A
about capability, in RDF, 305–307
aboutness, in knowledge organization, 403–404, 434
A-Box, in description logics, 117
academic discussion threads, indexing of, 439
academic resources, organization of, with K0xTM, 445
AC arcs, in dRM, 58
active database systems, influence of expert systems on, 116
Adams, Douglas, 1n
addressable information resource. See resource(s)
addressing, in topic map standards and specifications, 25–26
advertising, on Internet, interchange structure of, 47
aggregation, in RDF, 316–319
aggregation systems, definition of, 167n
algorithm development, in logic programming, 118
Alt container, in RDF, 303–305
AM arc, in TMPM4, 57–58
ambiguity
in subject identity, 68
in topic maps, 18
Animalia kingdom, 152–155
phyla of, 153, 153f
Animalia topic, construction of, 159–160, 161f
Animalia topic map, construction of, 156–157, 158f
AnimaliaTopicMap topic, construction of, 159, 160f
animals, definition of, 152–153
annotated bibliographies, interactive, topic maps for, 446
a-nodes (association nodes), 29
in TMPM4, 57
AP arcs, in dRM, 58
application(s)
in dRM, 57
for information interpretation, 17
for markup, sequential, 46
in TMP3, 229–230
architecture of, 230–231, 231f
extension of, 243–244
processing function of, 231–232
and topic maps, independence of, 18
for topic maps (See topic map applications)
algorithm development, in logic programming in
artificial intelligence
expert systems and, effect on, 113
information repurposing with, xxi
logic programming
application programming interface (API)
DOM as, 46–47
in TM4J, 211–213
advanced features of, 223–225
basic features of, 213–218
vs. topic map interchange systems, 47
applied knowledge organization, purpose of, 401
arc(s)
in dRM, 57–58
in TMPM4, 57
in topic map processing, 29
architectural forms
vs. DTD, 53
in ISO 13250, 26, 39
ART-Enterprise (Brightware), 112
artificial intelligence
expert systems and, effect on, 113
information repurposing with, xxi
logic programming
AS arc, in TMPM4, 57
assertion(s). See also association(s)
vs. association, 59
components of, 58, 58f
definition of, 53, 57
in dRM, 59f
typing mechanism in, 60–62, 61f
assertionPattern-role-
rolePlayerConstraints
assertion type, 58–59
assertion types, 58–59
semantics of, privileging, 62
association(s), 88–90. See also
assertion(s)
as a-nodes in topic map graph, 29
vs. assertion, 59
class-instance relationship as, 364–365
in concept map, 4, 4f
control over, 93
creation of, in SemanText, 206, 206f
in CTW generation, 169
defining, 19
definition of, 19, 532
in early drafts of ISO13250
standard, 38
enumeration of, in TM4J, 216
ID generation for, in TM4J, 216
inferring, 352
instances of, in knowledge
representation example, 359
in knowledge organization use
case, 426
querying and displaying, 195–197
in RDF, 301–303, 305–307
resolving, and a-nodes, 29
roleSpec in, 90
in semantic networks, 338–339
sitemap controlled by, 195–196
source of, scope for indicating, 175
superclass-subclass
relationship as, 363–364
for TMP3
creation of, 240–242
defining, 228, 229f
visualization of, 269
in XTM specification, 54
association classes
constraints on, 375–377
PSIs for, 361, 361r
association member role,
definition of, 532
associationMembership handler,
in GooseWorks Toolkit, 262
association properties
in knowledge representation, 359, 365–366
for semantic networks, 332–333
association role classes, PSIs for,
361, 361r
associationScoping handler,
in GooseWorks Toolkit, 262
association template, definition
of, 532
associationTemplating handler,
in GooseWorks Toolkit, 262
association types. See also
instanceOf
definition of, 532
in knowledge representation
example, 358
in semantic networks, 334–335
assumptions, within book, xxii
AT&T/Lucent, CLASSIC, 111
attributes, vs. element types, 27
attitude, topic maps, 48–50
authority, in PSIs, 75, 76
Automated Domain Analysis,
topic maps for, 446
avatars, in visualizations, 279,
279f
AX arc, in TMPM4, 57
axiomatic systems, in ontological
engineering, 122
B
BACK, 117
back-end layer, of XSLT style
sheets in CTW, 182
backward chaining, in expert
systems, 114
bag structure, in RDF, 303–305,
309–311
base name, 84–85
in CTW generation, 169,
184
definition of, 533
querying and displaying, in
CTW framework,
190–191
and scope, 87–88
baseNameString, 84–85
base name topic, definition of,
532
Berkeley, Mercury Prolog, 118
Berners-Lee, Tim, World Wide
Web design of, 39
bibliographic databases, topic
maps in, 449–452, 450f,
451f
bibliographies, annotated,
interactive, topic maps
for, 446
Biezunski’s Principle, 38–39
binary relations, in semantic
networks, 329–330
Bosak, Jon, on money as
document, 33
boundaries, foundational
theories for, ontological,
119
bounded object sets, in HyTime
addressing, 26
Bravo (Global Wisdom), 65
Brightware, ART-Enterprise,
112
business category brokering, topic maps for, 446

C
canonical syntax, constructs for, documentation for, 62
CApH (Conventions for the Application of HyTime), 38
categories
knowledge as, 399
in knowledge organization, 395, 397, 404–405
sound design of, 432–433
theory of, 398
C code, in logic programming, 118
central concept, in Semantic Web, 481, 481f
channels, use of, 188
CHIP, 118
Chordata phylum, 154, 154f
chunking, 499
city metaphor, for visualizations, 279–280, 280f, 281f
civilization, global knowledge interchange and, importance of, 48
class
definition of, 92, 533
vs. instance, 334
as instance of other classes, 189–190
PSIs, 361, 361t
class hierarchies
constraints on, 379–380
in knowledge representation, 359, 362–365
CLASSIC (AT&T/Lucent), 111, 117
classification, history of, 150
class-instance relationship
definition of, 533
in knowledge representation, 362
as association, 364–365
PSIs for, 364t
CLIPS (NASA), 112
Cogitative Topic Map Websites framework. See CTW framework
collocation, of subjects, in knowledge organization, 403–404
communication
changes in style of, 478
symbolic nature of, 43–44, 48–49
communities
KOS construction in, 431–432
PSIs in, 75–76
complexity, in standards, and simplicity, relation of, 24
compositional modeling, for ontology encoding, 120
Computational Logic, Inc., 111
concept(s)
in knowledge organization, 395, 397, 405
understanding, and learning, 496–498
concept map
in education, 519–520
history of, 485–486
as topic map, 3–4, 4f, 442–443
XTM document for, 5–7
conceptual graphs, history of, 486
conceptualization, definition of, 124
conceptual model, as ontology, 125, 126f
concurrent constraint logic programming, 118
connectivity, in Semantic Web, 482–483, 483f
constraint(s)
on class hierarchies, 379–380
in knowledge representation, 359, 373–374
example of, 375–379
PSIs for, 375f
in topic maps, 339–340
constraint patterns, for knowledge representation, 374–375
constraint programming, 117–119
companies in, 111
in Web-based technologies, 119
constraints and queries layer, of road map of forthcoming ISO topic maps standards, 63–64
constructivist learning
collaboration in, 518, 519f
dominance of, 486
environments for, 514–515, 516f
principles of, 513–514
in Semantic Web, 512–513
theory of, 495, 513
topic maps in, 13, 14–15
constructivist viewpoint, of subject identity, 68
contexts/microtheories method, for ontology encoding, 120
Conventions for the Application of HyTime (CApH), 38
conversation
subject emergence through, 68–69
subjects of
addressability of, 49
and symbolic communication, 43–44, 49, 78
Converter modules, in TMP3, 230
CR arcs, in dRM, 58
critical thinking
definition of, 512
structure of, 517, 517f
CTW (Cogitative Topic Map Websites) framework
collection in, 169, 172–173
content in, as structured cognitive system, 169
design in, 169
CTW (cont.)
layers of, 168
maintaining source code with, 168–169
merging in, 174
resolution levels in, 188
source code generated with, for Web sites, 171–173, 177–178, 179f
Cy arc, in dRM, 58
CyberDewey, 417–419
cybernetic knowledge mapping, history of, 485
Cyc (Cycorp), 111, 119

D
DARPA, Knowledge Sharing Effort, 120
DARPA Agent Markup Language (DAML), 22, 120, 124
for knowledge organization semantics, 415
data
annotation of, for computer-assisted interpretation, 107
definition of, 104
and documents, relation of, 22
and knowledge, relation of, 105
vs. metadata, 40
subject-centric view of, 42–45
use of term, 104
database(s)
relationships in, 125
vs. topic maps, 17–18
database(s), deductive, logic programming in, 118
database(s), relational
as documents, 46
information of, on Internet, 106
purpose of, 106
SQL in, 250–251
database systems, active, expert systems and, influence on, 116
data models, vs. ontologies, 125
Davenport Group, in topic maps history, 37
declarative domain knowledge, encoding of, 119–120, 122
deductive databases, logic programming in, 118
deep knowledge management, 107
description in knowledge organization, 396
in RDF, 286, 286f
description logics, 116–117
deserialization, definition of, 533
Dewey Decimal Classification, mapping to Library of Congress Subject Headings, 419–422, 420t, 421t
dimensions of knowledge, 400–401
display names (ISO), 20
vs. variant names, 27, 54
diversity, in topic maps paradigm, 48
DOCTYPE line, in topic maps, 98
document(s)
connotation of term, 46
and data, relation of, 22
money as, 33
relational databases as, 46
document() function, use of, 193–194
Document Object Model (DOM), disadvantages of, 46–47
document type definition. See DTD
DOM. See Document Object Model
domain(s), Linnaean, 152n, 154, 154f
domain theory
encoding of, 122
logical, as ontology, 125, 126f
in ontologies, 122
DOMXIncluder, 194
draft Reference Model. See dRM
drill-down topic maps, 12, 155, 157f
dRM (draft Reference Model).
See also RM
arc types in, 58
assertion types in, 58–59
patterns for, 60–62, 61f
assertion vs. association in, 59
compliance with, in GooseWorks Toolkit, 263
construction rules for, 58
in GooseWorks Toolkit, 260–265
implementation of, traversing, 59–60, 59f
querying of, in GooseWorks Toolkit, 264–265
role player constraints in, 62
serialization of, syntaxes for, 262–263
TMPM4 superseded by, 57
DTD (document type definition)
vs. SGML architectures, 53
in syntax layer, in road map of forthcoming ISO topic map standards, 62
for XTM specification, 26, 55
mapping of, to TM4J interfaces, 213, 214t
dual coding, 499
Dublin Core, 23
metadata items from, in RDF, 307–308, 321–325, 410–411
dynamic visuals, language transmitted through, 480
knowledge representation tools based on, 111
rules in, 114
semantic networks for modeling, 329
single-level nature of, 113, 122
explicit referencing constraint on, in STWOL, 181
in XTM, 28–29

F
facet(s)
creation of, in SemanText, 206, 207f
in early drafts of ISO 13250 standard, 38
in knowledge organization use case, 427
vs. RDF, 293
and XTM specification, lack of, 29, 54
facet analysis, in knowledge organization, 398, 405–406
family tree
as RDF illustration, 283–284, 283f
in semantic network, 481–482, 482f
topic map from, 327, 327f
filtering. See also facet(s)
of information, on Web, 41
finding aids, for information location, 17
five kingdoms, Linnaean, 150, 151–152, 152t
FiveKingdoms topic map, construction of, 156–157, 158f
f-logic, in On2broker and Ontobroker, 124
formal languages. See also semantic(s)
computing, 34–35
in knowledge representation, 109–110

G
generic markup. See SGML
Gensym, G2, 112
global knowledge interchange abstractions of, 32
SGML and, 36
importance of, in civilization, 48
increased understanding of, 49
infoglut and, problem of, 49
technological contributions to, 49
XML and, 36
XTM for, 10–11
Global Wisdom, Bravo, 65
glyphs, in interpretation, 105
GML, 36. See also SGML
GooseWorks Toolkit, 260–265
 current tools of, 265
design of, 261–262
ISO 13250 compliance in, 263
 and other software, comparison of, 200
serialization of dRM in,
syntaxes for, 262–263
use cases for, 263
Gowan’s Knowledge, 517, 517f
Graph. See RM
Graphic Communications
 Association Research Institute (GCARI),
 CapH hosted by, 38
graphic frame, in Semantic Web,
temporal relations in, 481, 482f
GraphMaker, 247f
 in Nexist development, 245
 use cases for, 246–247
graph visualization, 271–275
GraphVisualizer 3D (Nvision), 274, 275f
grove
 definition of, 201n
 implementation of, in SemanText, 209

H
hacking software, 13
hermeneutics
 and knowledge, 399
 in knowledge organization, 397
High Performance Knowledge
 Base (HPKB) Project, 120, 121
HTML (Hypertext Markup
 Language)
 rendering of,
in CTW generation, 169
 sequential nature of, 46
SGML in, 35
topic map elements rendered
 in, 173, 173f
XML transformation to, 7
 from XSLT style sheets, 184
topic-specific, 184–186,
 187f
HTML editors, vs. topic maps,
 for Web site maintenance,
 170, 170f
HTML links, as topics, 19–20
HTTP (Hypertext Transport
 Protocol), formal
language in, 35n
humans
 languages of, development of,
 478–479
 in Linnaean system, 150, 151f
 stupidity of, 1
hybrid information, management
 of, 36–37
hyperbolic geometry, for
 visualization, 273, 274f
hyperedge, in TMPM4, 58
HypersonicSQL, in Nexist
database engine, 245,
 249–251
Hypertext Transport Protocol
 (HTTP), formal language
in, 35n
HyTime
 inheritance in, 26
 in ISO 13250 addressing,
 25–26
 links in, 27
 for master indexes, 38
 origin of, 45n
HyTM. See ISO 13250

I
IBIS, 517–519
 implementation of, 521–525,
 522f
 with topic maps, 523–525,
 523f, 524f, 525f
 with XML, 523–525
ID
 generation of, in TM4J, 216
 in knowledge organization use
 case, 427
 in Nexist, 259, 260f
 for TMP3, 228, 229f, 243
 in topic, 84
 requirements for, 84
ID property, in TM4J, in
 TopicMapObject
 interface, 214
IFF (Information Flow
 Framework), 124
ILOG, 111
implicit topics, creation of, in
 TM4J, 220–221
indexes, master, maintenance of,
 37–38
indexing
 back-of-the-book, classification in,
 419
 frame-based, 407–408
 interpretive nature of,
 402–403
 KOxTM use cases in, 439–441
 relational, 407–408
 semantic markup in, 412–414
 views-based, 408, 423–424
inference rules
 developing, in SemanText,
 208–209, 209f
 in knowledge representation,
 359, 366–367
 example of, 367–373
 relevance in, 434
 in semantic networks, 343–352
infoglut, problem of, 40, 49
information
 accessing, dimensions of, 17
 categorization of, conflicts in,
 42
 definition of, 105
 general interest, PSIs and,
 usefulness of, 76–77
 hiding, imperative of, 41
 hybrid, management of, 36–37
 locating, finding aids for, 17
 money as, 33
 and reality, relation of, 32–34,
 42–45
 styling of, in CTW, 172
 use of term, 104
information continuum. See interpretation continuum
information economy, 33
information exchange, within communities, PSIs for, 75–76
Information Flow Framework (IFF), 124
information overlays. See topic map(s)
information presentation approaches to, simplicity vs. complexity, 24
topic maps for, 17
information repurposing, with artificial intelligence, xx
information resource(s) as subject, 44
as surrogate for reality, 44–45
Information Retrieval System (IRS)
function of, 403
knowledge organization in, 397
information structure, 34
vs. interchange structure in DOM, 45–46
in topic maps, 47, 49
requirements for, conflicting, 46
information structuring, 22.
See also structured information; Web navigation
metadata for, 22–23
topic maps for, 23
Information Systems Institute/University of Southern California
LOOM, 111
PowerLOOM, 111
inheritance hierarchies, semantic networks for modeling, 329
inheritance mechanism, in ISO 13250, 26
initialization function, in TMP3 classes, 232–236
inquiry, in XTM specification, 11
instance(s) vs. class, 334
in knowledge representation example, 358–359
in several classes, 182, 188
in XSLT templates, 190
instanceOf, 27, 90–93
instance topic, definition of, 534
IntelliCorp, KEE, 112
interchange structure, vs. information structure in DOM, 45–46
in topic maps, 47, 49
interchange syntax, definition of, 534
interpretation. See also semantic(s)
automation of, 106–107
computer-assisted, 107
and databases, relation of, 106
definition of, 105
knowledge as, 104
in knowledge organization structures, 402–403
interpretation continuum, 104, 105f
annotated, 107, 108f
structured information in, 104
intuition, in symbolic communication, 44
IRS (Information Retrieval System)
function of, 403
knowledge organization in, 397
ISO 10744. See HyTime
ISO 13250 (topic maps standard), 11
addressing in, 25–26
architectural forms in, 26
definition of, 39
development of, 25, 38–39
disabilities of, 53
layered approach of standards development process, 51, 52f
names in, 20
seminal character of, 51, 52f
simplification of, 23, 24f
syntax of, 39
vs. XTM specification, 53–54
ISO topic maps standards (forthcoming)
layers in road map of, 55
relationships among, 55, 56f
J
Java APIs, in TM4J, 211
advanced features of, 223–225
basic features of, 213–218
Java packages, in TM4J, 211–213
Jext, 246f
in Nexist development, 245
use cases for, 246–247
K
KEE (IntelliCorp), 112
key() function, in XSLT, 194–195, 196
KIF (Knowledge Interchange Format), 120
kingdoms, Linnaean, 150, 151–152, 152f
KL-ONE, 116–117
for knowledge organization semantics, 415
knowledge component-based languages for, 120
for ontology encoding, 120
and data, relation of, 105
definition of, 104, 398–399, 507
dimensions of, 400–401
and hermeneutics, 399
as interpretation, 104
knowledge (cont.)
sharing of, techniques for, for component-based knowledge representation, 120
use of term, 104
knowledge acquisition tools, domain-specific, ontological engineering as basis for, 121
knowledge assets, federation of, and evolution of, 50
knowledge availability, 49
knowledge bases
definition of, 112
existing, topic maps for, 171
intermediate, for Web site maintenance, 170, 171f
knowledge bottleneck, in expert systems, 115
knowledge construction, within communities, PSIs for, 75–76
knowledge engineering
definition of, 112
issues in, 113
questions for, 112
research threads in, 123, 123f
XML topic maps in, 12
knowledge fusion, definition of, 110–111
Knowledge Interchange Format (KIF), 120
knowledge languages, for component-based knowledge representation, 120
knowledge management
definition of, 107
semantic interpretation in, 110
topic maps for, 353–354
vs. HTML editors, 170, 171f
XTM as API for, 252
Knowledge Manager (Mondeca), 64
knowledge mapping, history of, 485–487
knowledge networks
in KOxTM use case, 425–426
semantic interoperability in, 387–388
topic maps for management of, 17–18
knowledge organization (KO), 389–390
abbreviations in, 474–476
aboutness in, 403–404
applied, purpose of, 401
categories in, 395, 397, 404–405
theory of, 398
collocation in, of subjects, 403–404
concepts in, 395, 397, 405
texture-dependency of, 400–401
definition of, 385, 392–393
facets in, 398, 405–406
formal semantics in, 414–416
frame-based indexing in, 407–408, 422
functional equivalence in, 403–404
history of, 391
inquiry aided by, 386
in IRSs, 397
and knowledge representation, relation of, 412–414
knowledge structures in, 385–386, 399
metadata in, 410–412
and ontological engineering, 408–410
ontologies in, 408–410
postmodern theory of, 399–400
principles of, 389–390, 397–398
problems in, 390–391, 397–398
in PSI architecture, 387
purpose of, 384, 385–386, 393–394
relational indexing in, 407–408, 422
relations in, 395, 397, 406–407
relevance in, 403–404
resources on, topic map of, 447–448
semantic interoperability in, 416–417
semantic retrieval in, 395, 408
sound design of, 432–433
theory of, 394–395
and topic maps
future of, 449–452
impediments to adoption of, 428–430
merging in, 436–438
overlap between (KOxTM), 384–385, 386–391
potential value of, 427–428
recurring challenges in, 430–438
relation of, 386
uses of, 439–447
as topic map use case, 424–438
views-based indexing in, 408
knowledge organization systems (KOS), 387. See also ontology(ies)
construction of, within communities, 431–432
decentralized, 438
elements of, mapping between, 419–422, 420f
export of, to topic maps, 433, 441–442
form of, 401
quality assurance for, 389–390
registry for, for metadata usage, 410–412
semantic markup in, 412–414
vs. topic maps, 428
universal, 401–402
vs. domains, 431–432
for internet resources, 417–419
knowledge repositories
multiview indexing of, 440
topic maps in, 443–444
knowledge representation (KR)
association properties in, 365–366
basic concepts of, 359–360
class hierarchies in, 362–365
class-instance relationship in, as association, 364–365
constraint patterns for, 374–375
constraints in, 374–375
example of, 375–379
PSIs for, 375t
design issues in, 111–112
example of, 357–359
general issues in, 110–111
inference rules in, 366–367
example of, 367–373
PSIs for, 373t
and knowledge organization, relation of, 412–414
levels of, classification of, 109–110, 110t
questions for, 109
research threads in, 123, 123t
semantic interoperability in, 388
software for, 111, 127
superclass-subclass relationship in, as association, 363–364
in topic maps, 507, 520
topic map templates in, 360–362
Knowledge Sharing Effort
(DARPA), 120
knowledge structures
in knowledge organization, 385–386, 397, 399
semantic interoperability in, 388
Knowledge Suite (Ontopia), 64
knowledge technologies, premise of, 119
knowledge web, topic maps as, 477
KO. See knowledge organization (KO)
 Kontext semantic network, 443
KOS. See knowledge organization systems
KOxTM. See knowledge organization (KO), and topic maps
KR. See knowledge representation
Krypton, 117
L
game. See formal languages; natural language
layout layer, of XSLT style sheets in CTW, 182–187
legal evidence, topic maps for, 447
Leggewie, Claus, 450, 450f, 451f
Library of Congress Subject Headings, mapping to Dewey Decimal Classification, 419–422, 420t, 421t
LIFE, 118
life sciences, topic map of, purpose of, 149
likeness. See functional equivalence
link(s), in semantic networks, 328, 328f
link information, management of, with topic maps, 19–20
Linnaean system of classification, kingdoms in, 150
Linnaeus, Carlous, classification system of, 150
Linux, open source status of, 200
liquids, foundational theories for, ontological, 119
literature, vs. science, xxi
logical domain theory, as ontology, 125, 126f
logic programming, 117–119
in artificial intelligence field, 117–118
C code in, 118
in database technology, 118
multiparadigm languages for, 118
synthesis languages for, 118
systems for, 111
WAM-based, 118
in Web-based technologies, 119
LOOM (Information Systems Institute/University of Southern California), 111, 117
Lucid Fried Eggs, 202
M
M.4 (Teknowledge), 112
magazines, indexing for, 440
MAK (Mind Map and Knowledge Management), 201, 201f
map(s)
vs. territory, 2
usefulness of, 2
Mapper modules, in TMP3, 230
map visualization, 275–278
markup applications, sequential, 46
master indexes, maintenance of, 37–38
MDF (metadata processing framework), 230
member, 89–90
control over, 93
Mercury Prolog (Berkeley), 118
mereotopology, foundational theories for, ontological, 119
mergeMap, 93–97
merging. See also name-based merging rule; subject-based merging rule
benefit of, 96
of CTW-based Web sites, 174
definition of, 534
of ontologies, 120, 130
processing in, 47
in topic maps, and knowledge organization, 436–438
of topic maps, 20–21
in SemanText, 207
of topics
with scopes, 20–21
in TM4J, 223–224
metadata
vs. data, 40
decentralized, 438
description of, need for, 50
from Dublin Core, in RDF, 307–308, 321–325, 410–411
maintenance of, 171
in ontologies, 122
and Platonic forms, 42
resource-centric view of, 43, 49
from SGML, 36
structure of, RDF for, 284–285
for Web navigation, 22–23
metadata processing framework (MDF), 230
metalevel dialogue, subject emergence through, 68–69
metaproperties, foundational theories for, ontological, 120
Mind Map and Knowledge Management, MAK, 201, 201f
modeling layer, of road map for forthcoming ISO topic maps standards, 55. See also RM; SAM
modules, in metadata processing framework, 230
Mondeca
Knowledge Manager, 64
Topic Navigator, 270, 272f
money
as document, 33
as information class, 33
multiparadigm languages, for logic programming, 118
multivalued properties, in TM4J, 227
music, abstract representation of, 45–46
MYCIN, 114
N
naïve viewpoint, of subject identity, 67–68
name(s)
absence of, 19–20
in CTW generation, 169
merging, and knowledge organization, 436–438
number of, 19–20
vs. PSIs, for subject identity, 74
name-based merging rule, 21
definition of, 541
mergeMap in, 95
and subject-based merging, interaction of, 96–97
in TM4J, 223
namespaces
declaration of, in XSLT, 186–187
definition of, 21, 541
in RDF, 288–290, 289f, 290f
in topicMap, 98
naming constraint, topic, definition of, 541
NASA, CLIPS, 112
natural language, 478–479
in knowledge representation, 109–110
marked-up, 45n
structure of, 34
in topic maps, scope for, 82
transmission of, 479–480
natural language generated (NLG) text fragments, 173n
natural language input interface, in SemanText, 210
navigation requirement, for visualization, 268, 269–270
in graphs and trees, 273–275
in virtual worlds, 280
network address handling, in TM4J, 218
Newcomb, Peter J., and Victoria T. Newcomb, Whataburger model for topic maps by, 38
Nexist
design requirements for, 249
development of, 245
eye early stages of, 248f
future plans for, use cases for, 249
HypersonicSQL in, 245
and other software, comparison of, 200
persistent storage in, 245
use cases for, 248
SemanText in, 245
use cases for, 245–249
user interface for, 254–259
Web site address for, xxii
XTM specification in, use cases for, 248
NicheWorks, for visualization, 275, 276f
NLG (natural language generated) text fragments, 173n
node(s)
in dRM, 57
in semantic networks, 328, 328f
in topic map processing, 29
nonaddressable subject, definition of, 535
notations, in interpretation, 105
Nvision, GraphVisualizer 3D, 274, 275f

O
OASIS (Organization for the Advancement of Structured Information Standards), 55
occurrence(s), 84–85
collection of, 160, 161f, 162f, 163, 163f
creation of
in Nexist, 257–259, 259f
in SemanText, 206, 207f
in CTW generation, 169, 186
definition of, 18, 535
quering and displaying, 192–195
role types for
formatting for, 192
in knowledge organization use case, 426
for TMP3, creation of, 240–242
of topic characteristics, 188–189
occurrence classes
in knowledge representation example, 358
PSIs for, 361, 361t
occurrence type, definition of, 535
OIL (Ontology Inference Layer), 120–121, 124
for knowledge organization semantics, 415
OKBC (Open Knowledge Base Connectivity) language, 120
Open Knowledge Systems series, purpose of, xxii
open source software about, 199–200
for topic maps, 13
OPS5, 114
order-sorted unification, in logic programming, 118
Organization for the Advancement of Structured Information Standards (OASIS), 55
Oz, 118

P
parallel constraint logic programming, 118
parallel logic programming, 118
parameters element type, 98
PARKA (University of Maryland), 111
PARLOG, 118
patterns, for typing assertions, in dRM, 60–62, 61f
Performance semantic network, 443–444
persistent storage
 in Nexist, 245, 249–251
 and SQL, 250–251
 use cases for, 248
in TM4J, 211, 212
persistent XTM engine, in Nexist, 249–251, 252f, 253f
phyla
 of Animalia kingdom, 153, 153t
 number of, 152
physical objects, foundational theories for, ontological, 119
PITs (Populated Information Terrains), for visualization, 279, 279f
“planet”
 meaning of, 69–73, 70f, 71f, 73f
 PSI for, 77–78, 78f
Planet 9 Studios, visualization developed by, 279, 280f
Platonic forms, and metadata, 42
polynomial, definition of, 150n
Populated Information Terrains (PITs), for visualization, 279, 279f
PowerLOOM (Information Systems Institute/University of Southern California), 111
presentation layer, of XSLT style sheets in CTW, 182
principled knowledge organization, 389–390
printing, language transmitted through, 479–480
problem-solving methods, encoding of, 119
procedural markup, vs. generic markup, 36
processing model, for XTM specification, 29
Producer modules, in TMP3, 230
programming modules, repository for, indexing of, 439
Prolog, 117–118
properties, foundational theories for, ontological, 120
property change listeners, in TM4J, 225–227, 225t–226t
property types, in RDF, 285
 disambiguating, 288–290, 289f, 290f
Protégé-2000 (Stanford University Medical Informatics Laboratory), 111, 121, 127
pseudodescriptors, in knowledge organization, 396
PSIs (Published Subject Indicators)
 best practices for, development of, 55
 changing nature of, 77–78
 context for, necessity of, 76–77
 definition of, 73, 535
 for inference rules, in semantic networks, 343
 for inquiry disambiguation, 11
 knowledge organization applied to, 387
 in knowledge representation, 360
 for classes, 361, 361t
 for class-instance relationship, 364t
 for constraints, 375t
 for inference rules, 373t
 for superclass-subclass relationship, 363, 363t
 for transitive relationships, 365t
 vs. names, for subject identity, 74
 in Nexist, 256, 258f
for nonaddressable subjects, 49
quality requirements for, 75
registries for, 441–442, 449
ontology-bound, 433
semantics assigned from, 331–332
in TMP3, subjects defined by, 236–240
for topic maps, Web address for, 77
for TopicMap topic, 158, 159f
updating, 88
and variant names, relation of, 54
Published Subject Indicators. See PSIs
published subjects
 for Web navigation, 23
 in XTM specification, 29
Q
 QuestMap, 515, 516f
Quintus, 111
R
 Rapid Knowledge Formation (RKF), 120, 121
RDF (Resource Description Framework)
 about capability in, 305–307
 aggregation in, 316–319
 Alt container in, 303–305
 associations in, 301–303, 305–307
 bag structure in, 303–305
 data model of, 285–288
 deployment of, 428–429
 description in, 286, 286f
 extensibility of, 292–293
 vs. facets, 293
 family tree as illustration of, 283–284, 283f
 markup of, vs. XTM, 297, 299–300
 metadata in, from Dublin Core, 307–308, 321–325, 410–411
for metadata structure, 284–285
in On2broker and Ontobroker, 124
property types in
definition of, 285
 disambiguating, 288
reification in
of statements, 311–314
of topics, 300–301
relational data structures in,
320–321
resources in, definition of, 285
scope and, 294–295
and semantic interoperability, 388
and semantic networks,
comparison of, 330
semantic networks built with, 293
in Semantic Web, 17–18
Sequence container in,
303–305
sorted data structures in,
315–316
statements in, 286–287, 287f
multiple, 307–309
RDF statements about, 311–314
and topic maps
combination of, 295–296
comparison of, 292–293,
294–295, 330
relation of, 18
values in, 285–286
XML in, 285, 288–291
namespaces in, 288–290,
289f; 290f
and XTM specification, 14
RDFS (RDF Schema), 291–292
vs. topics, 293
ready-to-use topic map,
definition of, 535
reality
and information, relation of,
32–34, 42–45
information resource as
surrogate for, 44–45
symbolic representation of,
43–44, 48–49
redundancy-elimination, in topic
map processing, 47
reference merge, in SemanText,
207
Reference Model (RM), 55–62.
See also dRM
purpose of, 56
referencing, explicit
constraint on, in STWOL,
181
in XTM, 28–29
reflexive relationships, in
semantic networks,
328–329
reification, 67
definition of, 28, 535
of occurrences, 159
of statements, in RDF, 311–314
of topic maps, by root topic,
174
of topics, in RDF, 300–301
relation(s)
in knowledge organization,
395, 397, 406–407
sound design of, 432–433
understanding, and learning,
496–498
relational data structures, in
RDF, 320–321
relational indexing
in knowledge organization,
407–408, 422
topic maps in, 434
relevance
in knowledge organization,
403–404
topic maps in, 434
representation
dual, in Semantic Web,
490–491, 490f
of incomplete knowledge, in
topic maps, 431
in subject construction, 68
representation requirement, for
visualization, 268–269
in graphs and trees, 271–273
in maps, 275–278
in virtual worlds, 279–280
research fronts, topic maps for, 446
resolution levels, in CTW
framework, 188
resolution principle, 117
resource(s)
definition of, 19, 531
interchangeable, structure of
(See interchange structure)
sound design of, 432–433
understanding, and learning,
496–498
subject-indicating vs. subject-
constituting, 19, 28–29, 53
as topics, 27–28
resource(s), RDF, 289–290
definition of, 285
description of, RDF Schema
for, 291–292
with multiple statements,
307–309
sharing, 315–316
unique identifiers for, 287
resourceData, 98
in XSLT templates in CTW,
193
Resource Description
Framework. See RDF
resourceID property, in TM4J,
214–215
resourceRef
in explicit referencing, 28
inside member element, 89n
and resourceData, use of, 98
for subject identification, 86
vs. subjectIdentity, 86
in XSLT templates, 193
Rete algorithm, production
systems based on, 114
reusable knowledge components,
for ontology encoding,
120
RKF (Rapid Knowledge
Formation), 120, 121
RM (Reference Model), 55–62.
 See also dRM
 purpose of, 56
role(s)
 definition of, 536
topics for, 89–90
role player, definition of, 536
roleSpec, 89–90
 control over, 93
root topic in CTW
 source code for, 175, 176f
topic map reified by, 174
 Web page generation for, 174–175
Rubinsky, Yuri, SGML video
 by, 31
rule(s)
 in expert systems, 114
 for inference (See inference rules)

S
SAM (Standard Application
 Model), 56–57, 62
Sandberg, Anders, on human
 stupidity, 1
SC arc, in TMPM4, 57–58
science, role of, in daily life, xxi
scope, 87–88
 association source indicated in, 179–180
definition of, 20, 536
 in early drafts of ISO13250
 standard, 38
 in knowledge organization use
 case, 427
merging topics with, 20–21
 for natural languages, 82
occurrence source indicated in, 186
 in RDF, vs. topic maps, 294–295
 and s-nodes, 29
 in TM4J, 224–225
 for TMP3, 228
unconstrained (See
 unconstrained scope)
uses of, 20–21
 for association source, 175
 visualization of, 269
 scoping, definition of, for CTW,
 190–191
 scoping topic(s)
 definition of, 536
 function of, in STWOL, 177
 multiple, 195
 scoping topic classes, PSIs for,
 361, 361t
search engines
 disorganization of, 41
 semantic interpretation and, 103
sea-star topic element, source
 code for, 177–178, 179f
self-organizing map (SOM)
 algorithm, for
 visualization, 275–277, 277f
SemanText
 function of, 204
 future plans for, 209–210
 inference rules in, developing,
 208–209, 209f
 in Nexist, 245
 use cases for, 248
 and other software,
 comparison of, 200
 output formats of, 210
topic map creation in,
 204–207, 206f
topic map merging in, 207
Web address of, 210
semantic(s). See also formal
 languages; interpretation
definition of, 508
formal
 in knowledge organization, 414–416
 in KOSs, 414–414
 in topic maps, 435–436
 interpretation of, in
 knowledge management, 110
 from PSIs, 331–332
statistics for inference of,
 106–107
 in topic map architecture, 18, 25
 semantic heterogeneity, 416
 semantic indexing, in knowledge
 organization, 395
 semantic interoperability
 in knowledge networks,
 387–388
 in knowledge organization,
 416–417
 through ontologies, 125–126
 in topic maps, 436–438
semantic networks, 328–330
 association properties for,
 332–333
 binary relations in, 329–330
 connectivity in, 482–483, 483f
 constraints in, 339–340
 construction of, and learning
 process, 492–494
 creation of
 with RDF, 293
 in SemanText, 204
 with topic maps, 293
 definition of, 328, 508–509
 in education, 486–487,
 488–498, 489f, 490f
 family tree in, 481–482, 482f
 formalization of, 116–117
 inference rules in, 343–352
 information extraction from,
 353
 in KOxTM use cases, 442–444
 modeling with, 329
 for procedural knowledge, 499
 and RDF, comparison of, 330
 reflexive relationships in,
 328–329
 symmetric relationships in,
 329
 teaching with, 494–496
 and topic maps, comparison of,
 330
 transitive relationships in, 328,
validation in, 340
weightings in, in SemanText, 210
semantic retrieval
in knowledge organization, 395, 408, 422
topic maps in, 434
Semantic Web
connectivity in, 482–483, 483f
definition of, 508–511
development of, 480–484
dual representations of, 490–491, 490f
education on, 512–513
languages in, 124
meanings shared on, 507, 509–510
navigation on, 484
RDF in, 17–18
structure of, 509
subject identity in, 74
systems in, 124
topic maps in, 2, 17–18, 511
SemNet, 486–487, 487f, 515, 516f
Sequence container, in RDF, 303–305
serialization
definition of, 536
of dRM, syntaxes for, 262–263
server, for Nexist, user interface
for, 254, 254f, 255f
set, definition of, 536
SGML (Standard Generalized Markup Language)
description of, need for, 50
evolution of, 45
flexibility of, 49
in HTML, 35
on Internet, 53
metadata from, 36
in origin of XML, 23, 24f
problems with, 36
vs. procedural markup, 36
purpose of, 31, 35–36
topic maps built from parsing,
206–207, 208f
for Web, 35
shell topic maps, in drill-down
technique, 156
SHOE (Simple HTML
Ontology Extension), 124
and semantic interoperability,
388
simplicity, in standards, and
complexity, relation of, 24
site map, of Web sites, control of,
with association, 195–196
Sixtus, 111
s-nodes (scope nodes), 29
in TMPM4, 57
SOFABED (Standard Open
Formal Architecture for
Browsable Electronic
Documents), 38
software, open source. See open
source software
software applications. See
application(s)
SOM (self-organizing map)
algorithm, for visualization,
275–277, 277f
sorted data structures, in RDF,
315–316
sort key names (ISO), 20
vs. variant names, 27, 54
Sourceforge, projects hosted by,
200
space, foundational theories for,
onontological, 119
Special Topic Map Website
Ontology Layer. See
STWOL
stability, in PSIs, 75
Standard Application Model
(SAM), 56–57, 62
Standard Generalized Markup
Language. See SGML
Standard Open Formal Archi-
tecture for Browsable
Electronic Documents
(SOFABED), 38
standards, creation of, 24–25
Stanford University Knowledge
Systems Laboratory,
Ontolingu/Chimaera, 111
Stanford University Medical
Informatics Laboratory,
Protégé-2000, 111
start tag, definition of, 36
statements, in RDF, 286–287, 287f, 291–292
multiple, 307–309
RDF statements about,
311–314
reification of, 311–314
resources shared between,
315–316
stochastic methods, for
interpretation
amutomation, 106–107
structured information
in interpretation continuum,
104
vs. unstructured information,
34
student resources, organization
of, with KOxTM, 445
STWOL (Special Topic Map
Website Ontology Layer),
176–182
concept of, 176–177
topics in, 176
as instance of several classes,
182
layout function of, 177
referential constraint on,
182
source code for, 180–181
subject(s) of conversation
addressability of, 49
and symbolic communication,
43–44, 49, 78
subject(s) of topics
computer access to, 43
construction of, representa-
tions in, 68
defining, viewpoints on, 67–68
subject(s) of topics (cont.)
definition of, 19, 537
emergence of, in natural
conversation, 68–69, 69–73, 70f, 71f, 73f
identity of (See also
subjectIdentity)
ambiguity in, 68, 74
duplicating, 86
viewpoints on, 67–68
information resource as, 44
merging, and knowledge
organization, 434
nonaddressable, definition of, 535
and resources, relation of, 19,
28–29
as t-node in topic map graphs,
29
subject-based merging rule, 21
definition of, 537
mergeMap in, 95
and name-based merging,
interaction of, 96–97
in TM4J, 223–224
in XTM processing model, 29
subject-based Topic Map Query
Language (sTMQL), in
GooseWorks Toolkit,
264–265
subject-centric view, of data,
42–45
subject-constituting resource
definition of, 537
vs. subject-indicating, 19,
28–29, 53
subjectEquivalence handler, in
GooseWorks Toolkit, 262
subject gateways, quality-
controlled, topic maps
for, 445–446
subject identity, 85–87
definition of, 537–538
empty, 98–99
vs. resourceRef, 86
subject identity point, definition of, 538
subject-indicating resource
definition of, 538
vs. subject-constituting
resource, 19, 28–29, 53
subjectIndicatorRef
in explicit referencing, 28
inside member element, 89n
subphyla, Linnaean, 152n
subtype topic, definition of, 539
superclass-subclass relationship
in knowledge representation,
359, 362
as association, 363–364
PSIs for, 363, 363t
in semantic networks, 334, 336
supertype-subtype association,
definition of, 539
supertype topic, definition of, 539
SWAGs, 2
symbol(s), interpretation of, 105
symbolic communication, 43–44,
48–49
symmetric relationships, in
semantic networks, 329
syndication systems, definition
of, 167n
syntactic interoperability, through
topic maps, 125–126
syntax
canonical, constructs for,
documentation for, in
syntax layer, 62
serialization of, in dRM,
262–263
syntax layer, in road map of
forthcoming ISO topic
map standards, 62
synthesis languages, for logic
programming, 118
Systematifier, 392
T
tag names
length of, in XTM
specification, 54
meaning of, 47–48
TalvaStudio, 194
TAO (topics, associations, and
occurrences), 65
taxonomy, as ontology, 125, 126f
T-Box, in description logics,
117
teaching, with semantic
networks, 494–496
technology, role of, in daily life,
xxi
Teknowledge, M.4, 112
telephone numbers, as formal
languages, 34–35
television, language transmitted
through, 480
template, definition of, 361
temporal relations, in Semantic
Web, 481, 482f
terminological logics. See
description logics
territory, vs. map, 2
text word indexing, 440–441
ThemeScape, for visualization,
277–278, 278f
Thinking semantic network,
443–444
thought
ephemeral nature of, 487–488
writing patterned after, 498
time, foundational theories for,
onontological, 119
TM4J
distribution of, organization
of, 211, 212f
error handling in, 217, 217t
export process of, 221, 221f
extensions of, 244
implicit topics in, 220–221
Java APIs of, 211–213
advanced features of,
223–225
basic features of, 213–218
element types of XTM
DTD mapped to, 213,
214t
network address handling in,
218
object properties in, 225t–226t
and other software,
comparison of, 200
property change listeners in, 225–227, 225t–226t
scope in, 224–225
TopicMapObject interface of, 214–215
topic maps in
creation of, 215
loading, 218–220
saving, 221–223
topic merging in, 223–224
unconstrained scope in, 224–225
utilities in, 215–217
TMCL (Topic Map Constraint Language)
development of, 340
user requirements for, 63–64
TMP3
applications in, 229–230
architecture of, 230–231, 231f
extension of, 243–244
processing function of, 231–232
classes in, initialization function in, 232–236
ontology for, 228–229
TMPM4 (topicmaps.net Processing Model)
nodes in, 57
replacement of, 57
topic(s), 84–85
and aboutness, in knowledge organization, 434
in concept map, 4, 4f
creation of, 67, 158–165
in Nexist, 256, 257f
in SemanText, 204–207, 206f
CTW generated from, 174
definition of, 18, 539
in early drafts of ISO 13250 standard, 38
empty, 98–99
enumeration of, in TM4J, 216
ID generation for, in TM4J, 216
implicit, creation of, in TM4J, 220–221
instances of
in several classes, 182, 188
in XSLT templates, 190
in knowledge organization use case, 426
in knowledge representation example, 358
merging, with scopes, 20–21
processing of, merging in, 47
vs. RDFS, 293
regular, vs. ontology, 360
representation of, in topic map applications, 47–48
resources as, 27–28
in STWOL, 176
as instance of several classes, 182
layout function of, 177
referential constraint on, 182
source code for, 180–181
for TMP3
creation of, 236–240
defining, 228, 229f
in topic map syntax, 39
in XTM, as instance of several classes, 188
topic-base name association, definition of, 539
topic characteristic(s). See also association(s); member; name(s); occurrences
definition of, 540
scope applied to, in TM4J, 224
for Web page content and rendering, 171–173
topic characteristic assignment
definition of, 540
occurrences example, 188–189
topic classes, PSIs for, 361, 361t
topic hierarchy, defining, in semantic networks, 338
topic map(s), 17–18
vs. API, 47
applications for (See topic map applications)
attribute 48–50
in bibliographic databases,
449–452, 450f, 451f
browsing, in SemanText, 204, 205f
changes to, automatic detection of, through TM4J, 225–227
completeness of, 49
complexity of, 13
components of, 23–24
concept map as, 3–4, 4f, 442–443
content model of, 98–99
constraints on, 339–340
topic map(s), 17–18
vs. databases, 17–18
definition of, 3, 540
drill-down (See drill-down topic maps)
in education, 12, 14–15
519–521, 520f (See also IBIS)
element 98–99
elements of
HTML rendering of, 173, 173r
in TM4J APIs, 213–215
Index

603

topic map templates
 definition of, 541
 in knowledge representation, 359, 360–362
TopicMap topic, construction of in CTW, 158, 159f
Topic Navigator (Mondeca), 270, 272f, 519, 520f
topic-occurrence association, definition of, 542
topicRef, 27
 for explicit referencing, 28
 in member elements, 89–90
 in scope, 87–88
 for subject identification, 86–87
topic-subjectIndicator assertion type, 58
topic types
 definition of, 542
 filtering for, 195
 semantics of, in XTM specification, 25
 in XSLT templates, 177
 querying, 188–190
TouchGraph, 202–203, 202f, 203f
transitive relationships
 in knowledge representation, 365
 PSIs for, 365t
 in semantic networks, 328, 337
Translator modules, in TMP3, 230
tree visualization, 271–275
 trust
 building, for PSIs, 76
 in PSIs, 75
 type. See class
type hierarchies, in semantic networks, 334–339

U
UML (Unified Modeling Language), 62
UMLS (Unified Medical Language System), project, reuse of, in ontology-driven topic maps, 130
unconstrained scope
 in CTW implementation, 174
 definition of, 542
 in TM4J, 224–225
unification, in logic programming, 118
Uniform Resource Indicators (URIs)
 in Nexist, 259, 259f
 in XTM addressing, 25, 54
Universal Interactive Visualization Tool (UNIVIT), 270, 273f
universal knowledge organization systems, 401–402
type. See class
values, in RDF, 285–286
variant element type, 97–98
 variant names (XTM), 20, 97–98
 in CTW generation, 169
type hierarchies, in semantic networks, 334–339

V
validation, in topic maps, in semantic networks, 340
views-based indexing, 423–424
in knowledge organization, 408
virtual cities, for visualizations, 279–280, 280f, 281f
virtual reality, for visualization, 279, 279f
viruses, classification of, 154–155
visual(s), dynamic, language transmitted through, 480
visual data-mining tools, for visualization, 278–280

W
Warren Abstract Machine (WAM), 118
Web browsers, use of, 103
Web navigation
 metadata for, 22–23
 topic maps for, 23, 171
Web portal
maintenance of, 167
topic maps for, 445–446
WebSGML, correspondence to
XML, 35
Web site
CTW-based
design of, 169, 172–173
maintenance of, 168–169
merging of, 174
source code for, 177–178,
179f
definition of, 167
maintenance of, HTML
editors vs. topic maps for,
170, 170f
ontology of, design of, 171
sitemap for, control of, with
association, 195–196
source code for, XTM as,
171–173
Web site references
for topic map, general, 8
for topic map software, 9
updating of, xxii
weightings, in SemanText, 210
Weinberger, David, on the Web,
nature of, 1
Whataburger model for topic
maps, 38
Whittaker, R. H., 151
Wiki Web sites, 68
World Wide Web. See also Web
design of, by Tim Berners-
Lee, 39
finding information on, 41
formal languages in, 35n
information on, from
relational databases, 106
logic and constraint
programming on, 119
meanings shared on, 507,
509–510
ontological engineering
applications and, 124
purpose of, 507
semantic communication and,
revolution in (See
Semantic Web)
as social realm, 1
World Wide Web Consortium,
web address of, 35n
writing
language transmitted through,
479
paradigm shift in, 498
X
xinclude:include, 193–194
xlink, in XTM specification, 27,
54
xlink:href attribute
constraint imposed by, in
STWOL, 181
function of, 85
XML (eXtensible Markup
Language)
angle brackets used in, 81
content-based tagging in, 353
elements in, 81
formatting conventions for, 15
function of, 22
and HTML, transformation
into, 7 (See also XTM
document, and Web
pages)
with IBIS, 523–525
ontological extensions to, 124
for ontologies, 120–121
in RDF, 285, 288–291
namespaces in, 288–290,
289f, 290f
for relational databases, 46
semantic extensions to, 124
and semantic interoperability,
388
syntax of, 39
topic maps built from parsing,
206–207, 208f
WebSGML in, 35
XML InfoSet, 46n, 62
xml declaration line, in topic
maps, 98
XML Ontology Exchange
Language (XOL), 120,
124
XML topic map specification. See
XTM specification
XSLT layers in CTW, 182–183
XSLT style sheets in CTW
back-end layer of, 182
HTML from, 184
topic-specific, 184–186,
187f
layout layer of, 182–187
namespace declaration in,
186–187
presentation layer of, 182
XSLT technology
and topic maps, benefits of,
167
uses of, 168
for XML to HTML
transformation, 7
XSLT templates in CTW,
183–184
for occurrences, 192–193
topic instances determined by,
190
topic-specific, 184–186, 187f
topic types for, 177
querying, 188–190
XTM Authoring Group, xxii, 26
XTM document
of concept map, 5–7
view for, 7
and Web pages, transformation
into, 13 (See also
XML, and HTML)
XTM elements, number of, 83
XTM engine
as API, for knowledge
management, 252
in Nexist, 251–254, 252f, 253f
XTM framework. See CTW
(Creative Topic Map
Websites) framework
XTM specification
addressing in, 25–26
conceptual model for, 26
constructs for, documentation for, in syntax layer, 62
creation of, 39–40
design of, 23–25
DTD for, 26, 55
element types in, 27
evolution of, xxii
facets and, lack of, 29
future of, 66
history of, 10, 23, 24f, 53
vs. ISO 13250, 53–54
markup of, vs. RDF, 297

in Nexist, use cases for, 248
ontologies coded with, 127–128
ontology-driven topic maps in, 129–130
philosophical perspective of, 10–11
processing model for, 29
published subjects in, 29
purpose of, 39
and RDF, 14
referencing in, explicit, 28–29
reification in, of topics, 27–28
release of, 53–54
semantics in, 25
support for, in SemanText, 204, 209
variant names in, 27
varlinks in, 27
XTM technology, conception of, xxii

Y
Yahoo, topical organization of, 41
Also Available from Addison-Wesley
Solutions from experts you know and trust.

- Free, indepth articles and supplements
- Master the skills you need, when you need them
- Choose from industry leading books, ebooks, and training products
- Achieve industry certification and advance your career
- Get answers when you need them from live experts or InformIT’s comprehensive library

Visit InformIT and get great content from Addison Wesley

www.informit.com
Register
Your Book
at www.aw.com/cseng/register

You may be eligible to receive:
• Advance notice of forthcoming editions of the book
• Related book recommendations
• Chapter excerpts and supplements of forthcoming titles
• Information about special contests and promotions throughout the year
• Notices and reminders about author appearances, tradeshows, and online chats with special guests

Contact us

If you are interested in writing a book or reviewing manuscripts prior to publication, please write to us at:

Editorial Department
Addison-Wesley Professional
75 Arlington Street, Suite 300
Boston, MA 02116 USA
Email: AWPro@aw.com

Visit us on the Web: http://www.aw.com/cseng