
144 C++ Coding Standards

73. Throw by value, catch by reference.

Summary
Learn to catch properly: Throw exceptions by value (not pointer) and catch them by
reference (usually to const). This is the combination that meshes best with exception
semantics. When rethrowing the same exception, prefer just throw; to throw e;.

Discussion
When throwing an exception, throw an object by value. Avoid throwing a pointer,
because if you throw a pointer, you need to deal with memory management issues:
You can’t throw a pointer to a stack-allocated value because the stack will be un-
wound before the pointer reaches the call site. You could throw a pointer to dynami-
cally allocated memory (if the error you’re reporting isn’t “out of memory” to begin
with), but you’ve put the burden on the catch site to deallocate the memory. If you
feel you really must throw a pointer, consider throwing a value-like smart pointer
such as a shared_ptr<T> instead of a plain T*.

Throwing by value enjoys the best of all worlds because the compiler itself takes re-
sponsibility for the intricate process of managing memory for the exception object.
All you need to take care of is ensuring that you implement a non-throwing copy
constructor for your exception classes (see Item 32).

Unless you are throwing a smart pointer, which already adds an indirection that
preserves polymorphism, catching by reference is the only good way to go. Catching
a plain value by value results in slicing at the catch site (see Item 54), which violently
strips away the normally-vital polymorphic qualities of the exception object. Catch-
ing by reference preserves the polymorphism of the exception object.

When rethrowing an exception e, prefer writing just throw; instead of throw e; be-
cause the first form always preserves polymorphism of the rethrown object.

Examples
Example: Rethrowing a modified exception. Prefer to rethrow using throw;:

catch(MyException& e) { // catch by reference to non-const
 e.AppendContext(“Passed through here”); // modify
 throw; // rethrow modified object
}

References
[Dewhurst03] §64-65 • [Meyers96] §13 • [Stroustrup00] §14.3 • [Vandevoorde03] §20

