%I% é chpt_O1.fm Page 1 Tuesday, December 4, 2001 10:24 AM

Al

CHAPTER |
Objects, UML, and Java

This book is about object-oriented (OO) software development. Writing real
object-oriented programs that are used by real people is more than slapping
down a few lines of code in Java (or C++, Eiffel, or any other object-oriented
programming language). Ultimately, object-oriented software development
includes the complete process—analysis of the problem, design of a solution,
coding, and long-term maintenance. Object-oriented development can make any
program better, from a small Web-based application to a full-blown business-
critical software system.

Object orientation has the potential for building great software, but only if it
is used as part of a complete process. Today, there are small, agile development
methodologies suitable for teams of two to ten or so programmers, as well as
large-scale methodologies for huge projects. Most of these development method-
ologies use or can benefit from the UML (Unified Modeling Language), a model-
ing tool that aids the design of any OO system. But before you can understand
and use any of these methodologies, you need to move beyond merely getting a
program to work to changing your thinking to be object-oriented.

It has been said that any programming language can be used to write object-
oriented programs (and it has been done with C), but a true OO programming
language makes it a lot easier. Just because you use an OO programming lan-
guage, your programs are not necessarily object-oriented.

Object-oriented programming works much better when it is used together
with an object-oriented analysis and design (OOAD) process. Trying to write an

4~ 40

%I% é chpt_01.fm Page 2 Tuesday, December 4, 2001 10:24 AM

Al

2 CHAPTER | Objects, UML, and Java

OO program without first going through the analysis and design steps is like try-
ing to build a house without first analyzing the requirements of the house,
designing it, and producing a set of blueprints. You might end up with a roof
over your head, but the rooms would likely be scattered all over the place, some
rooms might be missing, and the whole thing would probably come tumbling
down on your head during the first storm (see Figure 1.1). An OO program in
any programming language written without at least some OOAD might seem to
work, but it is much more likely to be full of bugs and break when you make the
first modification.

Object Orientation

Objects are the heart of object orientation. An object is a representation of
almost anything you need to model in a program. An object can be a model of an
employee, a representation of a sensor, a window in a user interface, a data struc-
ture, such as a list—virtually anything. One way to think of an object is as a
black box with some buttons and lights (see Figure 1.2). This could be a TV, a
car, whatever. To use the object, you need to know what the buttons do, which

KITCHEN

BATH | BEDROOM

LIVING ROOM

BEDROOM DINING
ROOM

Figure 1.1 A randomly planned house

Figure 1.2 A black box

%I% é chpt_01.fm Page 3 Tuesday, December 4, 2001 10:24 AM é

Object-Oriented Languages 3

ones you need to press to get the object to do what you need, and what the lights
mean about the status of the object. The details of how the box is put together
inside are irrelevant while you are using the box. What is important is that the
object carries out its functions and responsibilities correctly. A software object is
not much different. It has well-defined methods for interacting with the outside
world, and it can provide information about its current state. The internal repre-
sentation, algorithms, and data structures are hidden from the outside world.

In the simplest terms, designing an OO system consists of identifying which
objects the system contains, the behaviors and responsibilities of those objects,
and how the objects interact with each other. OO can produce elegant, easy-to-
understand designs, which in turn lead to elegant and easy-to-understand pro-
grams. Individual objects can often be implemented and debugged independently.
Libraries of existing objects can be easily reused and adapted to new designs.
Most important, a good OO program is easy to modify and resistant to the intro-
duction of bugs during program modification and maintenance.

Object-oriented development is a major advance for software development.
Although it may not be a magic bullet that solves all the problems associated
with producing software, it is better than other methodologies. While develop-
ment methodologies, such as structured design and programming, have many
valid points, many which carry over and are used for OO development, object-
oriented designs are inherently easier to design and maintain over time.

Object-Oriented Languages

There are several object-oriented programming languages, including Smalltalk,
Eiffel, C++, Objective C, Objective Pascal, Java, Ada, and even a version of Lisp.
There are two clear marketplace winners, C++ and Java.

Today, Java is the emerging object-oriented language of choice for many pro-
grammers and software projects. One of the reasons for Java’s popularity is the
World Wide Web and Java’s ability to run Web applets directly on any computer
or operating system with a Web browser. Another reason is that Java is an excel-
lent programming language. It is a small, well-designed language that can be
used not just for Web applets, but for full-blown programs on almost any com-
puter today. Java was somewhat hampered in its early days because of its perfor-
mance, but this is really no longer an issue. Because it is such a good language,
Java has been widely adopted as the main language used to teach computer
science at colleges and universities all over the world. In the whole history of
computer science and programming, this is the first time the same programming
language has been popular as both a teaching language and a language used for
real-world programs.

- @

%I% é chpt_O1.fm Page 4 Tuesday, December 4, 2001 10:24 AM

Al

4 CHAPTER | Objects, UML, and Java

C++ is also a widely used programming language. It is still the principal lan-
guage used for the core applications (such as spreadsheets and word processors)
used on most computers today. C++ was derived from C, and thus has a heritage
of being able to do real things on real systems, and there is compatibility with
existing C code. One problem with C++, however, is that it has grown into a
large and complicated language, and it is difficult to achieve competence in the
full language.

This book is mostly about object-oriented programming. That means it will
focus on general principles of object-oriented programming that apply to any
programming language. But the book will also show how to translate object-
oriented designs to real programs using Java. The focus will be on how to use the
capabilities of the Java language to implement OO designs. It is not a tutorial on
Java. We assume that you’ve already learned the Java basics. Now you are ready
to learn about objects and how to use Java to write better programs.

Object-Oriented Design and the UML

There are several different object-oriented development methodologies in use
today, each with its strengths and weaknesses. The older, more traditional meth-
odologies are often called “heavyweight” methodologies, and are most useful for
large software projects involving tens or even hundreds of programmers over
years of development effort. The newer methodologies, called “lightweight” or
“agile” methodologies, are more appropriate for smaller projects. Many of these
are quite new and are still being standardized.

Design and development methodologies have always needed a graphical
notation to express the designs. In the past, a major problem has been that each
major methodology has had its own graphical notation. This all changed with
the emergence of the UML as the standard notation. Any current design method-
ology, heavyweight or agile, uses or can benefit from the UML.

The UML originated in the mid-1990s from the efforts of James Rumbaugh,
Ivar Jacobson, and Grady Booch (The Three Amigos). There is a standard speci-
fication of the UML coordinated by the Object Management Group
(www.omg.org). OMG is an industry-sponsored organization devoted to support-
ing vendor-neutral standards for the object-oriented development community.
The UML has become the de facto standard object-oriented notation.

The UML is designed for discussing object-oriented design. Its ability to
show objects and object relationships is especially useful, and it will be used in
examples throughout this book. The various features of the UML will be intro-
duced as needed.

4~ 40

%I% é chpt_O1.fm Page 5 Tuesday, December 4, 2001 10:24 AM

Al

Chapter Summary 5

The Payoff of Objects

Object orientation can lead to big payoffs in the software development game. An
object-oriented design is likely to be simple and easy to understand. Once
designed, you can often implement and test the individual objects separately.
Once finished, each object tends to be robust and bug-free. As you make changes
to the system, existing objects continue to work. And as you improve existing
objects, their interface to the world stays the same, so the whole system continues
to work. It is this ease of change and robustness that really make OO develop-
ment different and well worth the effort.

Chapter Summary

¢ Object orientation is a way to develop software that leads to well-designed
systems that are robust and easy to maintain.

e The UML is a graphical representation useful for designing and understand-
ing object-oriented systems.

® Java is an excellent object-oriented programming language useful for both
Web applets and non-Web applications.

%I% é chpt_01.fm Page 6 Tuesday, December 4, 2001 10:24 AM

+/@

