

273

Chapter 7

XML and Data Access Integration

The

DataSet

 class interoperates with XML schema and data. The

XmlData-

Document

 combines

XmlDocument

 and

DataSet

 functionality.

7.1 XML and Traditional Data Access

The preceding chapters have talked about the data access stack mostly as it relates
to traditional data access and relational data. Each time, I’ve mentioned nonrelational
data (homogeneous and heterogeneous hierarchies and semistructured data) al-
most as an afterthought, or to illustrate that it would be a stretch to support it by us-
ing the classes in

System.Data

. But a wide variety of data can be represented in a
nonrelational way. Here are a few examples.

• LDAP readable directories, such as Active Directory, contain multivalued
attributes. This violates relational theory’s first normal form.

• Each item in the NT file system is either a directory or a file. This is an exam-
ple of a heterogeneous hierarchy. A related case is the reading of data from
an Exchange store. Not only are contacts in the Contacts folder structured
differently from mail messages in the Inbox, but also each mail message
can contain 0–N attachments. The attachments can also vary in data for-
mat. Exchange—or other IMAP (Internet Mail Access Protocol) mail sys-
tems—can also expose hierarchical folders. All these data structures are
analogous to the multiset in IDMS.

• Screen scraping from HTML or XML pages consists of reading through a
combination of text and tags and extracting only the data you need—for
example, the number in the third column of the fourth row of an HTML
table and the contents of the third <

h3>

 tag. This is an example of sem-
istructured data.

5132_ch07 Page 273 Thursday, April 25, 2002 3:09 PM

274

ESSENTIAL ADO.NET

There are ways to approximate each different data type—with the possible
exception of semistructured data—by using a variation of a relational concept.
Sometimes, however, you need to present the data in an alternative, nonrela-
tional format. For example, suppose you’re managing an electronic student reg-
istration form that contains data that affects the value of 15 different normalized
relational tables. In addition, the form may contain information, such as a re-
quest for low-fat, vegetarian meals, that has no correlation in the relational
schema. You may want to store the information in the request into multiple ta-
bles and reproduce the original request on demand. This might require that you
retain additional information or even the entire request in its original form. It
might also be nice if the information could be transmitted in a platform-independent,
universally recognized format. Enter XML.

7.2 XML and ADO.NET

One of the most useful features of ADO.NET is its integration with portions of the
managed XML data stack. Traditional data access and XML data access have
the following integration points:

• The

DataSet

 class integrates with the XML stack in schema, data, and
serialization features.

• The XML schema compiler lets you generate typed

DataSet

 sub-
classes.

• You can mix nonrelational XML data and the relational

DataSet

 through
the

XmlDataDocument

class and do XPath queries on this data using

DataDocumentXPathNavigator

 class.

• ADO.NET supports SQL Server 2000 XML integration features, both in
the

SqlClient

 data provider and in an add-on product called SQLXML.
The latter product features a series of

SqlXml

 managed data classes
and lets you update SQL Server via updategram or DiffGram format.

These features, although unrelated in some aspects, work to complete the
picture of support of nonrelational as well as relational data in ADO.NET, and di-
rect support of XML for marshaling and interoperability. Let’s look first at integra-
tion in the

System.Data.DataSet

 class and its support for XML.

5132_ch07 Page 274 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION

275

7.2.1 Defining a

DataSet’s

 Schema

In many ways, the ADO.NET

DataSet

 class mimics a relational database. Each

DataSet

 instance contains a schema—the set of tables, columns, and relation-
ships—as does a relational database. You can define the schema of an
ADO.NET

DataSet

 instance in at least four ways:

• Use the

DataSet

 APIs directly to create

DataTable

s,

DataColumn

s,
and

DataRelation

s. This approach is similar in concept to using DDL
in relational databases.

• Infer the schema using database metadata through a

DataAdapter

class. Using

DataAdapter.Fill

 creates tables and columns match-
ing the metadata from

DataAdapter

’s

SelectCommand

. For this to
work,

DataAdapter

’s

MissingSchemaAction

 property must be set
to

Add

 or

AddWithKey

.

• Define the desired

DataSet

 schema using XSD (XML Schema Definition
language), and use

DataSet.ReadXmlSchema

 to load the schema def-
inition into the

DataSet

. The schema may not use nonrelational data
definition styles, or else

ReadXmlSchema

 will throw an error.

• Use

DataSet.InferXmlSchema

. The

DataSet

 class will use a set of
schema inference rules to infer a

DataSet

 schema from a single XML
document.

You can also define

DataSet

’s schema incrementally by using a combina-
tion of these methods, as shown in Figure 7–1. Note that in each case the result
is the same:

DataSet

 contains a set of tables, columns, constraints, and rela-
tionships that comply with relational rules.

DataSet

 is not aware of the source of the schema, and therefore any
method of defining the schema works as well as any other. For example, let’s de-
fine a simple schema that includes a customers table, an orders table, and a
one-to-many relationship between customers and orders. Listing 7–1 uses the
four schema-definition methods to accomplish this. Note that, when using

DataSet

 or

DataAdapter

, you need additional code to set up the relationship,
whereas in the case of XML schema or document inference, this information
may be available in the schema or exemplar document.

5132_ch07 Page 275 Thursday, April 25, 2002 3:09 PM

276

ESSENTIAL ADO.NET

Listing 7–1 Ways to create a

DataSet

 schema

DataSet ds1, ds2, ds3, ds4;

// Use DataSet APIs

ds1 = new DataSet();

ds1.Tables.Add("Customers");

ds1.Tables[0].Columns.Add("custid", typeof(int));

ds1.Tables[0].Columns.Add("custname", typeof(String));

ds1.Tables.Add("Orders");

ds1.Tables[1].Columns.Add("custid", typeof(int));

ds1.Tables[1].Columns.Add("orderid", typeof(int));

ds1.Relations.Add(

 ds1.Tables["Customers"].Columns["custid"],

 ds1.Tables["Orders"].Columns["custid"]);

// Create schema from SQL resultset metadata

ds2 = new DataSet();

SqlDataAdapter da = new SqlDataAdapter(

 "select * from customers;select * from orders",

 "server=localhost;uid=sa;database=northwind");

da.FillSchema(ds2, SchemaType.Source);

ds2.Tables[0].TableName = "Customers";

ds2.Tables[1].TableName = "Orders";

ds2.Relations.Add(

 ds2.Tables["Customers"].Columns["customerid"],

XSD XML

DataSet.tables.Add(new);

DataSet
Schema

Data

Figure 7–1 Ways to fill the DataSet’s schema

5132_ch07 Page 276 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION

277

 ds2.Tables["Orders"].Columns["customerid"]);

// Read schema from a file

// Contains customers and orders

ds3 = new DataSet();

ds3.ReadXmlSchema(

 @"c:\xml_schemas\customers.xsd");

// Infer schema from exemplar document

// Contains customers and orders

ds4 = new DataSet();

ds4.InferXmlSchema(

 @"c:\xml_documents\customers.xml",

 null);

Past Microsoft (and other) APIs let you map XML to relational data but require
that you specify the XML in a special format. ADO classic, for example, requires the
XML to be specified in the format used by ADO’s XML support. Some XML support
systems require manual coding for each case, based on the programmer’s knowl-
edge of the underlying structure and the underlying types of all the elements or at-
tributes involved. Some systems use a document type definition to specify type, but
because the DTD is designed around XML’s original use as a document markup lan-
guage it is largely type-ignorant in the traditional programming sense, and the pro-
grammer still must know each type that is not

string

.
ADO classic’s XML support uses a Microsoft-specific predecessor of XSD

schemas; it’s known as XDR (XML Data Reduced). XDR’s type system is limited.
Simple types are based loosely on OLE DB types, and there is no notion of type
derivation, precluding the use of the object-oriented concepts of inheritance and
polymorphism. .NET object persistence and

DataSet

 take full advantage of
XSD’s improvements in these areas. This “object-relational” mapping layer in-
cludes two main classes:

System.Data.DataSet’s XML support and Sys-
tem.Xml.XmlDataDocument, a class that represents a hybrid of the DOM/
DataSet model. Unlike the ADO Recordset, which can consume and produce
a single XML format based on a single schema style, DataSet can read and
write XML corresponding to almost any schema.

Because XSD supports complex user-defined types as well as type derivation by
extension and restriction, using XSD to define types supports a schema-based

5132_ch07 Page 277 Thursday, April 25, 2002 3:09 PM

278 ESSENTIAL ADO.NET

representation of objects and facilitates a natural mapping to object-based data
stores, such as object databases. The hierarchical nature of XML makes this a natu-
ral for mapping to homogeneous hierarchies and databases such as IMS. Adding
support for navigation and multisets brings CODASYL and object-relational data into
the picture. Of course, data can also be stored in files using XML’s native serializa-
tion format.

Using the XML native serialization format, which is defined in the XML 1.0
and Namespaces recommendations, is arguably a specialization of the object
database case, although it enables standards compliance and a measure of
code similarity to other platforms using the same object models to access seri-
alized documents. In addition, including DataSet in the mix enables codifying of
a set of default rules for mapping XML to relational databases. The relational
structure of any Infoset can be defined directly using an XML schema for map-
ping, and it can also be inferred by using a rule-based approach. You can use re-
lations to map XML hierarchies to multiple relational tables. As you’ve seen, you
can map columns to either attributes or subelements of a particular element.

XML schema definition language is more flexible than the rules of a relational
database. This means that when you load a DataSet via an XSD schema, you
use a simple set of rules to map the XSD schema to a relational schema:

• ComplexTypes are mapped to DataTables.

• Nested ComplexTypes are mapped to related DataTables.

• Key or Unique constraints are mapped to UniqueConstraints.

• KeyRefs are mapped to ForeignKeyConstraints.

Schema inference is the attempt to deduce a schema from a single exem-
plar document. Because a single document is used, this technique is more error-
prone than simply supplying the schema, and using a predefined schema should
always be preferred over schema inference. When you attempt to infer a nonre-
lational XSD schema into DataSet format, it is either coerced into a relational
schema (as in Listing 7–2) or you receive an error (as in Listing 7–3). Just as the
schema compiler (XSD.exe) can infer an XSD schema for an XML document,
DataSet uses a set of schema inference rules to infer a relational schema for
an XML document. The complete set of rules is described in Appendix C. The

5132_ch07 Page 278 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 279

DataSet.InferSchema method permits you to specify as an optional param-
eter, a set of namespaces that will be excluded from schema inference.

Listing 7–2 Schema coercion to relational
<!-- This results in a table with three columns -->

<root>

 <document>

 <name>Bob</name>

 <address>111 Any St</address>

 </document>

 <document>

 <name>Bird</name>

 <livesin>tree</livesin>

 </document>

</root>

Listing 7–3 Attempt to infer a nonrelational schema
// Attempt to infer a schema from this document

/*

<book>

<chapter>

<title>Testing your <noun>typewriter</noun></title>

<p>The quick brown <noun>fox</noun> jumps over

the lazy <noun>dog</noun></p>

</chapter>

</book>

*/

DataSet ds = new DataSet();

ds.InferXmlSchema(

 @"c:\xml_documents\semistruct.xml",

 null);

// produces error:

// System.ArgumentException,

// The same table (noun) cannot be the child

// table in two nested relations.

Methods that read XML data in .NET usually have the same four overloads.
You can read or write XML schema using Stream, String, TextReader, or
XmlReader. The XML methods in DataSet follow the same pattern, as shown
in Listing 7–4. The ReadXmlSchema method can read the schema in either XDR
format or XSD (XML Schema Definition language) format. InferXmlSchema

5132_ch07 Page 279 Thursday, April 25, 2002 3:09 PM

280 ESSENTIAL ADO.NET

can exclude a set of namespaces from the schema inference process; there is
no way to do this with ReadXmlSchema.

Listing 7–4 Overloads of ReadXmlSchema
public class DataSet

{

 // ... other methods omitted

 public void ReadXmlSchema(Stream stream);

 public void ReadXmlSchema(string);

 public void ReadXmlSchema(TextReader reader);

 public void ReadXmlSchema(xmlReader reader);

}

DataSet also exposes symmetric WriteXmlSchema methods.
WriteXmlSchema uses a hard-coded algorithm to write schemas (see “Writing
XML Schemas from DataSet” later in this chapter). You can also obtain schema
information by using GetXmlSchema, which returns the XML schema as a string.

7.2.2 Refining DataSet’s XML Schema
You can further refine DataSet’s XML schema by using the properties of Data-
Column, DataTable, and DataSet that relate to XML. Properties that are use-
ful for setting the schema include Namespace, Prefix, ColumnMapping, and
DataSet’s DataRelations collection. Listing 7–5 shows an example of
changing the XML schema for DataSet. The default namespace for DataSet
and its underlying DataColumns and DataTables is no namespace.

Listing 7–5 Changing a schema using column mappings
SqlDataAdapter da = new SqlDataAdapter(

 "select * from authors",

 "server=localhost;uid=sa;database=pubs");

DataSet ds = new DataSet();

da.TableMappings.Add("authors", "AllAuthors");

da.TableMappings[0].ColumnMappings.Add("au_id","AuthorID");

da.Fill(ds, "authors");

ds.Tables[0].Namespace = "http://www.develop.com/dmauth";

ds.Tables[0].Prefix = "dmauth";

ds.WriteXmlSchema("myauthors.xsd");

5132_ch07 Page 280 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 281

XML data can take the form of elements, attributes, or element text. The de-
fault in DataSet is elements, but you can override it by specifying an XML
schema or by using the InferXmlSchema method. For those DataSets that
do not populate their schema from XML, it can be specified by using DataCol-
umn’s ColumnMapping property. ColumnMapping choices are Mapping-
Type.Element, Attribute, SimpleText, or Hidden. The latter indicates
that this column will not be serialized when DataSet is serialized as XML.
Listing 7–6 shows the results of using the XML properties of DataSet.

Listing 7–6 Using namespace, prefix, and mappings
// This code:

DataSet ds = new DataSet();

SqlDataAdapter da = new SqlDataAdapter(

 "select top 2 * from jobs",

 "server=localhost;uid=sa;database=pubs");

da.Fill(ds);

DataTable t = ds.Tables[0];

t.Columns[1].Namespace = "http://www.develop.com";

t.Columns[1].Prefix = "DM";

t.Columns[2].ColumnMapping = MappingType.Attribute;

ds.WriteXml(@"c:\xml_documents\dmjobs.xml");

// Produces this document:

<?xml version="1.0" standalone="yes"?>

<NewDataSet>

 <Table min_lvl="10">

 <job_id>1</job_id>

 <DM:job_desc

 xmlns:DM="http://www.develop.com">

 Vice Chairman</DM:job_desc>

 <max_lvl>10</max_lvl>

 </Table>

 <Table min_lvl="200">

 <job_id>2</job_id>

 <DM:job_desc

 xmlns:DM="http://www.develop.com">

 Grand Poobah</DM:job_desc>

 <max_lvl>250</max_lvl>

 </Table>

</NewDataSet>

5132_ch07 Page 281 Thursday, April 25, 2002 3:09 PM

282 ESSENTIAL ADO.NET

When you write a DataSet containing multiple DataTables in XML format,
each DataTable is an immediate child of the root element, as shown in Listings
7–7 and 7–8.

Listing 7–7 Data relations and XML
SqlDataAdapter da = new SqlDataAdapter(

 "select au_id, au_fname, au_lname from authors;" +

 "select au_id, title_id from titleauthor",

 "server=localhost;uid=sa;database=pubs");

DataSet ds = new DataSet();

da.Fill(ds, "foo");

ds.Tables[0].TableName = "authors";

ds.Tables[1].TableName = "titleauthor";

// non-nested relation

ds.Relations.Add(ds.Tables[0].Columns["au_id"],

 ds.Tables[1].Columns["au_id"]);

ds.Relations[0].Nested = false;

ds.WriteXml("myfile.xml");

Listing 7–8 With Nested=false (default)
<?xml version="1.0" standalone="yes"?>

<NewDataSet>

 <authors>

 <au_id>213-46-8915</au_id>

 <au_fname>Bob</au_fname>

 <au_lname>Green</au_lname>

 </authors>

 <authors>

 <au_id>472-27-2349</au_id>

 <au_fname>Burt</au_fname>

 <au_lname>Gringlesby</au_lname>

 </authors>

 <titleauthor>

 <au_id>213-46-8915</au_id>

 <title_id>BU1032</title_id>

 </titleauthor>

 <titleauthor>

 <au_id>213-46-8915</au_id>

 <title_id>BU2075</title_id>

 </titleauthor>

 <titleauthor>

 <au_id>486-29-1786</au_id>

5132_ch07 Page 282 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 283

 <title_id>PS7777</title_id>

 </titleauthor>

</NewDataSet>

To produce hierarchical XML from multiple DataTables, you must define a
DataRelation between them, and the DataRelation’s Nested property
must be set to true. This is illustrated in Listing 7–9.

Listing 7–9 With Nested=true
<NewDataSet>

 <authors>

 <au_id>213-46-8915</au_id>

 <titleauthor>

 <au_id>213-46-8915</au_id>

 <title_id>BU1032</title_id>

 </titleauthor>

 <titleauthor>

 <au_id>213-46-8915</au_id>

 <title_id>BU2075</title_id>

 </titleauthor>

 <au_fname>Bob</au_fname>

 <au_lname>Green</au_lname>

 </authors>

 <authors>

 <au_id>472-27-2349</au_id>

 <titleauthor>

 <au_id>472-27-2349</au_id>

 <title_id>TC7777</title_id>

 </titleauthor>

 <au_fname>Burt</au_fname>

 <au_lname>Gringlesby</au_lname>

 </authors>

</NewDataSet>

7.2.3 Reading XML into DataSet
XML document data can be read into DataSet just as data from DataAdapter
can, using one of the overloads of DataSet.ReadXml. There are the usual four
overloads: String, Stream, TextReader, and XmlReader. To refine the pro-
cess, you can use another set of overloads via a second XmlReadMode param-
eter. There is also a set of mostly symmetric WriteXml methods.

5132_ch07 Page 283 Thursday, April 25, 2002 3:09 PM

284 ESSENTIAL ADO.NET

There are two ways to read and write the contents of DataSet. The default
is to read or write all the current values in DataSet that are not specified as
DataColumn.ColumnMapping = MappingType.Hidden. An example is
shown earlier in Listing 7–6. A second format, known as DiffGram, includes all
the current rows, before images for those rows that you have changed since the
last time you called AcceptChanges, and a set of error elements that contains
errors for specific rows. Listing 7–10 shows the general layout of a DiffGram.

Listing 7–10 General format of a DiffGram
<?xml version="1.0"?>

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <DataInstance>

 </DataInstance>

 <diffgr:before>

 </diffgr:before>

 <diffgr:errors>

 </diffgr:errors>

</diffgr:diffgram>

The DiffGram format adds annotations from the namespace urn:schemas-
microsoft-com:xml-diffgram-v1 to the XML output. The most important
annotation is the id attribute, which is used to tie before images and errors to
specific rows. Listing 7–11 shows a typical DiffGram. DiffGrams are discussed
further in “Writing XML Data from DataSet” later in this chapter.

Listing 7–11 A DiffGram in which both rows have been changed
<?xml version="1.0" standalone="yes"?>

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <NewDataSet>

 <Table diffgr:id="Table1" msdata:rowOrder="0"

 diffgr:hasChanges="modified">

 <job_id>1</job_id>

 <job_desc>Different value</job_desc>

5132_ch07 Page 284 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 285

 <min_lvl>10</min_lvl>

 <max_lvl>10</max_lvl>

 </Table>

 <Table diffgr:id="Table2" msdata:rowOrder="1"

 diffgr:hasChanges="modified">

 <job_id>2</job_id>

 <job_desc>Different value</job_desc>

 <min_lvl>200</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 </NewDataSet>

 <diffgr:before>

 <Table diffgr:id="Table1" msdata:rowOrder="0">

 <job_id>1</job_id>

 <job_desc>Vice Chairman</job_desc>

 <min_lvl>10</min_lvl>

 <max_lvl>10</max_lvl>

 </Table>

 <Table diffgr:id="Table2" msdata:rowOrder="1">

 <job_id>2</job_id>

 <job_desc>Grand Poobah</job_desc>

 <min_lvl>200</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 </diffgr:before>

</diffgr:diffgram>

When you read an XML document into a DataSet using ReadXml, you
might have a document with an embedded schema (one that is contained in the
same file or stream as the document) or a document that contains only the data.
In addition, you can use ReadXml to read from a document that contains a Diff-
Gram or a “normal” XML document. XmlReadMode specifies how the ReadXml
method works. The following XmlReadModes are affected by the existence of a
schema:

• InferSchema: Ignores an inline schema and infers the schema from
the data. If tables already exist in the DataSet but have incompatible
properties, an error is thrown. If the DataSet’s existing schema over-
laps, tables or columns will be added.

• IgnoreSchema: Uses only the DataSet’s existing schema. Data in the
XML input that does not match the existing schema is thrown away.

5132_ch07 Page 285 Thursday, April 25, 2002 3:09 PM

286 ESSENTIAL ADO.NET

• ReadSchema: Uses the inline schema if one exists. If tables with the
same name already exist in the DataSet’s schema, an exception is
thrown.

• DiffGram: Applies the changes assuming DiffGram format as input. If
the input is in DiffGram format, this works in the same way as the
DataSet.Merge method. If the XML input is not in DiffGram format,
this works the same as IgnoreSchema.

If the XmlReadMode is not specified, the default is XmlReadMode.Auto,
which works as follows:

• If the XML input is a DiffGram, it is read as a DiffGram, possibly populat-
ing multiple RowVersions in the DataSet.

• If the input is not in DiffGram format and if the DataSet already has a
schema or there is an inline schema, ReadSchema is used.

• If no schema exists in the DataSet or inline, InferSchema is used.

Schemas used by ReadXml can be in either XDR or XSD format. Either XDR
or XSD format can use inline schemas. XSD can also use the xsi:SchemaLo-
cation attribute to specify the schema location.

Filling the DataSet by using ReadXml works differently than filling the
DataSet using DataAdapter.Fill. When you use DataAdapter, by de-
fault, changes are implicitly accepted when Fill is finished; you can override
this by setting DataAdapter’s AcceptChangesDuringFill property. Call-
ing RejectChanges immediately after calling Fill has no effect. When
ReadXml is used, the changes are not accepted until AcceptChanges is ex-
plicitly called. The reasoning behind this behavior is that ReadXml can be used
to read rows into the DataSet, and these rows can be used to update a data-
base through a DataAdapter, as shown in Listing 7–12. If AcceptChanges
were implicit, attempting to update a database in this way would fail because the
rows in the DataSet would be marked as original rows only. Calling Re-
jectChanges after using ReadXml rolls back any rows added but leaves the
schema intact, as shown in Listing 7–13.

Listing 7–12 Changes are not accepted during ReadXml
DataSet ds = new DataSet();

SqlDataAdapter da = new SqlDataAdapter(

5132_ch07 Page 286 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 287

 "select * from jobs",

 "server=localhost;uid=sa;database=pubs");

SqlCommandBuilder bld = new SqlCommandBuilder(da);

da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.Fill(ds, "jobs");

ds.ReadXml(@"c:\xml_documents\more_jobs.xml");

// adds jobs in more_jobs.xml to database

da.Update(ds, "jobs");

Listing 7–13 Calling RejectChanges deletes rows added by ReadXml
SqlDataAdapter da = new SqlDataAdapter(

 "select * from jobs",

 "server=localhost;uid=sa;database=pubs");

DataSet ds = new DataSet();

da.Fill(ds);

// 15 rows here

Console.WriteLine("{0} rows in table 0",

 ds.Tables[0].Rows.Count);

ds.RejectChanges();

// still 15 rows here

Console.WriteLine("{0} rows in table 0",

 ds.Tables[0].Rows.Count);

DataSet ds2 = new DataSet();

ds2.ReadXml(@"c:\xml_documents\jobs.xml");

// 15 rows here

Console.WriteLine("{0} rows in table 0",

 ds2.Tables[0].Rows.Count);

ds2.RejectChanges();

// table still exists but 0 rows

Console.WriteLine("{0} rows in table 0",

 ds2.Tables[0].Rows.Count);

The DiffGram format works differently from “ordinary” XML, no matter which
XmlReadMode is specified. With any of the XmlReadModes, if the table or ta-
bles that the DiffGram refers to do not already exist in the DataSet’s schema,
ReadXml results in a System.Data.DataException being thrown. In addi-
tion, you must be very careful when mixing DiffGrams with DataSets that are
filled using DataSet.Fill. If all the metadata (such as PrimaryKey or
Unique constraint) is not present when the DiffGram is read, the DataSet may

5132_ch07 Page 287 Thursday, April 25, 2002 3:09 PM

288 ESSENTIAL ADO.NET

contain duplicate rows, and the resulting call to DataAdapter.Update may
fail or produce the wrong results. For best results when using DataAdapter to
update a database, always retrieve the metadata by specifying MissingSche-
maAction.AddWithKey or explicitly calling DataAdapter.FillSchema.
The rule is to remember that using XmlReadMode.DiffGram acts like
DataSet.Merge.

7.2.4 Writing XML Schemas from DataSet
When you write XML from DataSet, you have similar options as when reading
XML. The instructions for writing the XML data and schema are specified as
properties of DataSet and related classes, so the process is straightforward.
WriteXmlSchema has the same four overloads as ReadXmlSchema; it can
write to Stream, String, TextWriter, or XmlWriter. In contrast to reading,
WriteXmlSchema does not allow a choice of schema format; only XSD sche-
mas are supported. The schemas written reflect the Namespace and Prefix
properties of the DataSet, DataTables, and DataColumns as well as the
DataRelation’s Nested property and the DataColumn’s ColumnMapping.
Although the schema is a full-fidelity XML schema, it does reflect the relational
nature of the DataTables in the DataSet. In addition, the DataSet’s schema
contains annotations from a Microsoft-specific namespace, making XML docu-
ments that use the schema load faster into the DataSet than those that don’t
use the schema.

Let’s look at a sample DataSet containing two DataTables and a primary-
foreign key relationship between them. The code that produced this DataSet is
shown in Listing 7–14.

Listing 7–14 Code to produce an XML schema
SqlConnection conn = new SqlConnection(

 "server=(local);uid=sa;pwd=;database=pubs");

SqlDataAdapter da = new SqlDataAdapter(

 "select * from authors;select * from titleauthor",

 conn);

da.TableMappings.Add("Table", "authors");

da.TableMappings.Add("Table1", "titleauthors");

5132_ch07 Page 288 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 289

DataSet ds = new DataSet("OneMany");

da.MissingSchemaAction =

 MissingSchemaAction.AddWithKey;

da.Fill(ds);

ds.Relations.Add(

 "au_ta",

 ds.Tables[0].Columns["au_id"],

 ds.Tables[1].Columns["au_id"],

 true);

ds.Relations[0].Nested = true;

ds.WriteXmlSchema("one_to_many.xsd");

Listing 7–15 shows the schema produced by calling DataSet.WriteXml-
Schema. Examining the schema in detail elucidates the relationship between rela-
tional data and XML. The most interesting point is that the schema is nonrela-
tional! Although both the authors and the titleauthors DataTables are
represented as xsd:ComplexType, the titleauthors table is represented
as a nested xsd:ComplexType, an embedded member of authors. This rep-
resentation is more similar to an object-oriented, embedded table view than to a
relational view, where the tables are not hierarchical. This schema does not al-
low a “child” type without an existing parent, something that is consistent with
the primary-foreign key constraint in a relational database.

Listing 7–15 Schema produced by the code in Listing 7–14
<?xml version="1.0" standalone="yes"?>

<xsd:schema id="OneMany" targetNamespace=""

 xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">

 <xsd:element name="OneMany" msdata:IsDataSet="true">

 <xsd:complexType>

 <xsd:choice maxOccurs="unbounded">

 <xsd:element name="authors">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="au_id"

 type="xsd:string" />

 <xsd:element name="au_lname"

 type="xsd:string" />

 <xsd:element name="au_fname"

 type="xsd:string" />

 <xsd:element name="phone"

5132_ch07 Page 289 Thursday, April 25, 2002 3:09 PM

290 ESSENTIAL ADO.NET

 type="xsd:string" />

 <xsd:element name="address"

 type="xsd:string"

 minOccurs="0" />

 <xsd:element name="city"

 type="xsd:string"

 minOccurs="0" />

 <xsd:element name="state"

 type="xsd:string"

 minOccurs="0" />

 <xsd:element name="zip"

 type="xsd:string"

 minOccurs="0" />

 <xsd:element name="contract"

 type="xsd:boolean" />

 <xsd:element name="titleauthors"

 minOccurs="0"

 maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="au_id"

 type="xsd:string" />

 <xsd:element name="title_id"

 type="xsd:string" />

 <xsd:element name="au_ord"

 type="xsd:unsignedByte"

 minOccurs="0" />

 <xsd:element name="royaltyper"

 type="xsd:int"

 minOccurs="0" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 <xsd:unique name="titleauthors_Constraint1"

 msdata:ConstraintName="Constraint1"

 msdata:PrimaryKey="true">

 <xsd:selector xpath=".//titleauthors" />

 <xsd:field xpath="au_id" />

 <xsd:field xpath="title_id" />

5132_ch07 Page 290 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 291

 </xsd:unique>

 <xsd:unique name="Constraint1"

 msdata:PrimaryKey="true">

 <xsd:selector xpath=".//authors" />

 <xsd:field xpath="au_id" />

 </xsd:unique>

 <xsd:keyref name="au_ta"

 refer="Constraint1"

 msdata:IsNested="true">

 <xsd:selector xpath=".//titleauthors" />

 <xsd:field xpath="au_id" />

 </xsd:keyref>

 </xsd:element>

</xsd:schema>

Because the code does not specify otherwise, all DataColumns are repre-
sented as elements. This results in DataColumns that can be NULL, using the
minOccurs="0" facet in the schema. NULL values will be represented, not by
empty elements but instead by the element’s absence in the data. This distin-
guishes a NULL value from an empty string, as in relational databases. Both the
authors and the titleauthors primary keys are represented by the
xsd:unique production. The relationship between the two tables is repre-
sented by an xsd:keyref production. Note that the xsd:key production is not
used to indicate that the unique fields are primary keys. Instead, this is indicated
by a Microsoft-specific annotation.

7.2.5 Microsoft-Specific Annotations
The urn:schemas-microsoft-com:xml-msdata namespace annotations
used in the DataSet’s schema are the most controversial part of the schema,
although they are in complete compliance with the schema recommendation
document. XML purists argue that they are a “hack” and should not be included
in an XML schema at all. Another opinion is that they are convenience features
that can be safely ignored by systems that do not support .NET DataSets. The
truth falls somewhere in between.

Let’s look at some of these annotations. The first annotation, msdata:Is-
DataSet="true", appears on the element that will become the DataSet. Although
it may appear at first that there should be a DataSet xsd:ComplexType, it is

5132_ch07 Page 291 Thursday, April 25, 2002 3:09 PM

292 ESSENTIAL ADO.NET

impossible because DataSet is a generic container. The number of DataTable,
DataColumn, and DataRelation items can vary with each instance, although each
DataSet instance can be precisely described. The msdata:IsDataSet annotation
assists in deserialization for systems that support such a container; other systems can
safely ignore it, although the resulting structure graph will not have DataSet seman-
tics, such as the ability to dynamically add a DataTable.

The msdata:ConstraintName="Constraint1" annotation is an inter-
esting way to specify a relational constraint. It combines with the "name" at-
tribute of the authors table PrimaryKey and the "refer" attribute of the
xsd:keyref production to define a relationship. This definition is nonstandard
and outside the realm of XSD, but it is a compliant schema element. Using the
annotation that results in using msdata:PrimaryKey="true" on an
xsd:unique production instead of the xsd:key production is not technically
the best way to describe the key in XML schemas, but it does permit the
DataSet to have primary-foreign key relationships using unique fields that are
not primary keys. Because DataSet allows this, using the PrimaryKey pro-
duction simplifies deserialization.

The last annotation, msdata:IsNested="true", allows DataSet to seri-
alize hierarchical XML when the relationship is not actually a nested table hierar-
chy. This is a convenience feature for XML processors that “prefer” a
hierarchical representation.

Using Microsoft-specific annotations to coerce relational data into different
shapes is a step you can take toward bridging the gap between relational and
other data representations. This step is necessary because strict relational is a
simplification of the rich set of data representations possible in XML. I discuss
this issue further in Chapter 10.

7.2.6 Writing XML Data from DataSet
XML data can be written from DataSet in a variety of formats. Each format re-
flects the Prefixes, Namespaces, Relations, and ColumnMappings and can
be validated using the schema that would be written using WriteXmlSchema
against the same DataSet. The DataSet.WriteXml method has two series of
the same four overloads as DataSet.ReadXml; the second parameter is the

5132_ch07 Page 292 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 293

XmlWriteMode enumeration. The XmlWriteMode is a simple enumeration; a
DataSet can be written with or without the corresponding XSD schema. In addi-
tion, it can be written as DiffGram format.

DiffGram format is an XML representation of an entire DataSet with extra
rows that correspond to pending changes. Listing 7–16 shows an example that
adds, deletes, and changes rows in an existing DataSet, along with the Diff-
Gram produced. Note that this code uses annotations from the msdata prefixed
namespace and that the DiffGram itself comes from a new namespace
(urn:schemas-microsoft-com:xml-diffgram-v1). The msdata annota-
tion is used to define the order in which the rows occur in the DataSet. Every-
thing else is defined in the DiffGram’s namespace. The DiffGram assigns each
row a unique ID composed of the TableName and an ordinal, in this case
Table1X, where Table1 is the TableName and X is the unique-ifier. The Diff-
Gram consists of a set of current rows in the DataSet followed by a set of rows
contained within a diffgram:before element. Changes are represented by
before images and the diffgram:hasChanges attribute. Changed rows
have a before and current row, and each has a hasChanges="modified"
attribute. Inserted rows appear in the current set of rows only and have a
hasChanges="inserted" attribute. Deleted rows appear in the before sec-
tion only and are marked with hasChanges="deleted". From this format, an
entire DataSet of rows and changes is represented. A DiffGram can be per-
sisted with or without schema.

Listing 7–16 DiffGram produced after making changes
//

// This code:

DataSet ds = new DataSet();

SqlDataAdapter da = new SqlDataAdapter(

 "select * from jobs",

 "server=localhost;uid=sa;database=pubs");

da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.Fill(ds);

ds.Tables[0].Rows[1][1] = "newer description";

ds.Tables[0].Rows[2].Delete();

5132_ch07 Page 293 Thursday, April 25, 2002 3:09 PM

294 ESSENTIAL ADO.NET

ds.Tables[0].Rows.Add(

 new object[4] { null, "new row", 40, 40 });

ds.WriteXml(@"c:\xml_documents\writeDiffGram.xml",

 XmlWriteMode.DiffGram);

<!-- produces this DiffGram -->

<?xml version="1.0" standalone="yes"?>

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"

>

 <NewDataSet>

 <Table diffgr:id="Table1" msdata:rowOrder="0">

 <job_id>1</job_id>

 <job_desc>Vice Chairman</job_desc>

 <min_lvl>10</min_lvl>

 <max_lvl>10</max_lvl>

 </Table>

 <Table diffgr:id="Table2" msdata:rowOrder="1"

 diffgr:hasChanges="modified">

 <job_id>2</job_id>

 <job_desc>newer description</job_desc>

 <min_lvl>200</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 <Table diffgr:id="Table4" msdata:rowOrder="3">

 <job_id>4</job_id>

 <job_desc>Chief Financial Officier</job_desc>

 <min_lvl>175</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 <Table diffgr:id="Table5" msdata:rowOrder="4">

 <job_id>5</job_id>

 <job_desc>Publisher</job_desc>

 <min_lvl>150</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 <Table diffgr:id="Table6" msdata:rowOrder="5">

 <job_id>6</job_id>

 <job_desc>Managing Editor</job_desc>

 <min_lvl>140</min_lvl>

 <max_lvl>225</max_lvl>

 </Table>

5132_ch07 Page 294 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 295

 <!-- some rows (6-14) deleted from diagram here... -->

 <Table diffgr:id="Table16" msdata:rowOrder="15"

 diffgr:hasChanges="inserted">

 <job_id>0</job_id>

 <job_desc>new row</job_desc>

 <min_lvl>40</min_lvl>

 <max_lvl>40</max_lvl>

 </Table>

 </NewDataSet>

 <diffgr:before>

 <Table diffgr:id="Table2" msdata:rowOrder="1">

 <job_id>2</job_id>

 <job_desc>zzz</job_desc>

 <min_lvl>200</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 <Table diffgr:id="Table3" msdata:rowOrder="2">

 <job_id>3</job_id>

 <job_desc>Business Operations Manager</job_desc>

 <min_lvl>175</min_lvl>

 <max_lvl>225</max_lvl>

 </Table>

 </diffgr:before>

</diffgr:diffgram>

Finally, you can produce a second DataSet consisting only of changes and
then write the changes as a DiffGram. This technique is useful when you’re mar-
shaling changes because the entire DataSet need not be passed across the
wire. To implement this, you use DataSet’s GetChanges method. Listing 7–17
shows an example of the code and resulting DiffGram.

Listing 7–17 Using GetChanges and DiffGrams
//

// This code

DataSet ds = new DataSet();

SqlDataAdapter da = new SqlDataAdapter(

 "select * from jobs",

 "server=localhost;uid=sa;database=pubs");

da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.Fill(ds);

ds.Tables[0].Rows[1][1] = "newer description";

5132_ch07 Page 295 Thursday, April 25, 2002 3:09 PM

296 ESSENTIAL ADO.NET

ds.Tables[0].Rows[2].Delete();

ds.Tables[0].Rows.Add(

 new object[4] { null, "new row", 40, 40 });

DataSet ds2 = new DataSet();

ds2 = ds.GetChanges();

ds2.WriteXml(

 "c:\\xml_documents\\writeDiffGramChanges.xml",

 XmlWriteMode.DiffGram);

<!-- produces this DiffGram -->

<?xml version="1.0" standalone="yes"?>

<diffgr:diffgram

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1"

>

 <NewDataSet>

 <Table diffgr:id="Table1" msdata:rowOrder="0"

 diffgr:hasChanges="modified">

 <job_id>2</job_id>

 <job_desc>newer description</job_desc>

 <min_lvl>200</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 <Table diffgr:id="Table3" msdata:rowOrder="2"

 diffgr:hasChanges="inserted">

 <job_id>0</job_id>

 <job_desc>new row</job_desc>

 <min_lvl>40</min_lvl>

 <max_lvl>40</max_lvl>

 </Table>

 </NewDataSet>

 <diffgr:before>

 <Table diffgr:id="Table1" msdata:rowOrder="0">

 <job_id>2</job_id>

 <job_desc>zzz</job_desc>

 <min_lvl>200</min_lvl>

 <max_lvl>250</max_lvl>

 </Table>

 <Table diffgr:id="Table2" msdata:rowOrder="1">

 <job_id>3</job_id>

 <job_desc>Business Operations Manager</job_desc>

 <min_lvl>175</min_lvl>

 <max_lvl>225</max_lvl>

5132_ch07 Page 296 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 297

 </Table>

 </diffgr:before>

</diffgr:diffgram>

After you have produced a DataSet as a result of using GetChanges, you
can persist it as a DiffGram (current and changed rows) or as a normal XML doc-
ument (current rows only). You can also use GetChanges to get the rows that
have a certain RowState, such as only Added rows. Listing 7–18 shows the
use of GetChanges to marshal changes made on the client tier back to a mid-
dle tier, where they are used in an update. Note that, although all data is always
marshaled in XML format, only changed data is sent across the wire, thereby
cutting down on network traffic. Finally, the changed rows are returned to the cli-
ent to refresh the client’s copy of the DataSet.

Listing 7–18 Round-trip update; only changes are marshaled in XML format
// 1. middle tier

DataSet ds = new DataSet();

SqlDataAdapter da = new SqlDataAdapter(

 "select * from jobs",

 "server=localhost;uid=sa;database=pubs");

da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.Fill(ds);

// 2. pass to client here

ds.Tables[0].Rows[1][1] = "newer description";

ds.Tables[0].Rows[14].Delete();

ds.Tables[0].Rows.Add(

 new object[4] { null, "new row", 40, 40 });

DataSet ds2 = new DataSet();

ds2 = ds.GetChanges();

// 3. pass ds2 back to middle tier here

// just pass back the changes

SqlCommandBuilder bld = new SqlCommandBuilder(da);

da.InsertCommand = bld.GetInsertCommand();

da.UpdateCommand = bld.GetUpdateCommand();

da.DeleteCommand = bld.GetDeleteCommand();

// make sure we get the identity column on insert

5132_ch07 Page 297 Thursday, April 25, 2002 3:09 PM

298 ESSENTIAL ADO.NET

da.InsertCommand.CommandText +=

 ";select * from jobs where job_id = @@identity";

da.InsertCommand.UpdatedRowSource =

 UpdateRowSource.FirstReturnedRecord;

// update on middle tier using changes only.

// refresh with most current rows

// this is only needed for insert,

// update has most current rows

da.Update(ds2);

// 4. pass changes only back to client

// client now contains latest changes

ds.Merge(ds2);

7.3 Serialization, Marshaling, and DataSet
Rather than use a binary format by default, as in ADO classic, the DataSet de-
fault is XML serialization and marshaling. This means that you can populate
DataSet from non-Microsoft data sources, and the data is consumable from
non-Microsoft platforms. Because DataSet marshals as an XML document, it is
natively supported without transformation by Web Services.

The .NET platform includes two libraries that serialize and deserialize
classes in XML format:

• System.Runtime.Serialization is used for marshaling in .NET
implementations.

• System.Xml.Serialization is used in Web Services to support
unlike implementations.

DataSet is compatible with both of them.
System.Runtime.Serialization serializes .NET classes using two for-

matters included in the .NET framework: the Binary formatter and the SOAP for-
matter. The Binary formatter uses a .NET-specific format and protocol to
optimize size by reducing the number of bytes transmitted. The SOAP formatter
uses an XML-based format and the Simple Object Access Protocol. The stan-
dardization of SOAP details is in progress under the auspices of the W3C XML-
SP committee. System.Runtime.Serialization.SoapFormatter uses
SOAP 1.1 as its format. SOAP 1.1 is currently a W3C note; an updated version

5132_ch07 Page 298 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 299

(SOAP 1.2) has been released. The SOAP formatter is CLR type-centric. It can
serialize any CLR type to SOAP format but cannot serialize any arbitrary XML;
some XML types cannot be processed, and others are serialized differently from
the expected XSD-defined format. For example, arrays are serialized according
to SOAP section 5, which is not consistent with XSD schemas.

System.Xml.Serialization is XML-centric in its approach. It can serial-
ize any XML simple or complex type that can be represented in an XML schema,
but it may not be able to serialize all CLR types with 100 percent fidelity. It is
used in the System.Web.Services library for greatest compatibility with un-
like platforms. The inability of CLR serialization to serialize all schema types, and
the inability of XML.Serialization to handle all CLR types, is not a deficiency
of the implementation; rather, it’s a result of the inherent difference between the
schema type system and the CLR type system.

To indicate support for serialization using System.Runtime.Serializa-
tion, the class must mark itself with the [Serializable] attribute. Classes
that use the [Serializable] attribute can either accept the system’s default
serialization mechanism or implement ISerializable in a class-specific man-
ner. Listing 7–19 shows how to use the [Serializable] attribute and imple-
ment a custom version of ISerializable.

Listing 7–19 A class that implements ISerializable
[Serializable]

public class Foo : ISerializable

{

 public int x, y;

 public Foo() {}

 internal Foo(SerializationInfo si,

 StreamingContext context)

 {

 //Restore our values.

 x = si.GetInt32("i");

 y = si.GetInt32("j");

 }

 public void GetObjectData(SerializationInfo si,

 StreamingContext context)

 {

5132_ch07 Page 299 Thursday, April 25, 2002 3:09 PM

300 ESSENTIAL ADO.NET

 //Add our three scalar values;

 si.AddValue("x", x);

 si.AddValue("y", y);

 Type t = this.GetType();

 si.AddValue("TypeObj", t);

 }

}

Note that implementing ISerializable requires two things: implementing
the GetObjectData method to fill in the SerializationInfo property bag,
and implementing a constructor that takes the SerializationInfo and
StreamingContext parameters. Custom serialization methods can be imple-
mented to optimize serialization based on the StreamingContext. The
DataSet class implements a custom version of ISerializable.

XML schema-centric serialization is controlled by the XmlSerializer
class in the System.Xml.Serialization namespace. This class can gener-
ate custom XmlSerializationReader/XmlSerializationWriter pairs
on a per-type basis. By default, XmlSerializer uses a one-to-one CLR-class-
to-XML-complex-type mapping. Classes can customize the exact serialization by
decorating their class declarations with a series of CLR attributes from the Sys-
tem.Xml.Serialization namespace. DataSet uses a custom mechanism
to interact with XmlSerializer.

DataSet supports both System.Runtime.Serialization and Sys-

tem.Xml.Serialization. It supports each one through its implementations of
ReadXmlSchema/ReadXml and WriteXmlSchema/WriteXml. When System.-
Runtime.Serialization is used, GetObjectData uses the WriteXmlSchema
and WriteXml methods directly. In addition, DataSet has the appropriate construc-
tor for custom serialization and invokes ReadXmlSchema and ReadXml to populate
itself from SerializationInfo. There are no optimizations for different streaming
contexts; DataSet is marshaled by value even across appdomain boundaries.

DataSet supports custom XML-centric serialization by implementing a spe-
cial interface, IXmlSerializable. Currently it is the only class in the base
class libraries to implement this interface. IXmlSerializable has three
methods—ReadXml, WriteXml, and GetSchema—which are implemented in

5132_ch07 Page 300 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 301

DataSet by calling the appropriate Read or WriteXml and Read or
WriteXmlSchema, just as in System.Runtime.Serialization.

If you want to use complex types as DataColumns, it is useful to know exactly
how DataSet is serialized. When DataSet is serialized, WriteXml calls Xml-
DataTreeWriter, which eventually writes each row with an XmlDataRowWriter.
Then XmlDataRowWriter calls DataColumn.ObjectToXml on every column.
DataColumn.ObjectToXml calls only System.Data.Common.DataStor-

age.ObjectToXml. The System.Data.Common.DataStorage class has a
static method called CreateStorage. It creates Storage classes for any of the
concrete types it supports—that is, it calls the constructor on the concrete classes:
System.Data.Common.XXXStorage.

A final storage class is called ObjectStorage. Any class that is not directly
supported by DataSet will use the ObjectStorage class. This is important when
you think back to the example in Chapter 4 that stores Object types in DataSet.

Every DataColumn value in a DataTable is represented as XML by calling
its ToString method. It is rehydrated from XML by using a constructor that
takes a single string as input. Therefore, to use arbitrary objects as DataCol-
umn types, they must have a ToString method that renders their value as XML
and a single string constructor. This is a difficult design decision because a
method (ToString) that may produce string output for reports must be re-
served for XML, but the decision must be tempered by the fact that a complex
type usually cannot be represented as a single string. Listing 7–20 illustrates
this type of object using the Person class from Chapter 4.

Listing 7–20 Producing correct XML with the Person class
public class Person

{

 public String name;

 public int age;

 public Person(String serstr)

 {

 Person p;

 XmlSerializer ser = new XmlSerializer(typeof(Person));

 p = (Person)ser.Deserialize(new StringReader(serstr));

5132_ch07 Page 301 Thursday, April 25, 2002 3:09 PM

302 ESSENTIAL ADO.NET

 this.age = p.age;

 this.name = p.name;

 }

 public override string ToString()

 {

 String s;

 StringBuilder mysb =

 new StringBuilder();

 StringWriter myStringWriter =

 new StringWriter(mysb);

 XmlSerializer ser = new XmlSerializer(this.GetType());

 ser.Serialize(myStringWriter, this);

 s = myStringWriter.ToString();

 return s;

 }

}

To use an embedded DataTable in a DataColumn, as you did in Chapter
4, you must override the DataTable’s implementation of these two methods.
Unfortunately, the DataTable has a single string constructor, and to implement
this constructor in such a way changes the semantics of the base class and is
suboptimal. SQL Server’s UNIQUEIDENTIFIER class is an example of using
this pair of methods to map to System.Guid, which has the appropriate con-
structor and ToString method to be correctly marshaled as a column inside
DataSet. The DataSet class implements two additional public methods—
ShouldSerializeTables and ShouldSerializeRelations—to allow
Serialization to work with subclasses, such as strongly typed DataSets.

7.4 Typed DataSets
One of the functions performed by XSD.exe, the XML schema generation tool,
is to generate a typed DataSet from an XSD schema. This functionality is also
available in Visual Studio as a menu item and context menu entry on an existing
“DataAdapter object.” What exactly is a typed DataSet?

A typed DataSet is a subclass of System.Data.DataSet in which the ta-
bles that exist in the DataSet are derived by reading the XSD schema informa-
tion. The difference between a typed DataSet and an “ordinary” DataSet is

5132_ch07 Page 302 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 303

that the DataRows, DataTables, and other items are available as strong
types; that is, rather than refer to DataSet.Tables[0] or DataSet.Ta-
bles["customers"], you code against a strongly typed DataTable named,
for example, MyDataSet.Customers. Typed DataSets have the advantage
that the strongly typed variable names can be checked at compile time rather
than causing errors at runtime. A short example will illustrate this concept.

Suppose you have a DataSet that should contain a table named custom-
ers. It should have columns named custid and custname. You can refer to
the table and the columns by ordinal or by name. As shown in Listing 7–21, the
data is loosely typed when referred to by ordinal or name, meaning that the com-
piler cannot guarantee that you’ve spelled the column name correctly or used
the correct ordinal. The problem is that the error informing you of this occurs at
runtime rather than at compile time. If the DataSet items were strongly typed,
misspelling the column name or using the wrong ordinal would be prevented be-
cause the code simply would not compile.

Listing 7–21 Referring to DataTables and Columns
DataSet ds = new DataSet();

// some action to load the DataSet...

// this will fail if second table does not exist

String name = ds.Tables[1].TableName;

// this will fail if the table is named customers

DataTable t = ds.Tables["customesr"];

// This will fail if the DataRow r has fewer than 5 columns

// or if column 5 is a String data type

DataRow r;

int value = (int)r[4];

// This will fail if there is a column named "custname"

String value = r["custnam"].ToString();

This does not solve every problem; mismatches can still occur if the da-
tabase schema changes between the time the typed DataSet was gener-
ated and runtime. But because the structure of the DataSet is built into
the names, the compiler can catch the misspellings. The examples in
Listing 7–22 illustrate this.

5132_ch07 Page 303 Thursday, April 25, 2002 3:09 PM

304 ESSENTIAL ADO.NET

Listing 7–22 Strong typing in DataSet
// this fails at compile time if the name of

// the table should be "customers"

DataTable t = MyDataSet.Customesr;

// so does this, should be custname

String value = MyDataSet.Customers[0].custnam;

The easiest way to generate a typed DataSet corresponding to an existing da-
tabase resultset is through Visual Studio or XSD.exe, using an existing table, stored
procedure, SQL statement, or in the case of XSD.exe, an XML schema. In Visual
Studio, you can create a typed DataSet from any DataAdapter object that has
been dropped on a form, as shown in Figure 7–2. The Visual Studio designer instan-
tiates the DataAdapter, calls FillSchema internally, and feeds the results into a
code generator (you can produce typed DataSets in C# or VB.NET).

Figure 7–2 Generating a typed DataSet in Visual Studio

5132_ch07 Page 304 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 305

The manual equivalent of this is to Fill a DataSet, save the schema with
DataSet.WriteXmlSchema, and then use the schema as input into XSD.exe.
For example, let’s generate a typed DataSet for the simple one-table case
shown in Listing 7–23 and see what we get.

Listing 7–23 Producing input for a typed DataSet
SqlDataAdapter da = new SqlDataAdapter(

 "select * from jobs",

 "server=localhost;uid=sa;database=pubs");

// name the DataSet MyDS

DataSet ds = new DataSet("MyDS");

// name the table MyTable

da.Fill(ds, "MyTable");

ds.WriteXmlSchema("myschema.xsd");

Listing 7–24 shows the complete source code for the sample typed DataSet.

Listing 7–24 A typed DataSet subclass generated by XSD.exe
//

// This source code was auto-generated by xsd

//

using System;

using System.Data;

using System.Xml;

using System.Runtime.Serialization;

[Serializable()]

[System.ComponentModel.DesignerCategoryAttribute("code")]

[System.Diagnostics.DebuggerStepThrough()]

[System.ComponentModel.ToolboxItem(true)]

public class JobsDS : DataSet {

 private jobsDataTable tablejobs;

 public JobsDS() {

 this.InitClass();

 System.ComponentModel.CollectionChangeEventHandler

 schemaChangedHandler = new

 System.ComponentModel.CollectionChangeEventHandler(

5132_ch07 Page 305 Thursday, April 25, 2002 3:09 PM

306 ESSENTIAL ADO.NET

 this.SchemaChanged);

 this.Tables.CollectionChanged += schemaChangedHandler;

 this.Relations.CollectionChanged += schemaChangedHandler;

 }

 protected JobsDS(SerializationInfo info, StreamingContext context) {

 string strSchema = ((string)(info.GetValue("XmlSchema",

 typeof(string))));

 if ((strSchema != null)) {

 DataSet ds = new DataSet();

 ds.ReadXmlSchema(new XmlTextReader(new

 System.IO.StringReader(strSchema)));

 if ((ds.Tables["jobs"] != null)) {

 this.Tables.Add(new jobsDataTable(ds.Tables["jobs"]));

 }

 this.DataSetName = ds.DataSetName;

 this.Prefix = ds.Prefix;

 this.Namespace = ds.Namespace;

 this.Locale = ds.Locale;

 this.CaseSensitive = ds.CaseSensitive;

 this.EnforceConstraints = ds.EnforceConstraints;

 this.Merge(ds, false, System.Data.MissingSchemaAction.Add);

 this.InitVars();

 }

 else {

 this.InitClass();

 }

 this.GetSerializationData(info, context);

 System.ComponentModel.CollectionChangeEventHandler

 schemaChangedHandler = new

 System.ComponentModel.CollectionChangeEventHandler(

 this.SchemaChanged);

 this.Tables.CollectionChanged += schemaChangedHandler;

 this.Relations.CollectionChanged += schemaChangedHandler;

 }

 [System.ComponentModel.Browsable(false)]

 [System.ComponentModel.DesignerSerializationVisibilityAttribute(

 System.ComponentModel.DesignerSerializationVisibility.Content)]

 public jobsDataTable jobs {

 get {

 return this.tablejobs;

 }

 }

5132_ch07 Page 306 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 307

 public override DataSet Clone() {

 JobsDS cln = ((JobsDS)(base.Clone()));

 cln.InitVars();

 return cln;

 }

 protected override bool ShouldSerializeTables() {

 return false;

 }

 protected override bool ShouldSerializeRelations() {

 return false;

 }

 protected override void ReadXmlSerializable(XmlReader reader)

{

 this.Reset();

 DataSet ds = new DataSet();

 ds.ReadXml(reader);

 if ((ds.Tables["jobs"] != null)) {

 this.Tables.Add(new jobsDataTable(ds.Tables["jobs"]));

 }

 this.DataSetName = ds.DataSetName;

 this.Prefix = ds.Prefix;

 this.Namespace = ds.Namespace;

 this.Locale = ds.Locale;

 this.CaseSensitive = ds.CaseSensitive;

 this.EnforceConstraints = ds.EnforceConstraints;

 this.Merge(ds, false, System.Data.MissingSchemaAction.Add);

 this.InitVars();

 }

 protected override System.Xml.Schema.XmlSchema

 GetSchemaSerializable() {

 System.IO.MemoryStream stream = new System.IO.MemoryStream();

 this.WriteXmlSchema(new XmlTextWriter(stream, null));

 stream.Position = 0;

 return System.Xml.Schema.XmlSchema.Read(new

 XmlTextReader(stream), null);

 }

 internal void InitVars() {

 this.tablejobs = ((jobsDataTable)(this.Tables["jobs"]));

5132_ch07 Page 307 Thursday, April 25, 2002 3:09 PM

308 ESSENTIAL ADO.NET

 if ((this.tablejobs != null)) {

 this.tablejobs.InitVars();

 }

 }

 private void InitClass() {

 this.DataSetName = "JobsDS";

 this.Prefix = "";

 this.Namespace = "";

 this.Locale = new System.Globalization.CultureInfo

 ("en-US");

 this.CaseSensitive = false;

 this.EnforceConstraints = true;

 this.tablejobs = new jobsDataTable();

 this.Tables.Add(this.tablejobs);

 }

 private bool ShouldSerializejobs() {

 return false;

 }

 private void SchemaChanged(object sender,

 System.ComponentModel.CollectionChangeEventArgs e) {

 if ((e.Action ==

 System.ComponentModel.CollectionChangeAction.Remove)) {

 this.InitVars();

 }

 }

 public delegate void jobsRowChangeEventHandler(object sender,

 jobsRowChangeEvent e);

 [System.Diagnostics.DebuggerStepThrough()]

 public class jobsDataTable : DataTable,

 System.Collections.IEnumerable {

 private DataColumn columnjob_id;

 private DataColumn columnjob_desc;

 private DataColumn columnmin_lvl;

 private DataColumn columnmax_lvl;

5132_ch07 Page 308 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 309

 internal jobsDataTable() :

 base("jobs") {

 this.InitClass();

 }

 internal jobsDataTable(DataTable table) :

 base(table.TableName) {

 if ((table.CaseSensitive != table.DataSet.CaseSensitive)) {

 this.CaseSensitive = table.CaseSensitive;

 }

 if ((table.Locale.ToString() !=

 table.DataSet.Locale.ToString())) {

 this.Locale = table.Locale;

 }

 if ((table.Namespace != table.DataSet.Namespace)) {

 this.Namespace = table.Namespace;

 }

 this.Prefix = table.Prefix;

 this.MinimumCapacity = table.MinimumCapacity;

 this.DisplayExpression = table.DisplayExpression;

 }

 [System.ComponentModel.Browsable(false)]

 public int Count {

 get {

 return this.Rows.Count;

 }

 }

 internal DataColumn job_idColumn _

 get {

 return this.columnjob_id;

 }

 }

 internal DataColumn job_descColumn {

 return this.columnjob_desc;

 }

 }

 internal DataColumn min_lvlColumn {

 get {

 return this.columnmin_lvl;

 }

5132_ch07 Page 309 Thursday, April 25, 2002 3:09 PM

310 ESSENTIAL ADO.NET

 }

 internal DataColumn max_lvlColumn {

 get {

 return this.columnmax_lvl;

 }

 }

 public jobsRow this[int index] {

 get {

 return ((jobsRow)(this.Rows[index]));

 }

 }

 public event jobsRowChangeEventHandler jobsRowChanged;

 public event jobsRowChangeEventHandler jobsRowChanging;

 public event jobsRowChangeEventHandler jobsRowDeleted;

 public event jobsRowChangeEventHandler jobsRowDeleting;

 public void AddjobsRow(jobsRow row)

 this.Rows.Add(row);

 }

 public jobsRow AddjobsRow(string job_desc, System.Byte min_lvl,

 System.Byte max_lvl) {

 jobsRow rowjobsRow = ((jobsRow)(this.NewRow()));

 rowjobsRow.ItemArray = new object[] {

 null,

 job_desc,

 min_lvl,

 max_lvl};

 this.Rows.Add(rowjobsRow);

 return rowjobsRow;

 }

 public jobsRow FindByjob_id(short job_id) {

 return ((jobsRow)(this.Rows.Find(new object[] {

 job_id})));

 }

 public System.Collections.IEnumerator GetEnumerator() {

5132_ch07 Page 310 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 311

 return this.Rows.GetEnumerator();

 }

 public override DataTable Clone()

 jobsDataTable cln = ((jobsDataTable)(base.Clone()));

 cln.InitVars();

 return cln;

 }

 protected override DataTable CreateInstance() {

 return new jobsDataTable();

 }

 internal void InitVars() {

 this.columnjob_id = this.Columns["job_id"];

 this.columnjob_desc = this.Columns["job_desc"];

 this.columnmin_lvl = this.Columns["min_lvl"];

 this.columnmax_lvl = this.Columns["max_lvl"];

 }

 private void InitClass() {

 this.columnjob_id = new DataColumn("job_id", typeof(short),

 null, System.Data.MappingType.Element);

 this.Columns.Add(this.columnjob_id);

 this.columnjob_desc = new DataColumn("job_desc",

 typeof(string), null, System.Data.MappingType.Element);

 this.Columns.Add(this.columnjob_desc);

 this.columnmin_lvl = new DataColumn("min_lvl",

 typeof(System.Byte), null,

 System.Data.MappingType.Element);

 this.Columns.Add(this.columnmin_lvl);

 this.columnmax_lvl = new DataColumn("max_lvl",

 typeof(System.Byte), null,

 System.Data.MappingType.Element);

 this.Columns.Add(this.columnmax_lvl);

 this.Constraints.Add(new UniqueConstraint

 ("Constraint1", new DataColumn[] {this.columnjob_id}, true));

 this.columnjob_id.AutoIncrement = true;

 this.columnjob_id.AllowDBNull = false;

 this.columnjob_id.ReadOnly = true;

 this.columnjob_id.Unique = true;

 this.columnjob_desc.AllowDBNull = false;

 this.columnjob_desc.MaxLength = 50;

 this.columnmin_lvl.AllowDBNull = false;

5132_ch07 Page 311 Thursday, April 25, 2002 3:09 PM

312 ESSENTIAL ADO.NET

 this.columnmax_lvl.AllowDBNull = false;

 }

 public jobsRow NewjobsRow() {

 return ((jobsRow)(this.NewRow()));

 }

 protected override DataRow NewRowFromBuilder(

 DataRowBuilder builder) {

 return new jobsRow(builder);

 }

 protected override System.Type GetRowType() {

 return typeof(jobsRow);

 }

 protected override void OnRowChanged(

 DataRowChangeEventArgs e)

 {

 base.OnRowChanged(e);

 if ((this.jobsRowChanged != null)) {

 this.jobsRowChanged(this,

 new jobsRowChangeEvent(

 ((jobsRow)(e.Row)), e.Action));

 }

 }

 protected override void OnRowChanging(DataRowChangeEventArgs e)

 {

 base.OnRowChanging(e);

 if ((this.jobsRowChanging != null)) {

 this.jobsRowChanging(this,

 new jobsRowChangeEvent(

 ((jobsRow)(e.Row)), e.Action));

 }

 }

 protected override void OnRowDeleted(DataRowChangeEventArgs e) {

 base.OnRowDeleted(e);

 if ((this.jobsRowDeleted != null)) {

 this.jobsRowDeleted(this,

 new jobsRowChangeEvent(

 ((jobsRow)(e.Row)), e.Action));

 }

5132_ch07 Page 312 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 313

 }

 protected override void OnRowDeleting(DataRowChangeEventArgs e)

 base.OnRowDeleting(e);

 if ((this.jobsRowDeleting != null)) {

 this.jobsRowDeleting(this,

 new jobsRowChangeEvent(

 ((jobsRow)(e.Row)), e.Action));

 }

 }

 public void RemovejobsRow(jobsRow row) {

 this.Rows.Remove(row);

 }

 }

 [System.Diagnostics.DebuggerStepThrough()]

 public class jobsRow : DataRow _par

 private jobsDataTable tablejobs;

 internal jobsRow(DataRowBuilder rb) : base(rb) {

 this.tablejobs = ((jobsDataTable)(this.Table));

 }

 public short job_id {

 get {

 return ((short)(this[this.tablejobs.job_idColumn]));

 }

 set {

 this[this.tablejobs.job_idColumn] = value;

 }

 }

 public string job_desc {

 get {

 return ((string)(this[this.tablejobs.job_descColumn]));

 }

 set {

 this[this.tablejobs.job_descColumn] = value;

 }

 }

 public System.Byte min_lvl

5132_ch07 Page 313 Thursday, April 25, 2002 3:09 PM

314 ESSENTIAL ADO.NET

 get {

 return ((System.Byte)

 (this[this.tablejobs.min_lvlColumn]));

 }

 set {

 this[this.tablejobs.min_lvlColumn] = value;

 }

 }

 public System.Byte max_lvl

 get {

 return ((System.Byte)

 (this[this.tablejobs.max_lvlColumn]));

 }

 set {

 this[this.tablejobs.max_lvlColumn] = value;

 }

 }

 }

 [System.Diagnostics.DebuggerStepThrough()]

 public class jobsRowChangeEvent : EventArgs {

 private jobsRow eventRow;

 private DataRowAction eventAction;

 public jobsRowChangeEvent(jobsRow row, DataRowAction action) {

 this.eventRow = row;

 this.eventAction = action;

 }

 public jobsRow Row {

 get {

 return this.eventRow;

 }

 }

 public DataRowAction Action {

 get {

 return this.eventAction;

 }

 }

 }

}

5132_ch07 Page 314 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 315

The typed DataSet accomplishes strong typing by generating a class
MyDS, which derives from DataSet (1). The name of the subclass of the
DataSet class is equal to DataSet.DataSetName in the original DataSet
that produced the XML schema. Four public nested classes are exposed:

• MyDS.MyTabDataTable:DataTable, IEnumerable

• MyDS.MyTabRow:DataRow

• MyDS.MyTabRowChangeEvent:EventArgs

• MyDS.MyTabRowChangeEventHandler

where

• MyDS is the DataSet.DataSetName

• MyTab is the DataTable.TableName

• MyTabRow is DataTable.TableName + Row

MyDS.MyTabDataTable has a series of private DataColumn members;
one data member per column is the table or resultset. There are getters for
these, but they are marked internal because you are not allowed to add or
delete DataColumns at runtime. There are also four typed delegates for
Changing, Changed, Deleting, and Deleted rows.

The typed DataTable has the following methods:

• An Indexer for Rows and a GetEnumerator method.

• Two add methods, both called AddMyTabRow but each used a little dif-
ferently. AddMyTabRow(row), which takes a Row, is used with New-
MyTabRow, an empty typed row. AddMyTabRow(n1,n2,n3)takes N
parms, where N is the number of columns in the table and MyTab is a
placeholder. For example, if the table name were equal to Jobs, the
method name would be AddJobsRow.

• RemoveMyTabRow, a delete method.

The DataColumns are created and added to the DataTable in the
DataTable’s InitClass method. If metadata is available, it is also filled in at
that time. If there is a primary key or unique column, there is a method called
FindBykeycolname that uses the primary key as input.

5132_ch07 Page 315 Thursday, April 25, 2002 3:09 PM

316 ESSENTIAL ADO.NET

The MyDSRow class exposes columns as public properties. If the column is
nullable, there are two predefined helper functions—IsColumnnameNull and
SetColumnnameNull—where Columnname is a placeholder for the name of
the column.

To delete a DataRow provided by strongly typed DataSets, you would use
the convenience method DataRowCollection.Remove rather than Data-
Row.Delete. But the two methods have different semantics. The difference be-
tween the two is that calling DataRowCollection.Remove is the same as
calling DataRow.Delete followed by AcceptChanges. If you use Remove
and then use the DataSet to update a database through a DataAdapter, the
rows that you deleted in the DataSet using Remove will not be deleted in the
database. If this is the desired behavior, you should use DataRow.Delete in-
stead of the convenience RemoveMyTabRow method.

A strongly typed DataSet can also contain more than one table. If you have
tables with parent-child relationships—specified by the existence of a DataRe-
lation in the DataSet’s Relations collection—some additional information
and methods are generated. When the DataSet contains a Relation, the fol-
lowing things happen:

• The PrimaryKey property is added to DataColumn properties for the
parent table, a ForeignKeyConstraint is added for the child table,
and DataRelation is added. If the DataSet’s Nested property was
set in the original schema, it is preserved in the typed DataSet.

• ChildTabRow has a property of type ParentTabRow. A property’s
get method calls GetParentRow, and the setter calls SetParent.

• ParentRow has a method, GetChildTabRow, that returns an array of
typed child rows by calling GetChildRows.

where

• ParentTab is the DataTable.TableName of the parent table.

• ChildTab is the DataTable.TableName of the child table.

Finally, the strongly typed DataSet has certain methods and a property that
are related to XML persistence. These override the DataSet’s methods.

5132_ch07 Page 316 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 317

• A protected constructor takes a SerializationInfo info and a
StreamingContext context. This constructor calls InitClass

before calling GetSerializationData. This is a requirement when
you implement ISerializable.

• ReadXmlSerializable simply calls the base class’s ReadXml

method.

• GetSchemaSerializable calls WriteXmlSchema to write the
schema to an XmlTextWriter. Then it reads it back into a Sys-
tem.Xml.Schema.XmlSchema. This is similar to the code in the base
class (DataSet).

• The properties ShouldSerializeTables and ShouldSerialize-
Relations, and an additional property called ShouldSerial-

ize[MyTable], return false.

The example in Listing 7–25 uses every method of a one-DataTable typed
DataSet and a hierarchical typed DataSet with a parent-child relationship.
Typed DataSets can also be used as ordinary DataSets, with a corresponding
loss of compile-type syntax checking.

Listing 7–25 Using a Typed DataSet
using System;

using System.Data;

using System.Data.SqlClient;

namespace UseDataSet

{

 class Class1

 {

 static void Main(string[] args)

 {

 Class1 c = new Class1();

 c.instanceMain();

 }

 void instanceMain()

 {

 UseJobsWithDBMS();

 UseJobsDS();

 UseAuTitleDS();

 }

5132_ch07 Page 317 Thursday, April 25, 2002 3:09 PM

318 ESSENTIAL ADO.NET

 void UseJobsWithDBMS()

 {

 try

 {

 JobsDS j = new JobsDS();

 SqlDataAdapter da = new SqlDataAdapter(

 "select * from jobs",

 "server=localhost;uid=sa;database=pubs");

 SqlCommandBuilder bld = new SqlCommandBuilder(da);

 da.Fill(j.jobs);

 Console.WriteLine(j.jobs.Rows.Count);

 JobsDS.jobsRow found_row = j.jobs.FindByjob_id(156);

 Console.WriteLine(j.jobs.Rows.Count);

 //j.jobs.RemovejobsRow(found_row);

 found_row.Delete();

 Console.WriteLine(j.jobs.Rows.Count);

 da.Update(j.jobs);

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

 }

 protected void T_Changing(object sender,

 JobsDS.jobsRowChangeEvent e)

 {

 if (e.Row.RowState == DataRowState.Deleted)

 Console.WriteLine("Row Changing: Action {0}, State {1}",

 e.Action, e.Row.RowState);

 else

 Console.WriteLine("Row Changing: {0} id = {1}, State {2}",

 e.Action, e.Row[0], e.Row.RowState);

 }

 protected void T_Changed(object sender,

 JobsDS.jobsRowChangeEvent e)

 {

 if (e.Row.RowState == DataRowState.Detached)

 Console.WriteLine("Row Changed: Action {0}, State {1}",

5132_ch07 Page 318 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 319

 e.Action, e.Row.RowState);

 else

 Console.WriteLine("Row Changed: {0} id = {1}, State {2}",

 e.Action, e.Row[0], e.Row.RowState);

 }

 protected void T_Deleting(object sender,

 JobsDS.jobsRowChangeEvent e)

 {

 Console.WriteLine("Row Deleting: {0} id = {1}, State {2}",

 e.Action, e.Row[0], e.Row.RowState);

 }

 protected void T_Deleted(object sender,

 JobsDS.jobsRowChangeEvent e)

 {

 Console.WriteLine("Row Deleted: Action {0}, State {1}",

 e.Action, e.Row.RowState);

 }

 void UseJobsDS()

 {

 // 1. One public class JobsDS

 // 2. Four public nested classes:

 // JobsDS.jobsDataTable;

 // JobsDS.jobsRow;

 // JobsDS.jobsRowChangeEvent;

 // JobsDS.jobsRowChangeEventHandler;

 // Generates one named high-level type

 // the DataSet

 JobsDS j = new JobsDS();

 Console.WriteLine(j.DataSetName);

 // event handlers

 j.jobs.jobsRowChanging +=

 new JobsDS.jobsRowChangeEventHandler(T_Changing);

 j.jobs.jobsRowChanged +=

 new JobsDS.jobsRowChangeEventHandler(T_Changed);

 j.jobs.jobsRowDeleting +=

 new JobsDS.jobsRowChangeEventHandler(T_Deleting);

 j.jobs.jobsRowDeleted +=

 new JobsDS.jobsRowChangeEventHandler(T_Deleted);

5132_ch07 Page 319 Thursday, April 25, 2002 3:09 PM

320 ESSENTIAL ADO.NET

 // The DataSet has a single new property named "jobs"

 // It’s also a public nested class

 JobsDS.jobsDataTable t = j.jobs;

 Console.WriteLine(j.jobs.TableName);

 // add a row

 //j.jobs.AddjobsRow(99, "new job", 20, 20);

 // when you have metadata, it’s smarter about this

 // you can’t add the identity column

 j.jobs.AddjobsRow("new job", 20, 20);

 // or add a row

 // through the jobsRow public nested class

 JobsDS.jobsRow r = j.jobs.NewjobsRow();

 // convenience columns

 //r.job_id = 100;

 r.job_desc = "job 100";

 r.max_lvl = 90;

 r.min_lvl = 89;

 j.jobs.AddjobsRow(r);

 // convenience IsNull functions

 // only if it can be null

 //if (r.Isjob_descNull() == true)

 // Console.WriteLine("desc is null");

 // and SetNull functions

 //r.Setjob_idNull();

 // jobs exposes a public property Count == table.Rows.Count

 Console.WriteLine("row count is " + j.jobs.Count);

 // convenience find function

 JobsDS.jobsRow found_row = j.jobs.FindByjob_id(1)

 Console.WriteLine(j.jobs.Rows.Count);

 // strongly typed

 //j.jobs.RemovejobsRow(r);

 j.jobs.RemovejobsRow(found_row);

 Console.WriteLine(j.jobs.Rows.Count);

5132_ch07 Page 320 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 321

 // 4 DataColumns as members.

 //j.jobs.job_idColumn;

 //j.jobs.job_descColumn;

 //j.jobs.max_lvlColumn;

 //j.jobs.min_lvlColumn;

 if (j.jobs.job_idColumn.ReadOnly == true)

 Console.WriteLine("its read only");

 Console.WriteLine(j.jobs[0].job_desc);

 // change the first column

 // this would fail, column is readonly

 //j.jobs[0].job_id = 98;

 j.jobs[0].job_desc = "new description";

 j.AcceptChanges();

 j.WriteXmlSchema("theschema.xsd");

 j.WriteXml("thedocument.xml");

 JobsDS j2 = new JobsDS();

 // fails, the typed DataSet already contains the typed

table.

 //j2.ReadXmlSchema("jobsds.xsd");

 j2.ReadXml("jobsds.xml");

 }

 void UseAuTitleDS()

 {

 try

 {

 SqlDataAdapter da = new SqlDataAdapter(

 "select * from authors;select * from titleauthor",

 "server=localhost;uid=sa;database=pubs");

 AuTitleDS om = new AuTitleDS();

 // we still must map these because the

 // mapping is on the DataAdapter

 da.TableMappings.Add("Table", "authors");

 da.TableMappings.Add("Table1", "titleauthors");

 da.Fill(om);

 Console.WriteLine("{0} tables", om.Tables.Count);

 AuTitleDS.authorsRow r = om.authors[0];

5132_ch07 Page 321 Thursday, April 25, 2002 3:09 PM

322 ESSENTIAL ADO.NET

 // get array of children

 AuTitleDS.titleauthorsRow[] cr = r.GettitleauthorsRows();

 foreach (AuTitleDS.titleauthorsRow tr in cr)

 {

 Console.WriteLine("author {0}, title {1}",

 tr.au_id, tr.title_id);

 AuTitleDS.authorsRow ar = tr.authorsRow;

 Console.WriteLine("author {0} is the parent", ar.au_id);

 }

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

 }

 }

}

Although strongly typed DataSets are produced using the names in the
schema, you can refine the naming process by using certain schema annota-
tions. These attributes are specified on the element declaration that equates to
the table. The annotations are as follows:

• typedName: Name of an object referring to a row

• typedPlural: Name of an object referring to a table

• typedParent: Name of a parent object in a parent-child relationship

• typedChild: Name of a child object in a parent-child relationship

There is also an annotation, nullValue, that refers to special handling in a
strongly typed DataSet when the value in the underlying table is DBNull.

7.5 The XmlDataDocument Class
Having come at the problem of data representation from the point of view of the
data storage mechanism—that is, the relational database—we’ve thus far
represented the in-memory object model as though it, too, were a relational data-
base. Chapter 2 touches on the XML Infoset as a different abstraction for data, and
you looked at the XML DOM, one of its in-memory data representations. The classes
that are used in the relational model parallel those in a relational database; you have
a DataSet consisting of DataTables, DataColumns, DataRows, and DataRe-

5132_ch07 Page 322 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 323

lations. You even have a mechanism—DataView—to filter and sort Data-
Tables in memory. The filtering mechanism uses a language similar to SQL.

In the DOM model, XmlDocuments consist of XmlNodes. The XmlDocu-
ment can use the XML query language, XPath, to produce either single nodes or
nodesets. You can also transform an entire XmlDocument using the XSLT trans-
formation language, producing XML, HTML, or any other format of text output.
The .NET class that encapsulates this function is XslTransform. You can
traverse the XmlDocument structure either sequentially or using a navigation
paradigm. Navigation is represented by a series of classes that implement the
XPathNavigator interface. XPathNavigator is optimized for XPath queries;
its queries can return XPathNodeIterator or scalar values.

Sometimes it would be useful to integrate these two models—for example,
to update a portion of a DOM document based on data in a relational database,
or to query a DataSet using XPath as though it were a DOM. The class that lets
you treat data as though it were both a DOM and a DataSet, exposing updat-
ability but maintaining consistency in each model, is XmlDataDocument.

The XmlDataDocument class works around the limitation of the strict rela-
tional model by enabling partial mapping on DataSet. The DataSet class (and
its underlying XML format) works only with homogeneous rowsets or hierarchies,
in which all rows contain the same number of columns in the same order. When
you attempt to map a document in which columns are missing in rows of the
same type, as in Listing 7–26, the XmlRead function compensates by mapping
every combination of columns, and setting the ones that do not exist in any level
of hierarchy to DBNull.Value.

Listing 7–26 Missing columns in rows
<root>

 <document>

 <name>Bob</name>

 <address>111 Any St</address>

 </document>

 <document>

 <name>Bird</name>

 <livesin>tree</livesin>

 </document>

</root>

5132_ch07 Page 323 Thursday, April 25, 2002 3:09 PM

324 ESSENTIAL ADO.NET

The XML Infoset has no limitation to homogeneous data. When data is semi-
structured or contains mixed content (elements and text nodes mixed), as in
Listing 7–27, coercing the data into a relational model will not work. An error,
“The same table (noun) cannot be the child table in two nested relations.,” is pro-
duced in this case. You can still integrate, at least partially, XML data that is
shaped differently; you use the DataSet through the XmlDataDocument
class. In addition, you can preserve white space and maintain element order in
the XmlDocument, but when such a document is mapped to a DataSet, these
extra representation semantics may be lost. XML comments and processing in-
structions will also be lost in the DataSet representation.

Listing 7–27 A document containing mixed content
<book>

<chapter>

<title>Testing your <noun>typewriter</noun></title>

<p>The quick brown <noun>fox</noun> jumps over

the lazy <noun>dog</noun></p>

</chapter>

</book>

7.5.1 XmlDataDocuments and DataSets
As shown in Figure 7–3, an XmlDataDocument is an XmlDocument. That’s because
XmlDataDocument extends XmlDocument and contains a DataSet as a member.

Data can be loaded into an XmlDataDocument through either the DataSet
interfaces or the XmlDocument interfaces. You can import the relational part of the
XML document into DataSet by using an explicit or implied mapping schema, as
shown in Listing 7–28. Whether changes are made through DataSet or through
XmlDataDocument, the changed values are reflected in both objects. The full-
fidelity XML is always available through the XmlDataDocument.

Listing 7–28 Loading a DataSet through the XmlDataDocument
XmlDataDocument datadoc = new XmlDataDocument();

datadoc.DataSet.ReadXmlSchema("c:\\authors.xsd");

datadoc.Load ("c:\\authors.xml");

DataSet ds = datadoc.DataSet;

5132_ch07 Page 324 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 325

// use DataSet as usual

foreach (DataTable t in ds.Tables)

 Console.WriteLine(

 "Table " + t.TableName + " is in dataset");

In addition to the DOM-style navigation supported by XmlDocument, the
XmlDataDocument adds methods to let you get an Element from a DataRow
or a DataRow from an Element. Listing 7–29 shows an example.

Listing 7–29 Using GetElementFromRow
XmlDataDocument datadoc = new XmlDataDocument();

datadoc.DataSet.ReadXmlSchema(

 "c:\\xml_schemas\\cust_orders.xsd");

datadoc.Load(new XmlTextReader(

 "http://localhost/northwind/template/modeauto1.xml"));

XmlElement e = datadoc.GetElementFromRow(

 datadoc.DataSet.Tables[0].Rows[2]);

DataSet

XmlDataDocument

XmlDocument

DataSet

Figure 7–3 XmlDataDocument and related classes

5132_ch07 Page 325 Thursday, April 25, 2002 3:09 PM

326 ESSENTIAL ADO.NET

Console.WriteLine(e.InnerXml);

You can create an XmlDataDocument using a prepopulated DataSet, as
shown in Listing 7–30. Any data in the DataSet is used to construct a DOM rep-
resentation. This DOM is exactly the same as the XML document that would be
serialized using DataSet.WriteXml. The only difference, a trivial one, is that
DataSet.WriteXml writes an XML directive at the beginning and XmlDocu-
ment.Save does not.

Listing 7–30 Creating an XmlDataDocument from a DataSet
DataSet ds = new DataSet();

// load the DataSet

SqlDataAdapter da = new SqlDataAdapter(

"select * from authors;select * from titleauthor",

"server=localhost;database=pubs;uid=sa");

da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.Fill(ds);

// tweak the DataSet schema

ds.Tables[0].TableName = "authors";

ds.Tables[1].TableName = "titleauthor";

ds.Relations.Add(

 ds.Tables[0].Columns["au_id"],

 ds.Tables[1].Columns["au_id"]);

ds.Relations[0].Nested = true;

XmlDataDocument dd = new XmlDataDocument(ds);

// write the document

dd.Save("c:\\temp\\xmldoc.xml");

// write the dataset

dd.DataSet.WriteXml("c:\\temp\\dataset.xml");

An XmlDataDocument can also be populated by an XML document
through its Load method, as shown in Listing 7–31. What makes XmlData-
Document unique is that you can load an entire XML document by using Xml-
DataDocument.Load, but the DataSet member contains only the tables that
existed in the DataSet’s schema at the time that you called Load. Removing
the ReadXmlSchema line in Listing 7–31 results in a complete document in the

5132_ch07 Page 326 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 327

DOM, but a DataSet that, when serialized, contains only an empty root ele-
ment. Reading a schema that contains only authors will result in a complete
DOM and a DataSet containing only authors. Attempting to use an “embedded
schema plus document”–style XML document produced by using DataSet.WriteXml
with XmlWriteMode.WriteSchema, or using an XSD inline schema recognized with
the XmlValidatingReader, works to load the document, but this schema is not
used to populate the DataSet; the DataSet contains no data.

Listing 7–31 Loading an XmlDataDocument from a document
XmlDataDocument dd = new XmlDataDocument();

dd.DataSet.ReadXmlSchema(

 "c:\\xml_schemas\\au_title.xsd");

dd.Load("c:\\xml_documents\\au_title.xml");

// write the document

dd.Save("c:\\temp\\xmldoc.xml");

// write the dataset

dd.DataSet.WriteXml("c:\\temp\\dataset.xml");

Here are a few rules to keep in mind when you’re using XmlDataDocument:

• The mapping of Document to DataSet (using XmlDataDocu-

ment.DataSet.ReadXmlSchema or other means) must already be in
place when you load the XML document using XmlDataDocu-

ment.Load.

• Each named piece of data represented in the XML schema can be a child
of only one element. In general, this means that an XML schema cannot
use global xsd:element elements.

• Tables cannot be added to the schema mapping after a document is loaded.

• Documents cannot be loaded after data has been loaded, either through
XmlDataDocument.Load or by a DataAdapter.

You can use XmlDataDocument to coerce mixed content and other semi-
structured data into a somewhat relational form. This technique could help you
use the nonrelational document that you looked at in the beginning of this sec-
tion. The relational schema must be defined so that each simple element type
appears unambiguously in any table. Using the “Testing Your Typewriter”

5132_ch07 Page 327 Thursday, April 25, 2002 3:09 PM

328 ESSENTIAL ADO.NET

document in Listing 7–27 as an example, you cannot map the document so that
noun elements appear under both title elements and p elements, as you saw
earlier. Neither can you use a schema that maps noun under only title or only
p elements. When you try to use a DataSet schema with noun only as a child
of p (hoping to map only nouns that appear in paragraphs), you receive the error
“SetParentRow requires a child row whose table is "p", but the specified
row’s Table is title.” The way to map all noun elements is to use a schema
in which noun is not a child of any other element. This produces a single noun
table containing noun elements from (title)s and (p)aragraphs.

Another possible use for XmlDataDocument is to merge new data from a
relational database into an existing XML document. This works, but with the limi-
tations noted earlier. Consider a DataSet schema containing authors and rows
from a nonrectangular document. You would first try to load both documents into
the XmlDataDocument, but a second document cannot be loaded when the
XmlDataDocument already contains data. The code in Listing 7–32 fails when
trying to load the second document.

Listing 7–32 Merging data with XmlDataDocument; this fails
try

{

 XmlDataDocument dd = new XmlDataDocument();

 // schema contains authors and document

 dd.DataSet.ReadXmlSchema(@"c:\xml_schemas\au_nonr.xsd");

 // this document contains document

 dd.Load(@"c:\xml_documents\nonrect.xml");

 // this document contains authors

 // this fails

 dd.Load(@"c:\xml_documents\authors_doc.xml");

 foreach (DataTable t in dd.DataSet.Tables)

 Console.WriteLine("table {0} contains {1} rows",

 t.TableName, t.Rows.Count);

}

catch (Exception e)

{

5132_ch07 Page 328 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 329

 Console.WriteLine(e.Message);

}

Attempting to populate the DataSet with a DataAdapter after a docu-
ment has been loaded produces partial success. The code in Listing 7–33 pro-
duces a DataSet containing two tables, but a document containing only the
data originally loaded by calling XmlDataDocument.Load.

Listing 7–33 Merging documents with XmlDataDocument; this doesn’t
synchronize

try

{

 XmlDataDocument dd = new XmlDataDocument();

 // schema contains authors and document

 dd.DataSet.ReadXmlSchema(@"c:\xml_schemas\au_nonr.xsd");

 // this document contains document

 dd.Load(@"c:\xml_documents\nonrect.xml");

 // add authors

 SqlDataAdapter da = new SqlDataAdapter(

 "select * from authors",

 "server=localhost;uid=sa;database=pubs");

 da.Fill(dd.DataSet, "authors");

 // both appear in the DataSet

 foreach (DataTable t in dd.DataSet.Tables)

 Console.WriteLine("Table {0} contains {1} rows",

 t.TableName, t.Rows.Count);

 // no authors in the document

 dd.Save(@"c:\temp\au_nonr.xml");

}

catch (Exception e)

{

 Console.WriteLine(e.Message);

}

The correct way to accomplish a merge of two documents is to use two
DataSets and the DataSet.Merge method. The second DataSet can be

5132_ch07 Page 329 Thursday, April 25, 2002 3:09 PM

330 ESSENTIAL ADO.NET

either standalone or part of an XmlDataDocument, as shown in Listing 7–34. If
data is merged into a DataDocument’s DataSet, however, the schema for
both tables must be loaded when the original document is loaded or else an er-
ror message will result during DataSet.Merge.

Listing 7–34 Merging documents with XmlDataDocument; this works
 XmlDataDocument dd = new XmlDataDocument();

 // schema contains authors and document

 dd.DataSet.ReadXmlSchema(@"c:\xml_schemas\au_nonr.xsd");

 // this document contains document

 dd.Load(@"c:\xml_documents\nonrect.xml");

 // 1. either of these will work

 // add authors

 SqlDataAdapter da = new SqlDataAdapter(

 "select * from authors",

 "server=localhost;uid=sa;database=pubs");

 DataSet ds = new DataSet();

 da.Fill(ds, "authors");

 dd.DataSet.Merge(ds);

 // 2. either of these will work

 XmlDataDocument dd2 = new XmlDataDocument();

 dd2.DataSet.ReadXmlSchema(@"c:\xml_schemas\au_nonr.xsd");

 // add authors

 dd2.Load(@"c:\xml_documents\authors_doc.xml");

 dd.DataSet.Merge(dd2.DataSet);

 // both appear in the DataSet

 foreach (DataTable t in dd.DataSet.Tables)

 Console.WriteLine("Table {0} contains {1} rows",

 t.TableName, t.Rows.Count);

 // both in the document

 dd.Save(@"c:\temp\au_nonr.xml");

}

5132_ch07 Page 330 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 331

catch (Exception e)

{

 Console.WriteLine(e.Message);

}

7.5.2 XmlDataDocument and DataDocumentXPathNavigator
An additional advantage of using XmlDataDocument is that you can query the
resulting object model using either the SQL-like syntax of DataView filters or
the XPath query language. DataView filters produce sets of rows and have sim-
ple support for parent-child relationships via the CHILD keyword. XPath is a
more full-featured query language that can produce sets of nodes or scalar val-
ues. You can use XPath directly via the SelectSingleNode and SelectNode
methods that XmlDataDocument inherits from XmlDocument. The XPath-
Navigator class also lets you use precompiled XPath queries. Resultsets from
XPath queries are exposed as XPathNodeIterators. You can use XPath-
Navigators in input to the XSLT transformation process exposed through the
XslTransform class. You can also use XPathNavigators to update nodes
in their source document, using the presence of an IHasXMLNode interface on
a result node and using IHasXMLNode.GetNode to get the underlying (updat-
able) XmlNode.

DataDocumentXPathNavigator is a private subclass of XPathNaviga-
tor that provides cursor-based navigation of the “XML view” of the data in an
XmlDataDocument. As with the XPathNavigator returned by XmlDocu-
ment.CreateNavigator, multiple navigators can maintain multiple currency
positions; in addition, a DataDocumentXPathNavigator’s position in the
XmlDocument is synchronized with its position in the DataSet. Programs that
depend on positional navigation under classic ADO’s client cursor engine or
DataShape provider can be migrated to this model. Listing 7–35 shows an ex-
ample of using XPathNavigator with XmlDataDocument.

Listing 7–35 Using XPathNavigator
XmlDataDocument datadoc = new XmlDataDocument();

datadoc.Load(new XmlTextReader(

 "http://localhost/nwind/template/modeauto1.xml"));

5132_ch07 Page 331 Thursday, April 25, 2002 3:09 PM

332 ESSENTIAL ADO.NET

XPathNavigator nav = datadoc.CreateNavigator();

XPathNodeIterator i = nav.Select("//customer");

Console.WriteLine(

 "there are {0} customers", i.Count);

A final example, Listing 7–36, combines all the XmlDataDocument features
shown so far. A DataSet is created from multiple results obtained from a SQL
Server database. An XmlDataDocument and an XPathNavigator are cre-
ated over the DataSet. Using the XPathNavigator, an XPath query returns a
set of nodes in the parent (contract columns in the authors table) based on
criteria in the children. The resulting XPathNodeIterator is used to update
the XmlDocument nodes. Because the XmlDocument stays synchronized with
the DataSet, the rows are then updated using a DataAdapter.

Listing 7–36 Updating through an XPathNavigator
DataSet ds = new DataSet("au_info");

// load the DataSet

SqlDataAdapter da = new SqlDataAdapter(

 "select * from authors;select * from titleauthor",

 "server=localhost;database=pubs;uid=sa");

da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.Fill(ds);

// tweak the DataSet schema

ds.Tables[0].TableName = "authors";

ds.Tables[1].TableName = "titleauthor";

ds.Relations.Add(

 ds.Tables[0].Columns["au_id"],

 ds.Tables[1].Columns["au_id"]);

ds.Relations[0].Nested = true;

XmlDataDocument dd = new XmlDataDocument(ds);

// This must be set to false

// to edit through the XmlDocument nodes

dd.DataSet.EnforceConstraints = false;

XPathNavigator nav = dd.CreateNavigator();

// get the "contract" column (node)

// for all authors with a royalty percentage < 30%

XPathNodeIterator i = nav.Select(

5132_ch07 Page 332 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 333

 "/au_info/authors/contract[../titleauthor/royaltyper<30]");

while (i.MoveNext() == true)

{

 XmlNode node = ((IHasXmlNode)i.Current).GetNode();

 node.InnerText = "false";

}

SqlCommandBuilder bld = new SqlCommandBuilder(da);

da.Update(dd.DataSet, "authors");

7.6 Why Databases and XML?
Relational databases are good for storing data in a controlled, administered manner.
They have built-in support for fast concurrent access and optimized set-based query
capabilities. However, the protocol and packet formats are database-specific. XML
is an almost universally supported method for passing data around. It is supported
by heterogeneous architectures; for example, a big-endian Sun workstation can
easily parse an XML document created on a little-endian Intel architecture machine.
Given that each XML document must have a single root element, it must be some-
what hierarchical by default.

Some database servers have built-in XML features, and the underlying APIs
also have built-in integration features. An ASP application can facilitate the send-
ing and receiving of SQL results over HTTP and the formatting of output as XML,
optionally adding stylesheets.

A rectangular resultset can easily be stored in XML format for transmission to
any platform. Because an XML document can be a hierarchical representation of a
complete graph of data, there must be a method to decompose this data when it is
stored into the database. Conversely, to serve an XML document as output, it is of-
ten useful to compose information from two or more tables into a hierarchy.

7.6.1 XML as a Distinct Type
Object-relational databases and extensions to relational databases let you use
an XML document as a distinct type. To do this, you use an XML DataBlade in In-
formix 9, or an XML Extender in DB2 6.0 and later.

When you use XML as a distinct type, you store the entire XML document as
a CLOB column. Special user-defined functions, schemas, tables, and API

5132_ch07 Page 333 Thursday, April 25, 2002 3:09 PM

334 ESSENTIAL ADO.NET

extensions allow optimization of the XML type. For example, when a DB2 data-
base is defined as XML Extender-aware, an XML distinct type is added at
the database level. This equates to a CLOB. In addition, a series of user-defined
functions (UDFs) and stored procedures is added to the database. These data-
base objects take care of the addition and maintenance of the XML user-defined
type (UDT) and keep optional tables of information (called sidetables) up-to-date
when new XML column instances are added.

7.6.2 Document Composition and Decomposition
XML documents are organic types, meaning that they most closely represent a
graph of objects in an ODBMS or a network DBMS. You can decompose the in-
formation contained in a document into multiple relational tables. Document de-
composition can serve to reduce database round-trips because you can pass in
the entire document at once and parse it into multiple relational tables.

Going the other way, when you need to present data as an XML document,
composition of multiple tables is required. The easiest approach is to use exten-
sions to SQL that know how to produce an XML hierarchy based on the individual
tables in a join. Some databases provide extension functions that enable docu-
ment decomposition. Special logic in stored procedures can be used to store
extra data that is provided in the document but does not correspond to a spe-
cific relational table.

Document composition is often combined with services provided by APIs
and XSLT stylesheets to enable direct output of XML-based HTTP pages and
XML-based input formatting through Web browsers. This strategy is used by
XML for SQL Server’s Internet Services API (ISAPI) application and Oracle’s XTK
(XML toolkit).

7.7 SQL Server, XML, and Managed Data Access
SQL Server 2000 and the ensuing Web-released extensions, called SQLXML,
have many kinds of support for XML. This topic could take an entire book by it-
self. Almost all the support is available through ADO.NET. First, let’s enumerate
them and then go over how each one is supported in ADO.NET.

5132_ch07 Page 334 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 335

7.7.1 The FOR XML Keyword
SQL Server added a FOR XML keyword to the SQL SELECT statement. This key-
word can produce XML in four formats: RAW, AUTO, NESTED, and EXPLICIT.
The AUTO, NESTED, and EXPLICIT formats can produce hierarchical nested
XML output and attribute-normal or element-normal form. Listing 7–37 shows ex-
amples of using SELECT ... FOR XML and the results obtained.

Listing 7–37 Using SQL Server’s FOR XML syntax
-- 1. raw mode:

-- this query:

SELECT Customers.CustomerID, Orders.OrderID

FROM Customers, Orders

WHERE Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerID

FOR XML RAW

-- produces this XML output document fragment

 <row CustomerID="ALFKI" OrderID="10643" />

 <row CustomerID="ALFKI" OrderID="10692" />

 <row CustomerID="ALFKI" OrderID="10703" />

 <row CustomerID="ALFKI" OrderID="10835" />

 <row CustomerID="ANATR" OrderID="10308" />

-- 2. auto mode

-- this query:

SELECT Customers.CustomerID, Orders.OrderID

FROM Customers, Orders

WHERE Customers.CustomerID = Orders.CustomerID

ORDER BY Customers.CustomerID

FOR XML AUTO

-- produces the following XML document fragment

 <Customers CustomerID="ALFKI">

 <Orders OrderID="10643" />

 <Orders OrderID="10692" />

 <Orders OrderID="10702" />

 <Orders OrderID="10835" />

 </Customers>

 <Customers CustomerID="ANATR">

 <Orders OrderID="10308" />

 </Customers>

5132_ch07 Page 335 Thursday, April 25, 2002 3:09 PM

336 ESSENTIAL ADO.NET

-- 3. explicit mode

-- this query:

SELECT 1 as Tag, NULL as Parent,

 Customers.CustomerID as [Customer!1!CustomerID],

 NULL as [Order!2!OrderID]

FROM Customers

UNION ALL

SELECT 2, 1,

 Customers.CustomerID,

 Orders.OrderID

FROM Customers, Orders

WHERE Customers.CustomerID = Orders.CustomerID

ORDER BY [Customer!1!CustomerID]

FOR XML EXPLICIT

-- produces this output document fragment

<Customer CustomerID="ALFKI">

 <Order OrderID="10643"/>

 <Order OrderID="10692"/>

 <Order OrderID="10702"/>

</Customer>

7.7.2 OpenXML
SQL Server 2000 can decompose XML passed in to a stored procedure using a
user-defined function, OpenXML. This technique uses the normal stored proce-
dure mechanism, so I don’t discuss it further.

7.7.3 The SQLOLEDB Provider
The SQLOLEDB provider (that is, the native OLE DB provider for SQL Server) ac-
cepts two new query dialects: XPath and MSSQLXML. MSSQLXML consists of
XPath or SQL queries surrounded by XML wrapper elements. Because SQL
Server does not support XPath directly, XPath support requires an XML mapping
schema that maps an XML view of a single SQL Server database. Multiple tables
and relationships are supported in mapping schemas. The SQLOLEDB provider
also supports streamed input and output. An XSLT transform can automatically
be run on the output stream by means of a property on the XML query.

5132_ch07 Page 336 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 337

7.7.4 The SqlXml Managed Classes
The SqlXml set of managed classes, which provide some functionality similar
to an ADO.NET data provider, encapsulate all the XML support in the OLE DB
provider, listed earlier. We’ll talk a lot more about this one.

7.7.5 The SQLXML Web Application
An ISAPI application exposes the ability to obtain an XML result through the HTTP
protocol. The URL endpoint exposed can accommodate MSSQLXML templates
in files, direct queries, and HTTP POST requests. This functionality works by call-
ing the OLE DB provider from within the ISAPI application.

7.7.6 Updategrams
An update to the OLE DB provider accepts an XML dialect called updategrams.
This functionality works either directly through the provider or through the ISAPI
application. Several dialects of updategram are supported. Listing 7–38 shows
a sample updategram document. Updategrams are similar in concept to
ADO.NET DiffGrams.

Listing 7–38 Updategram formats
<DocumentElement

 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"

 xmlns:sql="urn:schemas-microsoft-com:xml-sql">

 <sql:ssync>

 <!-- Deleted -->

 <sql:before>

 <Teachers sql:id="1">

 <ID>0</ID>

 <Name>Mr Apple</Name>

 </Teachers>

 </sql:before>

 <sql:after></sql:after>

 <!-- Unchanged -->

 <sql:before>

 <Teachers sql:id="2">

 <ID>1</ID>

5132_ch07 Page 337 Thursday, April 25, 2002 3:09 PM

338 ESSENTIAL ADO.NET

 <Name>Mrs Blue</Name>

 </Teachers>

 </sql:before>

 <sql:after>

 <Teachers sql:id="2"></Teachers>

 </sql:after>

 <!-- New -->

 <sql:before></sql:before>

 <sql:after>

 <Courses sql:id="7">

 <ID>6</ID>

 <Name>Home Ec 200</Name>

 </Courses>

 </sql:after>

 <!-- Modified -->

 <sql:before>

 <Students sql:id="1">

 <ID>0</ID>

 <Name>Abe</Name>

 </Students>

 </sql:before>

 <sql:after>

 <Students sql:id="1">

 <ID>0</ID>

 <Name>Abby</Name>

 </Students>

 </sql:after>

 <!-- Removed -->

 <sql:before>

 <Students sql:id="2"></Students>

 </sql:before>

 <sql:after>

 </sql:after>

 </sql:ssync>

</DocumentElement>

5132_ch07 Page 338 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 339

7.7.7 FOR XML in the SQLXMLOLEDB Provider
A new OLE DB provider, SQLXMLOLEDB, allows the same processing of FOR
XML output as the SQLOLEDB provider. The difference is that the FOR XML pro-
cessing and conversion to XML occur on the client rather than inside SQL
Server. This arrangement lets you optimize data transmission because data is
transmitted using SQL Server’s TDS protocol rather than XML. Because this client-
side processing is exposed as an OLE DB service provider, it is possible that it
may support providers other than SQLOLEDB in the future.

7.7.8 Bulk Loading
Bulk loading of XML to SQL Server is provided in SQLXML Web release 1. Be-
cause this is a COM interface available in .NET only through interoperability, I
don’t discuss this one further.

7.7.9 Future Support
Future plans for integration of SQL Server and XML include using SOAP as an
output protocol (SQLXML3.0) and support of the relatively new XQuery language
in addition to SQL and XPath.

7.8 Using SQLXML and .NET
Now let’s look at some of these techniques in detail. The SqlClient data pro-
vider supports ExecuteXmlReader, a provider-specific method on the Sql-
Command class. Rather than provide a SqlDataReader to process the result of
a SQL query, ExecuteXmlReader produces an XmlReader, which can be
used to directly consume the results of a SELECT ... FOR XML query. The
XmlReader might be used directly—for example, to serialize the resulting doc-
ument to a Stream for transmission to a BizTalk server. The document could be
serialized to disk by using an XmlTextReader. It could be read directly into the
DataSet by using the DataSet’s ReadXml method. Listing 7–39 shows an ex-
ample. The interesting point of ExecuteXmlReader is that, if you use a FOR
XML query that produces nested hierarchies of XML output (AUTO or EXPLICIT
mode), it takes only a single SELECT statement to produce multiple Data-
Tables with the appropriate DataRelations in the DataSet.

5132_ch07 Page 339 Thursday, April 25, 2002 3:09 PM

340 ESSENTIAL ADO.NET

Listing 7–39 Using SQLXML through ExecuteXmlReader
SqlConnection conn = new SqlConnection(

 "server=.;uid=sa;database=pubs");

SqlCommand cmd = new SqlCommand(

 "select * from authors for xml auto, xmldata",

 conn);

conn.Open();

XmlTextReader rdr;

rdr = (XmlTextReader)cmd.ExecuteXmlReader();

DataSet ds = new DataSet();

ds.ReadXml(rdr,

 XmlReadMode.Fragment);

When using ExecuteXmlReader to obtain an XmlReader followed by
DataSet.ReadXml to populate a DataSet, you must take certain precautions
because the XML produced by SQL Server does not contain a root element. To
obtain all the XML nodes, you must use XmlReadMode.XmlFragment, a spe-
cial XmlReadMode. In addition, you must either prepopulate the DataSet’s
schema with information that matches the incoming fragment or use the XML-
DATA keyword in your SQL statement to prepend an XDR schema to your frag-
ment. This XDR format schema will prepopulate the DataSet schema, as
illustrated in Listing 7–40.

Listing 7–40 Using SQLXML through ExecuteXmlReader
// 1. This produces no rows

SqlConnection conn = new SqlConnection(

 "server=.;uid=sa;database=pubs");

SqlCommand cmd = new SqlCommand(

 "select * from authors for xml auto",

 conn);

conn.Open();

DataSet ds = new DataSet();

ds.ReadXml(

 (XmlTextReader)cmd.ExecuteXmlReader(),

 XmlReadMode.Fragment);

// 2. This produces 23 rows

SqlConnection conn = new SqlConnection(

5132_ch07 Page 340 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 341

 "server=.;uid=sa;database=pubs");

SqlCommand cmd = new SqlCommand(

 "select * from authors for xml auto, xmldata",

 conn);

conn.Open();

DataSet ds = new DataSet();

ds.ReadXml(

 (XmlTextReader)cmd.ExecuteXmlReader(),

 XmlReadMode.Fragment);

// 3. This produces 23 rows, 2 columns

// because two columns are mapped

//

SqlConnection conn = new SqlConnection(

 "server=.;uid=sa;database=pubs");

SqlCommand cmd = new SqlCommand(

 "select * from authors for xml auto",

 conn);

conn.Open();

DataSet ds = new DataSet();

DataTable t = new DataTable("authors");

ds.Tables.Add(t);

t.Columns.Add("au_id", typeof(String));

t.Columns.Add("au_fname", typeof(String));

// "for xml" columns are attributes by default

for (int i=0; i<t.Columns.Count; i++)

 t.Columns[i].ColumnMapping =

 MappingType.Attribute;

ds.ReadXml(

 (XmlTextReader)cmd.ExecuteXmlReader(),

 XmlReadMode.Fragment);

SQL Server’s XML ISAPI application can also be used as an endpoint to pro-
duce an XmlTextReader. You can then use this XmlTextReader to populate
the DataSet, as shown in Listing 7–41. This method can be executed from any
machine that supports .NET. No SQL Server client software need be installed be-
cause only ordinary XML is being produced.

5132_ch07 Page 341 Thursday, April 25, 2002 3:09 PM

342 ESSENTIAL ADO.NET

Listing 7–41 Using SQL Server 2000’s ISAPI application
DataSet ds = new DataSet();

XmlTextReader rdr = new XmlTextReader(

 "http://localhost/northwind/template/modeauto1.xml");

ds.ReadXml(rdr);

Updategrams are supported by the OLE DB provider or ISAPI application,
and although they are similar to DiffGrams, DiffGrams could be used with SQL
Server 2000’s ISAPI application. (SQLXML Web release 2 adds support for
DiffGrams in the ISAPI application.) The updategram format is fairly straightfor-
ward and can be created most easily from the information in an updated
DataSet. This book’s Web site contains an example of creating updategrams
from a DataSet programmatically. Updategrams and DiffGram are especially
useful for composing inserts, updates, and deletes to multiple SQL Server ta-
bles in a single round-trip to SQL Server.

Although SQL Server’s ability to understand MSSQLXML and XPath queries
and to use streaming input and output is part of the OLE DB provider, this func-
tionality uses recent extensions to the OLE DB specification introduced in OLE
DB version 2.6. The OleDb data provider supports most of the “base” OLE DB
specification, but it does not support these extensions at all. Instead of adding
these extensions to the OleDb data provider (they were used only by
SQLOLEDB), Microsoft released a new set of SqlXml managed data classes as
part of the SQLXML Release 2 Web release. These classes not only add support
for the SQLOLEDB 2.6 extensions (by wrapping the original OLE DB code) but
also support client-side transformation.

The SqlXml data provider does not implement a Connection class, imple-
menting only Command, Parameters/Parameter, and Adapter. The special
Adapter class, SqlXmlAdapter, does not derive from System.Data.Com-
mon.DbDataAdapter. You use the provider to execute a FOR XML query
by creating a SqlXmlCommand and using one of its methods. Three methods
of SqlXmlCommand produce XML output. ExecuteStream produces a new
System.IO.Stream instance containing the results, as demonstrated in
Listing 7–42.

5132_ch07 Page 342 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 343

Listing 7–42 Using SqlXml’s ExecuteStream
Stream s;

SqlXmlParameter p;

// note that provider keyword is required

SqlXmlCommand cmd = new SqlXmlCommand(

 "provider=sqloledb;server=localhost;" +

 "uid=sa;database=pubs");

cmd.CommandText =

 "select * from authors where au_lname = ?" +

 " For XML Auto";

p = cmd.CreateParameter();

p.Value = "Ringer";

s = cmd.ExecuteStream();

StreamReader sw = new StreamReader(s);

Console.WriteLine(sw.ReadToEnd());

ExecuteToStream populates an existing instance of System.IO.Stream
rather than produce a new one, as shown in Listing 7–43. SqlXmlCommand
also implements the ExecuteNonQuery and ExecuteXmlReader methods,
which work the same as the corresponding methods in SqlClient, adding sup-
port for the MSSQLXML and XPath dialects.

Listing 7–43 Using ExecuteToStream
SqlXmlParameter p;

SqlXmlCommand cmd = new SqlXmlCommand(

 "provider=sqloledb;server=localhost;" +

 "uid=sa;database=pubs");

cmd.CommandText =

 "select * from authors where au_lname = ?" +

 " For XML Auto";

MemoryStream ms = new MemoryStream();

StreamReader sr = new StreamReader(ms);

p = cmd.CreateParameter();

p.Value = "Ringer";

cmd.ExecuteToStream(ms);

ms.Position = 0;

Console.WriteLine(sr.ReadToEnd());

SqlXml exposes all the extra functionality on the Command object that per-
mits using streamed input, using MSSQLXML and XPath queries, specifying XML

5132_ch07 Page 343 Thursday, April 25, 2002 3:09 PM

344 ESSENTIAL ADO.NET

mapping schemas for XPath queries, adding XML root elements, and post-
processing through an XSL stylesheet. All these are exposed as properties of
SqlXmlCommand. For example, Listing 7–44 shows how to use an XPath query
and XML mapping schema to execute a command on SQL Server and fetch the
results.

Listing 7–44 Using an XPath query with SqlXml
Stream strm;

SqlXmlCommand cmd = new SqlXmlCommand(

 "provider=sqloledb;uid=sa;server=localhost;" +

 "database=northwind");

cmd.CommandText = "Emp";

cmd.CommandType = SqlXmlCommandType.XPath;

cmd.RootTag = "ROOT";

cmd.SchemaPath = "c:\\xml_mappings\\MySchema.xml";

strm = cmd.ExecuteStream();

StreamReader sr = new StreamReader(strm);

Console.WriteLine(sr.ReadToEnd());

<!-- this is MySchema.xml -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

 <xsd:element name="Emp" sql:relation="Employees" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="FName"

 sql:field="FirstName"

 type="xsd:string" />

 <xsd:element name="LName"

 sql:field="LastName"

 type="xsd:string" />

 </xsd:sequence>

 <xsd:attribute name="EmployeeID" type="xsd:integer" />

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

<!-- end of MySchema.xml -->

Although this is interesting from a “use XML everywhere” point of view, what
actually happens when this command is executed is that the SQLOLEDB provider
processes the XPath statement and mapping schema to produce a SQL FOR

5132_ch07 Page 344 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 345

XML EXPLICIT query, which is sent to SQL Server. In addition, an XML result
(wrapped in a TDS packet) is returned from SQL Server to the client. Both of
these behaviors might combine to make the execution quite a bit slower than us-
ing a SQL query and processing the result into XML (or HTML) on the client.
When client processing is preferable, you can specify the Command.Client-
SideXml property. When you use Command.ClientSideXml, the client (usu-
ally a Web server) must have SQL Server client libraries installed. The difference
in processing is shown in Figure 7–4.

The SqlXmlAdapter has three constructors. One takes a single parameter, a
SqlXmlCommand. The other two take three parameters. The first parameter is ei-
ther a textual command or a CommandStream. The other two parameters are the
same in both constructors: a CommandType (SqlXmlCommandType.Sql, XPath,

Submit through SQLOLEDB

SQLISAPI.DLL

Add stylesheet TDS/
XML

TDS

HTTP

Client

Using FOR XML and SQL Server
2000

SQL
Server

Format SQL from XML
Submit by SQLXMLOLEDB

SQLISAPI.DLL

Format output XML
Add stylesheet, DTD, schema

HTTP

Client

Using the SQLXMLOLEDB provider and client-side
processing

SQL
Server

TDS

Figure 7–4 Database versus client transformations

5132_ch07 Page 345 Thursday, April 25, 2002 3:09 PM

346 ESSENTIAL ADO.NET

Template, or TemplateFile), and a ConnectionString. The SqlXml-
Adapter implements single Fill and Update methods, each using XML to read
or update based on all the DataSet’s tables. Listing 7–45 shows an example of us-
ing SqlXmlAdapter.

Listing 7–45 Using SqlXmlAdapter
SqlXmlAdapter da;

SqlXmlCommand cmd = new SqlXmlCommand(

 "provider=sqloledb;uid=sa;server=localhost;" +

 "database=northwind");

cmd.RootTag = "ROOT";

cmd.CommandText = "Emp";

cmd.CommandType = SqlXmlCommandType.XPath;

cmd.SchemaPath = "MySchema.xml";

//load data set

DataSet ds = new DataSet();

da = new SqlXmlAdapter(cmd);

da.Fill(ds);

DataRow row = ds.Tables["Emp"].Rows[0];

row["FName"] = "Bob";

da.Update(ds);

Finally, SQLXML Web Release 2 and the SqlXml data provider support using
DiffGrams, in addition to updategrams, to update SQL Server. This is supported
both through SqlXmlCommand and through the ISAPI application. When you use
SqlXmlCommand, DiffGram is supported as SqlXmlCommandType.Tem-
plate or TemplateFile. To use a DiffGram to perform updates, you must
specify an XSD format mapping schema to map the DiffGram to database ta-
bles. Unlike an updategram, the DiffGram format does not include sync ele-
ments, so you are more constrained in using transactions than you are with the
updategram. Also, when exceptional conditions occur when you update SQL
Server through updategrams or DiffGrams, an exception is not thrown in the pro-
vider code. Instead, the resulting XML output contains the XML nodes not used,
such as the nodes that were used to attempt to add a row to the database
where the add failed. Listing 7–46 shows an example of updating using a Diff-
Gram, mapping schema, and HTTP endpoint.

5132_ch07 Page 346 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 347

Listing 7–46 Using a DiffGram to update SQL Server
try

{

SqlDataAdapter da = new SqlDataAdapter(

 "select CustomerID, CompanyName, " +

 "ContactName from customers",

 "server=localhost;uid=sa;database=northwind");

DataSet ds = new DataSet();

da.Fill(ds, "Customers");

// map this to an XML Attribute

// to match the mapping schema

ds.Tables[0].Columns[0].ColumnMapping =

 MappingType.Attribute;

// update the ninth row

ds.Tables[0].Rows[9][1] = "new customer name";

DataSet ds2 = ds.GetChanges();

HttpWebRequest r = (HttpWebRequest)WebRequest.Create(

 "http://zmv43/northwind/");

r.ContentType = "text/xml";

r.Method = "POST";

// MUST add mapping schema reference

String rootelem = "<ROOT " +

 "xmlns:sql='urn:schemas-microsoft-com:xml-sql'" +

 " sql:mapping-schema='diffgram1.xml'>";

String rootend = "</ROOT>";

StreamWriter s = new StreamWriter(

 r.GetRequestStream());

s.Write(rootelem, 0, rootelem.Length);

ds2.WriteXml(s, XmlWriteMode.DiffGram);

s.Write(rootend, 0, rootend.Length);

s.Close();

HttpWebResponse resp =

 (HttpWebResponse)r.GetResponse();

StreamReader rdr = new StreamReader(

 resp.GetResponseStream());

5132_ch07 Page 347 Thursday, April 25, 2002 3:09 PM

348 ESSENTIAL ADO.NET

Console.WriteLine(rdr.ReadToEnd());

}

catch (Exception e)

{

 Console.WriteLine(e.Message);

}

<!-- here’s the mapping-schema -->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:sql="urn:schemas-microsoft-com:mapping-schema">

<xsd:annotation>

 <xsd:documentation>

 Diffgram Customers/Orders Schema.

 </xsd:documentation>

</xsd:annotation>

<xsd:element name="Customers" sql:relation="Customers">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="CompanyName" type="xsd:string"/>

 <xsd:element name="ContactName" type="xsd:string"/>

 </xsd:sequence>

 <xsd:attribute name="CustomerID"

 type="xsd:string" sql:field="CustomerID"/>

 </xsd:complexType>

</xsd:element>

</xsd:schema>

<!-- end of mapping-schema -->

7.9 Where Are We?
You’ve completed your in-depth exploration of ADO.NET by looking at the XML ca-
pabilities built into the data access stack at all levels. You’ve looked at integration
of ADO.NET and XML in DataSet (including using XSD schemas to generate
typed DataSets) and the XmlDocument/DataSet hybrid called XmlDataDoc-
ument, including its implementation of an XPathNavigator class. Finally, you’ve
seen that SQL Server directly supports SELECT, INSERT, UPDATE, and DELETE
operations using XML. This support is built into two data providers: the SqlCli-
ent data provider and the new SqlXml managed classes.

5132_ch07 Page 348 Thursday, April 25, 2002 3:09 PM

XML AND DATA ACCESS INTEGRATION 349

What I hope you take away from this exposition is that ADO.NET not only sup-
ports relational data through the data provider, DataSet, and Adapter architec-
ture but also adds support for all types of nonrelational data through its integration
with XML. ADO.NET provides a wide integration layer between relational and nonrela-
tional data via XML and also provides direct XML support of relational data.

You’ve learned the basic concepts of ADO.NET, but unless you started pro-
gramming data access yesterday, you already have some data access code
written using some other API. You may even have code that exposes your data
through OLE DB providers. Chapter 8 discusses strategies for provider writers
in the new .NET world and explores the ways existing OLE DB providers work
with the OleDb managed provider. Chapter 9 explains migration strategies for
consumer writers who use existing APIs.

5132_ch07 Page 349 Thursday, April 25, 2002 3:09 PM

5132_ch07 Page 350 Thursday, April 25, 2002 3:09 PM

