
10
State Management

B E F O R E W E B E G I N discussing state management in ASP.NET, let’s get
one thing straight: Attempting to manage state in Web applications

goes against the fundamental design principles of the Web. One of the pri-
mary goals of the Web and its underlying protocol, HTTP, is to provide a
scalable medium for sharing information. Adding user state inherently
reduces scalability because the pages shown to a particular user will be dif-
ferent from those shown to another user and thus cannot be reused or
cached.

In spite of this fact, many applications deployed on the Web require user-
specific state to function properly. Applications ranging from e-commerce
shopping sites to local company intranet sites depend on the ability to track
individual requests from distinct users and store state on behalf of each
client, whether it’s items in a shopping cart or which days were selected on
a calendar as requested vacation days. Although maintaining client-specific
state is not officially part of the HTTP protocol, there is a proposal in place
for adding state management to HTTP. RFC 210914 defines a proposed stan-
dard for state management for HTTP also known as cookies. Although it is
only a proposed standard and not yet an official part of the HTTP specifica-
tion, cookies are in widespread use today in almost all browsers, and many
Web sites rely on cookies for their functionality.

321

14. See http://www.w3.org/Protocols/rfc2109/rfc2109.

As a consequence, Web programmers must be very conscious about
state management. Unlike traditional applications, Web applications must
be very explicit about any state that is maintained on behalf of a client, and
there is no one standard way to maintain that state.

10.1 Types of State

One of the most important decisions you face when designing a Web appli-
cation is where to store your state. ASP.NET provides four types of state:
application state, session state, cookie state, and view state. In this chapter,
we explore each type of state, when it is most applicable, and any disad-
vantages you should be aware of if you decide to make use of it.

ASP.NET, like its predecessor, ASP, provides a pair of objects for man-
aging application-level state and session-level state. Application state is
where information that is global to the application may be stored. For effi-
ciency, this state is typically stored once and then read from many times.
Session state is maintained on a per-client basis. When a client first accesses
any page in an application, an ASP.NET generated session ID is created.
That session ID is then transmitted between the server and the client via
HTTP either using client-side cookies or encoded in a mangled version of
the URL (URL mangling is discussed in detail later in this chapter). On sub-
sequent accesses by the same client, state associated with that session ID
may be viewed and modified. Cookies provide the ability to store small
amounts of data on a client’s machine. Once a cookie is set, all subsequent
pages accessed by the same client will transmit the cookie and its value.

Finally, view state is a yet another way of storing state on behalf of a
client by saving and restoring values from a hidden field when a form is
posted. Although this technique for retaining state has been used by Web
developers in the past, ASP.NET provides a simplified mechanism for tak-
ing advantage of it. As we have seen in Chapter 8, it is possible to place items
into the ViewState property bag available in every Page-derived class.
When that page issues a POST request to itself, the values placed in the
ViewState property bag can then be retrieved, the key restriction being that
view state works only when a page posts to itself. Table 10-1 summarizes the

STATE MANAGEMENT322

advantages and disadvantages of each of the four types of state available in
ASP.NET.

Table 10-1: State Type Comparison in ASP.NET

Type of State Scope of State Advantages Disadvantages

Application • Overuse limits scal-
ability

• Not shared across
multiple machines
in a Web farm or
processors in a
Web garden

• Primary purpose
subsumed by data
cache in ASP.NET

Session Per client

Cookie Per client

View • State is retained
only with POST
request made to
the same page

• State is sent back
and forth with each
request

• Works regardless
of server configu-
ration

Across POST
requests to
the same
page

• Limited memory
(~4KB)

• Clients may not
support cookies or
may explicitly dis-
able them

• State is sent back
and forth with each
request

• Works regardless
of server configu-
ration

• State stored on
client

• State can live
beyond current
session

• Requires cookies
or URL mangling to
manage client
association

• Off-host storage
can be inefficient

• Can configure to
be shared across
machines in a
Web farm and
processors in a
Web garden

• Shared across all
clients

Global to the
application

10.1 T YPES OF STATE 323

10.2 Application State

Application state is something that should be used with care, and in most
cases, avoided altogether. Although it is a convenient repository for global
data in a Web application, its use can severely limit the scalability of an
application, especially if it is used to store shared, updateable state. It is also
an unreliable place to store data, because it is replicated with each applica-
tion instance and is not saved if the application is recycled. With this warn-
ing in mind, let’s explore how it works.

Application state is accessed through the Application property of the
HttpApplication class, which returns an instance of class HttpApplica-
tionState. This class is a named object collection, which means that it can
hold data of any type as part of a key/value pair. Listing 10-1 shows a typ-
ical use of application state. As soon as the application is started, it loads the
data from the database. Subsequent data accesses will not need to go to the
database but will instead access the application state object’s cached ver-
sion. Data that is prefetched in this way must be static, because it will not
be unloaded from the application until the application is recycled or oth-
erwise stopped and restarted.

Listing 10-1: Sample Use of Application State for Data Prefetching

' Inside of global.asax

Sub Application_Start(sender As Object, e As EventArgs)

Dim ds As DataSet = new DataSet()

' population of dataset from ADO.NET query not shown

' Cache DataSet reference

Application("FooDataSet") = ds

End Sub

' In some page within the application

Private Sub Page_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs)

Dim ds As DataSet =

CType(Application("FooDataSet"), DataSet)

' ...

MyDataGrid.DataSource = ds

' ...

End Sub

STATE MANAGEMENT324

Because it is likely that multiple clients will be serviced by the same
application, there is a potential for concurrent access to application state.
The HttpApplicationState class protects access to its collection of objects
with an instance of the HttpApplicationStateLock class, a derivative of
the ReadWriteObjectLock class. This class provides two alternate mech-
anisms for locking, one for reading and one for writing. Multiple reader
locks may be acquired simultaneously, but to acquire a writer lock, all other
locks must be released first. This type of locking mechanism is particularly
useful for protecting state in the application state bag because it allows mul-
tiple readers to pass through concurrently, and restricts access only when
a request tries to write to the state bag. The general usage model of appli-
cation-level state is to update it infrequently and read it frequently, so con-
current readers are a common occurrence.

In traditional ASP, it was always on the shoulders of the developer to
call Lock and Unlock on the application object whenever it was modified
or accessed. In ASP.NET, however, these calls are made implicitly for you
whenever you insert items into or read items from the state bag in the form
of either AcquireWrite() or AcquireRead(), depending on whether an
item is being inserted or accessed. There is typically no need to explicitly
call Lock() and UnLock() when working with the application state bag.
These methods do exist, however, and internally calling the Lock()method
acquires a writer lock on the internal HttpApplicationStateLock class.
It is important to note that making explicit calls to Lock() and UnLock()
defeats the multiple-reader efficiency of this new locking mechanism and
should therefore be avoided in most cases.

The one case in which you still need to explicitly call the Lock() and
UnLock() methods on the application state bag is when you are updating
a shared piece of state. For example, Listing 10-2 shows a sample page that
uses shared, updateable application state. In this example, each time the
page is accessed, the string identifying the client browser type (Re-
quest.Browser.Browser) is used as an index into the HttpApplication-
State collection, where a count is maintained to keep track of how many
times this page was accessed with each client browser type. The page then
renders a collection of paragraph elements displaying the browser names

10.2 APPLICATION STATE 325

along with how many times each browser was used to access this page.
These statistics continue to accumulate for the lifetime of the application.
Note that before the value in the application state bag is retrieved and
updated, Application.Lock() is called, and once the update is complete,
Application.UnLock() is called. This acquires a writer lock on the appli-
cation state bag and guarantees that the value will not be read while the
update is being performed. If we did not take care to call Lock, a potential
race condition would exist, and the value keeping track of the number of
browser hits for a particular browser type would not necessarily be correct.

Listing 10-2: Sample Use of Application State

<%@ Page Language='VB' %>

<script runat='server'>

Private Sub Page_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs)

Application.Lock()

If (Not Application(Request.Browser.Browser) _

Is Nothing) Then

Application(Request.Browser.Browser) = _

CInt(Application(Request.Browser.Browser)) + 1

Else

Application(Request.Browser.Browser) = 1

End If

Application.UnLock()

Dim i As Integer

For i = 0 To Application.Count - 1

Response.Output.Write("<p>{0} : {1} hits</p>", _

Application.GetKey(i), Application(i))

Next i

End Sub

</script>

In almost every scenario that would have used application state in a tra-
ditional ASP application, it makes more sense to use the data cache in
ASP.NET, discussed in Chapter 9. The most common need for application
state is to provide a share point for accessing global, read-only data in an
application. By placing global, read-only data in the data cache instead of in
application state, you gain all the benefits of cache behavior, with the same
ease of access provided by application state. Probably the most compelling

STATE MANAGEMENT326

advantage of the data cache over application state is memory utilization. If
the memory utilization of the ASP.NET worker process approaches the point
at which the process will be bounced automatically (the recycle limit), the
memory in the data cache will be scavenged, and items that have not been
used for a while will be removed first, potentially preventing the process
from recycling. If, on the other hand, data is stored exclusively in application
state, ASP.NET can do nothing to prevent the process from recycling, at
which point all of the application state will be lost and must be restored on
application start-up.

The one feature of application state that cannot be replaced by the data
cache is the ability to have shared updateable state, as shown earlier in List-
ing 10-2. Arguably, however, this type of state should not be used at all in
a Web application, because it inherently limits scalability and is unreliable
as a mechanism for storing meaningful data. In the previous example, we
were using application state to save statistics on browser type access. This
information is maintained only as long as the application is running, and
it is stored separately in each instance of the application. This means that
when the process recycles, the data is lost. It also means that if this appli-
cation is deployed in a Web farm (or a Web garden), separate browser sta-
tistics will be kept for each running instance of the application across
different machines (or CPUs). To more reliably collect this type of statistical
information, it would make more sense to save the data to a central data-
base and avoid application state altogether.

10.3 Session State

Maintaining state on behalf of each client is often necessary in Web applica-
tions, whether it is used to keep track of items in a shopping cart or to note
viewing preferences for a particular user. ASP.NET provides three ways of
maintaining client-specific state: session state, cookie state, and view state.
Each technique has its advantages and disadvantages. Session state is the
most flexible and, in general, the most efficient. ASP.NET has enhanced ses-
sion state to address some of the problems associated with it in previous ver-
sions of ASP, including the abilities to host session state out of process (or
in a database) and to track session state without using cookies.

10.3 SESSION STATE 327

Session state is maintained on behalf of each client within an ASP.NET
application. When a new client begins to interact with the application, a
new session ID (or session key) is generated and associated with all subse-
quent requests from that same client (either using a cookie or via URL man-
gling). By default, the session state is maintained in the same process and
AppDomain as your application, so you can store any data type necessary in
session state. If you elect to house session state in another process or in a
database, however, there are restrictions on what can be stored, as we will
discuss shortly. Session state is maintained in an instance of the HttpSes-
sionState class and is accessible through the Session property of both
the Page and HttpContext classes. When a request comes in to an appli-
cation, the Session properties of the Page and HttpContext class used to
service that request are initialized to the current instance of HttpSession-
State that is associated with that particular client. Listing 10-3 shows the
primary methods and properties of the HttpSessionState class, along
with the property accessors in both the Page and HttpContext classes.

Listing 10-3: HttpSessionState Class

NotInheritable Public Class HttpSessionState

Implements ICollection, IEnumerable

' properties

Public Property CodePage As Integer

Public ReadOnly Property Count As Integer

Public ReadOnly Property IsCookieless As Boolean

Public ReadOnly Property IsNewSession As Boolean

Public ReadOnly Property IsReadOnly As Boolean

Public ReadOnly Property Keys As KeysCollection

Public Property LCID As Integer

Public ReadOnly Property Mode As SessionStateMode

Public ReadOnly Property SessionID As String

Public ReadOnly Property StaticObjects _

As HttpStaticObjectsCollection

Public Property Timeout As Integer

' indexers

Overloads Public Default Property Item(_

ByVal name As String) As Object

Overloads Public Default Property Item(_

ByVal index As Integer) As Object

' methods

Public Sub Abandon()

STATE MANAGEMENT328

10.3 SESSION STATE 329

Public Sub Add(ByVal name As String, _

ByVal value As Object)

Public Sub Clear()

Public Sub Remove(ByVal name As String)

Public Sub RemoveAll()

Public Sub RemoveAt(ByVal index As Integer)

'...

End Class

Public Class Page

Inherits TemplateControl

Implements IHttpHandler

Overridable Public ReadOnly Property Session _

As HttpSessionState

'...

End Class

NotInheritable Public Class HttpContext

Implements IServiceProvider

Public ReadOnly Property Session As HttpSessionState

'...

End Class

Because the HttpSessionState class supports string and ordinal-based
indexers, it can be populated and accessed using the standard array access
notation that most developers are familiar with from traditional ASP. There
are some new properties, however, including flags for whether the session
key is being maintained with cookies or with mangled URLs (IsCookie-
less) and whether the session state is read-only (IsReadOnly). Also note
that although the CodePage property is accessible through session state, this
is for backward compatibility only. The proper way to access the response’s
encoding is through Response.ContentEncoding.CodePage.

For an example of using session state, let’s consider an implementation
of the classic shopping cart for a Web application. As a user navigates among
the pages of an application, she selects items to be retained in a shopping cart
for future purchase. When the user is done shopping, she can navigate to
a checkout page, review the items she has collected in her cart, and purchase
them. This requires the Web application to retain a collection of items the user
has chosen across request boundaries, which is exactly what session state
provides. Listing 10-4 shows the definition of a class called Item. Instances
of this class are used to represent the selected items in our shopping cart.

Listing 10-4: Item Class

Public Class Item

Private m_description As String

Private m_cost As Integer

Public Sub New(ByVal description As String, _

ByVal cost As Integer)

m_description = description

m_cost = cost

End Sub

Public Property Description() As String

Get

Return m_description

End Get

Set(ByVal value As String)

m_description = value

End Set

End Property

Public Property Cost() As Integer

Get

Return m_cost

End Get

Set(ByVal value As Integer)

m_cost = value

End Set

End Property

End Class

To store Item instances on behalf of the client, we initialize a new
ArrayList in session state and populate the ArrayList with items as the
client selects them. If you need to perform one-time initialization of data in
session state, the Session_Start event in the Application class is the place
to do so. Listing 10-5 shows a sample handler for the Session_Start event
in our application object, which in our case is creating a new ArrayList and
adding it to the session state property bag indexed by the keyword “Cart”.

Listing 10-5: Initializing Session State Objects

' in global.asax

Public Class Global

Inherits System.Web.HttpApplication

Sub Session_Start(ByVal sender As Object, _

ByVal e As EventArgs)

STATE MANAGEMENT330

' Initialize shopping cart

Session("Cart") = New ArrayList()

End Sub

End Class

A sample page that uses the shopping cart is shown in Listings 10-6 and
10-7. In this page, two handlers are defined: one for purchasing a pencil and
another for purchasing a pen. To keep things simple, the items and their
costs have been hard-coded, but in a real application this information
would normally come from a database lookup. When the user elects to add
an item to her cart, the AddItem method is called. This allocates a new
instance of the Item class and initializes it with the description and cost of
the item to be purchased. That new item is then added to the ArrayList
maintained by the Session object, indexed by the string “Cart”. List-
ings 10-8 and 10-9 show a sample page that displays all the items in the cur-
rent client’s cart along with a cumulative total cost.

Listing 10-6: Session State Shopping Page Example

<!-- File: Purchase.aspx -->

<%@ Page language="VB" Codebehind="Purchase.aspx.vb"

Inherits="PurchasePage" %>

<HTML>

<body>

<form runat="server">

<p>Items for purchase:</p>

<asp:LinkButton id=_buyPencil runat="server"

onclick="BuyPencil_Click">

Pencil ($1)</asp:LinkButton>

<asp:LinkButton id=_buyPen runat="server"

onclick="BuyPen_Click">

Pen ($2)</asp:LinkButton>

Purchase

</form>

</body>

</HTML>

Listing 10-7: Session State Shopping Page Example—Code-Behind

' File: Purchase.aspx.vb

Public Class PurchasePage

continues

10.3 SESSION STATE 331

Inherits Page

Private Sub AddItem(desc As String, cost As Integer)

Dim cart As ArrayList

cart = CType(Session("Cart"), ArrayList)

cart.Add(New Item(desc, cost))

End Sub

' handler for button to buy a pencil

Private Sub BuyPencil_Click(s As Object, e As EventArgs)

' add pencil ($1) to shopping cart

AddItem("pencil", 1)

End Sub

' handler for button to buy a pen

Private Sub BuyPen_Cick(s As Object, e As EventArgs)

' add pen ($2) to shopping cart

AddItem("pen", 2)

End Sub

End Class

Listing 10-8: Session State Checkout Page Example

<!-- File: Checkout.aspx -->

<%@ Page language="VB" Codebehind="Checkout.aspx.vb"

Inherits="CheckoutPage" %>

<HTML>

<body>

<form runat="server">

<asp:Button id=Buy runat="server" Text="Buy"/>

Continue shopping

</form>

</body>

</HTML>

Listing 10-9: Session State Checkout Page Example—Code-Behind

// File: Checkout.aspx.vb

Public Class CheckoutPage

Inherits Page

Private Sub Page_Load(ByVal sender As Object, _

ByVal e As EventArgs)

Dim totalCost As Integer = 0

Dim cart As ArrayList = _

CType(Session("Cart"), ArrayList)

Dim i As Item

STATE MANAGEMENT332

For Each i In cart

totalCost = totalCost + i.Cost

Response.Output.Write("<p>Item: {0}, Cost: ${1}</p>",_

i.Description, i.Cost)

Next i

Response.Write("<hr/>")

Response.Output.Write("<p>Total cost: ${0}</p>", _

totalCost)

End Sub

End Class

The key features to note about session state are that it keeps state on
behalf of a particular client across page boundaries in an application, and
that the state is retained in memory on the server in the default session state
configuration.

10.3.1 Session Key Management
To associate session state with a particular client, it is necessary to identify
an incoming request as having been issued by a given client. A mechanism
for identifying a client is not built into the essentially connectionless HTTP
protocol, so client tracking must be managed explicitly. In traditional ASP,
this was always done by setting a client-side cookie with a session key on
the first client request. This technique is still supported in ASP.NET (in fact,
it is the default technique) and is demonstrated in Figure 10-1.

10.3 SESSION STATE 333

POST /foo/test.aspx HTTP/1.1
Host: www.bar.com
ContentType: text/html
ContentLength: nnn
Name=Fred
...

HTTP/1.1 200 OK
ContentType: text/html
ContentLength: nnn
Set-Cookie: AspSessionId=wq3vh3zld2uhqq45urohcx55; path=/
<html>
...

Request

Response

Figure 10-1: Session Key Maintained with Cookies

Because session keys are used to track clients and maintain potentially
sensitive information on their behalf, they must not only be unique, they
must also be next to impossible to guess. This has been a problem in the
past when programmers used Globally Unique Identifiers (GUIDs) as ses-
sion keys. Because the original algorithm for generating GUIDs was deter-
ministic, if you knew one of the GUIDs generated by a server machine, you
could guess subsequent GUIDs and thus access the session state associated
with another client. Although GUIDs are no longer generated this way,
ASP.NET takes the precaution of generating its own session keys by using
the cryptographic service provider and its own encoding algorithm. List-
ing 10-10 shows some pseudocode demonstrating the technique used by
ASP.NET for creating session keys.

Listing 10-10: Session Key Generation in ASP.NET

' Generate 15-byte random number using the crypto provider

Dim rng As RNGCryptoServiceProvider = _

New RNGCryptoServiceProvider()

Dim key(14) As Byte

rng.GetBytes(key)

' Encode the random number into a 24-character string

' (SessionId is a private class - not accessible)

Dim sessionKey As String = SessionId.Encode(key)

Using cookies to track session state can be problematic. Clients can dis-
able cookie support in their browsers, and some browsers do not support
cookies. As an alternative to using cookies, ASP.NET also supports a tech-
nique called URL mangling to track session keys without using client-side
cookies. This technique works by intercepting the initial request made by
a client, inserting the session key into the URL, and redirecting the client
to the original page requested. When this page receives the request, it
extracts the encoded session key from the request URL and initializes the
current session state pointer to the correct block of memory. This technique
is demonstrated in Figure 10-2. This technique works even with clients that
have disabled cookie support in their browsers. On any subsequent navi-
gation, either via anchor tags or explicit programmatic redirections,

STATE MANAGEMENT334

ASP.NET will alter the target URL to embed the session key as well. This
implicit URL mangling works only for relative URLs, however, so care
must be taken with all links in an application using cookieless session key
management to avoid absolute URLs.

Controlling whether cookies or URL mangling is used to manage your
session keys (along with several other session state–related features) is
performed through the sessionState element in your application’s
web.config file. Table 10-2 lists the various configuration settings available
for the sessionState element of web.config. Listing 10-11 shows a sam-
ple web.config file that enables cookieless session key management for an
application.

10.3 SESSION STATE 335

POST /foo/test.aspx HTTP/1.1
Host: www.bar.com
ContentType: text/html
ContentLength: nnn
Name=Fred
...

HTTP/1.1 302 Found
Location: http://www.bar.com/(vyo35z5554yfvj45ahbd4qf0)/foo/test.aspx

POST /(vyo35z5554yfvj45ahbd4qf0)/foo/test.aspx HTTP/1.1
Host: www.bar.com
ContentType: text/html
ContentLength: nnn
Name=Fred
...

HTTP/1.1 200 OK
ContentType: text/html
ContentLength: nnn
<html>
...

Session Key

Session Key

Request

Redirect

Re-request

Response

Figure 10-2: Session Key Maintained with URL Mangling

Table 10-2: sessionState Attributes

Attribute Possible Values Meaning

cookieless True, False Pass SessionID
via cookies or URL
mangling

mode Where to store session
state (or whether it is
disabled)

Server name and port
for StateServer

SQLServer connec-
tion string excluding
database (tempdb is
implied)

timeout Example: 40 Session state timeout
value (in minutes)

Listing 10-11: Sample web.config File Enabling Cookieless Session Key Management

<configuration>

<system.web>

<sessionState cookieless="true" />

</system.web>

</configuration>

The choice of whether to use cookie-based or mangled URL–based ses-
sion key management must be made at the application level. It is not possi-
ble to specify that the application should use cookie-based management if
the client supports cookies, and otherwise default to mangled URL–based
management. The trade-offs to consider when making this decision include
efficiency, universal client support, and dealing with relative URLs. Cookies
are more efficient because they avoid the redirection necessary to perform
the URL mangling, although only one redirection per session will occur with
URL mangling. Mangled URLs work with clients that don’t have cookies

Example:
‘server=192.168.1.100;
uid=sa;pwd=’

sqlConnection-
String

Example:
‘192.168.1.100:42424’

stateConnection-
String

Off, InProc,
SQLServer,
StateServer

STATE MANAGEMENT336

enabled (or that don’t support them). The mangled URL technique requires
that your application avoid absolute URLs so that the mangling can take
place properly. Finally, URL mangling also prevents easy bookmarking and
thus may be an inconvenience for your users.

10.3.2 Storing Session State out of Process
In addition to requiring cookies to track session state, traditional ASP only
supported the notion of in-process session state. Confining session state to
a single process means that any application that relies on session state must
always be serviced by the same process on the same machine. This pre-
cludes the possibility of deploying the application in a Web farm environ-
ment, where multiple machines are used to service requests independently,
potentially from the same client. It also prevents the application from work-
ing correctly on a single machine with multiple host processes, sometimes
referred to as a Web garden. If session state is tied to the lifetime of the Web
server process, it is also susceptible to disappearing if that process goes
down for some reason. To build traditional ASP applications that scale to
Web farms and/or maintain persistent client-specific state, developers
must avoid session state altogether and rely on other techniques for track-
ing client-specific state. The most common approach is maintaining client-
specific state in a database running on a network-accessible server. To
distinguish one client’s state from another, the table (or tables) used to store
state is indexed by the session key, as shown in Figure 10-3.

ASP.NET introduces the ability to store session state out of process,
without resorting to a custom database implementation. The session-
State element in an ASP.NET application’s web.config file controls where
session state is stored (see Table 10-2). The default location is in-process, as
it was in traditional ASP. If the mode attribute is set to StateServer or
SqlServer, however, ASP.NET manages the details of saving and restoring
session state to another process (running as a service) or to an SQL Server
database installation. This is appealing because it is possible to build
ASP.NET applications that access session state in the normal way, and then
by switching the sessionState mode in a configuration file, that same
application can be deployed safely in a Web farm environment.

10.3 SESSION STATE 337

Whenever out-of-process session state is specified, it is also important to
realize that anything placed into session state is serialized and passed out
of the ASP.NET worker process. Thus, any type that is stored in session
state must be serializable for this to work properly. In our earlier session
state example, we stored instances of a locally defined Item class, which,
if left in its existing form, would fail any attempts at serialization. The
ArrayList class we used to store the instances of the Item class does sup-
port serialization, but since our class does not, the serialization will fail. To
correct this, we would need to add serialization support to our class. List-
ing 10-12 shows the Item class correctly annotated to support serialization,
which is now compatible with storage in out-of-process session state.

Listing 10-12: Adding Serialization Support to a Class

<Serializable> Public Class Item

Private m_description As String

Private m_cost As Integer

' ...

End Class

STATE MANAGEMENT338

DB Server

SessionKey DataField 1 DataField 2
1b2f... 33 Fred
2d5a... 22 Lisa

...

...

State Table

Web Server 1

Web Server 2

Web Server 3

Web Farm

Client1 Request

Client2 Request

Client1 Request

Client1 Request

Client2 Request

Client3 Request

Client-Specific
State Retrieval

Figure 10-3: Maintaining Client-Specific State in a Web Farm Deployment

For session state to be transparently housed out of process, ASP.NET
must assume that a page has all of its session state loaded before the page
is loaded, and then flushed back to the out-of-process state container when
the page completes its processing. This is inefficient when a page may not
need this level of state access (although it is somewhat configurable, as we
will see), so there is still a valid case to be made for implementing your own
custom client-specific state management system, even with ASP.NET.

The first option for maintaining session state out of process is to use the
StateServer mode for session state. Session state is then housed in a run-
ning process that is distinct from the ASP.NET worker process. The State-
Server mode depends on the ASP.NET State Service to be up and running
(this service is installed when you install the .NET runtime). By default the
service listens over port 42424, although you can change that on a per-
machine basis by changing the value of the HKLM\System\CurrentCon-
trolSet\Services\aspnet_state\Parameters\Port key in the registry.
Figure 10-4 shows the ASP.NET State Service in the local machine services
viewer.

10.3 SESSION STATE 339

Figure 10-4: The ASP.NET State Service

The State Service can run either on the same machine as the Web appli-
cation or on a dedicated server machine. Using the State Service option is
useful when you want out-of-process session state management but do not
want to have to install SQL Server on the machine hosting the state. List-
ing 10-13 shows an example web.config file that changes session state to
live on server 192.168.1.103 over port 42424, and Figure 10-5 illustrates the
role of the state server in a Web farm deployment scenario.

Listing 10-13: web.config File Using State Server

<configuration>

<system.web>

<sessionState mode="StateServer"

stateConnectionString="192.168.1.103:42424"

/>

</system.web>

</configuration>

STATE MANAGEMENT340

State Server

Web Farm

Client1 Request

Client2 Request

Client1 Request

Client1 Request

Client2 Request

Client3 Request

aspnet_state.exe

aspnet_wp.exeinetinfo.exe

aspnet_isapi.dll

Web Server 1

Client-Specific
State

(In-memory)
aspnet_wp.exeinetinfo.exe

aspnet_isapi.dll

Web Server 2

aspnet_wp.exeinetinfo.exe

aspnet_isapi.dll

Web Server 3

Figure 10.5: Using a State Server in a Web Farm Deployment

The last option for storing session state outside the server process is to
keep it in an SQL Server database. ASP.NET supports this through the
SQLServer mode in the sessionState configuration element. Before
using this mode, you must run the InstallSqlState.sql script on the
database server where session state will be stored. This script is found in
the main Microsoft.NET directory.15 The primary purpose of this script is to
create a table that can store client-specific state indexed by session ID in the
tempdb of that SQL Server installation. Listing 10-14 shows the CREATE
statement used to create the table for storing this state. The ASP state table
is created in the tempdb database, which is not a fully logged database,
thus increasing the speed of access to the data. In addition to storing the
state indexed by the session ID, this table keeps track of expiration times
and provides a locking mechanism for exclusive acquisition of session
state. The installation script also adds a job to clean out all expired session
state daily.

Listing 10-14: ASPStateTempSession Table

CREATE TABLE tempdb..ASPStateTempSessions (

SessionId CHAR(32) NOT NULL PRIMARY KEY,

Created DATETIME NOT NULL DEFAULT GETDATE(),

Expires DATETIME NOT NULL,

LockDate DATETIME NOT NULL,

LockCookie INT NOT NULL,

Timeout INT NOT NULL,

Locked BIT NOT NULL,

SessionItemShort VARBINARY(7000) NULL,

SessionItemLong IMAGE NULL,

)

Listing 10-15 shows a sample web.config file that has configured session
state to live in an SQL Server database on server 192.168.1.103. Notice that
the sqlConnectionString attribute specifies a data source, a user ID, and
a password but does not explicitly reference a database, because ASP.NET
assumes that the database used will be tempdb.

10.3 SESSION STATE 341

15. On most 1.0 installations, this should be C:\WINNT\Microsoft.NET\Framework\v1.0.3705.

Listing 10-15: web.config File Using SQL Server

<configuration>

<system.web>

<sessionState mode="SQLServer"

sqlConnectionString=

"data source=192.168.1.103;user id=sa;password=" />

</system.web>

</configuration>

Both the state server and the SQL Server session state options store the
state as a byte stream—in internal data structures in memory for the state
server, and in a VARBINARY field (or an IMAGE field if larger than 7KB) for
SQL Server. While this is space-efficient, it also means that it cannot be mod-
ified except by bringing it into the request process. This is in contrast to a
custom client-specific state implementation, where you could build stored
procedures to update session key–indexed data in addition to other data
when performing updates. For example, consider our shopping cart imple-
mentation shown earlier. If, when the user added an item to his cart, we
wanted to update an inventory table for that item as well, we could write a
single stored procedure that added the item to his cart in a table indexed by
his session key, and then updated the inventory table for that item in one
round-trip to the database. Using the ASP.NET SQL Server session state fea-
ture would require two additional round-trips to the database to accomplish
the same task: one to retrieve the session state as the page was loaded and
one to flush the session state when the page was finished rendering.

This leads us to another important consideration when using ASP.NET’s
out-of-process session state feature: how to describe precisely the way each
of the pages in your application will use session state. By default, ASP.NET
assumes that every page requires session state to be loaded during page ini-
tialization and to be flushed after the page has finished rendering. When
you are using out-of-process session state, this means two round-trips to
the state server (or database server) for each page rendering. You can poten-
tially eliminate many of these round-trips by more carefully designing how
each page in your application uses session state. The session manager then
determines when session state must be retrieved and stored by querying
the current handler’s session state requirements. There are three options for
a page (or other handler) with respect to session state. It can express the

STATE MANAGEMENT342

need to view session state, to view and modify session state, or no session
state dependency at all. When writing ASP.NET pages, you express this
preference through the EnableSessionState attribute of the Page direc-
tive. This attribute defaults to true, which means that session state will be
retrieved and saved with each request handled by that page. If you know
that a page will only read from session state and not modify it, you can save
a round-trip by setting EnableSessionState to readonly. Furthermore,
if you know that a page will never use session state, you can set Enable-
SessionState to false. Internally, this flag determines which of the tag-
ging interfaces your Page class will derive from (if any). These tagging
interfaces are queried by the session manager to determine how to manage
session state on behalf of a given page. Figure 10-6 shows the various val-
ues of EnableSessionState and their effect on your Page-derived class.

10.3 SESSION STATE 343

<%@ Page EnableSessionState="true" %>

Class foo_aspx
 Inherits Page
 Implements IRequiresSesssionState
...

foo.aspx(Default)

Generates

<%@ Page EnableSessionState="readonly" %>

Class foo_aspx
 Inherits Page
 Implements IReadOnlySessionState
...

foo.aspx

Generates

Class foo_aspx
 Inherits Page
...

<%@ Page EnableSessionState="false" %>

foo.aspx

Generates

Figure 10-6: Indicating Session State Serialization Requirements in Pages

10.4 Cookie State

Although not part of the HTTP specification (yet), cookies are often used
to store user preferences, session variables, or identity. The server issues a
Set-Cookie header in its response to a client that contains the value it
wants to store. The client is then expected to store the information associ-
ated with the URL or domain that issued the cookie. In subsequent requests
to that URL or domain, the client should include the cookie information
using the Cookie header. Some limitations of cookies include the fact that
many browsers limit the amount of data sent through cookies (only 4,096
bytes are guaranteed) and that clients can potentially disable all cookie
support in their browser.

ASP.NET provides an HttpCookie class for managing cookie data. List-
ing 10-16 shows the HttpCookie class definition and the cookie collection
properties exposed by the request and response objects. Note that the
request and response objects both expose the collection of cookies through
the HttpCookieCollection type, which is just a type-safe derivative of the
NameObjectCollectionBase class, designed for storing HttpCookie class
instances. Each cookie can store multiple name/value pairs, as specified by
RFC 2109, which are accessible through the Values collection of the Http-
Cookie class or indirectly through the default indexer provided by the class.

Listing 10-16: The HttpCookie Class

NotInheritable Public Class HttpCookie

Public Property Domain As String

Public Property Expires As DateTime

Public ReadOnly Property HasKeys As Boolean

Public Default Property Item(_

ByVal key As String) As String

Public Property Name As String

Public Property Path As String

Public Property Secure As String

Public Property Value As String

Public ReadOnly Property Values As NameValueCollection

'...

End Class

NotInheritable Public Class HttpRequest

Public ReadOnly Property Cookies As HttpCookieCollection

'...

STATE MANAGEMENT344

End Class

NotInheritable Public Class HttpResponse

Public ReadOnly Property Cookies As HttpCookieCollection

'...

End Class

To request that a client set a cookie, add a new HttpCookie instance to
the response cookie collection before your page rendering. To access the
cookies that the client is sending with any given request, access the Cook-
ies collection property of the request object. Listing 10-17 shows an exam-
ple of a page that sets and uses a cookie named “Age”. If the cookie has not
been set, the page adds the cookie to the Response.Cookies collection
with a value from a field on the form (ageTextBox). If the cookie has been
set, the current value is pulled from the Request.Cookies collection and
is used instead.

Listing 10-17: Using Cookies in ASP.NET

Private Sub Page_Load(ByVal sender As Object, _

ByVal e As EventArgs)

Dim age As Integer = 0

If (Request.Cookies("Age") Is Nothing) Then

' "Age" cookie not set, set with this response

Dim ac As HttpCookie = New HttpCookie("Age")

ac.Value = ageTextBox.Text

Response.Cookies.Add(ac)

age = Convert.ToInt32(ageTextBox.Text)

Else

' use existing cookie value...

age = Convert.ToInt32(Request.Cookies("Age").Value)

End If

' use age to customize page

End Sub

Although cookies are typically used to store user-specific configuration
information and preferences, they can be used to store any client-specific
state needed by an application (as long as that state is converted to string
form). It is interesting to contrast our earlier shopping cart implementation
using session state with an equivalent implementation using only cookies.
The major change in our implementation is the population and retrieval of

10.4 COOKIE STATE 345

the shopping cart contents from cookies instead of directly from session
state. This can be done by converting the contents of the shopping cart into
string form so that it can be sent back as cookies to the client and later
restored on subsequent requests. To facilitate this, we have added two new
functions to our Item class: HydrateArrayListFromCookies and Save-
ArrayListToCookies. The first function is called from within the Load
event handler of our shopping Page class, and the second function is called
from within the PreRender event handler. The implementation of these
two functions is shown in Listing 10-18. The rest of our code remains the
same because we have changed only how the ArrayList is persisted. List-
ing 10-19 shows the cookie-based implementation of our shopping cart
application.

Listing 10-18: Item Class with Cookie Serialization Support

Public class Item

Public Shared Function HydrateArrayListFromCookies() _

As ArrayList

Dim itemCount As Integer = 0

Dim itemCountCookie As HttpCookie = _

HttpContext.Current.Request.Cookies("ItemCount")

If (Not itemCountCookie Is Nothing) Then

itemCount = Convert.ToInt32(itemCountCookie.Value)

Else

itemCountCookie = New HttpCookie("ItemCount")

itemCountCookie.Value = "0"

HttpContext.Current.Response.Cookies._

Add(itemCountCookie)

End If

Dim cart As ArrayList = New ArrayList()

Dim i As Integer

Dim cn As String

For i = 0 To itemCount - 1

cn = i.ToString() & "cost"

Dim cost As Integer = Convert.ToInt32(_

HttpContext.Current.Request.Cookies(cn).Value)

cn = i.ToString() & "desc"

Dim desc As String = _

HttpContext.Current.Request.Cookies(cn).Value

cart.Add(New Item(desc, cost))

STATE MANAGEMENT346

Next i

Return cart

End Function

Public Shared Sub SaveArrayListToCookies(_

ByVal cart As ArrayList)

' Save array size first

Dim itemCountCookie As HttpCookie = _

New HttpCookie("ItemCount")

itemCountCookie.Value = cart.Count.ToString()

HttpContext.Current.Response.Cookies.Add(_

itemCountCookie)

Dim i As Integer = 0

Dim it As Item

For Each it In cart

Dim descCookie As HttpCookie = _

New HttpCookie(i.ToString() + "desc")

descCookie.Value = it.Description

HttpContext.Current.Response.Cookies.Add(descCookie)

Dim costCookie As HttpCookie = _

New HttpCookie(i.ToString() & "cost")

costCookie.Value = it.Cost.ToString()

HttpContext.Current.Response.Cookies.Add(costCookie)

i = i + 1

Next it

End Sub

' remainder of class unchanged from Listing 10-4

End Class

Listing 10-19: Cookie State Shopping Page Example

Public Class PurchasePage

Inherits Page

' Maintain private cart array variable

Private m_Cart As ArrayList

Private Sub Page_Load(ByVal sender As Object, _

ByVal e As EventArgs)

m_Cart = Item.HydrateArrayListFromCookies()

End Sub

continues

10.4 COOKIE STATE 347

Private Sub Page_PreRender(ByVal sender As Object, _

ByVal e As EventArgs) _

Handles MyBase.PreRender

Item.SaveArrayListToCookies(m_Cart)

End Sub

Private Sub AddItem(ByVal desc As String, _

ByVal cost As Integer)

m_Cart.Add(New Item(desc, cost))

End Sub

' remaining code identical to Listing 10-7

End Class

Although it is technically possible to store any type of client-specific
state using cookies, as shown in the previous shopping cart example, there
are several drawbacks compared with other models. First, all of the state
must be mapped into and out of strings, which in general requires more
space to store the same amount of data. Second, as mentioned earlier,
clients may disable cookies or may have a browser that does not support
cookies, thus rendering the application inoperative. Finally, unlike session
state, cookie state is passed between the client and the server with every
request.

10.5 View State

In addition to session state and cookie state, ASP.NET introduces the abil-
ity to store client-specific state through a mechanism called view state. View
state is stored in a hidden field on each ASP.NET page called __VIEWSTATE.
Each time a page is posted to itself, the contents of the __VIEWSTATE field
are sent as part of the post. The primary use of view state is for controls to
retain their state across post-backs, as described in Chapter 2, but it can also
be used as a mechanism for storing generic client-specific state between
post-backs to the same page.

View state is accessible from any control and is exposed as a StateBag
that supports storing any type that is serializable. Because the Page class
is derived from the Control base class, you can access the view state

STATE MANAGEMENT348

directly from within your pages and indirectly through server-side con-
trols. Listing 10-20 shows the ViewState property of the Control class.
The view state for a control is loaded just before the Load event firing, and
it is flushed just before the Render method being invoked. This means that
you can safely access the ViewState in your Load event handler and that
you should make sure it has been populated with whatever state you need
by the time your Render method is called.

Listing 10-20: ViewState Property Accessor

Public class Control '...

Overridable Protected ReadOnly Property ViewState _

As StateBag

'...

End Class

For an example of using view state, let’s reimplement our shopping cart
example one more time, this time using view state as the container for
client-specific state. Because the StateBag class has a default indexer just
as the HttpSessionState class does, the code needs to change very little
from our original session state–based implementation. The Item class can
be used in its original form with serialization support (not the altered form
required for cookie state). The most significant change is that view state
does not propagate between pages in an application, so to use it, we must
aggregate all of the functionality that relies on client-specific state into a sin-
gle page. In our example, this means that we must implement the Check-
OutPage and the ShoppingPage together in one page. Listing 10-21 shows
this implementation.

Listing 10-21: ViewState Shopping Page Example

Public Class PurchasePage

Inherits Page

Private Sub Page_Load(ByVal sender As Object, _

ByVal e As EventArgs)

Dim cart As ArrayList = _

CType(ViewState("Cart"), ArrayList)

continues

10.5 VIEW STATE 349

If (cart Is Nothing) Then

cart = New ArrayList()

ViewState("Cart") = cart

End If

' Print out contents of cart with total cost

' of all items tallied

Dim totalCost As Integer = 0

Dim it As Item

For Each it in cart

totalCost = totalCost + item.Cost

Response.Output.Write(_

"<p>Item: {0}, Cost: ${1}</p>", _

it.Description, it.Cost)

Next it

Response.Write("<hr/>")

Response.Output.Write("<p>Total cost: ${0}</p>", _

totalCost)

End Sub

Private Sub AddItem(ByVal desc As String, _

ByVal cost As Integer)

Dim cart As ArrayList = _

CType(ViewState("Cart"), ArrayList)

cart.Add(New Item(desc, cost))

m_ItemsInCart.Text = cart.Count.ToString()

End Sub

' remaining code identical to Listing 10-7

End Class

Notice that in contrast to the cookie state implementation, we were able
to save the ArrayList full of Item instances directly to the ViewState
state bag. When the page was rendered, it rendered the ArrayList into a
compressed, text-encoded field added as the value of the __VIEWSTATE
control on the form. On subsequent post-backs to this page, the view state
was then reclaimed from the __VIEWSTATE field, and the ArrayList was
once again available in the same form. Like cookie state, view state is sent
between the client and the server with each request, so it should not be used
for transmitting large amounts of data. For relatively small amounts of data
posted back to the same page, however, it provides a convenient mecha-
nism for developers to store client-specific state.

STATE MANAGEMENT350

SUMMARY

State management influences almost every aspect of a Web application’s
design, and it is important to understand all the options available for state
management as well as their implications for usability, performance, and
scalability. ASP.NET provides four types of state, each of which may be the
best choice in different parts of your application. State that is global to an
application may be stored in the application state bag, although it is typi-
cally preferable to use the new data cache instead of application state in
ASP.NET. Client-specific state can be stored either in the session state bag,
as client-side cookies, or as view state. Session state is most commonly used
for storing data that should not be sent back and forth with each request,
either because it is too large or because the information should not be visi-
ble on the Internet. Cookie state is useful for small client-specific pieces of
information such as preferences, authentication keys, and session keys.
View state is a useful alternative to session state for information that needs
to be retained across posts back to the same page. Finally, enhancements to
the session state model in ASP.NET give developers the flexibility to rely on
session state even for applications that are deployed on Web farms or Web
gardens through remote session storage.

10.5 VIEW STATE 351

