
C H A P T E R 5

Building .NET Managed
Components for COM+

Modern software systems are component-based. Components make large,
enterprise-wide software systems easier to manage since system functionality
is divided among several components. VB.NET and all other .NET-supported
languages have the ability to create these components, which can be used and
reused in a variety of projects, including (but not limited to) ASP.NET proj-
ects, Windows applications, and unmanaged code (which is code that executes
outside the .NET Framework).

This chapter covers the following topics:

� Managed code (the code that runs on the .NET Framework) and run-
time environments

� The Common Language Runtime and its role in the .NET Framework
� Just-in-time compilation of managed code
� Code assemblies
� COM+ Component Services and its role in the .NET Framework
� Creation of managed components using VB.NET
� Serviced components, which take advantage of the services provided

by COM+ Component Services

5.1 The Concept of Managed Code Execution

Before we get into making .NET components, we need to discuss a .NET con-
cept called managed code. Managed code is any source code you compile that
targets the .NET Framework. All the code we’ve examined so far in this book
(ASP.NET, console applications, and so on) has been managed code.

393

Crouch05_393-458.ps 4/23/02 5:59 PM Page 393

The .NET Framework is a runtime environment in which code executes.
Internal tasks, such as allocating and freeing memory, and software services
(like the kinds discussed in Chapter 4) are handled by the .NET Framework
as well. In general terms, a runtime environment enables user programs to
take advantage of services provided by the host operating system. A runtime
environment also supplies a layer of abstraction between user code and those
services, through either an API or some other type of interface. Almost any
program you write, regardless of the platform or language, involves inter-
action with a runtime environment. (An exception to this are programs
written in assembly language, in which case the programmer is calling on
the services of the microprocessor and memory storage in a direct, low-level
fashion.)

Many programs written for the Windows platform use the C++ program-
ming language and its runtime library. Before other languages and develop-
ment systems became available, this was the only choice for developers
making applications for Windows. The C/C++ runtime code shipped as a
part of Windows as a series of dynamic link libraries (known as DLLs or
.dll files). As a result, many Windows applications could be distributed
with as little as one file, the .exe file that contained the main program code.
Since no other files were required, many developers referred to these types
of applications as native code applications since the preinstalled runtime
code was quite small.

As new languages became available for developing Windows applications,
new runtime environments needed to be developed. VB developers using ver-
sion 6.0 or earlier might be aware of special support files that must be installed
on the deployment computer in order for VB applications to run. These .dll
files make up the VB runtime environment. Like the C/C++ runtime code
mentioned above, it provides a code wrapper around operating system inter-
nals and services.

Some runtime environments provide an additional layer of abstraction
over another existing runtime environment. This creates an execution environ-
ment that can exist on multiple platforms. Programs targeted to such a run-
time don’t compile to machine object code. Instead, they compile to another
language, referred to as an intermediate language. The runtime then executes
this intermediate language using an engine built for a particular operating sys-
tem. The most popular type of intermediate language system is Java. The
intermediate language for Java is referred to as bytecode. The .NET Frame-
work works in a similar manner. Compiled Microsoft .NET code is referred to
as Microsoft Intermediate Language (MSIL).

394 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 394

5.2 The Common Language Runtime

The runtime environment for the .NET Framework is called the Common
Language Runtime (CLR). Managed code execution happens inside the CLR
space. The goal of the CLR is to provide an environment that includes lan-
guage integration, exception handling, security, versioning, deployment,
debugging, profiling, and component interaction. Most importantly, all of
these features need cross-language support. In other words, all the features
mentioned must work in the same manner regardless of the language used.

Metadata makes cross-language integration possible. When you compile
.NET managed code, the metadata gets stored along with the object code.
Metadata describes to the CLR various types of information (for example,
data types, members, and references) used in the code. This data is used by
the CLR to “manage” the code execution by providing such services as mem-
ory allocation, method invocation, and security enforcement. It also eases
deployment since references to other objects are included along with meta-
data. This ensures that your application contains all up-to-date versions of all
dependent components.

5.2.1 The Common Type System

Along with providing information about managed code through metadata, the
CLR implements a series of data types that are cross-language compatible.
That system of data types is known as the Common Type System (CTS). CTS
data types include simple value types, classes, enumerated value types, inter-
faces, and delegates.

Simple value data types include primitive types as well as user-defined
types. Primitive types include integers, Boolean values, and strings. These
types are included in the System namespace. The data types used thus far in
the VB.NET programs in this book are also included in this namespace. When
you use these primitive types in your programs, the language you use may
already have an equivalent native data type that corresponds to a .NET
Framework type. Table 5-1 shows some data types and their VB.NET native
language equivalents.

Occasionally you may want to define your own data types. You can do this
by using the native features of the language with which you’re working. If
you’re using VB.NET, you can use the Structure statement to define a struc-
ture. This custom type needs to be type-safe for the CLR, so it’s no coinci-
dence that it inherits from the ValueType .NET class.

5.2 The Common Language Runtime 395

Crouch05_393-458.ps 4/23/02 5:59 PM Page 395

396 Chapter 5 Building .NET Managed Components for COM+

Table 5-1 Primitive Data Types and VB.NET Equivalents

.NET Data Type Class Name
(System Namespace) VB.NET Data Type

Byte Byte

SByte Not supported

Int16 Short

Int32 Integer

Int64 Long

UInt16 Not supported

UInt32 Not supported

UInt64 Not supported

Single Single

Double Double

Object Object

Char Char

String String

Decimal Decimal

Boolean Boolean

TECHTALK: STRUCTURES AND CLASSES
Structures and classes are quite similar. They both have
members, constructors, events, properties, fields, and
constants. They can both implement interfaces as well.

There are some differences. Structures don’t allow for
inheritance; therefore they are referred to as sealed.

Crouch05_393-458.ps 4/23/02 5:59 PM Page 396

Let’s quickly look at a VB.NET structure definition. Structure definitions
are placed outside of procedure definitions. You can define them at the mod-
ule level, as shown below.

Code Sample 5-1 Build instructions: vbc /r:system.dll cs5-01.vb

Module Module1

e Structure Student

Dim FirstName As String

Dim LastName As String

Dim SSN As String

Dim ClassRank As Integer

End Structure

Sub Main()

Dim udtStudent As New Student()

f With udtStudent

.FirstName = "Matt"

.LastName = "Crouch"

.SSN = "888-88-1234"

.ClassRank = 2

End With

5.2 The Common Language Runtime 397

Structures can’t have any constructor code, that is, you
can’t define an overloaded New() subroutine with your own
initialization code like you can with a class.

When structures are used in procedure calls, the struc-
ture is passed by value (like primitive data types are).
Classes, on the other hand, are always passed by refer-
ence. Whether to use classes or structures for your user-
defined data types depends mostly on the complexity of
your data types. Structures are useful for defining rela-
tively simple data types for which the members do not use
much memory and no custom initialization code is
required. If your design requires more than this, consider
defining your custom data type as a class.

Crouch05_393-458.ps 4/23/02 5:59 PM Page 397

End Sub

End Module

The example shows a typical structure definition. The members are
enclosed in the Structure . . . End Structure block that begins in line e.
The VB.NET With . . . End With statement in line f is used to save some
typing. It allows you to refer to the individual members of the structure with-
out fully qualifying the names of the structure members.

Since the VB.NET structures you define automatically inherit from
System.ValueType, you can treat the value type as a ValueType object. As
a demonstration, let’s create a function that lists all the members of an arbi-
trary structure at runtime.

Code Sample 5-2 Build instructions: vbc /r:system.dll cs5-02.vb

Public Sub ValueTypeDemoFunction(ByVal udt As ValueType)

Dim mi() As MemberInfo

Dim srmMemberInfo As MemberInfo

Dim typTmp As Type

g typTmp = udt.GetType(udt.ToString())

h mi = typTmp.GetMembers()

Console.WriteLine("Value Type Information" & _

Chr(13) & Chr(10))

For Each srmMemberInfo In mi

Console.WriteLine(srmMemberInfo.Name)

Next

End Sub

The function ValueTypeDemoFunction() takes a ValueType object as
its parameter. Thus we can pass a VB.NET structure to this function. The
GetType() function in line g, which is a member of the System.Object
namespace, returns a System.Type object. We use the returned
System.Type object in line h to get the member names (an array of
System.Reflection.MemberInfo objects).

398 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 398

If we modify Code Sample 5-1 to add a call to ValueTypeDemoFunction()
as shown below in boldface text, we’ll obtain output similar to Figure 5-1.

Sub Main()

Dim udtStudent As New Student()

With udtStudent

.FirstName = "Matt"

.LastName = "Crouch"

.SSN = "888-88-1234"

.ClassRank = 2

End With

ValueTypeDemoFunction(udtStudent)

End Sub

5.2 The Common Language Runtime 399

Figure 5-1 Output of the ValueType example

Crouch05_393-458.ps 4/23/02 5:59 PM Page 399

5.2.2 Just-in-Time Code Compilation

Managed code cannot be executed directly by the CPU. It must be con-
verted to native executable code before running. Just-in-time (JIT) compila-
tion compiles MSIL code right at the moment it is needed. Optimizations
exist in the JIT compiler to ensure that only code planned for execution gets
compiled. The JIT compiler also performs security checks and verifies type-
safety.

5.2.3 Code Assemblies

I’ve mentioned the topic of component-based system architectures before,
and now it’s time to introduce the .NET Framework concept of this idea. The
component (that is, the unit of reuse) in the .NET Framework is the assembly.
An assembly is a collection of files, typically .dll files and any others relating
to the assembly, such as resource files. The assembly manifest contains meta-
data relating to version information, security attributes, and external code ref-
erences. It also contains information on how the pieces in the assembly relate
to each other. The assembly manifest, therefore, constructs a logical DLL
around the assembly elements.

5.2.4 Application Domains

Modern software systems run applications that are isolated from the internal
execution of the operating system and other programs. The reason for this is
to protect the operating system from crashing if the application attempts to
access memory being used by another application. Another situation that
could cause a crash is an internal error in the application that causes the oper-
ating system to crash. Fortunately, all versions of Windows offer process pro-
tection to prevent this problem. Each application running under Windows has
its own memory space, and memory used by other running applications is not
visible from any other application.

The .NET Framework extends the capabilities of protected process spaces
by building this functionality into the CLR. These protected spaces are known
as application domains. In addition to the fault tolerance that process isolation
provides, application domains can enforce security policies, thereby granting
or denying users and groups the right to run the application. Application
domains also consume fewer system resources than traditional Windows
processes because they can provide fault tolerance by taking advantage of the
inherit type-safety of the .NET Framework code.

400 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 400

5.3 COM+ Component Services

The .NET Framework leverages many existing Windows services to make it a
more robust application environment. A particular technology that deserves
attention is COM+ Component Services. These technologies were the prede-
cessors to the .NET Framework. To see how COM+ Component Services fits
into the .NET Framework arena, let’s explore a little about these technologies.

5.3.1 Overview of COM

The Component Object Model (COM) was designed to address the short-
comings of conventional object-oriented languages like C++ and traditional
binary software distribution of code. COM is about not a particular type of
software but rather a philosophy of programming. This philosophy is mani-
fested in the COM specification. The specification explicitly states how a
COM object should be constructed and what behaviors it should have.

COM objects are roughly equivalent to normal classes, but COM defines
how these objects interact with other programs at the binary level. By binary,
I mean compiled code, with all the methods and member variables of the class
already built into an object. This “binary encapsulation” allows you to treat
each COM object as a “black box.” You can call the black box and use its func-
tionality without any knowledge of the inner workings of the object’s imple-
mentation. In the Windows environment, these binary objects (COM objects)
are packaged as either DLLs or executable programs. COM is also backed by
a series of utility functions that provide routines for instantiating COM
objects, process communication, and so on.

COM was the first methodology to address object-oriented software
reuse. COM has enjoyed great commercial success; many third-party software
vendors provide COM objects to perform a wide range of tasks, from e-mail to
image processing. COM is also highly useful for creating components called
business objects. Business objects are COM objects in the strict sense, but
they are used to encapsulate business rules and logic. Typically these business
objects are tied to database tables. The objects move around the database
according to the business rules implemented in the COM object.

Generally, several smaller business objects work together to accomplish a
larger task. To maintain system integrity and to prevent the introduction of
erroneous data into the application, transactions are used. A software service
called Microsoft Transaction Server (MTS) is used to manage these trans-
actions. We’ll cover the function of MTS (and its successor, COM+) in Sec-
tion 5.3.3.

5.3 COM+ Component Services 401

Crouch05_393-458.ps 4/23/02 5:59 PM Page 401

5.3.2 Overview of Transactions

Simply stated, a transaction is a unit of work. Several smaller steps are in-
volved in a transaction. The success or failure of the transaction depends on
whether or not all of the smaller steps are completed successfully. If a failure
occurs at any point during a transaction, you don’t want any data changes
made by previous steps to remain. In effect, you want to initiate an “undo”
command, similar to what you would do when using, say, a word processor. A
transaction is committed when all steps have succeeded. A failed transaction
causes a rollback to occur (the “undo” operation).

Well-designed transactions conform to ACID principles. ACID is an
acronym for Atomicity, Consistency, Isolation, and Durability.

� Atomicity means that either the operation that the component per-
forms is completely successful or the data that the component operates
on does not change at all. This is important because if the transaction
has to update multiple data items, you do not want to leave it with erro-
neous values. If a failure occurs at any step that could compromise the
integrity of the system, the changes are undone.

� Consistency deals with preserving the system state in the case of a
transaction failure.

� Isolation means that a transaction acts as though it has complete con-
trol of the system. In effect, this means that transactions are executed
one at a time. This process keeps the system state consistent; two com-
ponents executed at the same time that operate on the same data can
compromise the integrity of the system.

� Durability is the ability of a system to return to any state that was pres-
ent before the execution of a transaction. For example, if a hard drive
crash occurs in the middle of a transaction, you can restore the original
state from a transaction log stored on another disk to which the system
recorded.

A classic example of a transaction operation is a bank transfer that involves
a transfer of funds from one account to another (a credit and a debit). Such a
transaction moves through the following steps.

1. Get the amount to be transferred, and check the source account for
sufficient funds.

2. Deduct the transfer amount from the source account.
3. Get the balance of the destination account, and add the amount to be

transferred to the balance.
4. Update the destination account with the new balance.

402 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 402

Suppose a system failure occurs at step 4. The source account had the
transfer amount deducted but the amount was not added to the destination
account. Therefore, the money from the source account gets lost. Clearly, this
is not good because the integrity of the database has been damaged.

Each of the account transfer’s steps can be checked for success or failure.
If a failure occurs before all values have been updated, the program needs to
undo the deduction made to the source account. That’s a rollback. If every
step succeeds, the program needs to apply all the changes made to the data-
base. That’s when a commit operation is performed.

5.3.3 Automatic Transactions

Transactions have been in widespread use since the early days of enterprise
computing. Many database systems include internal support for transactions.
Such database systems contain native commands to begin, abort, and commit
transactions. This way, several updates to database data can be made as a
group, and in the event of a failure, they can be undone. Using a database’s
internal transaction-processing system is referred to as manual transaction
processing.

Automatic transactions differ from manual transactions because automatic
transactions are controlled by a system external to the database management
system (DBMS). Earlier versions of Windows (95/98/NT) provide automatic
transaction services using Microsoft Transaction Server (MTS). MTS works by
coordinating database updates made by COM components grouped into a log-
ical unit called a package. An MTS package defines the boundary of the trans-
action. Each component in the package participates in the transaction. After a
component performs a piece of work (such as updating the database), it
informs MTS that it successfully (or unsuccessfully) performed its share of
the transaction. MTS then makes a determination to continue based on the
success of the last component’s signal of success or failure. If the transaction
step was unsuccessful, the transaction is aborted immediately, and MTS
instructs the DBMS to undo any changes made to data. If the step was suc-
cessful, the transaction continues with the other steps. If all steps execute
successfully, MTS commits the transaction and tells the DBMS to commit
changes to the data.

5.3.4 COM+ Applications

With the release of Windows 2000 came the next version of COM, dubbed
COM+. COM+’s raison d’être is the unification of COM and MTS. COM+

5.3 COM+ Component Services 403

Crouch05_393-458.ps 4/23/02 5:59 PM Page 403

also offers performance improvements over MTS by implementing technolo-
gies such as object pooling, which maintains an active set of COM component
instances. Other performance-enhancing features include load balancing,
which distributes component instances over multiple servers, and queued
components, which uses Microsoft Message Queue Server to handle requests
for COM+ components.

The services that were formerly provided by MTS are known as COM+
Component Services in the COM+ model. COM+ Component Services
works in a similar manner to MTS. Packages are now referred to as COM+
applications. Participating transactional components are grouped into
applications in the same way components were grouped into packages
under MTS.

Individual COM+ components in an application can be assigned differ-
ent levels of involvement in an automatic transaction. When setting up
COM+ applications, each component can have the levels of automatic
transaction support shown in Table 5-2.

404 Chapter 5 Building .NET Managed Components for COM+

Table 5-2 COM+ Automatic Transaction Support Levels

Transaction Support Description

Disabled No transaction services are ever loaded by COM+
Component Services.

Not Supported This is the default setting for new MTS components.
Execution of the component is always outside a
transaction regardless of whether or not a transaction
has been initiated for the component.

Supported You may run the component inside or outside a
transaction without any ill effects.

Required The component must run inside a transaction.

Required New The component needs its own transaction in which to
run. If the component is not called from within a
transaction, a new transaction is automatically created.

Crouch05_393-458.ps 4/23/02 5:59 PM Page 404

5.3.5 COM+ Security

Security is of paramount importance, especially for applications intended
to run on the Internet. In the past, programming security features into an
Internet application was largely a manual effort. Often it consisted of custom
security schemes that did not necessarily leverage the existing security infra-
structure provided by the operating system. Besides being difficult to main-
tain, such security systems are typically costly to develop.

COM+ Component Services provides a security infrastructure for appli-
cations that uses Windows 2000/XP users and groups. COM+ security is
declarative, which means you designate which users and groups have per-
mission to access a COM+ application. This is done by defining roles for
application access.

A role is a defined set of duties performed by particular individuals. For
example, a librarian can locate, check out, and shelve books. The person ful-
filling the librarian role is permitted to perform such duties under the security
policies defined for that role. An administrator is responsible for assigning
users and groups to roles. The roles are then assigned to a COM+ application.

This role-based security is not only easy to implement (it can be done by
the system administrator) but it also typically doesn’t require the programmer
to work on the components to implement any security code. When a call is
made to a component running under COM+ Component Services, COM+
checks the user/group identity of the caller and compares it against the roles
assigned to the component. Based on that comparison, the call is allowed or
rejected.

You can provide additional security checking by using procedural security.
This type of security is implemented programmatically using special .NET
classes designed for interaction with COM+ Component Services.

5.3.6 .NET Classes and COM+ Component Services

Thus far, our discussions about COM+ Component Services, transactions, and
security deal specifically with COM+ components. COM+ predated the .NET
Framework and has had much success in enterprise-wide applications devel-
oped using Microsoft Visual Studio 6.0. But how does .NET fit into all of this?

COM+ still remains a dominant technology and is a significant part of
Windows. The architecture for .NET managed components was designed to
take advantage of all the features COM+ Component Services has to offer
(object pooling, transaction processing, security, and so on) by providing
classes to implement those features. These concepts are very important when
developing Web applications, too.

5.3 COM+ Component Services 405

Crouch05_393-458.ps 4/23/02 5:59 PM Page 405

5.4 Using VB.NET to Develop Managed Components

In this section I’ll present the concepts you need to understand to build man-
aged components using VB.NET.

5.4.1 Defining Namespaces

Namespaces are a way to hierarchically organize class names. Namespaces
become especially useful when the number of classes available to you is quite
large. You’ve been exposed to namespaces quite a bit already in this book.
Whenever you write VB.NET code, you use .NET classes in the System
namespace. For example, when you use the Console.WriteLine() com-
mand, you are using an assembly called Console that exists in the System
namespace. In the code, Console is not fully qualified because it is assumed
to be a part of the System namespace based on the uniqueness of the name
Console. You could fully qualify the statement this way:

System.Console.WriteLine(. . .)

When you create a new .NET assembly (program), a default root
namespace is assigned to the assembly. This name is typically the name
of your project. However, you are free to assign your own namespace
names.

5.4.2 Using the Class Library

Managed components start with a VS.NET project called a class library. The
class library puts the infrastructure in place for creating an assembly for pack-
ing a component. Figure 5-2 shows the selections used to create a new class
library project.

You can specify several project properties and options for class library
projects. Of particular interest are the root namespace and the assembly
name. VB.NET creates default names for both of these options. You can view
and modify them by selecting the Project➔Properties menu. This opens the
Property Pages dialog shown in Figure 5-3.

By default, VB.NET assigns the name you specified for the project as the
names for the assembly and the root namespace. You can override these
default names with better, more descriptive ones. Given these new designa-
tions, references to classes inside the assembly would be made in the follow-

406 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 406

ing manner. (This example shows the usage of Dim to declare an object for a
particular class inside the assembly.)

Dim objMyObject As objMyExample.SomeClassInTheAssembly

.NET applications that you write need to include a reference to each
assembly you wish to use inside the main application. You can add a reference
to an assembly by right-clicking on the References folder (see Figure 5-4) and
selecting Add Reference VS.NET displays a dialog with a list of available
assemblies (see Figure 5-5). Those assemblies that are a part of the .NET
Framework distribution are displayed in the list. To add a reference to another
assembly, click the Browse . . . button. Then you’ll be able to select the as-
sembly file you need.

5.4 Using VB.NET to Develop Managed Components 407

Figure 5-2 Creating a new class library project in VB.NET

Crouch05_393-458.ps 4/23/02 5:59 PM Page 407

408 Chapter 5 Building .NET Managed Components for COM+

Figure 5-3 The Property Pages dialog

Figure 5-4 The References folder

Crouch05_393-458.ps 4/23/02 5:59 PM Page 408

5.4.3 Using Component “Plumbing” Code

When class library projects are started in VB.NET, some stub code is gener-
ated for you. A new, “empty” component’s “plumbing” code looks something
like this:

Public Class Class1

End Class

The VS.NET IDE adds this code for you for an empty class called
Class1. A .vb file is also generated that contains the class’s code (which
VS.NET should be displaying in the front-most window). Give the class
another name (in the example below, we’ll name it CTaxComponent) by

5.4 Using VB.NET to Develop Managed Components 409

Figure 5-5 The Add Reference dialog

Crouch05_393-458.ps 4/23/02 5:59 PM Page 409

changing it in the editor and then renaming the class file in the Solution
Explorer to CTaxComponent. The code should now say:

Public Class CTaxComponent

End Class

5.4.4 Adding Initialization Code

Whenever your component is instantiated, the New() subroutine is called. Any
initialization code you require goes here. As an illustration, suppose your class
contains a private member variable that you wish to have an initial default
value when the component is instantiated. Such initialization code could look
like the following.

Private m_dblTaxRate As Double

Public Sub New()

MyBase.New

' Specify default percent tax rate

m_dblTaxRate = 5

End Sub

5.4.5 Creating Methods

In Chapter 2 we discussed classes and several class concepts, such as methods.
When creating class libraries and components, you’ll notice that the same
principles apply to components. Methods are simply member functions and
subroutines. In order for other .NET applications to access methods you
define, you need to expose them by marking them for public access. Here’s a
public method definition and implementation to illustrate.

Public Function CalculatePriceAfterTax(_

ByVal Amount As Double) As Double

CalculatePriceAfterTax = Amount * (1 + (m_dblTaxRate / 100))

End Function

410 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 410

5.4.6 Creating Properties

Component properties are created in the same way as properties for regular
classes. Like methods, they should be marked for public access. The property
in the sample code below sets or gets the value of the private class member
variable used in the previous example.

Public Property TaxRate() As Double

Get

TaxRate = m_dblTaxRate

End Get

Set(ByVal Value As Double)

m_dblTaxRate = Value

End Set

End Property

5.4.7 Using the Class Library in an Application

The preceding sections described all the steps required to create a class
library that can function as an independent component in another application.
Now the class library needs to be tested. You can create another .NET appli-
cation that references the assembly and write code to call the CTaxComponent
class. The code below is a simple console application that uses the class library.

Imports System

Imports SCDemoClasses

Imports Microsoft.VisualBasic

Module Module1

Sub Main()

Dim objTaxComponent As New CTaxComponent()

Dim dblItemPrice As Double = 9.99

Dim dblTotalPrice As Double

With objTaxComponent

.TaxRate = 7

dblTotalPrice = _

.CalculatePriceAfterTax(dblItemPrice)

End With

Console.WriteLine("{0} after tax is {1}", _

FormatCurrency(dblItemPrice), _

5.4 Using VB.NET to Develop Managed Components 411

Crouch05_393-458.ps 4/23/02 5:59 PM Page 411

FormatCurrency(dblTotalPrice))

End Sub

End Module

This code produces the following output (assuming U.S. currency):

$9.99 after tax is $10.69

412 Chapter 5 Building .NET Managed Components for COM+

WARNING: Before this program can compile and run, a
reference to the assembly DLL, SCDemo (used in the exam-
ple), must be added as a reference to the hosting applica-
tion (the sample console application) using the Add
Reference . . . command from the menu.

5.5 Serviced Components

Building components and class libraries is a good way to organize your code,
but the main advantage of writing class libraries and components for your
application is to gain the benefits of COM+ Component Services. With
COM+ Component Services, your components can take advantage of auto-
matic transaction processing, object pooling, and role-based security. Compo-
nents that use COM+ Component Services are called serviced components.

Setting up a component to take advantage of these features is not difficult.
It requires creating a class library project as shown earlier plus creating sev-
eral component classes to handle the business logic. Let’s discuss an example
scenario that uses serviced components.

Suppose that we are writing an ordering and inventory system for a super-
market. The system will track inventory as well as receive orders. Three differ-
ent types of users will work with this system: Suppliers, Supervisors, and
Receiving Clerks. Suppliers enter any orders that we expect to receive into
our database. Any products that are ordered must be products that the store
normally carries. Supervisors are authorized to add new product types to the
database. Receiving Clerks and Supervisors are authorized to receive orders.
Line items received from an order will be immediately reflected as available
inventory for the supermarket. Figure 5-6 shows the database schema used for

Crouch05_393-458.ps 4/23/02 5:59 PM Page 412

the ordering and inventory system, showing tables, columns, and foreign key
relationships among columns. (Note that this system is simplified for the pur-
poses of the example.) To run the code samples, you will need to create a SQL
Server database with these specifications, tables, and relationships. Tables 5-3
through 5-6 list the table column names and data types for the four tables
shown in Figure 5-6.

5.5 Serviced Components 413

Figure 5-6 Database diagram of a supermarket ordering and inventory system

Table 5-3 Column Names and Data Types for the Inventory Table

Column Name Data Type

BinNumber Varchar(255)

SKU Varchar(255)

Quantity Int

Crouch05_393-458.ps 4/23/02 5:59 PM Page 413

414 Chapter 5 Building .NET Managed Components for COM+

Table 5-4 Column Names and Data Types for the Product Table

Column Name Data Type

SKU Varchar(255)

Description Varchar(255)

UnitPrice Decimal

StockingBinNumber Varchar(255)

Table 5-5 Column Names and Data Types for the Orders Table

Column Name Data Type

OrderNumber Varchar(255)

SupplierName Varchar(255)

OrderReceived Bit

Table 5-6 Column Names and Data Types for the OrderDetails Table

Column Name Data Type

OrderNumber Varchar(255)

LineItemNumber Int

SKU Varchar(255)

QuantityReceived Int

Quantity Int

ID Identity

Crouch05_393-458.ps 4/23/02 5:59 PM Page 414

5.6 Building VB.NET Serviced Components

Now it’s time for you to use serviced components to build the supermarket
ordering and inventory system outlined in the previous section! You’ll work
through each step in the process, from designing to coding and then testing
the components in an ASP.NET application.

AN ORDERING AND INVENTORY SYSTEM MADE
WITH SERVICED COMPONENTS

STEP 1. Create a new VB.NET class library project.

a. Open VS.NET and select File➔New➔Project.

b. Highlight Class Library and give the new project the name
“SupermarketSystem”.

STEP 2. Design the components.

a. Consider the design of your system. First, establish the users of the system
and their roles:

• Supervisors (adding new products, receiving orders, updating inventory)

• Receiving Clerks (receiving orders)

• Suppliers (shipping goods to the supermarket and supplying order
information)

LAB 5-1

5.6 Building VB.NET Serviced Components 415

TIP: Consult your SQL Server documentation about creat-
ing a new database and setting up tables if you are not
familiar with the process. Recruit the help of a database
administrator if you need assistance in obtaining authoriza-
tion to create a database (if you’re in an enterprise/shared
database environment). We will discuss database access
in detail in Chapter 7.

Crouch05_393-458.ps 4/23/02 5:59 PM Page 415

b. Organize these functions into a series of classes for your class library. Four
classes will handle the business logic of the different duties that each user
will perform: Product, ReceiveOrder, UpdateInventory, and
CreateOrder. Lab Figure 5-1 shows the classes and the methods of each
class.

Adding a new product to the system, updating inventory, receiving an
order, and creating an order all involve operations on the database tier of
the application. For some of these operations, database updates can occur
in multiple tables. It’s important to keep data integrity across these tables.
You also want to implement security features so the users perform only the
functions that their roles designate. You’ll see this functionality develop as
you code the components.

STEP 3. Write code for component functionality.
In the process of implementing the components, we’ll discuss these topics:

• How to use the System.EnterpriseServices namespace and one partic-
ular class: the ServicedComponent class

• How to use class attributes to specify the type of COM+ support you
want your components to have

• How to specify an interface from which to call the components

• How to control the transaction inside the components

a. Create the classes outlined in the specifications in Step 2: Product,
ReceiveOrder, UpdateInventory, and CreateOrder. For each of these
classes, right-click the project in the Solution Explorer and select Add

416 Chapter 5 Building .NET Managed Components for COM+

Lab Figure 5-1 The classes and methods of the Supermarket program

Create GetNextLineItem Update Create
Receive AddItems

Product ReceiveOrder UpdateInventory CreateOrder

Crouch05_393-458.ps 4/23/02 5:59 PM Page 416

Class . . . from the menu. Name the classes as listed above. VS.NET will
“stub out” an empty class definition for each class.

b. Building serviced components requires support from COM+ Component Ser-
vices. The .NET Framework implements this support through classes in the
System.EnterpriseServices namespace. VS.NET doesn’t include this ref-
erence by default, so you’ll need to add it yourself. Select Project➔Add
Reference from the menu and select System.EnterpriseServices from the
list. Click the Select button and then click OK.

c. Now you’re ready to add component functionality. Start by adding the fol-
lowing code for the Product class (Product.vb).

LAB CODE SAMPLE 5-1

Imports System

Imports System.Reflection

Imports System.EnterpriseServices

Imports System.Data

Imports System.Data.SqlClient

i <Assembly: ApplicationName("Supermarket")>

j <Assembly: ApplicationActivation(ActivationOption.Library)>

k <Assembly: AssemblyKeyFile("KeyFile.snk")>

l Namespace Supermarket

m Public Interface IProduct

Function Create(ByVal SKU As String, _

ByVal Description As String, _

ByVal UnitPrice As Decimal, _

ByVal StockingBinNumber As String) _

As Boolean

End Interface

n <ConstructionEnabled(_

[Default]:="Default Construction String"), _

Transaction(TransactionOption.Required)> _

Public Class Product

o Inherits ServicedComponent

p Implements Supermarket.IProduct

Public Sub New()

End Sub

5.6 Building VB.NET Serviced Components 417

Crouch05_393-458.ps 4/23/02 5:59 PM Page 417

Protected Overrides Sub Construct(_

q ByVal constructString As String)

End Sub

Function Create(ByVal SKU As String, _

ByVal Description As String, _

ByVal UnitPrice As Decimal, _

ByVal StockingBinNumber As String) _

As Boolean _

Implements Supermarket.IProduct.Create

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim intRowsReturned As Integer

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"INSERT INTO Product " & _

"(SKU, Description, UnitPrice, StockingBinNumber) " & _

"VALUES (@sku, @description, @unitprice, @stockingbinnumber)"

objParam = New SqlParameter()

With objParam

.ParameterName = "@sku"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = SKU

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@description"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = Description

End With

418 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 418

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@unitprice"

.SqlDbType = SqlDbType.Decimal

.Direction = ParameterDirection.Input

.Value = UnitPrice

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@stockingbinnumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = StockingBinNumber

End With

objCmd.Parameters.Add(objParam)

intRowsReturned = _

objCmd.ExecuteNonQuery()

Create = True

r ContextUtil.SetComplete()

Catch E As Exception

Create = False

s ContextUtil.SetAbort()

Finally

objCnn.Close()

End Try

End Function

End Class

End Namespace

This code implements a serviced component. As mentioned before, a
serviced component is a .NET class that uses COM+ Component Ser-
vices. The class becomes a serviced component when it derives from the
System.EnterpriseServices.ServicedComponent class. Before we
talk more about the ServicedComponent class, let’s first investigate the
beginning of the code where some assembly-level attributes are declared.

5.6 Building VB.NET Serviced Components 419

Crouch05_393-458.ps 4/23/02 5:59 PM Page 419

Making a serviced component requires you to provide information to
COM+ Component Services about the component’s configuration. First you
designate to which package, or COM+ application, the component will
belong. That designation is made with the ApplicationName assembly-level
attribute shown in line i. The name for the order and inventory application
is “Supermarket”. COM+ applications are listed in the Component Services
Console.

COM+ Component Services provides a runtime environment for assembly
components. You can also control where the components are activated—in
the same process as the creator of the object (IIS) or in a separate system
process (dllhost.exe). You can control application activation by specifying
the ApplicationActivation assembly attribute shown in line j. This code
specifies ActivationOption.Library, which causes components to be
activated in the creator’s process. So, if you were running these compo-
nents inside ASP.NET Web Forms, the creating process would be the Web
server, IIS. The ActivationOption.Server option provides faster perfor-
mance; this option, which runs the component in a system process, pro-
vides more isolation, so the component’s execution won’t adversely affect
the execution of IIS. One advantage to using ActivationOption.Library
is to make debugging easier.

The final assembly-level attribute, AssemblyKeyFile, specifies a shared
name for the assembly (see line k). The shared name is sometimes referred
to as a strong name. A shared name ensures that a name assigned to a
component is unique. This is accomplished by using a public/private crypto-
graphic key pair to sign each shared component in the assembly. The public
key is then published with the assembly. Besides specifying this attribute in
the code, you’ll need to actually generate the key file specified for the
assembly-level attribute. To do this, use sn.exe, the Strong Name Utility.
Lab Figure 5-2 shows how this is done.

The usage of sn.exe, as shown in Lab Figure 5-2, outputs a .snk file.
This is the file name that you specify in the AssemblyKeyFile attribute in
the code (change the path to the location of your generated key file). You
must complete this step before you compile your project. These assembly-
level attributes appear once in the project’s code. The class file in which
they appear is irrelevant, but they must be declared once and only once in
the assembly code.

420 Chapter 5 Building .NET Managed Components for COM+

WARNING: Never let anybody else have access to your
.snk file. It contains a private key that is for your use only.

Crouch05_393-458.ps 4/23/02 5:59 PM Page 420

Let’s move on to the main part of the component code. Line l defines
the Supermarket namespace, which will contain all the components for the
Supermarket application. Line m declares an interface you’ll use in the
client application (the ASP.NET Web Form) to call the component. The inter-
face has one function, Create(), which you’ll use to set up a new product
in the Product database table.

The component’s class definition comes next. The code beginning in line
n shows two class-level attributes for the Product class. The first one,
ConstructionEnabled, specifies that the class will be able to use COM+
constructor strings. A constructor string is a string passed into the activa-
tion procedure of the component. This string can be specified by a system
administrator inside the Component Services Console. A constructor string
can contain any information, but typically you’ll use it for passing initializa-
tion information to the component. If no constructor string is given for the
component in the Component Services Console (see Lab Figure 5-3, which
shows the Component Services Console dialog box for setting a constructor
string), a default constructor string is used by specifying it in the attribute
as shown in the continuation of line n. The other class-level attribute speci-
fies how the class will participate in transactions. Use the Transaction
attribute to specify the participation level. In this code, Transaction uses

5.6 Building VB.NET Serviced Components 421

Lab Figure 5-2 Specifying a strong name for the assembly using sn.exe

Crouch05_393-458.ps 4/23/02 5:59 PM Page 421

TransactionOption.Required. This indicates that the Product component
should participate in an existing transaction if one already exists. If no
transaction exists, a new transaction will begin and the Product compo-
nent will execute within the boundaries of that transaction.

The class definition continues with the specification of an inherited class
and an Implements statement. Since this will be a serviced component, it
needs to derive from the ServicedComponent class, as shown in line o. In
line p the class implements the IProduct interface specified earlier.

Line q provides implementation support for constructor strings. Since
the code specified that the component will have support for constructor

422 Chapter 5 Building .NET Managed Components for COM+

Lab Figure 5-3 Specifying a constructor string in Component Services

Crouch05_393-458.ps 4/23/02 5:59 PM Page 422

strings with the class-level attribute ConstructionEnabled, here there is
an override method for the Construct() sub. This method will be called
upon object construction, and the constructor string assigned to the com-
ponent will be available in the constructString variable.

Now follows the implementation of the Create() method, which accepts
a new product’s SKU number, product description, unit price, and stocking
bin number. The Create() method then executes the appropriate ADO.NET
code to insert a new row into the Product database table. (ADO.NET code
will be discussed in Chapter 7. For now, just be aware that the Product
component contains this method that will be callable from an ASP.NET
Web Form.)

Although the discussion of the ADO.NET code details is deferred, it’s
important to point out two details in the Create() method. These are two
methods of the ContextUtil object, SetComplete() in line r and
SetAbort() in line s. These methods cast a vote in the current transac-
tion. Typically, when you have verified that all of the code inside a particular
component method has executed successfully, a call to SetComplete() is
made. This tells COM+ Component Services that a unit of work has suc-
ceeded and that database integrity and consistency is assured for updates
made by the unit of work. It‘s a signal that the transaction can continue
running. Conversely, if a failure occurs (an exception or other user-defined
error or condition), the program needs to cast a “fail” vote for the trans-
action by calling SetAbort(). This will cause COM+ Component Services to
stop the transaction and roll back any changes made to the database by
previous steps in the transaction.

d. Now that you understand the basic pieces of the Product class code, add
the code for the remaining classes (CreateOrder, UpdateInventory, and
ReceiveOrder). The implementations are all different, of course, but they
follow pretty much the same conventions as the Product component.

LAB CODE SAMPLE 5-2

Imports System

Imports System.Reflection

Imports System.EnterpriseServices

Imports System.Data

Imports System.Data.SqlClient

Namespace Supermarket

5.6 Building VB.NET Serviced Components 423

Crouch05_393-458.ps 4/23/02 5:59 PM Page 423

Public Interface ICreateOrder

Function Create(ByVal OrderNumber As String, _

ByVal SupplierName As String) _

As Boolean

Function AddItems(ByVal OrderNumber As String, _

ByVal SKU As String, _

ByVal Quantity As Integer) _

As Boolean

End Interface

<ConstructionEnabled(_

[Default]:="Default Construction String"), _

Transaction(TransactionOption.Required)> _

Public Class CreateOrder

Inherits ServicedComponent

Implements ICreateOrder

Public Sub New()

End Sub

Public Function Create(ByVal OrderNumber As String, _

ByVal SupplierName As String) _

As Boolean _

Implements ICreateOrder.Create

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim intRowsAffected As Integer

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"INSERT INTO Orders " & _

"(OrderNumber, SupplierName, OrderReceived) " & _

"VALUES (@OrderNumber, @SupplierName, @OrderReceived)"

objParam = New SqlParameter()

424 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 424

With objParam

.ParameterName = "@OrderNumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = OrderNumber

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@SupplierName"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = SupplierName

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@OrderReceived"

.SqlDbType = SqlDbType.Bit

.Direction = ParameterDirection.Input

.Value = False

End With

objCmd.Parameters.Add(objParam)

intRowsAffected = objCmd.ExecuteNonQuery()

Create = True

ContextUtil.SetComplete()

Catch E As Exception

Create = False

ContextUtil.SetAbort()

End Try

End Function

Public Function AddItems(ByVal OrderNumber As String, _

ByVal SKU As String, _

ByVal Quantity As Integer) _

As Boolean _

Implements ICreateOrder.AddItems

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

5.6 Building VB.NET Serviced Components 425

Crouch05_393-458.ps 4/23/02 5:59 PM Page 425

Dim objParam As SqlParameter

Dim intMaxLineNumber As Integer

Dim intRowsAffected As Integer

Dim objTemp As Object

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"SELECT MAX(LineItemNumber) " & _

"FROM OrderDetails " & _

"WHERE OrderNumber = @OrderNumber"

objParam = New SqlParameter()

With objParam

.ParameterName = "@OrderNumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = OrderNumber

End With

objCmd.Parameters.Add(objParam)

objTemp = objCmd.ExecuteScalar()

If TypeOf objTemp Is DBNull Then

intMaxLineNumber = 1

Else

intMaxLineNumber = CType(objTemp, Integer)

intMaxLineNumber += 1

End If

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"INSERT INTO OrderDetails " & _

"(OrderNumber, LineItemNumber, SKU, " & _

"QuantityReceived, Quantity) VALUES " & _

"(@OrderNumber, @LineNumber, @SKU, " & _

"@QuantityReceived, @Quantity)"

objParam = New SqlParameter()

With objParam

.ParameterName = "@OrderNumber"

.SqlDbType = SqlDbType.VarChar

426 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 426

.Direction = ParameterDirection.Input

.Value = OrderNumber

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@LineNumber"

.SqlDbType = SqlDbType.Int

.Direction = ParameterDirection.Input

.Value = intMaxLineNumber

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@SKU"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = SKU

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@QuantityReceived"

.SqlDbType = SqlDbType.Int

.Direction = ParameterDirection.Input

.Value = 0

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@Quantity"

.SqlDbType = SqlDbType.Int

.Direction = ParameterDirection.Input

.Value = Quantity

End With

objCmd.Parameters.Add(objParam)

intRowsAffected = objCmd.ExecuteNonQuery()

AddItems = True

5.6 Building VB.NET Serviced Components 427

Crouch05_393-458.ps 4/23/02 5:59 PM Page 427

ContextUtil.SetComplete()

Catch E As Exception

AddItems = False

ContextUtil.SetAbort()

Finally

objCnn.Close()

End Try

End Function

End Class

End Namespace

LAB CODE SAMPLE 5-3

Imports System

Imports System.Reflection

Imports System.EnterpriseServices

Imports System.Data

Imports System.Data.SqlClient

Namespace Supermarket

Public Interface IUpdateInventory

Function Update(ByVal BinNumber As String, _

ByVal SKU As String, _

ByVal Quantity As Integer) _

As Boolean

Function GetStockingLocation(ByVal SKU As String) _

As String

End Interface

<ConstructionEnabled(_

[Default]:="Default Construction String"), _

Transaction(TransactionOption.Required)> _

Public Class UpdateInventory

Inherits ServicedComponent

Implements IUpdateInventory

Public Sub New()

End Sub

428 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 428

Public Function GetStockingLocation(_

ByVal SKU As String) As String _

Implements IUpdateInventory.GetStockingLocation

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim objTemp As Object

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"SELECT StockingBinNumber " & _

"FROM Product WHERE SKU = @SKU"

objParam = New SqlParameter()

With objParam

.ParameterName = "@SKU"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = SKU

End With

objCmd.Parameters.Add(objParam)

objTemp = objCmd.ExecuteScalar()

If TypeOf objTemp Is DBNull Then

GetStockingLocation = ""

Else

GetStockingLocation = _

CType(objCmd.ExecuteScalar(), String)

End If

ContextUtil.SetComplete()

Catch E As Exception

ContextUtil.SetAbort()

GetStockingLocation = ""

Finally

objCnn.Close()

End Try

5.6 Building VB.NET Serviced Components 429

Crouch05_393-458.ps 4/23/02 5:59 PM Page 429

End Function

Private Function InventoryRecExists(_

ByVal SKU As String, _

ByVal StockingBinNumber As String) _

As Boolean

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim intRowCount As Integer

Dim objTemp As Object

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"SELECT COUNT(*) FROM Inventory " & _

"WHERE SKU = @SKU AND " & _

"BinNumber = @StockingBinNumber"

objParam = New SqlParameter()

With objParam

.ParameterName = "@SKU"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = SKU

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@StockingBinNumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = StockingBinNumber

End With

objCmd.Parameters.Add(objParam)

objTemp = objCmd.ExecuteScalar()

If TypeOf objTemp Is DBNull Then

430 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 430

intRowCount = 0

Else

intRowCount = CType(objTemp, Integer)

End If

If intRowCount > 0 Then

InventoryRecExists = True

Else

InventoryRecExists = False

End If

ContextUtil.SetComplete()

Catch E As Exception

InventoryRecExists = False

ContextUtil.SetAbort()

Finally

objCnn.Close()

End Try

End Function

Private Sub UpdateInventoryRecord(_

ByVal BinNumber As String, _

ByVal SKU As String, _

ByVal Quantity As Integer)

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim intRowCount As Integer

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = "UPDATE Inventory " & _

"SET Quantity = Quantity + @Quantity " & _

"WHERE BinNumber = @BinNumber AND SKU = @SKU"

objParam = New SqlParameter()

5.6 Building VB.NET Serviced Components 431

Crouch05_393-458.ps 4/23/02 5:59 PM Page 431

With objParam

.ParameterName = "@Quantity"

.SqlDbType = SqlDbType.Int

.Direction = ParameterDirection.Input

.Value = Quantity

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@BinNumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = BinNumber

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@SKU"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = SKU

End With

objCmd.Parameters.Add(objParam)

intRowCount = objCmd.ExecuteNonQuery()

ContextUtil.SetComplete()

Catch E As Exception

ContextUtil.SetAbort()

Finally

objCnn.Close()

End Try

End Sub

Private Sub InsertInventoryRecord(_

ByVal BinNumber As String, _

ByVal SKU As String, _

ByVal Quantity As Integer)

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

432 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 432

Dim intRowCount As Integer

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"INSERT INTO Inventory " & _

"(BinNumber, SKU, Quantity) VALUES " & _

"(@BinNumber, @SKU, @Quantity)"

objParam = New SqlParameter()

With objParam

.ParameterName = "@BinNumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = BinNumber

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@SKU"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = SKU

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@Quantity"

.SqlDbType = SqlDbType.Int

.Direction = ParameterDirection.Input

.Value = Quantity

End With

objCmd.Parameters.Add(objParam)

intRowCount = objCmd.ExecuteNonQuery()

ContextUtil.SetComplete()

5.6 Building VB.NET Serviced Components 433

Crouch05_393-458.ps 4/23/02 5:59 PM Page 433

Catch E As Exception

ContextUtil.SetAbort()

Finally

objCnn.Close()

End Try

End Sub

Public Function Update(ByVal BinNumber As String, _

ByVal SKU As String, _

ByVal Quantity As Integer) _

As Boolean _

Implements IUpdateInventory.Update

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim strStockingLocation As String

Dim intRowsAffected As Integer

Try

If InventoryRecExists(SKU, BinNumber) Then

UpdateInventoryRecord(_

BinNumber, _

SKU, _

Quantity)

Else

InsertInventoryRecord(_

BinNumber, _

SKU, _

Quantity)

End If

Update = True

ContextUtil.SetComplete()

Catch E As Exception

Update = False

ContextUtil.SetAbort()

End Try

End Function

End Class

End Namespace

434 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 434

LAB CODE SAMPLE 5-4

Imports System

Imports System.Reflection

Imports System.EnterpriseServices

Imports System.Data

Imports System.Data.SqlClient

Namespace Supermarket

Public Interface IReceiveOrder

Function GetNextLineItem(ByVal OrderNumber As String, _

ByRef SKU As String) As Integer

Function Receive(ByVal OrderNumber As String, _

ByVal SKU As String, _

ByVal LineNumber As Integer, _

ByVal QuantityReceived As Integer) _

As Boolean

End Interface

<ConstructionEnabled(_

[Default]:="Default Construction String"), _

Transaction(TransactionOption.Required)> _

Public Class ReceiveOrder

Inherits ServicedComponent

Implements IReceiveOrder

Public Sub New()

End Sub

Private Sub UpdateOrderDeatils(_

ByVal OrderNumber As String, _

ByVal LineNumber As Integer, _

ByVal QuantityReceived As Integer)

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim objSQLDr As SqlDataReader

Dim intRowsAffected As Integer

Try

objCnn = New SqlConnection()

5.6 Building VB.NET Serviced Components 435

Crouch05_393-458.ps 4/23/02 5:59 PM Page 435

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"UPDATE OrderDetails " & _

"SET QuantityReceived = " & _

"QuantityReceived + @QuantityReceived " & _

"WHERE OrderNumber = " & _

"@OrderNumber AND LineItemNumber = @LineNumber"

objParam = New SqlParameter()

With objParam

.ParameterName = "@QuantityReceived"

.SqlDbType = SqlDbType.Int

.Direction = ParameterDirection.Input

.Value = QuantityReceived

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@OrderNumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = OrderNumber

End With

objCmd.Parameters.Add(objParam)

objParam = New SqlParameter()

With objParam

.ParameterName = "@LineNumber"

.SqlDbType = SqlDbType.Int

.Direction = ParameterDirection.Input

.Value = LineNumber

End With

objCmd.Parameters.Add(objParam)

intRowsAffected = objCmd.ExecuteNonQuery()

ContextUtil.SetComplete()

Catch E As Exception

436 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 436

ContextUtil.SetAbort()

Finally

objCnn.Close()

End Try

End Sub

Public Function GetNextLineItem(_

ByVal OrderNumber As String, _

ByRef SKU As String) _

As Integer Implements _

IReceiveOrder.GetNextLineItem

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim objSQLDr As SqlDataReader

Try

objCnn = New SqlConnection()

objCnn.ConnectionString = _

"Initial Catalog=Supermarket;Data Source=localhost;uid=sa;pwd="

objCnn.Open()

objCmd = objCnn.CreateCommand()

objCmd.CommandText = _

"SELECT MAX(LineItemNumber), " & _

"SKU FROM OrderDetails od, Orders o " & _

"WHERE od.OrderNumber = @OrderNumber AND " & _

"o.OrderReceived = 0 AND " & _

"o.OrderNumber = od.OrderNumber GROUP BY SKU"

objParam = New SqlParameter()

With objParam

.ParameterName = "@OrderNumber"

.SqlDbType = SqlDbType.VarChar

.Direction = ParameterDirection.Input

.Value = OrderNumber

End With

objCmd.Parameters.Add(objParam)

objSQLDr = objCmd.ExecuteReader()

objSQLDr.Read()

5.6 Building VB.NET Serviced Components 437

Crouch05_393-458.ps 4/23/02 5:59 PM Page 437

If Not objSQLDr.IsDBNull(0) Then

GetNextLineItem = objSQLDr.GetInt32(0)

SKU = objSQLDr.GetString(1)

Else

GetNextLineItem = -1

SKU = ""

End If

ContextUtil.SetComplete()

objSQLDr.Close()

Catch E As Exception

GetNextLineItem = -1

SKU = ""

ContextUtil.SetAbort()

Finally

objCnn.Close()

End Try

End Function

Public Function Receive(ByVal OrderNumber As String, _

ByVal SKU As String, _

ByVal LineNumber As Integer, _

ByVal QuantityReceived As Integer) _

As Boolean _

Implements IReceiveOrder.Receive

Dim objCnn As SqlConnection

Dim objCmd As SqlCommand

Dim objParam As SqlParameter

Dim objInvUpdate As IUpdateInventory

Dim strBinNumber As String

Try

UpdateOrderDeatils(OrderNumber, _

LineNumber, _

QuantityReceived)

objInvUpdate = New UpdateInventory()

strBinNumber = _

objInvUpdate.GetStockingLocation(SKU)

438 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 438

If objInvUpdate.Update(strBinNumber, _

SKU, QuantityReceived) Then

Receive = True

ContextUtil.SetComplete()

Else

Receive = False

ContextUtil.SetAbort()

End If

Catch E As Exception

Receive = False

ContextUtil.SetAbort()

End Try

End Function

End Class

End Namespace

e. Now that you’ve entered the main code for the Supermarket COM+ appli-
cation, it’s time to compile it. Choose Build➔Build Solution from the menu
to create the assembly file. In the next step, you’ll create a project that
references that assembly.

STEP 4. Create the ASP.NET application.

a. Create a new VB ASP.NET project called “SupermarketWeb”.

b. Add a reference to System.EnterpriseServices to the project by right-
clicking the project icon and selecting Add Reference . . . from the pop-up
menu.

c. Add four new Web Forms (.aspx files) and their code-behind files (.vb
files) to the project, named as follows:

Lcs5-5.aspx, Lcs5-5.aspx.vb

Lcs5-6.aspx, Lcs5-6.aspx.vb

Lcs5-7.aspx, Lcs5-7.aspx.vb

Lcs5-8.aspx, Lcs5-8.aspx.vb

These Web Forms will test the different components and their
functionality.

5.6 Building VB.NET Serviced Components 439

Crouch05_393-458.ps 4/23/02 5:59 PM Page 439

Product Component Test Web Form

The HTML for the Lcs5-5.aspx file appears below.

LAB CODE SAMPLE 5-5

<%@ Page Language="vb"

AutoEventWireup="false"

src="Lcs5-05.aspx.vb"

Inherits="WebForm1"

Transaction="RequiresNew"%>

<html>

<head>

<title>Create New Product</title>

</head>

<body>

<form id="Form1"

method="post"

runat="server">

<p>SKU:

<asp:TextBox

id=txtSKU

runat="server">

</asp:TextBox></p>

<p>Description:

<asp:TextBox

id=txtDescription

runat="server">

</asp:TextBox></p>

<p>Unit Price:

<asp:TextBox

id=txtUnitPrice

runat="server">

</asp:TextBox></p>

<p>Stocking Location:

<asp:TextBox

id=txtStockLoc

runat="server">

</asp:TextBox></p>

440 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 440

<p>

<asp:Button

id=cmdAddProduct

runat="server"

Text="Add Product">

</asp:Button>

<asp:CompareValidator

id=CompareValidator1

runat="server"

ErrorMessage="You must enter a price (number)"

Type="Double"

ControlToValidate="txtUnitPrice"

Operator="DataTypeCheck">

</asp:CompareValidator></p>

</form>

</body>

</html>

ASP.NET Web Forms can run inside the context of a COM+ Component Services trans-
action. In this ASP.NET Web application, the Web Forms call the serviced components
in response to events raised by Web Controls (buttons clicked and so on). Since the
ASP.NET Web Form is the initiator of calls made into a COM+ application, the Web Form
is considered the root of the transaction. It has the “final vote” as to whether or not the
transaction succeeds or fails.

In order to designate that the Web Form will participate in a transaction, you need to
set the Transaction page attribute (highlighted in bold above). This code specifies the
level as RequiresNew. This means that the page will always begin a new transaction for
any units of work executed during the lifetime of the page.

Here is the code-behind file, Lcs5-5.aspx.vb, for the preceding Web Form.

Imports SupermarketSystem.Supermarket

Imports System.EnterpriseServices

Imports System.Reflection

Imports System.ComponentModel

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents cmdAddProduct As _

System.Web.UI.WebControls.Button

Protected WithEvents txtSKU As _

5.6 Building VB.NET Serviced Components 441

Crouch05_393-458.ps 4/23/02 5:59 PM Page 441

System.Web.UI.WebControls.TextBox

Protected WithEvents txtDescription As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtUnitPrice As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtStockLoc As _

System.Web.UI.WebControls.TextBox

Protected WithEvents CompareValidator1 As_

System.Web.UI.WebControls.CompareValidator

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub cmdAddProduct_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles cmdAddProduct.Click

Dim objProduct As IProduct

Dim bln As Boolean

objProduct = New Product()

bln = objProduct.Create(txtSKU.Text, _

txtDescription.Text, _

CDec(txtUnitPrice.Text), _

txtStockLoc.Text)

If bln Then

ContextUtil.SetComplete()

Else

ContextUtil.SetAbort()

End If

End Sub

End Class

The Click event for the cmdAddProduct button calls the Product component to add a
new product to the database. The code creates a new Product object and obtains a refer-
ence to the IProduct interface. It then calls the Create() method. If the call was success-
ful (returned True), SetComplete() is called to indicate to COM+ that this unit of work in
the transaction was successful. If not, SetAbort()stops the transaction immediately.

442 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 442

CreateOrder Component Test Web Form

The code for the Lcs5-6.aspx file follows below. Note that again the Transaction page
attribute is specified and set to RequiresNew.

LAB CODE SAMPLE 5-6

<%@ Page Language="vb"

AutoEventWireup="false"

src="Lcs5-06.aspx.vb"

Inherits="SupermarketCreateOrder"

Transaction="RequiresNew"%>

<html>

<head>

<title>Create New Order</title>

</head>

<body>

<form id="Form1"

method="post"

runat="server">

<p>Order number:

<asp:TextBox

id=txtOrderNumber

runat="server">

</asp:TextBox></p>

<p>Supplier Name:

<asp:TextBox

id=txtSupplierName

runat="server">

</asp:TextBox></p>

<p>

<asp:Button

id=cmdCreateOrder

runat="server"

Text="Add">

</asp:Button></p>

</form>

</body>

</html>

5.6 Building VB.NET Serviced Components 443

Crouch05_393-458.ps 4/23/02 5:59 PM Page 443

The code-behind file, Lcs5-6.aspx.vb, contains the following code.

Imports System.EnterpriseServices

Imports System.Reflection

Imports SupermarketSystem.Supermarket

Public Class SupermarketCreateOrder

Inherits System.Web.UI.Page

Protected WithEvents txtOrderNumber As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtSupplierName As _

System.Web.UI.WebControls.TextBox

Protected WithEvents cmdCreateOrder As _

System.Web.UI.WebControls.Button

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub cmdCreateOrder_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles cmdCreateOrder.Click

Dim objCreateOrder As ICreateOrder

objCreateOrder = New CreateOrder()

If objCreateOrder.Create(txtOrderNumber.Text, _

txtSupplierName.Text) Then

ContextUtil.SetComplete()

Else

ContextUtil.SetAbort()

End If

End Sub

End Class

Similar to the test Web Form for the Product component, this code creates a
CreateOrder object using New. The program calls the Create() method and then
calls SetComplete() or SetAbort() upon success or failure, respectively.

444 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 444

AddToOrder Test Web Form

The HTML code for the AddToOrder Web Form (Lcs5-7.aspx) appears below.

LAB CODE SAMPLE 5-7

<%@ Page Language="vb"

AutoEventWireup="false"

Codebehind="SupermarketAddToOrder.aspx.vb"

Inherits="SupermarketWeb.SupermarketAddToOrder"

Transaction="RequiresNew"%>

<html>

<head>

<title>Add To Order</title>

</head>

<body>

<form id="Form1"

method="post"

runat="server">

<p>Order Number:

<asp:TextBox

id=txtOrderNumber

runat="server">

</asp:TextBox></p>

<p>SKU:

<asp:TextBox

id=txtSKU

runat="server">

</asp:TextBox></p>

<p>Quantity:

<asp:TextBox

id=txtQuantity

runat="server">

</asp:TextBox></p>

<p>

<asp:CompareValidator

id=CompareValidator1

runat="server"

ErrorMessage="Quantity must be a whole number!"

5.6 Building VB.NET Serviced Components 445

Crouch05_393-458.ps 4/23/02 5:59 PM Page 445

ControlToValidate="txtQuantity"

Type="Integer"

Operator="DataTypeCheck">

</asp:CompareValidator></p>

<p>

<asp:Button

id=cmdAddToOrder

runat="server"

Text="Add To Order">

</asp:Button></p>

</form>

</body>

</html>

Here is the associated code-behind file (Lcs5-7.aspx.vb). AddItems() is a method of
the CreateOrder component, so the code is very similar to the CreateOrder Web Form.

Imports System.EnterpriseServices

Imports System.Reflection

Imports SupermarketSystem.Supermarket

Public Class SupermarketAddToOrder

Inherits System.Web.UI.Page

Protected WithEvents txtOrderNumber As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtSKU As _

System.Web.UI.WebControls.TextBox

Protected WithEvents txtQuantity As _

System.Web.UI.WebControls.TextBox

Protected WithEvents CompareValidator1 As _

System.Web.UI.WebControls.CompareValidator

Protected WithEvents cmdAddToOrder As _

System.Web.UI.WebControls.Button

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub cmdAddToOrder_Click(_

ByVal sender As System.Object, _

446 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 446

ByVal e As System.EventArgs) _

Handles cmdAddToOrder.Click

Dim objCreateOrder As ICreateOrder

objCreateOrder = New CreateOrder()

If objCreateOrder.AddItems(txtOrderNumber.Text, _

txtSKU.Text, CInt(txtQuantity.Text)) Then

ContextUtil.SetComplete()

Else

ContextUtil.SetAbort()

End If

End Sub

End Class

ReceiveOrder Component Test Web Form

Finally, here is the code (Lcs5-8.aspx) for the Web Form that will receive items for an
order.

LAB CODE SAMPLE 5-8

<%@ Page Language="vb"

AutoEventWireup="false"

src="SupermarketReceiveOrder.aspx.vb"

Inherits="SupermarketReceiveOrder"

Transaction="RequiresNew"%>

<html>

<head>

<title>Receive Order</title>

</head>

<body>

<form id="Form1"

method="post"

runat="server">

<p>Order Number to Receive:

<asp:TextBox

id=txtOrderToReceive

runat="server">

</asp:TextBox>

5.6 Building VB.NET Serviced Components 447

Crouch05_393-458.ps 4/23/02 5:59 PM Page 447

<asp:Button

id=cmdGetOrder

runat="server"

Text="Get Order">

</asp:Button></p>

<p>

<asp:Panel

id=Panel1

runat="server"

Width="399px"

Height="144px"

Enabled="False">

<p>

<asp:Label

id=lblOrderNumber

runat="server"

Width="184px"

Height="19px">

</asp:Label></p>

<p></p><p>

<asp:Label

id=lblReceiveSKU

runat="server"

Width="183px"

Height="19px">

</asp:Label></p>

<p>

<asp:Label

id=lblLineNumberReceive

runat="server"

Width="188px"

Height="19px">

</asp:Label></p>

<p>

<asp:Label

id=Label1

runat="server"

Width="128px"

448 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 448

Height="19px">

Quantity To Receive:

</asp:Label>

<asp:TextBox

id=txtQuantityToReceive

runat="server">

</asp:TextBox>

<asp:Button

id=cmdReceive

runat="server"

Text="Receive">

</asp:Button>

</asp:Panel></p>

</form>

</body>

</html>

This Web Form wraps page elements in a Panel Web Control. The panel is initially dis-
abled to avoid displaying or enabling the order information until a valid order number is
keyed into the Web Form. Here’s the code-behind file (Lcs5-8.aspx.vb).

Imports System.EnterpriseServices

Imports System.Reflection

Imports SupermarketSystem.Supermarket

Public Class SupermarketReceiveOrder

Inherits System.Web.UI.Page

Protected WithEvents cmdGetOrder As _

System.Web.UI.WebControls.Button

Protected WithEvents Panel1 As _

System.Web.UI.WebControls.Panel

Protected WithEvents lblOrderNumber As _

System.Web.UI.WebControls.Label

Protected WithEvents Label1 As _

System.Web.UI.WebControls.Label

Protected WithEvents txtOrderToReceive As _

System.Web.UI.WebControls.TextBox

Protected WithEvents cmdReceive As _

System.Web.UI.WebControls.Button

5.6 Building VB.NET Serviced Components 449

Crouch05_393-458.ps 4/23/02 5:59 PM Page 449

Protected WithEvents lblReceiveSKU As _

System.Web.UI.WebControls.Label

Protected WithEvents lblLineNumberReceive As _

System.Web.UI.WebControls.Label

Protected WithEvents txtQuantityToReceive As _

System.Web.UI.WebControls.TextBox

Private Sub Page_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub cmdGetOrder_Click(_

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles cmdGetOrder.Click

Dim objReceiveOrder As IReceiveOrder

Dim intLineNumber As Integer

Dim strSKUToReceive As String

objReceiveOrder = New ReceiveOrder()

intLineNumber = _

objReceiveOrder.GetNextLineItem(_

txtOrderToReceive.Text, _

strSKUToReceive)

If intLineNumber <> -1 Then

ViewState("OrderToReceive") = txtOrderToReceive.Text

ViewState("SKUToReceive") = strSKUToReceive

ViewState("LineNumber") = intLineNumber

Panel1.Enabled = True

lblLineNumberReceive.Text = _

"Line Number: " & intLineNumber

lblOrderNumber.Text = _

"Order Number: " & txtOrderToReceive.Text

lblReceiveSKU.Text = "SKU: " & strSKUToReceive

Else

Panel1.Enabled = False

End If

End Sub

Private Sub cmdReceive_Click(_

450 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 450

ByVal sender As System.Object, _

ByVal e As System.EventArgs) _

Handles cmdReceive.Click

Dim objReceiveOrder As IReceiveOrder

objReceiveOrder = New ReceiveOrder()

If objReceiveOrder.Receive(_

ViewState("OrderToReceive"), _

ViewState("SKUToReceive"), _

ViewState("LineNumber"), _

CInt(txtQuantityToReceive.Text)) Then

ContextUtil.SetComplete()

Else

ContextUtil.SetAbort()

End If

End Sub

End Class

This form uses two Button Web Controls, cmdGetOrder and cmdReceive. This makes
a two-step process for receiving items for an order. First, the event handler for
cmdGetOrder calls GetNextLineItem(), taking as input the order number the user
entered. If there is a line item to receive for the order, the program displays the line-item
information in the Label Web Control contained within the Panel Web Control. The Panel
Web Control is then enabled, making the information visible to the user. The line-item
information is also copied to the ViewState StateBag because the program will need this
information on the subsequent post-back that will occur when items are received.

The event handler for cmdReceive calls the Receive() method. The Receive()
method updates the OrderDetails table as well as the Inventory table. Using a trans-
action in this situation helps point out any discrepancies between quantities in inventory
and quantities ordered. The Receive() method returns True on success and False on
failure, and the program makes an appropriate call to either SetComplete() or
SetAbort() as a result.

d. Now you need to add a reference to the assembly DLL for the components.
Right-click the References folder in the Solution Explorer, select Add Refer-
ence, browse to the compiled DLL, and select it. Click OK to add the refer-
ence to the selected assembly.

STEP 5. Run the application.

5.6 Building VB.NET Serviced Components 451

Crouch05_393-458.ps 4/23/02 5:59 PM Page 451

a. Now you’re ready to build the application. Select Build➔Build Solution from
the menu. Select a start page for the application (like Lcs5-5.aspx) by
right-clicking on a Web Form in the Solution Explorer and selecting Set As
Start Page from the menu.

b. Run the application by selecting Debug➔Start Without Debugging.

c. Test the application by entering some products. Then create a new order,
add some items to the order, and run an order-receive process. This should
complete a full test.

Something important happened when you first called a component’s
method inside the assembly. The system performed what is known as a lazy
registration. A lazy registration automatically places the components in the
assembly into a new COM+ application in the COM+ Component Services
Console. It does this based on the assembly-level attributes specified in the
component assembly code. Lab Figure 5–4 shows the Supermarket COM+
application in the COM+ Component Services Console.

STEP 6. Add role-based security.

a. One of the requirements for the application is that only certain categories
of users should be allowed to run certain components. To enable role-based
security for the Supermarket COM+ application, right-click on the Super-
market COM+ application icon and select Properties. Click the Security
tab. Check the boxes and radio buttons as shown in Lab Figure 5-5.

b. Now you can set up the user roles (Receiving Clerks, Supervisors, and
Suppliers) inside the COM+ Component Services Console. For each role,
right-click the Roles folder under the Supermarket application (see Lab
Figure 5-6), select New➔Role from the menu, and assign a name for
the role.

c. Assign users to each role by right-clicking the User folder under the role and
selecting New➔User from the menu. Pick a Windows account name(s) or
group(s) to assign to the role. Lab Figure 5-7 shows users assigned to the
various roles of the Supermarket application.

d. Now you need to assign each role to a component. Right-click a component
in the COM+ application and select Properties from the menu. Click the
Security tab. Check Enforce component level access checks, and then
check the roles you wish to assign to the component, as shown in Lab
Figure 5-8.

452 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 452

STEP 7. Test the role-based security.

a. A convenient way to test the role-based security is to call the components
from a console application and run the console application in the security

5.6 Building VB.NET Serviced Components 453

Lab Figure 5-4 The Supermarket application within the COM+ Component
Services Console

Crouch05_393-458.ps 4/23/02 5:59 PM Page 453

context of a specific user. Normally, when you run an application from the
console, Windows uses the security context of the currently logged-on user.
By using the runas command, you can run an executable program using any
account name (provided, of course, you have the password of that account!).
Here’s a simple console application you can run to test role-based security.

Imports System

Imports SupermarketSystem.Supermarket

Imports System.EnterpriseServices

Module Module1

454 Chapter 5 Building .NET Managed Components for COM+

Lab Figure 5-5 Enabling role-based security for the Supermarket application

Crouch05_393-458.ps 4/23/02 5:59 PM Page 454

Sub Main()

Dim objCreateOrder As ICreateOrder

objCreateOrder = New CreateOrder()

objCreateOrder.Create("834957239-1", "My Supplier")

End Sub

End Module

5.6 Building VB.NET Serviced Components 455

Lab Figure 5-6 Adding roles for the Supermarket application

Lab Figure 5-7 Assigning users to roles

Crouch05_393-458.ps 4/23/02 5:59 PM Page 455

Compile this small testing console application and run it using the runas
command below:

runas /user:rmdevbiz01\matt roletester.exe

Given the role configuration of the CreateOrder component, the user-
name “matt” should be the only user allowed to run the application. Assum-
ing that the user account “matt” has appropriate Windows permissions set
to run the program, it should execute without errors.

b. You can also perform a negative test by rerunning the program with an
account name not included in the Supplier role.

456 Chapter 5 Building .NET Managed Components for COM+

Lab Figure 5-8 Assigning roles to components

Crouch05_393-458.ps 4/23/02 5:59 PM Page 456

5.7 Summary

Let’s recap what you’ve learned in this chapter about writing .NET managed
components.

� Managed code is application code that executes within the .NET
Framework.

� Runtime systems enable application programs you write to access oper-
ating system–level services. Several different runtime environments are
available for various systems. A runtime environment is usually specific
to a programming language.

� Intermediate languages provide an additional layer of abstraction over
another existing runtime environment. The goal of intermediate lan-
guages is to provide portability of application code across operating sys-
tems. The intermediate language for the .NET Framework is called the
Microsoft Intermediate Language (MSIL).

� The runtime environment for the .NET Framework is called the Com-
mon Language Runtime (CLR). It supports self-describing code
through metadata, a specification for the Common Type System (CTS),
just-in-time compilation of code, and the concept of assembly mani-
fests, which describe a packaged set of components, programs, files,
and other dependencies an application needs in order to function
properly.

� COM is a programming model invented by Microsoft that allows for
binary-level software component reuse.

� Transactions provide consistency and data integrity to a software sys-
tem. By checking the success or failure of smaller atomic tasks that
make up the transaction, you can decide whether the transaction
should succeed as a whole.

� Windows provides programmers with easy transaction support for their
applications through COM+ Component Services. COM+ Component
Services provides transaction support, object pooling, and component-
level runtime security.

� Components are simply classes at their most basic level. Components
have properties and methods, which roughly correspond to member
functions and member variables, respectively.

� Serviced components are classes that take advantage of COM+ Com-
ponent Services. Security is provided by grouping users into roles and
assigning those roles to components.

5.7 Summary 457

Crouch05_393-458.ps 4/23/02 5:59 PM Page 457

5.8 What’s Ahead

In Chapter 6 we’ll explore Web Services, the most important part of the .NET
Framework. Chapter 7 covers data access with ADO.NET, and we’ll wrap up
with .NET Web application security topics in Chapter 8.

458 Chapter 5 Building .NET Managed Components for COM+

Crouch05_393-458.ps 4/23/02 5:59 PM Page 458

