
1

Chapter 1

Introduction

There’s no doubt about it: Software is expensive. The United States alone
devotes at least $250 billion each year to application development of approxi-
mately 175,000 projects involving several million people. For all of this
investment of time and money, though, software’s customers continue to be
disappointed, because over 30 percent of the projects will be canceled before
they’re completed, and more than half of the projects will cost nearly twice
their original estimates.1

The demand for software also continues to rise. The developed economies
rely to a large extent on software for telecommunications, inventory control,
payroll, word processing and typesetting, and an ever-widening set of applica-
tions. Only a decade ago, the Internet was text-based, known only to a rela-
tively few scientists connected using DARPAnet and email. Nowadays, it
seems as if everyone has his or her own website. Certainly, it’s become diffi-
cult to conduct even non-computer-related business without email.

There’s no end in sight. A Star Trek world of tiny communications devices,
voice-recognition software, vast searchable databases of human (for the
moment, anyway) knowledge, sophisticated computer-controlled sensing
devices, and intelligent display are now imaginable. (As software

1. Consult sources such as Ovum (http://www.ovum.com) and the Standish
Group (http://www.standishgroup.com) for more definitive numbers. Each
analyst uses different criteria to establish his or her numbers.

Chapter 1.fm  Page 1  Monday, February 9, 2004  8:16 PM



2 CHAPTER 1 INTRODUCTION

professionals, however, we know just how much ingenuity will be required to
deliver these new technologies.)

Software practitioners, industrial experts, and academics have not been idle in
the face of this need to improve productivity. There have been significant
improvements in the ways in which we build software over the last fifty years,
two of which are worthy of note in our attempts to make software an asset.
First, we’ve raised the level of abstraction of the languages we use to express
behavior; second, we’ve sought to increase the level of reuse in system con-
struction.

These techniques have undoubtedly improved productivity, but as we bring
more powerful tools to bear to solve more difficult problems, the size of each
problem we’re expected to tackle increases to the point at which we could,
once again, barely solve it.

MDA takes the ideas of raising the levels of abstraction and reuse up a notch.
It also introduces a new idea that ties these ideas together into a greater whole:
design-time interoperability.

Raising the Level of Abstraction2

The history of software development is a history of raising the level of
abstraction. Our industry used to build systems by soldering wires together to
form hard-wired programs. Machine code let us store programs by manipulat-
ing switches to enter each instruction. Data was stored on drums whose rota-
tion time had to be taken into account so that the head would be able to read
the next instruction at exactly the right time. Later, assemblers took on the
tedious task of generating sequences of ones and zeroes from a set of mne-
monics designed for each hardware platform.

At some point, programming languages, such as FORTRAN, were born and
“formula translation” became a reality. Standards for COBOL and C enabled
portability among hardware platforms, and the profession developed

2. This section is drawn from Executable UML: A Foundation for Model-Driven
Architecture by Stephen J. Mellor and Marc J. Balcer (Addison-Wesley,
2002), with permission of the authors. The arguments made there for execut-
able UML rely on raising the level of abstraction as a foundation for model-
driven architecture. The same arguments apply here. Reuse in action!

Chapter 1.fm  Page 2  Monday, February 9, 2004  8:16 PM



RAISING THE LEVEL OF ABSTRACTION 3

techniques for structuring programs so that they were easier to write,
understand, and maintain. We now have languages like Smalltalk, C++,
Eiffel, and Java, each with the notion of object-orientation, an approach for
structuring data and behavior together into classes and objects.

As we moved from one language to another, generally we increased the level
of abstraction at which the developer operates, which required the developer
to learn a new, higher-level language that could then be mapped into lower-
level ones, from C++ to C to assembly code to machine code and the hard-
ware. At first, each higher layer of abstraction was introduced only as a con-
cept. The first assembly languages were no doubt invented without the benefit
of an (automated) assembler to turn mnemonics into bits, and developers were
grouping functions together with the data they encapsulated long before there
was any automatic enforcement of the concept. Similarly, the concepts of
structured programming were taught before there were structured program-
ming languages in widespread industrial use (for instance, Pascal).

Over time, however, the new layers of abstraction became formalized, and
tools such as assemblers, preprocessors, and compilers were constructed to
support the concepts. This had the effect of hiding the details of the lower lay-
ers so that only a few experts (compiler writers, for example) needed to con-
cern themselves with the details of how those layers work. In turn, this raises
concerns about the loss of control induced by, for example, eliminating the
GOTO statement or writing in a high-level language at a distance from the
“real machine.” Indeed, sometimes the next level of abstraction has been too
big a reach for the profession as a whole, only of interest to academics and
purists, and the concepts did not take a large enough mindshare to survive.
(ALGOL-68 springs to mind. So does Eiffel, but it has too many living sup-
porters to be a safe choice of example.)

As the profession has raised the level of abstraction at which developers work,
we have developed tools to map from one layer to the next automatically.
Developers now write in a high-level language that can be mapped to a lower-
level language automatically, instead of writing in the lower-level language
that can be mapped to assembly language, just as our predecessors wrote in
assembly language and had that translated automatically into machine
language.

Chapter 1.fm  Page 3  Monday, February 9, 2004  8:16 PM



4 CHAPTER 1 INTRODUCTION

Figure 1-1 Raising the level of abstraction

Clearly, this forms a pattern: We formalize our knowledge of an application in
as high a level a language as we can. Over time, we learn how to use this lan-
guage and apply a set of conventions for its use. These conventions become
formalized and a higher-level language is born that is mapped automatically
into the lower-level language. In turn, this next-higher-level language is per-
ceived as low level, and we develop a set of conventions for its use. These
newer conventions are then formalized and mapped into the next level down,
and so forth.

The next level of abstraction is the move, shown in Figure 1-1, to model-based
development, in which we build software-platform-independent models.

Software-platform independence is analogous to hardware-platform indepen-
dence. A hardware-platform-independent language, such as C or Java, enables
the writing of a specification that can execute on a variety of hardware plat-
forms with no change. Similarly, a software-platform-independent language
enables the writing of a specification that can execute on a variety of software
platforms, or software architecture designs, with no change. So, a software-
platform-independent specification could be mapped to a multiprocessor/mul-
titasking CORBA environment, or a client-server relational database environ-
ment, with no change to the model.

Code
Assembly

Machine Code

1960s

Assembler

Executable
Models

Source Code

2000s

Model
Compiler

Assembly Code

1980s

Source Code
Compiler

High Level
Language 

Source Code

None Hardware
Platform

Software
Platform

Chapter 1.fm  Page 4  Monday, February 9, 2004  8:16 PM



RAISING THE LEVEL OF REUSE 5

In general, the organization of the data and processing implied by a concep-
tual model may not be the same as the organization of the data and processing
in implementation. If we consider two concepts, those of “customer” and
“account,” modeling them as classes using the UML suggests that the soft-
ware solution should be expressed in terms of software classes named Cus-
tomer and Account. However, there are many possible software designs that
can meet these requirements, many of which are not even object-oriented.
Between concept and implementation, an attribute may become a reference; a
class may be divided into sets of object instances according to some sorting
criteria; classes may be merged or split; statecharts may be flattened, merged,
or separated; and so on. A modeling language that enables such mappings is
software-platform independent.

Raising the level of abstraction changes the platform on which each layer of
abstractions depends. Model-based development relies on the construction of
models that are independent of their software platforms, which include the
likes of CORBA, client-server relational database environments, and the very
structure of the final code.

Raising the Level of Reuse

Though some pundits have suggested that there has been more reuse of the
word “reuse” than practice of it, it’s undoubtedly the case that a major area of
progress in our industry has involved enabling reuse. In the earliest systems,
memory was so expensive that it was often necessary to save memory by
reusing inline code. If those ten lines of assembly code were the same for one
context as for a second, then the confines of limited memory required their
reuse. Of course, over time, the minor distinctions between one context and
another required flags to distinguish each case, and reuse in this manner
deservedly acquired a poor reputation. The solution to this problem was the
invention of the callable function.

Functions, in the mathematical sense of the word, are ideal for encouraging
reuse because they transform their inputs into outputs without recourse to any
kind of memory, or “state.” The square root function, for example, returns the
same result for a given input every time. Mathematical functions lend
themselves to reusable libraries for just this reason, and they also increase the
granularity of reuse.

Chapter 1.fm  Page 5  Monday, February 9, 2004  8:16 PM



6 CHAPTER 1 INTRODUCTION

However, many functions, such as a payroll function, whose output depends
on knowledge of previous deductions, employ stored data saved from one
invocation to the next. The controlled use of such stored data increased the
range of what could be done with reusable functions—more properly, subrou-
tines—and libraries of these subroutines increased mightily in the 1960s and
1970s.

It quickly became apparent that there’s value in sharing data between subrou-
tines. The mechanism commonly chosen to implement this concept was a
shared (global) data structure. Here swims the fly in this particular ointment:
Just as the flags in shared inline code became a maintenance nightmare, so too
did shared data structures. When several subroutines each have uncontrolled
access to shared data, a change to a data structure in one subroutine leads to
the need to change all the other subroutines to match. Thus was born the
object.

Objects encapsulate a limited number of subroutines and the data structures
on which they operate. By encapsulating data and subroutines into a single
unit, the granularity of reuse is increased from the level of a single subroutine,
with implicit interfaces over other (unnamed) subroutines, to a group of sub-
routines with explicit (named) interfaces over a limited group of subroutines.
Objects enable reuse on a larger scale.

Objects are still small-scale, though, given the size of the systems we need to
build. There is advantage in reusing collections of related objects together. An
Account belongs to a Customer, for example; similarly, the object corre-
sponding with a telephone call is conceptually linked to the circuit on which
the call is made. In each case, these objects can, and should, be reused
together, connected explicitly in the application.

A set of closely related objects, packaged together with a set of defined inter-
faces, form a component. A component enables reuse at a higher level,
because the unit of reuse is larger. However, just as each of the previous
stages in increasing granularity raised issues in its usage, so do components.
This time, the problem derives from the interfaces. What happens if an inter-
face changes? The answer, of course, is that we have to find each and every
place where the interface is used, change it to use the new interface, test that
new code, reintegrate, and then retest the system as a whole. A small change
in the interface, therefore, leads to many changes in the code.

Dividing work across vertical problem areas and defining interfaces between
these areas is also problematic. It’s all too typical for a project team to begin

Chapter 1.fm  Page 6  Monday, February 9, 2004  8:16 PM



DESIGN-TIME INTEROPERABILITY 7

with an incomplete understanding of the problem and then divide the work
involved in solving the problem amongst several development teams. The
teams share defined interfaces, working to build components that can simply
be plugged together at the end of the project. Of course, it doesn’t usually
work that way: Teams can have different understanding of the specifications
of each of the components, and even the best-specified interface can be misin-
terpreted. Components, and their big brothers, frameworks, are rarely plug-
and-play, and organizations can spend inordinate amounts of time writing
“glue code” to stick components together properly.

The problem is even worse in systems engineering and hardware/software co-
design because the teams don’t even share a common language or a common
development process. The result tends to be a meeting of the two sides in the
lab, some months later, with incompatible hardware and software.

Dividing work into horizontal subject-matter areas, or domain models, such
as bank, database, authorization, user interface, and so forth, exposes inter-
faces at the level of rules. “The persistent data of a class is stored as database
tables” and “All updates must be authorized” and “Each operation that affects
stored data must be confirmed” are all rules that apply uniformly between dif-
ferent domain models. Glue code can be produced automatically based on
rules like these. Figure 1-2 illustrates how this progression increases the gran-
ularity of reuse.

Design-Time Interoperability

Even with these advances in the level of reuse, we nonetheless have a prob-
lem: There’s still little reuse of applications.

Over and over, we see systems that are reimplementations of existing func-
tionality built to make use of improved technology, and we see systems that
are unable to reuse existing platforms because they’ve become interwoven
with an existing application. Components and frameworks are helping, but
there’s still significantly more reuse of those closer to the machine. We see
more reuse of databases and data servers—general services that rely on imple-
mentation technologies—than we see reuse of customer objects, which in turn
rely on general services.

Chapter 1.fm  Page 7  Monday, February 9, 2004  8:16 PM



8 CHAPTER 1 INTRODUCTION

Figure 1-2 Raising the level of reuse

Figure 1-3 shows the overall effect. Each line between layers represents an
opportunity for standardization to support run-time interoperability. Standards
allow one layer to be replaced by a different implementation that conforms to
the same standard. This is the value of interoperability: By defining a standard
interface, we may replace one CORBA implementation with another, say, or
one SQL database with another.

Figure 1-3 The difficulty of reusing applications

1970s 2000s1990s

Components 
and 

Frameworks

1980s

Functions

Objects

Domain
Models

Operating System

Application

CORBA

Data Server

Chapter 1.fm  Page 8  Monday, February 9, 2004  8:16 PM



DESIGN-TIME INTEROPERABILITY 9

Standards and interoperability of this nature certainly help, but the problem
still remains: What happens if the CORBA implementation you prefer relies
on some operating system or database that you don’t want? Tough. You’re
stuck, because each layer in the pyramid relies on all of the layers below it.

Moreover, components and frameworks may not fit together architecturally.
This problem, dubbed architectural mismatch by David Garlan (1994), comes
about when the several components and/or frameworks in a system have dif-
fering concepts about how the system fits together.

Here are some examples, moving from the concrete to the more abstract:

• Two components might each think they have sole control over a resource
or device (a printer, for example).

• A component relies on an infrastructure that’s completely different from
another.

• One component thinks it must request updates, while another thinks it
will be told about them.

• One component is event-driven, receiving one set of related data elements
at a time, while another periodically updates all data elements, whether
they’re related or not.

In each of these cases, the problem is not merely one of interfaces, though
often that’s how the problem presents itself, but rather completely different
concepts about the software architecture of the system.

Expressed abstractly, reuse at the code level is multiplicative, not additive.
For example, if there are three possible operating systems, three possible data
servers, and three possible CORBA implementations, there are 27 possible
implementations (3 × 3 × 3).

The chances of the stars aligning so we have the right database, the right oper-
ating system, and so forth are relatively small (1/27), even though there are
only ten components (3 + 3 + 3, plus one for the application).

The consequences of this problem are ghastly and gargantuan. Even as we
increase the level of abstraction and the level of reuse, we’ll continue to have
difficulties as the number of layers increases, as it must as we come to tackle
ever larger problems. The main reason is that once we’ve mixed the pieces of
code together, it’s impossibly difficult to reuse each of the parts, because each
part relies so much on code that glues the pieces together—and glue makes
everything it touches sticky.

Chapter 1.fm  Page 9  Monday, February 9, 2004  8:16 PM



10 CHAPTER 1 INTRODUCTION

To realize an additive solution, one that allows reuse of each layer indepen-
dently of the others, we must glue layers together using mechanisms that are
independent of the content of each layer. These mechanisms are bridges
between layers, which are expressed as a system of mappings between ele-
ments in the layer. Bridges localize the interfaces so that an interface can be
changed and subsequently propagated through the code.

Relying on reuse of code, no matter how chunky that code is, addresses only a
part of the problem. The dependencies between the layers must be external-
ized and added in only when the system is deployed. The glue must be mixed
and applied only at the last moment. Each model is now a reusable, stand-
alone asset, not an expense.

Model-driven architecture, then, imposes the system’s architecture only at the
last moment. In other words, by deferring the gluing of the layers together and
combining models at the last (design) minute, model-driven architecture
enables design-time interoperability.

Models as Assets

Some years ago, one of us was working with a large telecommunications
company that was implementing a level-four protocol stack not once, but
three times. There were three groups, each in a different part of the U.S., each
building essentially the same system. As it turned out, each team was working
a slightly different subset on top of different technologies (operating systems,
languages, and the like) for different markets. We were able to bring these
groups together somewhat, but the reuse we achieved was limited to concepts
as expressed informally through the models. Geographical distribution, diver-
gent goals, and just plain politics resulted in three almost completely separate
projects.

The cost of building systems this way is enormous. The same system, or a
simple subset of it, was implemented with three teams, which tripled the
costs. Three times as much code was produced as was required—and that
code was then added to the pile o’ code the company needed to maintain over
time.

In short, software is an expense. And, as we discussed in the previous section,
reuse on the application level is often prohibitively difficult. Contrast this sit-
uation with the vision promulgated by MDA:

Chapter 1.fm  Page 10  Monday, February 9, 2004  8:16 PM



MODELS AS ASSETS 11

1. Take a model of the protocol stack off the shelf.

2. Subset the model as necessary.

3. Take models of the implementation technologies off the shelf.

4. Describe how the models are to be linked.

5. Generate the system.

When it comes time to change the application, we make the changes in the
application model and leave the models of the implementation technologies
alone. When we need to retarget an application to a different implementation
environment, we select the models for the new environment and regenerate.
There’s no need to modify the application models. Costs are lower; productiv-
ity is higher, based on increased reuse of models; maintenance is cheaper—
and each new model that gets built is an asset that can be subsequently reused.

The cost of building and maintaining systems this way is significantly lower.
The incremental cost resides primarily in selecting the appropriate models and
linking them together. The models themselves need to be constructed, of
course, but once they’re complete, they have greater longevity than code
because they evolve independently of other models. In other words, they
become corporate assets.

This is not just a vision: Systems are being built this way today. But not many
systems, unfortunately—most folk are stuck pushing bits in Java or something
else. The issue now is to increase the rate of adoption, which we hope will
happen as people gain a rich understanding of MDA, starting with Chapter 2.

Chapter 1.fm  Page 11  Monday, February 9, 2004  8:16 PM



Chapter 1.fm  Page 12  Monday, February 9, 2004  8:16 PM


