
The following is an excerpt from Scott Meyers’ new book, Effective STL:
50 Specific Ways to Improve Your Use of the Standard Template
Library.

Item 16: Know how to pass vector and string data to
legacy APIs.

Since C++ was standardized in 1998, the C++ elite haven’t been terri-
bly subtle in their attempt to nudge programmers away from arrays
and towards vectors. They’ve been similarly overt in trying to get devel-
opers to shift from char* pointers to string objects. There are good rea-
sons for making these changes, including the elimination of common
programming errors (see Item 13) and the ability to take full advan-
tage of the power of the STL algorithms (see, e.g., Item 31).

Still, obstacles remain, and one of the most common is the existence
of legacy C APIs that traffic in arrays and char* pointers instead of vec-
tor and string objects. Such APIs will exist for a long time, so we must
make peace with them if we are to use the STL effectively.

Fortunately, it’s easy. If you have a vector v and you need to get a
pointer to the data in v that can be viewed as an array, just use &v[0].
For a string s, the corresponding incantation is simply s.c_str(). But
read on. As the fine print in advertising often points out, certain
restrictions apply.

Given

vector<int> v;

the expression v[0] yields a reference to the first element in the vector,
so &v[0] is a pointer to that first element. The elements in a vector are
constrained by the C++ Standard to be stored in contiguous memory,
just like an array, so if we wish to pass v to a C API that looks some-
thing like this,

void doSomething(const int* pInts, size_t numInts);

we can do it like this:

doSomething(&v[0], v.size());

Maybe. Probably. The only sticking point is if v is empty. If it is, v.size()
is zero, and &v[0] attempts to produce a pointer to something that
does not exist. Not good. Undefined results. A safer way to code the
call is this:

http://cseng.aw.com/book/0,3828,0201749629,00.html
http://cseng.aw.com/book/0,3828,0201749629,00.html

if (!v.empty()) {
doSomething(&v[0], v.size());

}

If you travel in the wrong circles, you may run across shady charac-
ters who will tell you that you can use v.begin() in place of &v[0],
because (these loathsome creatures will tell you) begin returns an iter-
ator into the vector, and for vectors, iterators are really pointers. That’s
often true, but as Item 50 reveals, it’s not always true, and you should
never rely on it. The return type of begin is an iterator, not a pointer,
and you should never use begin when you need to get a pointer to the
data in a vector. If you’re determined to type v.begin() for some reason,
type &*v.begin(), because that will yield the same pointer as &v[0],
though it’s more work for you as a typist and more obscure for people
trying to make sense of your code. Frankly, if you’re hanging out with
people who tell you to use v.begin() instead of &v[0], you need to
rethink your social circle.

The approach to getting a pointer to container data that works for vec-
tors isn’t reliable for strings, because (1) the data for strings are not
guaranteed to be stored in contiguous memory, and (2) the internal
representation of a string is not guaranteed to end with a null charac-
ter. This explains the existence of the string member function c_str,
which returns a pointer to the value of the string in a form designed
for C. We can thus pass a string s to this function,

void doSomething(const char *pString);

like this:

doSomething(s.c_str());

This works even if the string is of length zero. In that case, c_str will
return a pointer to a null character. It also works if the string has
embedded nulls. If it does, however, doSomething is likely to interpret
the first embedded null as the end of the string. string objects don’t
care if they contain null characters, but char*-based C APIs do.

Look again at the doSomething declarations:

void doSomething(const int* pInts, size_t numInts);

void doSomething(const char *pString);

In both cases, the pointers being passed are pointers to const. The vec-
tor or string data are being passed to an API that will read it, not mod-
ify it. This is by far the safest thing to do. For strings, it’s the only thing
to do, because there is no guarantee that c_str yields a pointer to the
internal representation of the string data; it could return a pointer to
an unmodifiable copy of the string’s data, one that’s correctly format-

ted for a C API. (If this makes the efficiency hairs on the back of your
neck rise up in alarm, rest assured that the alarm is probably false. I
don’t know of any contemporary library implementation that takes
advantage of this latitude.)

For a vector, you have a little more flexibility. If you pass v to a C API
that modifies v’s elements, that’s typically okay, but the called routine
must not attempt to change the number of elements in the vector. For
example, it must not try to “create” new elements in a vector’s unused
capacity. If it does, v will become internally inconsistent, because it
won’t know its correct size any longer. v.size() will yield incorrect
results. And if the called routine attempts to add data to a vector
whose size and capacity (see Item 14) are the same, truly horrible
things could happen. I don’t even want to contemplate them. They’re
just too awful.

Did you notice my use of the word “typically” in the phrase “that’s typ-
ically okay” in the preceding paragraph? Of course you did. Some vec-
tors have extra constraints on their data, and if you pass a vector to
an API that modifies the vector’s data, you must ensure that the addi-
tional constraints continue to be satisfied. For example, Item 23
explains how sorted vectors can often be a viable alternative to asso-
ciative containers, but it’s important for such vectors to remain
sorted. If you pass a sorted vector to an API that may modify the vec-
tor’s data, you’ll need to take into account that the vector may no
longer be sorted after the call has returned.

If you have a vector that you’d like to initialize with elements from a C
API, you can take advantage of the underlying layout compatibility of
vectors and arrays by passing to the API the storage for the vector’s
elements:

// C API: this function takes a pointer to an array of at most arraySize
// doubles and writes data to it. It returns the number of doubles written,
// which is never more than maxNumDoubles.
size_t fillArray(double *pArray, size_t arraySize);

vector<double> vd(maxNumDoubles); // create a vector whose
// size is maxNumDoubles

vd.resize(fillArray(&vd[0], vd.size())); // have fillArray write data
// into vd, then resize vd
// to the number of
// elements fillArray wrote

This technique works only for vectors, because only vectors are guar-
anteed to have the same underlying memory layout as arrays. If you
want to initialize a string with data from a C API, however, you can do

it easily enough. Just have the API put the data into a vector<char>,
then copy the data from the vector to the string:

// C API: this function takes a pointer to an array of at most arraySize
// chars and writes data to it. It returns the number of chars written,
// which is never more than maxNumChars.
size_t fillString(char *pArray, size_t arraySize);

vector<char> vc(maxNumChars); // create a vector whose
// size is maxNumChars

size_t charsWritten = fillString(&vc[0], vc.size()); // have fillString write
// into vc

string s(vc.begin(), vc.begin()+charsWritten); // copy data from vc to s
// via range constructor
// (see Item 5)

In fact, the idea of having a C API put data into a vector and then copy-
ing the data into the STL container you really want it in always works:

size_t fillArray(double *pArray, size_t arraySize); // as above

vector<double> vd(maxNumDoubles); // also as above
vd.resize(fillArray(&vd[0], vd.size());

deque<double> d(vd.begin(), vd.end()); // copy data into
// deque

list<double> l(vd.begin(), vd.end()); // copy data into list

set<double> s(vd.begin(), vd.end()); // copy data into set

Furthermore, this hints at how STL containers other than vector or
string can pass their data to C APIs. Just copy each container’s data
into a vector, then pass it to the API:

void doSomething(const int* pInts, size_t numInts); // C API (from above)

set<int> intSet; // set that will hold
... // data to pass to API

vector<int> v(intSet.begin(), intSet.end()); // copy set data into
// a vector

if (!v.empty()) doSomething(&v[0], v.size()); // pass the data to
// the API

You could copy the data into an array, too, then pass the array to the
C API, but why would you want to? Unless you know the size of the
container during compilation, you’d have to allocate the array dynam-
ically, and Item 13 explains why you should prefer vectors to dynami-
cally allocated arrays anyway.

