t\n"));

258 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 258

So, bind always copies. If you pass by value, the object is copied and that may
be detrimental on performance or cause unwanted effects. To avoid copying the
object, you can either use boost::ref/boost::cref or use pointer semantics.

Virtual Functions Can Also Be Bound

So far, we’ve seen how bind can work with non-member functions and non-
virtual member functions, but it is, of course, also possible to bind a virtual
member function. With Boost.Bind, you use virtual functions as you would non-
virtual functions—that is, just bind to the virtual function in the base class that
first declared the member function virtual. That makes the binder useful with all
derived types. If you bind against a more derived type, you restrict the classes
with which the binder can be used.5 Consider the following classes named base
and derived:

class base {
public:

virtual void print() const {
std::cout << "I am base.\n";

}
virtual ~base() {}

};

class derived : public base {
public:

void print() const {
std::cout << "I am derived.\n";

}
};

Using these classes, we can test the binding of a virtual function like so:

derived d;
base b;
boost::bind(&base::print,_1)(b);
boost::bind(&base::print,_1)(d);

Usage 259

5. This is no different than when declaring a pointer to a class in order to invoke a virtual member function. The more derived the type
pointed to, the fewer classes can be bound to the pointer.

Karlsson_09.qxd 8/2/05 3:04 PM Page 259

Running this code clearly shows that this works as one would hope and expect.

I am base.
I am derived.

The fact that virtual functions are supported should come as no surprise to you,
but now we’ve shown that it works just like other functions. On a related note,
what would happen if you bind a member function that is later redefined by a
derived class, or a virtual function that is public in the base class but private in
the derived? Will things still work? If so, which behavior would you expect?
Well, the behavior does not change whether you are using Boost.Bind or not.
Thus, if you bind to a function that is redefined in another class—that is, it’s
not virtual and the derived class adds a member function with an identical
signature—the version in the base class is called. If a function is hidden, the
binder can still be invoked, because it explicitly accesses the function in the
base class, which works even for hidden member functions. Finally, if the
virtual function is declared public in the base class, but is private in a derived
class, invoking the function on an instance of the derived class succeeds, because
the access is through a base instance, where the member is public. Of course,
such a case indicates a seriously flawed design.

Binding to Member Variables

There are many occasions when you need to bind data members rather than
member functions. For example, when using std::map or std::multimap, the
element type is std::pair<key const,data>, but the information you want to
use is often not the key, but the data. Suppose you want to pass the data from
each element in a map to a function that takes a single argument of the data type.
You need to create a binder that forwards the second member of each element
(of type std::pair) to the bound function. Here’s code that illustrates how to
do that:

void print_string(const std::string& s) {
std::cout << s << '\n';

}

std::map<int,std::string> my_map;
my_map[0]="Boost";
my_map[1]="Bind";

260 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 260

std::for_each(
my_map.begin(),
my_map.end(),

boost::bind(&print_string, boost::bind(
&std::map<int,std::string>::value_type::second,_1)));

You can bind to a member variable just as you can with a member function, or
a free function. It should be noted that to make the code easier to read (and
write), it’s a good idea to use short and convenient names. In the previous exam-
ple, the use of a typedef for the std::map helps improve readability.

typedef std::map<int,std::string> map_type;
boost::bind(&map_type::value_type::second,_1)));

Although the need to bind to member variables does not arise as often as for
member functions, it is still very convenient to be able to do so. Users of SGI
STL (and derivatives thereof) are probably familiar with the select1st and
select2nd functions. They are used to select the first or the second member
of std::pair, which is the same thing that we’re doing in this example. Note
that bind works with arbitrary types and arbitrary names, which is definitively a
plus.

To Bind or Not to Bind

The great flexibility brought by the Boost.Bind library also offers a challenge for
the programmer, because it is sometimes very tempting to use a binder, although
a separate function object is warranted. Many tasks can and should be accom-
plished with the help of Bind, but it’s an error to go too far—and the line is
drawn where the code becomes hard to read, understand, and maintain.
Unfortunately, the position of the line greatly depends on the programmers that
share (by reading, maintaining, and extending) the code, as their experience must
dictate what is acceptable and what is not. The advantage of using specialized
function objects is that they can typically be made quite self-explanatory, and to
provide the same clear message using binders is a challenge that we must dili-
gently try to overcome. For example, if you need to create a nested bind that you
have trouble understanding, chances are that you have gone too far. Let me
explain this with code.

#include <iostream>
#include <string>

Usage 261

Karlsson_09.qxd 8/2/05 3:04 PM Page 261

#include <map>
#include <vector>
#include <algorithm>
#include "boost/bind.hpp"

void print(std::ostream* os,int i) {
(*os) << i << '\n';

}

int main() {
std::map<std::string,std::vector<int> > m;
m["Strange?"].push_back(1);
m["Strange?"].push_back(2);
m["Strange?"].push_back(3);
m["Weird?"].push_back(4);
m["Weird?"].push_back(5);

std::for_each(m.begin(),m.end(),
boost::bind(&print,&std::cout,
boost::bind(&std::vector<int>::size,
boost::bind(

&std::map<std::string,
std::vector<int> >::value_type::second,_1))));

}

What does the preceding code actually do? There are people who read code
like this fluently,6 but for many of us mortals, it takes some time to figure out
what’s going on. Yes, the binder calls the member function size on whatever
exists as the pair member second (the std::map<std::string,std::vector
<int> >::value_type). In cases like this, where the problem is simple yet
complex to express using a binder, it often makes sense to create a small func-
tion object instead of a complex binder that some people will definitely have a
hard time understanding. A simple function object that does the same thing could
look something like this:

class print_size {
std::ostream& os_;
typedef std::map<std::string,std::vector<int> > map_type;

public:
print_size(std::ostream& os):os_(os) {}

262 Library 9: Bind

6. Hello, Peter Dimov.

Karlsson_09.qxd 8/2/05 3:04 PM Page 262

void operator()(
const map_type::value_type& x) const {

os_ << x.second.size() << '\n';
}

};

The great advantage in this case comes when we are using the function object,
whose name is self-explanatory.

std::for_each(m.begin(),m.end(),print_size(std::cout));

This (the source for the function object and the actual invocation) is to be
compared with the version using a binder.

std::for_each(m.begin(),m.end(),
boost::bind(&print,&std::cout,
boost::bind(&std::vector<int>::size,
boost::bind(

&std::map<std::string,
std::vector<int> >::value_type::second,_1))));

Or, if we had been a bit more responsible and created terse typedefs for the
vector and map:

std::for_each(m.begin(),m.end(),
boost::bind(&print,&std::cout,
boost::bind(&vec_type::size,
boost::bind(&map_type::value_type::second,_1))));

That’s a bit easier to parse, but it’s still a bit too much.

Although there may be some good arguments for using the bind version, I
think that the point is clear—binders are incredibly useful tools that should be
used responsibly, where they add value. This is very, very common when using
the Standard Library containers and algorithms. But when things get too compli-
cated, do it the old fashioned way.

Let Binders Handle State

There are several options available to use when creating a function object like
print_size. The version that we created in the previous section stored a refer-
ence to a std::ostream, and used that ostream to print the return value of size

Usage 263

Karlsson_09.qxd 8/2/05 3:04 PM Page 263

for the member second on the map_type::value_type argument. Here’s the
original print_size again:

class print_size {
std::ostream& os_;
typedef std::map<std::string,std::vector<int> > map_type;

public:
print_size(std::ostream& os):os_(os) {}

void operator()(
const map_type::value_type& x) const {

os_ << x.second.size() << '\n';
}

};

An important observation for this class is that is has state, through the stored
std::ostream. We could remove the state by adding the ostream as an argu-
ment to the function call operator. This would mean that the function object
becomes stateless.

class print_size {
typedef std::map<std::string,std::vector<int> > map_type;

public:
typedef void result_type;
result_type operator()(std::ostream& os,

const map_type::value_type& x) const {
os << x.second.size() << '\n';

}
};

Note that this version of print_size is well behaved when used with bind,
through the addition of the result_type typedef. This relieves users from
having to explicitly state the return type of the function object when using bind.
In this new version of print_size, users need to pass an ostream as an argu-
ment when invoking it. That’s easy when using binders. Rewriting the example
from the previous section with the new print_size gives us this:

#include <iostream>
#include <string>
#include <map>
#include <vector>
#include <algorithm>

264 Library 9: Bind

Karlsson_09.qxd 8/2/05 3:04 PM Page 264

#include "boost/bind.hpp"

// Definition of print_size omitted

int main() {
typedef std::map<std::string,std::vector<int> > map_type;
map_type m;
m["Strange?"].push_back(1);
m["Strange?"].push_back(2);
m["Strange?"].push_back(3);
m["Weird?"].push_back(4);
m["Weird?"].push_back(5);

std::for_each(m.begin(),m.end(),
boost::bind(print_size(),boost::ref(std::cout),_1));

}

The diligent reader might wonder why print_size isn’t a free function now,
because it doesn’t carry state anymore. In fact, it can be

void print_size(std::ostream& os,
const std::map<std::string,std::vector<int> >::value_type& x) {
os << x.second.size() << '\n';

}

But there are more generalizations to consider. Our current version of
print_size requires that the second argument to the function call operator be a
reference to const std::map<std::string,std::vector<int> >, which isn’t
very general. We can do better, by parameterizing the function call operator on
the type. This makes print_size usable with any argument that contains a pub-
lic member called second, which in turn has a member function size. Here’s the
improved version:

class print_size {
public:

typedef void result_type;
template <typename Pair> result_type operator()

(std::ostream& os,const Pair& x) const {
os << x.second.size() << '\n';

}
};

Usage 265

Karlsson_09.qxd 8/2/05 3:04 PM Page 265

Usage is the same with this version as the previous, but it’s much more flexi-
ble. This kind of generalization becomes more important than usual when creat-
ing function objects that can be used in bind expressions. Because the number
of cases where the function objects can be used increase markedly, most any
potential generalization is worthwhile. In that vein, there is one more change
that we could make to further relax the requirements for types to be used with
print_size. The current version of print_size requires that the second argu-
ment of the function call operator be a pair-like object—that is, an object with a
member called second. If we decide to require only that the argument contain a
member function size, the function object starts to really deserve its name.

class print_size {
public:

typedef void result_type;
template <typename T> void operator()

(std::ostream& os,const T& x) const {
os << x.size() << '\n';

}
};

Of course, although print_size is now true to its name, we require more of
the user for the use case that we’ve already considered. Usage now includes
“manually” binding to map_type::value_type::second.

std::for_each(m.begin(),m.end(),
boost::bind(print_size(),boost::ref(std::cout),

boost::bind(&map_type::value_type::second,_1)));

Such are often the tradeoffs when using bind—generalizations can only take
you so far before starting to interfere with usability. Had we taken things to an
extreme, and removed even the requirement that there be a member function
size, we’d complete the circle and be back where we started, with a bind
expression that’s just too complex for most programmers.

std::for_each(m.begin(),m.end(),
boost::bind(&print7,&std::cout,
boost::bind(&vec_type::size,
boost::bind(&map_type::value_type::second,_1))));

266 Library 9: Bind

7. The print function would obviously be required, too, without some lambda facility.

Karlsson_09.qxd 8/2/05 3:04 PM Page 266

A Boost.Bind and Boost.Function Teaser

Although the material that we have covered in this chapter shouldn’t leave you
wanting for more, there is actually a very useful synergy between Boost.Bind
and another library, Boost.Function, that provides still more functionality. We
shall see more of the added value in “Library 11: Function,” but I’d like to give
you a hint of what’s to come. As we’ve seen, there is no apparent way of storing
our binders for later use—we only know that they are compatible function
objects with some (unknown) signature. But, when using Boost.Function, storing
functions for later invocation is exactly what the library does, and thanks to the
compatibility with Boost.Bind, it’s possible to assign binders to functions, saving
them for later invocation. This is an enormously useful concept, which enables
adaptation and promotes loose coupling.

Bind Summary

Use Bind when

• You need to bind a call to a free function, and some or all of its
arguments

• You need to bind a call to a member function, and some or all of its
arguments

• You need to compose nested function objects

The existence of a generalized binder is a tremendously useful tool when it
comes to writing terse, coherent code. It reduces the number of small function
objects created for adapting functions/function objects, and combinations of
functions. Although the Standard Library already offers a small part of the func-
tionality found in Boost.Bind, there are significant improvements that make
Boost.Bind the better choice in most places. In addition to the simplification of
existing features, Bind also offers powerful functional composition features,
which provide the programmer with great power without negative effects on
maintenance. If you’ve taken the time to learn about bind1st, bind2nd,
ptr_fun, mem_fun_ref, and so forth, you’ll have little or no trouble transitioning
to Boost.Bind. If you’ve yet to start using the current binder offerings from the
C++ Standard Library, I strongly suggest that you start by using Bind, because it
is both easier to learn and more powerful.

Bind Summary 267

Karlsson_09.qxd 8/2/05 3:04 PM Page 267

I know many programmers who have yet to experience the wonders of binders
in general, and function composition in particular. If you used to be one of them,
I’m hoping that this chapter has managed to convey some of the tremendous
power that is brought forth by the concept as such. Moreover, think about the
implications this type of function, declared and defined at the call site, will have
on maintenance. It’s going to be a breeze compared to the dispersion of code that
can easily be caused by small, innocent-looking8 function objects that are scat-
tered around the classes merely to provide the correct signature and perform a
trivial task.

The Boost.Bind library is created and maintained by Peter Dimov, who has,
besides making it such a complete facility for binding and function composition,
also managed to make it work cleanly for most compilers.

268 Library 9: Bind

8. But they’re not.

Karlsson_09.qxd 8/2/05 3:04 PM Page 268

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF00500072006500730073002d0052006500610064007900200050004400460073>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

