%I% é Chapter 1.fm Page 1 Tuesday, October 30, 2001 2:49 PM

Al

Chapter 1

Overview

Introduction

The Unified Process fits the general definition of a process: a set of activities
that a team performs to transform a set of customer requirements into a soft-
ware system. However, the Unified Process is also a generic process frame-
work that people can customize by adding and removing activities based on
the particular needs and available resources for a project.

The Rational Unified Process (RUP) is an example of a specialized version of
the Unified Process that adds elements to the generic framework; see Appen-
dix A for a discussion of those elements. The discussion in the body of this
book about The Internet Bookstore, an example project, represents a tailoring
in the other direction: The team doing that project skipped some activities that
didn’t add value. This example system illustrates a key aspect of how one
should put the Unified Process to work: Use those elements of it that add value
for a particular project; omit those elements that don’t add value. See Appen-
dix C for an example of a streamlined process based on the principle of start-
ing with core elements and adding other elements as necessary.

The Unified Process makes extensive use of the Unified Modeling Language
(UML). At the core of the UML is the model, which in the context of a soft-
ware development process is a simplification of reality that helps the project
team understand certain aspects of the complexity inherent in software.

%

%% é Chapter 1.fm Page 2 Tuesday, October 30, 2001 2:49 PM

Al

\4

CHAPTER 1 ¥ OVERVIEW

The UML was designed to help the participants in software development
efforts build models that enable the team to visualize the system, specify the
structure and behavior of that system, construct the system, and document the
decisions made along the way. Many of the tasks that the Unified Process
defines involve using the UML and one or more models.

U J“ See Chapter 1 of UML Explained for information about
Bl models and their value in software development.

The remaining sections in this chapter describe how the Unified Process
evolved, the key tenets that underlie the process (use case driven, architecture-
centric, and iterative and incremental), and the vocabulary used to describe
the details of the process.

History

The Unified Process has its roots in the work that Ivar Jacobson did at Erics-
son in the late 1960s. Jacobson and his colleagues modeled a very large tele-
communications system using layers of “blocks,” with the lower layers serving
as the foundation for subsystems at the higher layers. (These blocks have par-
allels with what are now known as components.) The team built those low-
level blocks by exploring what they called traffic cases (now called use cases
in the UML); all subsequent analysis, design, implementation, and test work
was driven, to a greater or lesser extent, by those traffic cases. Other diagrams
that are now key aspects of the UML evolved from the Ericsson work, includ-
ing sequence diagrams (called object interaction diagrams at the time) and
activity diagrams (which Ericsson called state transition graphs). A document
called the software architecture description contained the key material that
facilitated communication among developers and between developers and
customers.

Jacobson went out on his own in 1987, starting a company he named Objectory
AB. He and his associates spent several years developing Objectory, which was
both a process and a product, as is the Rational Unified Process (discussed
next). His book Object-Oriented Software Engineering (Addison-Wesley, 1995),
which described the Objectory process in detail, was regarded as a landmark

%

—®

%% é Chapter 1.fm Page 3 Tuesday, October 30, 2001 2:49 PM

Al

USE CASE DRIVEN

in the object-oriented (OO) community; it was the first book by a major
methodologist to put forth the idea that the customer’s requirements, as
expressed within use cases, should be the most important driving force in
software development. The genesis of the Unified Process’s emphasis on
architecture (see “Architecture-Centric,” on the next page) were also on display
in the book. The full on-line version of the process appeared in conjunction with
the book in 1995.

Not long after that, Rational bought Objectory AB. Jacobson and his consider-
ably larger set of colleagues set about expanding the areas that the Objectory
process didn’t address in depth, such as project management and development
tools. Grady Booch and Jim Rumbaugh were already on board at Rational—
Booch almost from the beginning, and Rumbaugh from late 1994—and the
gentlemen who became known as the “three amigos” were among the leaders
of the effort to build what eventually became the Rational Objectory Process
(ROP), in parallel with their expansion of the Unified Method into what
became the Unified Modeling Language.

UMJN See Chapter 1 of UML Explained for a brief history of the

Eoplai .
£ UML

While the work on the ROP and UML was going on, Rational was busy
acquiring and merging with a number of other companies that made software
development tools. These tools added value to the ROP product in the form of
requirements management (Requisite’s tool became RequisitePro), general-
purpose testing (SQA’s software has been expanded into several discrete
tools), and other areas such as performance testing, configuration manage-
ment, and change management. In 1998, Rational changed the name of the
product to the RUP; the differences between the Unified Process (which is at
the conceptual core of the RUP) and the RUP as a product are described in
Appendix A.

Use Case Driven

A use case is a sequence of actions, performed by one or more actors (people
or non-human entities outside of the system) and by the system itself, that

%

.

%% é Chapter 1.fm Page 4 Tuesday, October 30, 2001 2:49 PM

Al

v

CHAPTER 1 ¥ OVERVIEW

produces one or more results of value to one or more of the actors. One of the
key aspects of the Unified Process is its use of use cases as a driving force for
development. The phrase use case driven refers to the fact that the project
team uses the use cases to drive all development work, from initial gathering
and negotiation of requirements through code. (See “Requirements” later in
this chapter for more on this subject.)

Use cases are highly suitable for capturing requirements and for driving anal-
ysis, design, and implementation for several reasons.

Use cases are expressed from the perspective of the system’s users, which
translates into a higher comfort level for customers, as they can see them-
selves reflected in the use case text. It’s relatively difficult for a customer
to see himself or herself in the context of requirements text.

Use cases are expressed in natural language (English or the native lan-
guage of the customers). Well-written use cases are also intuitively obvi-
ous to the reader.

Use cases offer a considerably greater ability for everyone to understand
the real requirements on the system than typical requirements documents,
which tend to contain a lot of ambiguous, redundant, and contradictory
text. Ideally, the stakeholders should regard use cases as binding contracts
between customers and developers, with all parties agreeing on the system
that will be built.

Use cases offer the ability to achieve a high degree of traceability of
requirements into the models that result from ongoing development. By
keeping the use cases close by at all times, the development team is always
in touch with the customers’ requirements.

Use cases offer a simple way to decompose the requirements into chunks
that allow for allocation of work to subteams and also facilitate project
management. (See “Use Case Model” in Chapter 2 for information about
breaking use cases up into UML packages.) This is not the same as func-
tional decomposition, though; see Use Case Driven Object Modeling with
UML (Rosenberg and Scott, 1999) for an explanation of the difference.

Architecture-Centric

In the context of software, the term architecture has different meanings
depending on whom you ask. The definition in UML Explained is as follows:

%

—®

%% é Chapter 1.fm Page 5 Tuesday, October 30, 2001 2:49 PM

Al

—

*

ARCHITECTURE-CENTRIC v

The fundamental organization of the system as a whole. Aspects of an
architecture include static elements, dynamic elements, how those
elements work together, and the overall architectural style that guides
the organization of the system. Architecture also addresses issues such
as performance, scalability, reuse, and economic and technological
constraints.

Several books offer other useful definitions; see, for example, Sofiware Archi-
tecture in Practice (Len Bass, Paul Clements, and Rick Kazman; Addison-
Wesley, 1998).

The Unified Process specifies that the architecture of the system being built, as
the fundamental foundation on which that system will rest, must sit at the
heart of the project team’s efforts to shape the system, and also that
architecture, in conjunction with the use cases, must drive the exploration of
all aspects of the system. You might think of the architecture as expressing the
common vision that all members of the team must share in order for the
resulting system to be suitably robust, flexible, expandable, and cost-effective.

In the context of the process, architecture is primarily specified in terms of
views of six models. (See “The Five Workflows” later in this chapter for brief
descriptions of these models.) These views reflect the “architecturally signifi-
cant” elements of those models; taken together, the views form the architec-
ture description. The project team initializes the architecture description
early, then expands and refines it during virtually all the activities of the
project.

The following subsections discuss the key reasons why architecture is so
important to the Unified Process.

Understanding the Big Picture

The tools and techniques available to developers for building software are
growing increasingly powerful. For better or worse, though, software itself,
especially with its new focus on distributed computing, is getting considerably
more complex as well, and there aren’t any indications that the tools and tech-
niques will “catch up” any time soon. Also, customers’ attention spans are
becoming shorter and shorter as their demands on development teams grow
more sophisticated. The result is that it’s very difficult for all but a few espe-
cially gifted people to understand—really understand—most software sys-
tems to any meaningful extent. The architecture description is meant, first and

%

%% é Chapter 1.fm Page 6 Tuesday, October 30,2001 2:49 PM

Al

\4

CHAPTER 1 ¥ OVERVIEW

foremost, to facilitate an understanding of the architecture of the system being
built. Rigorous modeling, and careful attention to the readability of the associ-
ated UML diagrams and supporting text, will go a long way toward turning
the architecture description into the fulcrum for increased understanding of
the “big picture” of the new system.

Organizing the Development Effort

A sound architecture explicitly defines discrete chunks of the system, as well
as the interfaces among the various parts of the system. It also makes effective
use of one or more architectural patterns, which help shape the development
effort on various levels. (Client/server, three-tier, and N-tier are all examples
of well-known architectural patterns. Other patterns focus on things like
object request brokers [ORBs], which sit at the center of systems that use dis-
tributed components, and virtual machines, such as the one on top of which
Java runs.) By using this aspect of architecture effectively, the project team
can increase the chances that communication across subteams will add value
to the effort.

Facilitating the Possibilities for Reuse

One of the key tenets of component-based development (CBD) is the idea that
components should be usable, with a relative minimum of customization, in a
variety of contexts. A well-constructed software architecture offers solid
“scaffolding” on which components can reside and work gracefully with each
other, while making it easy for teams building other systems to identify
opportunities for possible reuse of any or all of those components. The bottom
line is that the less time a team has to spend focusing on building new compo-
nents, the more time it can spend on understanding the customers’ problems
and modeling the solutions.

Evolving the System

Maintaining and enhancing a system tends to occupy more time over the life
of that system than it took to build it in the first place. When development
projects find themselves operating in mythical “Internet time,” with
technologies evolving faster and business models changing more frequently
than ever before, there’s no question that a system of any size and complexity
will be subject to evolutionary changes of a healthy magnitude. Having a solid

%

—®

%% é Chapter 1.fm Page 7 Tuesday, October 30, 2001 2:49 PM

Al

ITERATIVE AND INCREMENTAL

architecture in place offers a set of essential reference points on which future
development work can rely. An architecture that’s been built such that
changes in one part of the system almost never have adverse effects on other
parts of the system also greatly enhances team members’ ability to evolve the
system effectively and efficiently.

Guiding the Use Cases

In one sense, use cases drive the architecture of a software system, since the
use cases do drive all of the development effort. In another sense, however, the
architecture guides the selection and exploration of use cases. Decisions that
architects must make about things like middleware, system software, legacy
systems, and so forth, have a strong influence on the choice of which use cases
the team focuses on at what point in the project. The basic idea, then, is to
focus on those use cases that will add value to the architecture, which in turn
helps shape the content of those use cases and the nature of the work involved
in developing the system from them.

Iterative and Incremental

The third fundamental tenet of the Unified Process is its iterative and incre-
mental nature. An iteration is a mini-project that results in a version of the
system that will be released internally or externally. This version is supposed
to offer incremental improvement over the previous version, which is why the
result of an iteration is called an increment.

The section “Iterations and Increments,” which appears later in this chapter,
describes how iterations and increments fit into the larger context of the over-
all process. Meanwhile, the following subsections describe the advantages of
iterative and incremental development.

Logical Progress Toward a Robust Architecture

An earlier section, “Architecture-Centric,” describes the central place of
architecture in the Unified Process. The process specifies how the project team
should focus on particular aspects of the architecture during each of the
iterations of the system. During early iterations, the team puts together a

%

%% é Chapter 1.fm Page 8 Tuesday, October 30,2001 2:49 PM

Al

\4

CHAPTER 1 ¥ OVERVIEW

candidate architecture that offers the beginnings of a solid foundation; later
iterations find the team expanding the vision of the full architecture, which in
turn influences most, and in some cases all, of the development tasks being
performed as part of a given iteration. Building the architecture in an iterative
and incremental fashion enables the team to make necessary major changes
early in the process at considerably less cost than they would inflict later in the
project.

Dealing With Ongoing Changes in Requirements

Processes based on the waterfall approach, which dictates that all of the
requirements be gathered and analyzed before design starts, face what now
seems to be an inevitable problem: Requirements tend to be unstable. Also,
customers have difficulty envisioning a system when all they have is docu-
mentation. The Unified Process advocates breaking the system down into
builds, where each build is a working version of some meaningful chunk of
the full system. By focusing on bounded sets of use cases and making effec-
tive use of prototypes, the project team and the customers can negotiate
requirements on an ongoing basis, thus reducing the (often very large) risk
associated with trying to specify all of the requirements up front. One of the
reviewers of the manuscript for this book indicated that his company practices
“ruthless prioritization,” which involves dealing with changing requirements
by aggressively identifying priorities and eliminating lower-priority features
from consideration.

Greater Flexibility to Change the Plan

Since each iteration is a mini-project, the project team addresses, to some
extent, all the risks associated with the project as a whole each time it builds
an increment of the system. As risks become greater, as delays occur, and as
the environment becomes more unstable, the team is able to make necessary
adjustments on a relatively small scale and propagate those adjustments across
the entire project. During the postmortem for each iteration, the project lead-
ers can decide whether the iteration was a success and change the iteration
plan as appropriate before work proceeds with the next iteration. The goal is to
isolate problems within iterations and deal with them on a relatively small
scale, rather than allowing them to spread.

—®

%% é Chapter 1.fm Page 9 Tuesday, October 30, 2001 2:49 PM

Al

ITERATIVE AND INCREMENTAL

Continuous Integration

Each increment brings a combination of new features and improved function-
ality to the system. This enables all the stakeholders to measure the progress
of the project toward specific goals, rather than toward more abstract and gen-
eral requirements. By continually integrating new increments, the develop-
ment team is also able to isolate problems that it might bring to the system and
address those problems in ways that don’t disrupt the integrity of the working
system. This kind of setup makes it easier for the team to go as far as throwing
a particular increment away and starting over, since the process gives it the
ability to define iterations that take less time to perform.

Early Understanding

Each of the activities that the team performs during an iteration is straight-
forwardly defined, as is the sequence of activities within each workflow and
across workflows. The process is designed to enable reliance on things like
ongoing mentoring, rather than forcing people to go through extensive training
before becoming productive members of the team. Well-defined iterations allow
room to experiment and make mistakes, because those mistakes will be isolated
such that their impact on schedule and budget can be minimized. As work
proceeds, the team can leverage its understanding of what it’s trying to build
and the associated risks, thus building momentum, which in turn enables the
team to make continuous improvements in the way it goes about its tasks.

Ongoing Focus on Risk

Perhaps the most important advantage that iterative and incremental develop-
ment, as defined by the Unified Process, brings to the table is the project
team’s ability to focus its efforts on addressing the most critical risks early in
the life cycle. The team has a mandate to organize iterations based on address-
ing risks on an ongoing basis; the goal is to mitigate risks to the greatest extent
possible during each iteration, so each iteration poses fewer risks of less
importance than its predecessors.

Various people have come up with many different ways to categorize risks to
software development projects. See UML Distilled (Martin Fowler with Ken-
dall Scott; Addison-Wesley, 1999) for one view of risks. Three categories of
risks useful in discussing the Unified Process are described next.

%

%% é Chapter 1.fm Page 10 Tuesday, October 30, 2001 2:49 PM

Al

v CHAPTER 1 ¥ OVERVIEW

* Technical risks are those associated with the various technologies that
will come into play during the project and with issues such as perfor-
mance and the “-ilities” (reliability, scalability, and so forth). For exam-
ple, if the system will use Enterprise Java Beans (EJBs) in the context of
the Common Object Request Broker Architecture (CORBA), the project
team must solve a number of potential technical problems along the way
to building a system that will perform acceptably. The process doesn’t
specifically address technical risks; however, the emphasis on architecture
(see below) reflects the principle that the team should address technical
risks early, before coding starts.

* Architectural risks are those associated with the ability of the architec-
ture to serve as a strong foundation of the system and also be sufficiently
resilient and adaptable to the addition of features in future releases of the
system. Risks associated with “make versus buy” decisions are also part
of this category. The process addresses architectural risks by defining
activities that involve analyzing, designing, and implementing the archi-
tecture, and by defining a number of other activities that include keeping
the architecture description up to date so it can assume its place front and
center within the development effort.

* Requirements risk is the risk of not building the right system—the sys-
tem that the customers are paying for—by not understanding the require-
ments and not using associated use cases to drive development. The
process addresses requirements risk with activities specifically defined to
facilitate the discovery and negotiation of requirements and with its
premise that use cases should drive all aspects of development.

The Four Phases

The life of a software system can be represented as a series of cycles. A cycle
ends with the release of a version of the system to customers.

Within the Unified Process, each cycle contains four phases. A phase is sim-
ply the span of time between two major milestones, points at which managers
make important decisions about whether to proceed with development and, if
so, what’s required concerning project scope, budget, and schedule.

—®

%% é Chapter 1.fm Page 11 Tuesday, October 30, 2001 2:49 PM

Inception

Elaboration

Construction

THE FOUR PHASES

Transition

Iteration 1

Iteration 2

Iteration x+1

Iteration y+1

Iteration x

Iteration y

Iteration z

Life-Cycle Initial Opera-
Architecture tional Capability

Figure 1-1: Phases and Major Milestones

% Life-Cycle % Product
Objectives Release

Figure 1-1 shows the phases and major milestones of the Unified Process. In it,
you can see that each phase contains one or more iterations. We’ll explore the
concept of iterations in the section “Iterations and Increments” later in this
chapter.

The following subsections describe the key aspects of each of these phases.

Inception

The primary goal of the Inception phase is to establish the case for the viabil-
ity of the proposed system.

The tasks that a project team performs during Inception include the following:

* Defining the scope of the system (that is, what’s in and what’s out)
* Outlining a candidate architecture, which is made up of initial versions
of six different models

* Identifying critical risks and determining when and how the project will
address them

» Starting to make the business case that the project is worth doing, based
on initial estimates of cost, effort, schedule, and product quality

The concept of candidate architecture is discussed in the section “Architecture-
Centric” later in this chapter. The six models are covered in the next major
section of this chapter, “The Five Workflows.”

%% é Chapter 1.fm Page 12 Tuesday, October 30, 2001 2:49 PM

Al

\4

CHAPTER 1 ¥ OVERVIEW

The major milestone associated with the Inception phase is called Life-Cycle
Objectives. The indications that the project has reached this milestone include
the following:

* The major stakeholders agree on the scope of the proposed system.

* The candidate architecture clearly addresses a set of critical high-level
requirements.

» The business case for the project is strong enough to justify a green light
for continued development.

Chapter 7 describes the details of the Inception phase.

Elaboration

The primary goal of the Elaboration phase is to establish the ability to build
the new system given the financial constraints, schedule constraints, and other
kinds of constraints that the development project faces.

The tasks that a project team performs during Elaboration include the following:

* Capturing a healthy majority of the remaining functional requirements

* Expanding the candidate architecture into a full architectural baseline,
which is an internal release of the system focused on describing the
architecture

* Addressing significant risks on an ongoing basis

* Finalizing the business case for the project and preparing a project plan
that contains sufficient detail to guide the next phase of the project (Con-
struction)

The architectural baseline contains expanded versions of the six models
initialized during the Inception phase.

The major milestone associated with the Elaboration phase is called Life-
Cycle Architecture. The indications that the project has reached this mile-
stone include the following:

* Most of the functional requirements for the new system have been cap-
tured in the use case model.

* The architectural baseline is a small, skinny system that will serve as a
solid foundation for ongoing development.

* The business case has received a green light, and the project team has an
initial project plan that describes how the Construction phase will proceed.

%

%% é Chapter 1.fm Page 13 Tuesday, October 30, 2001 2:49 PM

Al

THE FIVE WORKFLOWS

The use case model is described in the upcoming section “The Five Work-
flows.” Risks are discussed in the section “Iterations and Increments” later in
this chapter.

Chapter 8 describes the details of the Elaboration phase.

Construction

The primary goal of the Construction phase is to build a system capable of
operating successfully in beta customer environments.

During Construction, the project team performs tasks that involve building
the system iteratively and incrementally (see “Iterations and Increments” later
in this chapter), making sure that the viability of the system is always evident
in executable form.

The major milestone associated with the Construction phase is called Initial
Operational Capability. The project has reached this milestone if a set of
beta customers has a more or less fully operational system in their hands.

Chapter 9 describes the details of the Construction phase.

Transition

The primary goal of the Transition phase is to roll out the fully functional
system to customers.

During Transition, the project team focuses on correcting defects and modify-
ing the system to correct previously unidentified problems.

The major milestone associated with the Transition phase is called Product
Release.

Chapter 10 describes the details of the Transition phase.

The Five Workflows

Within the Unified Process, five workflows cut across the set of four phases:
Requirements, Analysis, Design, Implementation, and Test. Each workflow is
a set of activities that various project workers perform.

%

%I% é Chapter 1.fm Page 14 Tuesday, October 30, 2001 2:49 PM

CHAPTER 1 ¥ OVERVIEW

The following subsections provide brief overviews of these workflows.

Requirements

The primary activities of the Requirements workflow are aimed at building
the use case model, which captures the functional requirements of the system
being defined. This model helps the project stakeholders reach agreement on
the capabilities of the system and the conditions to which it must conform.

The use case model also serves as the foundation for all other development
work. Figure 1-2 shows how the use case model influences the other five mod-
els discussed in the subsequent subsections.

Chapter 2 discusses the key aspects of the Requirements workflow. Chapters
7, 8, and 9 describe how this workflow cuts across the Inception, Elaboration,
and Construction phases, respectively.

Analysis
Model
realized by
Design specified by Use Case distributed by Deployment
Model Model Model
implemented by /\/7 verified by
Implementation Test
Model Model

Figure 1-2: The Six Basic Unified Process Models

4~ 40

%% é Chapter 1.fm Page 15 Tuesday, October 30, 2001 2:49 PM

Al

THE FIVE WORKFLOWS

Analysis

The primary activities of the Analysis workflow are aimed at building the
analysis model, which helps the developers refine and structure the functional
requirements captured within the use case model. This model contains real-
izations of use cases that lend themselves to design and implementation work
better than the use cases.

Chapter 3 discusses the key aspects of the Analysis workflow. Chapters 7, §,
and 9 describe how this workflow cuts across the Inception, Elaboration, and
Construction phases, respectively.

Design

The primary activities of the Design workflow are aimed at building the
design model, which describes the physical realizations of the use cases from
the use case model, and also the contents of the analysis model. The design
model serves as an abstraction of the implementation model (see the next
subsection).

The Design workflow also focuses on the deployment model, which defines
the physical organization of the system in terms of computational nodes.

Chapter 4 discusses the key aspects of the Design workflow. Chapters 7, 8§,
and 9 describe how this workflow cuts across the Inception, Elaboration, and
Construction phases, respectively.

Implementation

The primary activities of the Implementation workflow are aimed at building
the implementation model, which describes how the elements of the design
model are packaged into software components, such as source code files,
dynamic link libraries (DLLs), and EJBs.

Chapter 5 discusses the key aspects of the Implementation workflow. Chapters
8 and 9 describe how this workflow cuts across the Elaboration and Construc-
tion phases, respectively.

Test

The primary activities of the Test workflow are aimed at building the test
model, which describes how integration and system tests will exercise

%

%% é Chapter 1.fm Page 16 Tuesday, October 30, 2001 2:49 PM

Al

\4

CHAPTER 1 ¥ OVERVIEW

executable components from the implementation model. The test model also
describes how the team will perform those tests as well as unit tests.

The test model contains test cases that are often derived directly from use
cases. Testers perform black-box testing using the original use case text, and
white-box testing of the realizations of those use cases, as specified within the
analysis model. The test model also contains the results of all levels of testing.

Chapter 6 discusses the key aspects of the Test workflow. Chapters 8 and 9
describe how this workflow cuts across the Elaboration and Construction
phases, respectively.

Iterations and Increments

As mentioned in “The Four Phases,” each of the Unified Process’s phases is
divided into iterations. An iteration is simply a mini-project that’s part of a
phase.

A typical iteration crosses all five of the workflows discussed in the previous
section, to a greater or lesser extent. For instance, an iteration during the Elab-
oration phase might focus heavily on activities of the Requirements and Anal-
ysis workflows, whereas an iteration during Construction is more likely to
involve Design, Implementation, and Test activities. (Chapters 7 through 9
discuss the details of these crossovers.)

Each iteration results in an increment. This is a release of the system that con-
tains added or improved functionality compared with the previous release.

Figure 1-3 shows the essence of the iterative and incremental approach to soft-
ware development.

Using an iterative and incremental approach, a project team starts the develop-
ment process by evaluating the relevant risks, including those associated with
requirements, skills, technology, and politics, and by ensuring that the scope
of the project is defined to everyone’s satisfaction (see “Elaboration”). Then
the team follows these steps:

1. Define the first iteration, addressing the most critical and difficult risks.
(In other words, do the hard stuff first.)

2. Map out a plan for the iteration to a suitable level of detail.

%

—®

%% é Chapter 1.fm Page 17 Tuesday, October 30, 2001 2:49 PM

Al

ARTIFACTS, WORKERS, AND ACTIVITIES

Define Iteration to
Address Highest Risks

Plan and
Initial Risks Develop

Initial Project Scope [Iteration

Iteration N

Assess Iteration

Risks Eliminated
Revise

Project
Plan i

Revise Risk
Assessment

Figure 1-3: Iterative and Incremental Development

3. Perform the appropriate activities; for the Unified Process, these are activ-
ities associated with the Requirements, Analysis, Design, Implementation,
and Test workflows.

Do a postmortem on the increment that results from the iteration.

5. Discard the risks that the increment has sufficiently addressed. Then
update the ongoing risk list.

6. Revise the overall project plan in response to the relative success or failure
of the iteration.

7. Proceed with the next iteration.
Iterations build the six models increment by increment. At the end of each

iteration, the full set of models that represents the system is in a particular
state; this is the architectural baseline.

Artifacts, Workers, and Activities

The following subsections describe three key elements of each of the work-
flows within the Unified Process: artifacts, workers, and activities.

%

—®

%% é Chapter 1.fm Page 18 Tuesday, October 30, 2001 2:49 PM

Al

\4

CHAPTER 1 ¥ OVERVIEW

Artifacts

Within the Unified Process, an artifact is any meaningful internal or deliver-
able chunk of information that plays a role in the development of the system.
This book focuses on engineering artifacts, which include things like models,
the user-interface prototype, and test evaluations. These artifacts are defined
within the workflow chapters, and they’re also discussed as deliverables of the
phases in which they come into play. Management artifacts, such as the busi-
ness case and the project plan, are also discussed in the contexts of the five
workflows and the four phases. One of the underlying premises of the Unified
Process is that a system is not considered fully deliverable until the appropri-
ate artifacts, whether for internal use only or for customers, are reasonably
complete.

Workers

The Unified Process defines a worker as a role that an individual may play on
the project. (The primary difference between a worker and an actor is that an
actor is on the outside looking in, whereas a worker is on the inside, perhaps
looking out, perhaps not. Also, actors have operational or usage relationships
with the system, whereas workers are participants in the development of the
system.) Workers produce artifacts, either as individuals or as part of
subteams or the team as a whole. One thing to remember is that one person
can perform as more than one worker over the course of the project; for
example, an analyst may discover use cases and write text for them as well.

Activities

Each workflow comprises several activities. In the context of a workflow, an
activity is a task that a worker performs in order to produce an artifact. The
activities described in this book range from high-level exploration of the con-
cepts and things of interest to the customers (Build the Domain Model) to
highly detailed work related to the physical system (Implement a Class).

—®

