A
academics, and quality topics, xxviii–xxix, xxx
acceptance criteria, in testing, 335–336
acceptance test, 316
activities and tasks in business evaluation, 166–167
change management, 202
deployment, 212
enterprise architecture, 205
implementation, 193, 194
interface modeling, 182, 183
persistence design, 190
process configuration, 174
project management, 170, 171
prototyping, 198, 199
quality assurance, 225
quality control, 227, 228
quality management, 220, 222
requirements modeling, 177, 178
reuse, 218
system architecture, 209
system design, 186
training, 215
activity diagrams, as deliverable, 177–178
activity element in a process, defined, 159
Adams, Scott, 121
administrative procedures, required in testing, 335
adoption, of a software process. See deployment
Adult ego state, 109, 115. See also ego states
aesthetics, quality assurance checks, 44–45
agendas, antidote for Meetingitis, 121
Ahlgrin, M., 268
Alexander, Christopher, 4–5
analysts. See business analyst; quality analyst
analyzing results, 338
analyzing risks in testing, 319–321
anti-virus software, 318
architects. See enterprise architect; system architect
architecture
in background space, 32
testing, 313–314
artificial crisis, creating, 235
audits
compared to inspections and reviews, 127
described, 127–128
documentation of results, 128
internal and external, 127
and malleability, 123
written objectives required, 128
automated testing, 307, 309–311
awkward silence, in workshops, 132

B
background space. See also model of the background space; team organization, roles in background space
defined, 32–33
organizing the roles, 93, 94
baking example
creating a process-component, 161, 162
measuring, 277, 278–279
process, 20
barber, 10
Beizer, Boris, 303
Berne, E., 116
best-fit approach, creating a homogeneous team, 107–109
black box testing, 306–308
Boehm, Barry, 239, 284
Booch, G., 56
boundary value testing, 307, 313
budgets
in large projects, 68
as quality pressure, 12
for software maintenance, 12
bugs. See software, incidents
bureaucratic processes, and malleability, 52
business analyst
attributes of, 85
documentation abilities, 85
and quality topics, xxviii–xxix
as requirements modeler, 86
responsibilities, 85
role in
implementation, 193
interface modeling, 182
requirements modeling, 177
reuse, 218
role on team, 85
business case, as deliverable, 166, 167
business evaluation process-component. See process-component for, business evaluation
business sponsor. See sponsor

C
Capability Maturity Model. See also process maturity
applying, 141–142
impact on quality and productivity, 147
levels, 139–140
process areas, 140
process standards, 134–135
role in processes, 138–140
CASE tools, keeping implementations separate, 251–252
Catalysis, as off-the-shelf software, 23
CDs, as communication mechanism, 105
change-control mechanism, for test cases, 334
change management process-component. See process-component for, change management
checklists
creating, 128
described, 128–129
dynamicity, 128–129
paper or electronic, 128
should be graded, 128
used in walkthroughs, 123–124
Child ego state. See ego states
class attributes and operations, 156
class testing, vs. use case testing, 327
classes, measuring size and complexity, 287
closed teams, 106–107, 116
closed testing. See black box testing
CMM. See black box testing
CMM Integration production suite (CMMi), 138–139
COCOMO model, 284
code (executable), as deliverable, 194
code quality, 16
coder. See programmer
coffee break, value in workshops, 132
commercial off the shelf. See off-the-shelf software
common roles, 95
communication
facilitated by UML, 34
facilitating by models, 28
facilitating through standards, 137
in outsourcing projects, 61
in quality environment, 104–105
responsible for project failures, 17
suggested mechanisms, 104–105
and team structure, 110
competence, individual, and best-fit, 109
component test, 315
components, measuring size and complexity, 287
components, reusable. See reusability
conferences
IT Project Management conference, 17
OOPSLA 95, 35
OOPSLA 96, 4, 34, 81
TOOLS 2000, 28
UML 2001, xxix
confusion, value of, 132
Constantine, Larry, 54, 55, 79, 81
construction, quality of, 41
costs. See budgets
COTS. See off-the-shelf software
Cowboy Programming game, 119–120
creep factor. See scope creep
CRMS. See Customer Relationship Management System
Crystal, as off-the-shelf software, 23
cumbersome processes, and malleability, 52
Customer Relationship Management System, 60
cyclic approach to testing, 323
D
data modeler, 91
data, probabilities of error in, 340
data, quality, 15
data warehousing projects
UML, 58, 62
white box testing, 309
database design, as deliverable, 190
database designer, role in persistence design, 190
database, for test results, 338
database manager
interaction with data modeler, 95
role in persistence design, 190
role on team, 95
testing role, 321
databases. See also data modeler and measurements, 269
model in data warehouse / conversion projects, 62
standards, 135
and test plan, 319
for test results, 319
Deadline game, 121–122
deadlines, missed, 12
deliverables
business evaluation, 167
change management, 202, 203
defined, 160
deployment, 212
test plan, 319
enterprise architecture, 206
implementation, 194
interface modeling, 182, 183
persistence design, 190
of planning, See planning deliverables
process configuration, 175
project management, 170
prototyping, 198
quality assurance, 225, 226
deliverables (cont.)
 quality control, 227, 228, 229
 quality management, 220, 221
 requirements modeling, 177–178
 reuse, 219
 system architecture, 209
 system design, 187
 training, 216
DeMarco, T., 267
deployment, 249–250, 251, 316–317
deployment plan, as deliverable, 212
deployment process-component. See
 process-component for, deployment
depth of quality checking. See sufficiency
designers. See database designer;
 interface designer; system designer
developer, and quality topics, xxviii–xxix
development environment, 322
development projects, 58, 81
Dilbert, 121
dimensions of a process, 152, 250
director. See senior management
disturbances (physical), impact on team. See e-factors
documentation
 in test acceptance, 336
 and UML, 42
dog, learning to croak, 47
domain expert, 88, 89, 177
downloads. See legal issues
driving conditions, 257

E
e-factors, 101, 102
educational projects, 57, 62–63
ego states
 characteristics, 115
 and games, 117
 impact on games, 118
 in transactional analysis, 114–115
elegance, of a process, 51
e-mail, as communication mechanism, 104
enactment process-component. See
 process-component for, enactment
encapsulation. See object-oriented
end user
 distinct from user, 87
 helps with global issues, 88
 importance to defining
 requirements, 88
 and modeling, 28
 and quality, 7
 role on team, 87
 testing role, 321
engineers. See process engineer
enhancements, as software incidents, 337
enterprise architect, responsibility for
 reuse, 94
enterprise architecture process-component. See
 process-component for, enterprise architecture
Enterprise Resource Planning, 60
enterprise wide architecture, as deliverable, 206
environment
 development, 322
 physical. See e-factors
testing, 322
 working, and tight estimates, 275
equation, measuring object-oriented
 systems, 292
equivalence partitioning, 307, 312–313
ergonomics. See usability
ERP. See Enterprise Resource Planning
errors
 costs of correction, 25
 introduced by fixes, 317
 test acceptance, 336
estimates
 about, 268
 initial, techniques, 283
 in Lucky Insurance project, 290–291, 294–295
measurement of, 269, 270–271
measurements and estimates, compared, 268–269
project, 271–274
refining at end of iterations, 279–282
relating estimates to quality, 268
role in quality assurance, 268
tight, effects of, 275
estimates and measures. See measurements
estimating process, defined, 268
existing applications. See legacy experimental projects. See pilot projects
expert experience and knowledge, reusing, 53
experts. See domain expert
external audits, when needed, 127
extraneous factors. See road factors
eXtreme Programming
in development projects, 58
and games, 120, 122
as off-the-shelf software, 239
and process-components, 232
Eykolt, Ed, 56

F
facilitator, in workshops, 131
facilitators, 110
FDD, as off-the-shelf software, 23
Flour Mix game, 120
flow of information. See communication
flowcharts, as a visual model, 40
formula, measuring object-oriented systems, 292
fountain-based SDLC, 242
Fowler, M., 34
function point estimation, 284–285
functional prototype, as deliverable, 183
functional specifications, as deliverable, 177–178
functionality, adding, 13, 120

G
games, 117–122
Gamma, Erich, 53
Gang of Four, 53
garbage collection, 316
Gates, Bill, 13
global issues, 88, 137
glossary of business terms, as deliverable, 178
Go or No Go decision, 164, 316
Goldberg, A., 84
Graham, I., 112
granularity, of object-oriented systems, 286
graphical user interface. See GUI; interfaces
GUI, 56, 340. See also interfaces

H
hardware, needed in testing, 320
Harry Potter, 49
hierarchical team structure, 109–111
high-visibility projects, 65–66
horizontal testing, 307, 311
“how” of a process. See methodological aspects
human factors. See sociological aspects; usability

I
ICONIX, as off-the-shelf software, 23, 239
IIP development process
development plan creation, 145
integration plan creation, 145
iterations and increments, 243–249
project plan creation, 264
project plan, section, 256
ill-fitting individuals, 109
I’m [not] OK, You’re [not] OK. See life positions
implementation process-component.
See process-component for, implementation
implementer. See programmer
incidents, software. See software, incidents
increments. See iterations
India, and IT industry, 146
information flow. See communication
informative events, as software
incidents, 337
initial cycles reports, 341
inspections
described, 124–125
documentation of results, 124
by peers, 124
of quality models, 47
usability, 124–125
in white box testing, 308
integration projects, 57, 58–59
intellectual property. See legal issues
interface design, as deliverable, 183
interface designer, 91
interface modeling process-component. See process-component for, interface modeling
interfaces. See also GUI
legacy, as deliverable, 187
modeling and design. See process-component for, interface modeling
navigability of, 55–56
shared, social issues, 103
specifications, as deliverable, 182
system, not just GUI, 9
interviews, 129–130
intranet, 104, 138
IT Project Management conference, 17
iterations
creating, 253–255
defined, 161
deploying process-components, 245
effort per iteration, 244
final, 248, 262–263
initial, 245–246, 260–261
maintenance or ongoing, 249
major
described, 246–248
quality activities at end, 261–262
and sociological aspects, 280–281
measurements based on initial, 294
need for, 243
parallel development, 248–249
refining estimates after each, 279–282
Iterative, Incremental, Parallel. See IIP; iterations
iterative project management tools, 256–257
iterative project task plan, 255–256
J
Jacobson, I., 35, 151, 285
K
Kimball, R., 137
L
large projects, 67–69
lectures, on quality topics, xxx
legacy
applications, in integration projects, 59
interfaces, as deliverable, 187
systems, helped by modeling, 72
legal issues, 103, 127
levels of process maturity. See process maturity
levels, of quality process, 50
life positions
affect on teams, 116
defined, 116
impact on games, 118
and team structure, 116, 117
lifecycle, parallel development, 248–249
Lim, W. C., 111
lines of code, as software measurement, 284, 285
Lister, T., 267
LO. See lines of code
Lockwood, L., 54, 55
logic validation, in test acceptance, 336
Lucky Insurance project
applying measurements and estimates to, 287–297
configuration of processes, 238
iterations, 243, 253–255
M
major errors, risks of discovering late, 320
make vs. buy, as background space issue, 33
malleability
aspect of baking example, 20
aspect of process, 164
contribution to quality, 52, 144
defined, 51–52, 144
of process-components, 143–144
and process discipline, 263
and process engineer, 99
revealed by audit, 123
management
in background space, 32
need for reward system for reuse, 112
of overall quality function, 27
problem and solution space, 32
reward system for reuse, 111
sociological aspects, 80
management of quality vs. quality of management, 17–18
managers. See database manager;
project manager; quality manager; test manager
manual testing, 306, 309–310
Marick, Brian, 324
maturity. See process maturity
measurements
of classes, 287
of components, 287
deciding what to measure, 283
defined, 268
importance of, 297
in Lucky Insurance project,
287–297
and multipliers, 278
of processes, 275–282
of project size and type, 271–272
in projects. See project measurements
of quality models, 282–283
of resource distribution, 272, 273,
274
role in quality assurance, 268
of software, 284–286
stored in database, 269
of UML elements, 286–287
and weighting factors, 278
medium projects, characteristics, 66–67
Meetingitis game, 121, 131
memory leaks, 316
MeNTOR, as off-the-shelf software, 23,
239
mentoring and training, 252
metamodels
class attributes and operations, 156
creation of, 37
levels of, 37–38
to prevent modeling errors, 38
of a process. See process metamodel
and quality, 37–38
for UML, 36
methodological aspects
of baking example, 20
measurement of, 269
of a process, 152, 154
methodology war, 35
metrics. See estimates; measurements
Meyers, Glenford J., 339
MOBS. See model of the background space
model of the background space,
93–94, 226. See also modeling spaces
model of the problem space, 84, 225.
See also modeling spaces
model of the solution space, 89, 225. See
also modeling spaces
model quality, 16
modeler, role in quality control, 227
modelers. See data modeler
modeling, 17, 27–29
modeling and quality, 27–29
modeling spaces. See also background space; problem space; solution space
importance of separation, 71
interdependencies, 33
and UML diagrams, 42–44
understanding, 29–31
models
 quality of, 44–45
 testing validity, 308
 and UML diagrams, 44
 views of, 30
MOPS. See model of the problem space
MOSS. See model of the solution space
multipliers, in measuring, 278

N
navigability of interfaces, 55–56
necessity, 50–51, 142–143
network, needed in testing, 320
newsletters, as communication
 mechanism, 105
Next Release Maybe, 120
next technical management, 80–82
notations for describing process
 ingredients, 158
NRM. See Next Release Maybe

O
Object Management Group, 34, 37–38
Object Oriented Programming,
 Systems, Languages, and
 Applications. See OOPSLA
object-oriented software, is not an
 object, 8
object-oriented systems
 affect on programmers, 92
 encapsulation, improves quality, 53
 measuring granularity, 286
 objects, success tied to business
 contexts, 84
 parallel development, 112
 resurgence of, 113
 sociological aspects, 113
 software measurements, 285–286
objectives
 high level, display of, 105
 lack of, 17, 121
 off-the-shelf software, 23, 237–239
 office tools, impact on team. See
 e-factors
OK position, 109. See also life positions
Olympic trainer, 10

OOPSLA 95, 35
OOPSLA 96, 4, 34, 81
OPEN Consortium, as off-the-shelf
 software, 23, 239
open teams, 106, 107
open testing. See white box testing
operational plan, as deliverable, 212
operational requirements, in test
 acceptance, 336
operational testing, 317
orthogonal process relationship, 21–22
Osho, 71
outside factors. See road factors
outsourcing projects, 58, 61–62

P
package implementation projects, 57,
 60–61
parallel team organization, 102,
 112–113
Parent ego state. See ego states
parking lot
 antidote for Meetingitis, 121
 in workshops, 132, 133
partitioning testing approach, 307
pattern libraries, as deliverable, 187
people. See staff
PeopleSoft, 60
performance testing, 318
Perry, William, 5, 26
persistence design process-component.
 See process-component for,
 persistence design
personalities, 126, 141. See also ego
 states; sociological aspects
phone. See telephone
physical arrangements, impact on
 team. See e-factors
physical security, 318
pilot projects, 66, 250–251
planning deliverables
 project organizational plan, 144
 quality plan, 145
 test plan, 145–146
play acting, in workshops, 132
pressure, working under, 122
process engineer (cont.)
malleability of quality process and, 99
as process mentor, 252
and quality topics, xxviii–xxix
ready-made processes, 239
role in enacting, 236
role in process configuration, 173–174
role on team, 99
software engineering process, 237
process maturity. See also Capability Maturity Model
applying CMM in UML-based projects, 141–142
Capability Maturity Model, 138–141
defined level (level 3), 139–140
five levels, 139–140
identifying current state, 139
initial level (level 1), 139, 140
measured level (level 4), 140
measuring, 163
optimized level (level 5), 140
personal software process maturity, 141
and process dimensions, 141
repeatable level (level 2), 139, 140
process metamodel
activities, 159
deliverables, 160
described, 156–157
importance of understanding, 232
iterations, 161
process-components, 160
process-components, in baking example, 161–162
roles on team, 157–158
tasks, 159–160
process-thinker, role in enacting, 236
processes
didactic, contributes to Cowboy Programming game, 120
and malleability, 51–52
measurement of, 275–282
procurement of hardware and software. See project organizational plan
productivity
factor, in Lucky Insurance project, 291–294
increased by quality process, 25
increased through reuse, 53
nonlinearity with hours spent, 102
program director, role on team, 96
programmer
as cowboy, 119–120
role
described, 92
in implementation, 192
in quality control, 227
in reuse, 218
in system design, 186
on team, 92
as superhero, 119
programming language
features, in Use It or Lose It game, 119
standards, 119, 135
project brief, as deliverable, 166, 167
project management
responsible for project failures, 17
and telecommuting, 105
tools, iterative, 256–257
project management process-component. See process-component for project management
project manager. See also program director
discouraging games, 119, 120
estimates, 283
as facilitator, 110
latest demo, 112
new sign-off paradigm, 96, 242
project organizational plan, 144–145
quality topics, xxviii–xxix
ready-made processes, 239
recruiting, 107
responsibilities of, 95, 112
role in
business evaluation, 166
change management, 202
deployment, 211
enacting, 236
enterprise architecture, 205
process configuration, 174
project management, 170
prototyping, 198
quality assurance, 224
requirements modeling, 177
reuse, 218
risk management, 95, 96
system architecture, 208
system design, 186
role, on team, 95
steering committee, 96
training in IIP approach, 252
project measurements, 267–268, 271–272
project objectives. See project organizational plan
project office, role in projects, 146–147
project organizational plan, 144–145, 170
project plan, separate from project organizational plan, 144
project sponsor. See sponsor
project task plan, 170, 255–256
project team
role in change management, 202
role in deployment, 212
role in enterprise architecture, 205
role in process configuration, 174
role in quality assurance, 224
role in training, 215
projects. See also UML-based projects
distribution of resources, 272–274
estimates and measures. See estimates and measures
failure of, 260–261
four team models, 106, 107
goals and objectives, as communication mechanism, 105
resources, measurements, 272–274
roles of developers and testers, 321
sociology, 106–113
soft factors, 102
prophetic statements, 296

prototype
architectural, as deliverable, 198, 209
evolve or throw away, 93
functional, as deliverable, 198
interface, as deliverable, 198
problem space, impact on usability, 89
technical, as deliverable, 187, 190, 198
prototyper
in background space, 95
in problem space, 89
role, 198
in solution space, 93, 95
prototyping process-component. See process-component for, prototyping
Putnam model, 284
pyramid, flattening, 109–111

Q
QA. See Quality Assurance
QAIndia, 141
QC. See Quality Control
quality
activities, 260–263
assuring, as a distinct activity, 10–11
and common sense, 7
of construction, and UML, 41
defined, 4, 5, xxiv
of documentation, and UML, 42
elusive nature of, 268
emotional nature of, 4
essential ingredients of, 6
and estimates, 268
extreme, impact on productivity, 8
GUI design, 56
importance of standards. See standards
of management, vs. management of quality, 17–18
measures of, 282–283
and metamodels, 37–38
of models, syntax, semantics, and aesthetics, 44–45
as a moving target, 7
and objective effort, 7–8
quality (cont.)
pressures. See quality pressures priorties, 11
process. See quality process relationship with estimates, 268
of specification, and UML, 40–41
and staff experience, 103
tracking, 257–263
and UML, 34, 38–39
of UML, vs. quality by UML, 35–36
underlying motto of, 7
and usability, 54–56
of visualization, and UML, 39–40
quality analyst
check on process checks, 99
role in
inspections, 124
modeling spaces, 99
quality assurance, 224
quality management, 220
testing, 321
role, on team, 98
quality assurance
as different from quality control, 26
influence on testing, 305
package implementation projects, 60–61
responsibilities, 304–305
of software process
described, 49–50
quality of process, 50–52
techniques
goals, 44–45
quality models, 45–49
and testing, 26–27
quality assurance process-component.
See process-component for, quality assurance
quality comments on
business evaluation, 167–168
change management, 202–204
deployment, 213–214
enterprise architecture, 206–207
implementation, 194–196
interface modeling, 183–184
persistance design, 191–192
process configuration, 175–176
project management, 170–172
prototyping, 198–200
quality assurance, 226–227
quality control, 229–231
quality management, 222–223
requirements modeling, 179–181
reuse, 219–220
system architecture, 210–211
system design, 187–188
training, 216–217
quality context triangle, 15
quality control, 26, 304–305
quality control process-component. See
process-component for, quality control
quality environment
communication in, 104–105
crucial aspect of quality process, 151
defined, 101
described, 18–19, 80
e-factor and quality, 101–102
and quality management, 80
and soft issues, 102–104
and telecommuting, 105–106
quality game, key points, 69–70
quality levels
code, 16
data, 15
described, 14–15
management, 17–18
model, 16
process, 17
quality environment, 18–19
quality management. See also software quality
areas of responsibilities, 304–306
described, 80
distinct from project management, 83
focus of, 97
influence on testing, 305
need for independence, 97
nontechnical management, 80–82
process, 82–83
project management, 72, 83, 97
quality environment, 80
responsibilities of, 304
and testing, 304
quality management process-component. See process-component for, quality management
quality manager
focus on soft factors, 98
project manager, 98
quality environment, 18
quality topics, xxviii–xxix
ready-made processes, 239
role in
change management, 202
enterprise architecture, 205
interface modeling, 182
persistence design, 190
project management, 170
prototyping, 198
quality assurance, 224
quality control, 227
quality management, 220
reuse, 218
system architecture, 208
system design, 186
role, on team, 97
steering committee, 97
training in IIP approach, 252
quality models
aesthetics, 48–49
semantics, 47–48
syntax, 45–46
quality plan, 145, 220
quality pressures
budget, 12
functionality additions, 13
impact on quality efforts, 13–14
quality priorities, 11–12
time, 12
quality process
architecture, described, 151–152
as aspect of quality environment, 151
described, 24–25
increase in productivity, 25
independence, 24
levels of software process maturity, 50
necessary, sufficient, and malleable aspects, 82
normal development process, 25–26
as part of quality software process, 163
as part of the quality software process, 24
process-component. See process component, for individual components
software models, 24
the software process, 22–23
software process, 24
software product, 24
quality software process. See also software process
of baking example, 20
defined, 23
defining process, 19–20
as deliverable, 175, 221, 225
as distinct from software process, 162–163
enacting, 235–237
malleability, 164
maturity, 163–164
orthogonal process relationship, 21–22
quality assurance and testing, 26–27
and the quality process, 24–26
quality process, 163
rigor of, 163
and software development, 23–24
and the software process, 22–23
timings, 164
quality team, 97, 220
quality techniques
audits, 127–128
checklists, 128–129
described, 122–123
inspections, 124–125
interviews, 129–130
mapping among, 122
quality of process and models, 123
reviews, 125–127
quality techniques (cont.)
walkthroughs, 123–124
workshops, 131–133
quality topics
organizing workshops, xxx
and team roles, xxviii–xxix
questionnaires, for interviews, 129

R
random teams, 106, 107
Rational Unified Process
as off-the-shelf software, 23, 239
and quality assurance, 10
recording (audio). See tape recording
recruitment, focus on best fit, 109
regression testing, 310, 317
released product, as deliverable, 212
report design, and interface designer role, 91
report designer, role on team, 91
requirements modeling process-component. See process-component for, requirements modeling
response, system, 318
results validation, 336
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
reusability
aspects of test plan, 324
correlation with quality, 111
of expert knowledge and experience, 53
and the increase in productivity, 53
and object-orientation, 52–53
and people, 111–112
reward system, 111, 112
social issues, 103
staff experience, 103
and standards, 53–54
woven into process, 111
reusable entities, as deliverable, 219
reusable libraries, as deliverable, 194
reuse
plan, as deliverable, 187, 219
strategy, 209. See also project organizational plan
S
SAP, 60
scalability, 63–64, 318
scale of projects and application of UML, 64–65
schedules, affect of missed deadlines, 12
scope creep, 13, 120
scope of testing, 319–321
SDLC, types of, 241–242
security testing, 318
semantics, quality assurance checks, 44–45
senior management
games, 118
initial estimates, 283
initial iteration, 260
quality topics, xxviii–xxix
steering committee, 96
support for object-oriented techniques, 103
testing results, 341
time pressure, 12
shareability, of process elements, 253
short-term roles, 109
Siebel, 60
sitting arrangements, impact on team. See e-factors
slices, vertical and horizontal, 325
slicing testing approach, 307
small projects, characteristics, 65–67
sociological aspects
of baking example, 20
during major iteration, 280–281
measuring, 271–272
of object-oriented systems, 113
of a process, 153, 155
and quality, 81
and reviews, 126
of white box testing, 309
soft factors
legal issues, 103
often neglected, 147
and parallel team organization, 102
and reusability, 103
senior management support, 103
specific to UML-based projects, 102
staff experience, 103
soft issues. See soft factors
software
development lifecycle. See SDLC
failing due to sociological aspects, 9
incidents, 337, 339, 340
maintenance costs, 12
measurement. See measurements, of software
modeling, issues beyond, 80
modeling spaces, 29
nature of, 8–9
quality control. See testing
quality judged only by interface, 9
size, measurement of, 283–284
Software Engineering Institute, 138, 139
software engineering process. See also software process
buying off-the-shelf, 237–238
creating, 237–238
described, 237–241
and process engineer, 263
software process. See also quality software process; software engineering process
deployment, 249–252
development, 165
distinct from quality software process, 162–163
enacting, 253–256
in large projects, 68
maturity. See process maturity
as part of quality software process, 162
process-component. See process component, for individual components
quality of, 19
and the quality software process, 22–23
software quality
assuring, 10–11
defining, 4–7
elusiveness of, 4
software quality (cont.)
nature of software, 8–9
and objective effort, 7–8
solution space. See also model of the
solution space; team
organization, roles in solution
space
activities, 32
defined, 31–32
management activities, 31
organizing the roles, 89, 90
specification, and UML, 40–41
spiral-based SDLC, 241–242
sponsor
budget responsibility, 97
impact on project success, 97
and modeling, 28
role in business evaluation, 166
role in prototyping, 198
role on team, 97
and testing results, 341
and training in IIP approach, 252
staff, and reusability, 111–112
staff, and roles. See project
organizational plan
staff experience, 103, 319
standards
application, 54, 133–136
database, 135
as deliverable, 138, 221
deployment of, 137–138
industrial, 137
length of, 135, 137
levels, 134
modeling, 133–134
not perfect, but followed, 137
organizational, 136–137
process, 134–135
programming language. See
programming language,
standards
project, 136
purpose of, 137
quality, 135–136
quality aspects, 133
and reuse, 53–54
steering committee
impact on quality, 96
membership, 96
project manager, 96
quality manager, 97
role in business evaluation, 166
role on team, 96
and testing results, 341
strategy, testing. See testing, planning
stress testing. See performance
testing
structuring time, 117
sufficiency, 51, 143
Swiss army knife, 119
synchronous teams, 106–107, 116
syntax, 44–46
system architect
influence on reuse, 94
and quality topics, xxviii–xxix
role in
enterprise architecture, 205
package evaluation, 94
persistence design, 190
reuse, 218
system architecture, 208
role, on team, 94
system architecture
as deliverable, 206, 209
system architecture process-component. See process-component for, system
architecture
system design process-component. See
process-component for, system
design
system designer
desired experience, 90
as interface designer, 91
and quality topics, xxviii–xxix
role in
implementation, 192
reuse, 218
system architecture, 208
system design, 186
role, on team, 90–91
system functionality, 316
system operation, 317
system test, 316

T
TA. See transactional analysis
Tao, 5
tape recording, of interviews, 130
task element in a process, 159. See also activities and tasks
task plan. See project task plan
team organization
flattening, 109–111
importance of, 83–84
and reusability, 111
roles, common, 95–97
roles in
background space, 95
problem space, 85–89
solution space, 91–93
roles in background space, 94
roles on quality team, 97–100
teams
avoiding mediocrity, 109
best-fit approach to creation, 107
creating, 107–109
models, 106–107

technological aspects
of baking example, 20
measuring, 269
of a process, 152, 153
telecommuting, 105–106
telephone, 104, 130

test cases
defined, 328
as deliverable, 228
description, 328
designing, 328–329
format and content, 329–330
in Lucky Insurance project, 330–333
modifying, 334
verifying, 334

test data
augmented by previous results, 335
creating, 312
as deliverable, 228
risks of unavailability, 320

test design
as deliverable, 227
description, 325
different from test plan, 342
format and content, 327–328
sources of, 325–327
test harness. See test script
test manager, testing role, 321
test plan
as deliverable, 221, 227
described, 145–146
different from test design, 342
in planning process, 319
and project plan, 145
reusability aspects, 324
test scripts, 314, 316
test suites, execution of, 336–337
tester
and quality topics, xxviii–xxix
role in quality control, 227
role on team, 93, 100
testing role, 321
testing
analyzing risks, 319–321
approaches
boundary value, 307, 313
cyclic, 323
horizontal testing, 307, 311
introduced, 306–307
manual testing, 306, 309–310
need for, 342
on non-executables, 308
partitioning, 307, 312–313
slicing, 307, 311
visibility, 307
architecture
acceptance test, 316–317
component test, 315–316
described, 313–314
operational testing, 317
performance testing, 318
regression testing, 317
scalability testing, 318
security testing, 318
system testing, 316
unit testing, 314–315

INDEX
testing (cont.)
automated testing, 306
in context, 304–306
cycles, 323–324
database. See database, for test results
described, 303
in development environment, 322
environment
common requirements, 322
creating, 322
as deliverable, 228
physical, 320
execution
acceptance criteria, 335–336
analyzing results, 338–340
incident reports, 337
preparation, 334–335
recording test results, 338
reporting, 341
software incidents, 337–338
horizontal, 311
incidents, defined, 337
introduction, 304–306
limiting scope, 306
metrics, 287
organization of, 326
planning, 318–324
resources for, 321
results. See also software, incidents
categories, 337
as deliverable, 229
importance of saving, 316
recording and analyzing, 337–341
reporting, 341
reusability in, 324
risks, 319–321
schedules, 322–323
scope of, 319–321
as software quality control, 304–306
status of, 341
strategy. See testing, planning
test cases. See test cases
test design. See test design
test execution, 334–337
test plan. See test plan
test planning
analyzing risks, 319–321
described, 318–319
development environment, 322
reusability, 324
test cycles, 323–324
test environment, 321, 322
test plan, 319
test resources, 321
test schedules, 322–323
time and practice of, 303
time estimates, 322–323
timelines, 323
tools, 310
unit, 314–315
vertical, 311
when to start, 323
when to stop, 323, 338, 342
Thomas, D., 285
time
nonlinear, 12, 102, 281–282
as quality pressure, 12
TOOLS 2000, 28
training
materials, as deliverable, 216
and mentoring, 252
on object-oriented concepts, and testing risks, 319–320
training manager, role in training, 215
training plan, as deliverable, 216
training process-component. See process-component for, training
transactional analysis
games in a project, 117–118, 131
history of, 113–114
life positions, 116–117
managing multiple teams, 113
Parent, Adult, and Child ego states, 114–115
in software projects, 113–114
time and effort, 147
triangle, quality context, 15
Trueblood, Elton, 267
UML

advantages, 34
artifacts, measurement of, 286–287
common misunderstandings, 34
and communication, 34
diagrams
 measurement of, 286–287
 and modeling spaces, 42–44
 in practice, 43
 and respective models, 44
and documentation quality, 42
history of, 34–36
metamodels, 36–38, 156
models, measurement of, 286–287
and quality
 of construction, 41
 of documentation, 42
 and processes, 36
 of specification, 40–41
 of visualization, 39–40
separating from the process, 251
skills, need in testing, 320
in teaching object-orientation, 62–63
as a visual modeling language, 40
UML 2001, xxix
UML-based projects. See also projects
size, 63–69
types
 data warehouse/conversion, 62
 development, 58
 educational, 62–63
 integration (with legacy), 58–60
 outsourcing, 61–62
 package implementation, 60–61
 typical, 56–58
unit test, 314–315
unplanned, planning for, 283
upgrade/release strategy, as deliverable, 202
usability
 defined, 54
 and domain expert, 89
 great law of, 54–55
 inspections, 124–125
 lesser law of, 55
 principles of, 55
 problem space prototype, 89
 studies, 73
 of systems, and user input, 73
 testing, 342
use cases
 diagrams, measurement of, 286
 documentation, 308
 testing vs. class testing, 327
Use It or Lose It game, 119
user
 in acceptance testing, 316
 communication abilities, 86–87
 and core requirements, 86
 as distinct from end user, 87
 importance to quality, 100
 and model semantics, 48
 in reviews, 126
 role, as acceptance tester, 87
 role in
 deployment, 212
 interface modeling, 182
 project management, 170
 prototyping, 198
 providing quality, 86
 quality control, 227
 quality management, 220
 training, 215
 role, on team, 86, 100
 training in IIP approach, 252
 UML-literacy, 87
user domain, acceptance test, 316
user, end. See end user
user interface modeler, role in interface
 modeling, 182
user representative. See user
utopian teams. See synchronous teams

V
version control plan, as deliverable, 203
vertical testing, 307, 311
videos, as communication mechanism, 105
visibility testing approach, 307
visual models, 40
visualization, and UML, 39–40
volume testing. See performance
testing

W
walkthroughs
described, 123–124
of quality models, 47
use of checklists, 123–124
in white box testing, 308
wall of project area, as communication
mechanism, 105
waterfall-based SDLC, 241
website, as communication
mechanism, 104
weighting factors, 278, 285–286
“what” of a process. See technological
aspects
white box testing, 306, 308–309
white cloud, 71
whiteboard, use in workshops, 131
“who” of a process. See sociological
aspects
WIPRO, 141

Wohlin, C., 268
work ethics, and telecommuting, 106
workshops
consolidation at end, 133
controlling conversations, 132
described, 131–133
documentation of results, 133
equipment, 131
facilitator, 131
planning for, 131
play acting, 132
on quality topics, xxx
for reviews, 125
role in inspections, 124
as source of gaming, 131
technical vs. facilitator skills, 131
value of confusion in, 132

X
XP, as off-the-shelf software, 23

Y
Y2K cleanup, 42, 59
Yourdon, Ed, 235