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 CHAPTER  3 

POWER-OF-2 BOUNDARIES

3–1  Rounding Up/Down to a Multiple of a Known Power of 2
Rounding an unsigned integer x down to, for example, the next smaller multiple of
8, is trivial:  does it. An alternative is  These work for
signed integers as well, provided “round down” means to round in the negative
direction (e.g., ).

Rounding up is almost as easy. For example, an unsigned integer x can be
rounded up to the next greater multiple of 8 with either of

These expressions are correct for signed integers as well, provided “round up”
means to round in the positive direction. The second term of the second expression
is useful if you want to know how much you must add to x to make it a multiple of
8 [Gold].

To round a signed integer to the nearest multiple of 8 toward 0, you can com-
bine the two expressions above in an obvious way:

An alternative for the first line is  which is useful if the
machine lacks and immediate, or if the constant is too large for its immediate
field.

Sometimes the rounding factor is given as the log2 of the alignment amount
(e.g., a value of 3 means to round to a multiple of 8). In this case, code such as the
following may be used, where k = log2(alignment amount):

x 8–& x 3>> 
u( ) 3.<<

37–( ) 8–( )& 40–=

x 7+( ) 8,   or–&

x x– 7&( ).+

t x 31>> 
s( ) 7;&←

x t+( ) 8–&

t x 2>> 
s( ) 29>> 

u← ,

round down: x 1–( ) k<<( )&

x k>> 
u( ) k<<

round up: t 1 k<<( ) 1–← ;   x t+( ) t¬&

t 1–( ) k<<← ;   x t– 1–( ) t&
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46 POWER-OF-2 BOUNDARIES 3–2

3–2  Rounding Up/Down to the Next Power of 2
We define two functions that are similar to floor and ceiling, but which are
directed roundings to the closest integral power of 2, rather than to the closest
integer. Mathematically, they are defined by

The initial letters of the function names are intended to suggest “floor” and “ceil-
ing.” Thus,  is the greatest power of 2 that is  and  is the least
power of 2 that is  These definitions make sense even when x is not an integer
(e.g., flp2(0.1) = 0.0625). The functions satisfy several relations analogous to those
involving floor and ceiling, such as those shown below, where n is an integer.

Computationally, we deal only with the case in which x is an integer, and we
take it to be unsigned, so the functions are well defined for all x. We require the
value computed to be the arithmetically correct value modulo  (that is, we
take  to be 0 for ). The functions are tabulated below for a few val-
ues of x.

flp2 x( )

undefined, 

0,

2 log2x ,

x 0,<
x 0,=

otherwise;





= clp2 x( )

undefined, 

0,

2 log2x ,



 x 0,<

x 0,=

otherwise.

=

flp2 x( )  x,≤ clp2 x( )
 x.≥

x x   iff x is an integer=

x n+ x n+=

x x––=

flp2 x( ) clp2 x( )  iff x is a power of 2 or is 0=

flp2 2nx( ) 2nflp2 x( )=

clp2 x( ) 1 flp2 1 x⁄( )⁄ ,  x 0≠=

232

clp2 x( ) x 231>

x

0

1

2

3

4

5

…
231 1–

231

231 1+

…
232 1–

flp2 x( )

0

1

2

2

4

4

…
230

231

231

…
231

clp2 x( )

0

1

2

4

4

8

…
231

231

0

…
0
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3–2 ROUNDING UP/DOWN TO THE NEXT POWER OF 2 47

Functions flp2 and clp2 are connected by the relations shown below. These
can be used to compute one from the other, subject to the indicated restrictions.

The round-up and round-down functions can be computed quite easily with
the number of leading zeros instruction, as shown below. However, for these rela-
tions to hold for  and  the computer must have its shift instructions
defined to produce 0 for shift amounts of –1, 32, and 63. Many machines (e.g.,
PowerPC) have “mod 64” shifts, which do this. In the case of –1, it is adequate if
the machine shifts in the opposite direction (that is, a shift left of –1 becomes a
shift right of 1).

Rounding Down
Figure 3–1 illustrates a branch-free algorithm that might be useful if number of
leading zeros is not available. This algorithm is based on right-propagating the
leftmost 1-bit, and executes in 12 instructions.

Figure 3–2 shows two simple loops that compute the same function. All vari-
ables are unsigned integers. The loop on the right keeps turning off the rightmost
1-bit of x until  and then returns the previous value of x.

unsigned flp2(unsigned x) {
   x = x | (x >> 1);
   x = x | (x >> 2);
   x = x | (x >> 4);
   x = x | (x >> 8);
   x = x | (x >>16);
   return x - (x >> 1);
}

FIGURE 3–1.  Greatest power of 2 less than or equal to x, branch-free.

clp2 x( ) 2 flp2 x 1–( ),         x 1,≠=

flp2 2x 1–( ),         1 x 231,≤ ≤=

flp2 x( ) clp2 x 2÷u 1+( ),     x 0,≠=

clp2 x 1+( ) 2÷u ,     x 231.<=

x 0= x 231,>

flp2 x( ) 1 31 nlz x( )–( )<<=

1 nlz x( ) 31⊕( )<<=

0x80000000 nlz x( )>> 
u=

clp2 x( ) 1 32 nlz x 1–( )–( )<<=

0x80000000 nlz x 1–( ) 1–( )>> 
u=

x 0,=
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48 POWER-OF-2 BOUNDARIES 3–2

The loop on the left executes in  instructions. The loop on the
right, for  executes in  instructions,1 if the comparison to 0 is zero-
cost.

Rounding Up
The right-propagation trick yields a good algorithm for rounding up to the next
power of 2. This algorithm, shown in Figure 3–3, is branch-free and runs in 12
instructions.

An attempt to compute this with the obvious loop does not work out very well:

   y = 1;

   while (y < x)     // Unsigned comparison.
      y = 2*y;
   return y;

This code returns 1 for  which is probably not what you want, loops for-
ever for , and executes in  instructions, where n is the power of 2 of
the returned integer. Thus, it is slower than the branch-free code, in terms of
instructions executed, for  ( ).

   y = 0x80000000;           do {
   while (y > x)                y = x;
      y = y >> 1;               x = x & (x - 1);
   return                    } while(x != 0);
                             return y;

FIGURE 3–2.  Greatest power of 2 less than or equal to x, simple loops.

1. pop(x) is the number of 1-bits in x.

unsigned clp2(unsigned x) {
   x = x - 1;
   x = x | (x >> 1);
   x = x | (x >> 2);
   x = x | (x >> 4);
   x = x | (x >> 8);
   x = x | (x >>16);
   return x + 1;
}

FIGURE 3–3.  Least power of 2 greater than or equal to x.

4 nlz x( ) 3+
x 0,≠ 4 pop x( )

x 0,=
x 231≥ 4n 3+

n 3≥ x 8≥
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3–3 DETECTING A POWER-OF-2 BOUNDARY CROSSING 49

3–3  Detecting a Power-of-2 Boundary Crossing
Assume memory is divided into blocks that are a power of 2 in size, starting at
address 0. The blocks may be words, doublewords, pages, and so on. Then, given
a starting address a and a length l, we wish to determine whether or not the
address range from a to   crosses a block boundary. The quantities
a and l are unsigned and any values that fit in a register are possible.

If  or 1, a boundary crossing does not occur, regardless of a. If l
exceeds the block size, a boundary crossing does occur, regardless of a. For very
large values of l (wraparound is possible), a boundary crossing can occur even if
the first and last bytes of the address range are in the same block. 

There is a surprisingly concise way to detect boundary crossings on the IBM
System/370 [CJS]. This method is illustrated below for a block size of 4096 bytes
(a common page size).

                      O   RA,=A(-4096)
                      ALR RA,RL
                      BO  CROSSES

The first instruction forms the logical or of RA (which contains the starting
address a) and the number 0xFFFFF000. The second instruction adds in the
length, and sets the machine’s 2-bit condition code. For the add logical instruc-
tion, the first bit of the condition code is set to 1 if a carry occurred, and the second
bit is set to 1 if the 32-bit register result is nonzero. The last instruction branches if
both bits are set. At the branch target, RA will contain the length that extends
beyond the first page (this is an extra feature that was not asked for).

If, for example,  and  a carry occurs but the register result is
0, so the program properly does not branch to label CROSSES.

Let us see how this method can be adapted to RISC machines, which
generally do not have branch on carry and register result nonzero. Using a block
size of 8 for notational simplicity, the method of [CJS] branches to CROSSES
if a carry occurred ( ) and the register result is nonzero
(  Thus, it is equivalent to the predicate

This in turn is equivalent to getting a carry in the final addition in evaluating
 If the machine has branch on carry, this can be used directly,

giving a solution in about five instructions counting a load of the constant –8.
If the machine does not have branch on carry, we can use the fact that carry

occurs in  iff  (see “Unsigned Add/Subtract” on page 29) to obtain
the expression

a l 1,–+ l 2,≥

l 0=

a 0= l 4096,=

a 8– | ( ) l+ 232≥
a 8– | ( ) l+ 232 ).≠

a 8– | ( ) l+ 232.>

a 8– | ( ) 1–( ) l.+

x y+ x¬ y<
u 

a 8– | ( ) 1–( )¬ l.<
u 
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50 POWER-OF-2 BOUNDARIES 3–3

Using various identities such as  gives the following equiva-
lent expressions for the “boundary crossed” predicate:

These can be evaluated in five or six instructions on most RISC computers.
Using another tack, clearly an 8-byte boundary is crossed iff

This cannot be directly evaluated because of the possibility of overflow (which
occurs if l is very large), but it is easily rearranged to  which can
be directly evaluated on the computer (no part of it overflows). This gives the
expression

which can be evaluated in five instructions on most RISCs (four if it has subtract
from immediate). If a boundary crossing occurs, the length that extends beyond
the first block is given by  which can be calculated with one
additional instruction (subtract).

x 1–( )¬ x–=

a 8– | ( )– l<
u 

a 8– | ( )¬ 1+ l<
u 

a¬ 7&( ) 1+ l<
u 

a 7&( ) l 1–+ 8.≥

8 a 7&( )– l,<

8 a 7&( )– l<
u ,

l 8 a 7&( )–( ),–
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