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In-Process Metrics for
Software Testing 

In Chapter 9 we discussed quality management models with examples of in-
process metrics and reports. The models cover both the front-end design and
coding activities and the back-end testing phases of development. The focus of the
in-process data and reports, however, are geared toward the design review and code
inspection data, although testing data is included. This chapter provides a more
detailed discussion of the in-process metrics from the testing perspective.1 These
metrics have been used in the IBM Rochester software development laboratory for
some years with continual evolution and improvement, so there is ample implemen-
tation experience with them. This is important because although there are numerous
metrics for software testing, and new ones being proposed frequently, relatively
few are supported by sufficient experiences of industry implementation to demon-
strate their usefulness. For each metric, we discuss its purpose, data, interpreta-
tion, and use, and provide a graphic example based on real-life data. Then we discuss
in-process quality management vis-à-vis these metrics and revisit the metrics
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framework, the effort/outcome model, again with sufficient details on testing-related
metrics. Then we discuss some possible metrics for a special test scenario, accep-
tance test with regard to vendor-developed code, based on the experiences from the
IBM 2000 Sydney Olympics project by Bassin and associates (2002). Before we
conclude the chapter, we discuss the pertinent question: How do you know your prod-
uct is good enough to ship? 

Because the examples are based on IBM Rochester’s experiences, it would be
useful to outline IBM Rochester’s software test process as the context, for those who
are interested. The accompanying box provides a brief description.

10.1 In-Process Metrics for Software Testing

In this section, we discuss the key in-process metrics that are effective for managing
software testing and the in-process quality status of the project. 

10.1.1 Test Progress S Curve (Planned, Attempted, Actual)

Tracking the progress of testing is perhaps the most important tracking task for man-
aging software testing. The metric we recommend is a test progress S curve over
time. The X-axis of the S curve represents time units and the Y-axis represents the
number of test cases or test points. By “S curve” we mean that the data are cumula-
tive over time and resemble an “S” shape as a result of the period of intense test
activity, causing a steep planned test ramp-up. For the metric to be useful, it should
contain the following information on one graph:

�� Planned progress over time in terms of number of test cases or number of test
points to be completed successfully by week (or other time unit such as day
or hour) 

�� Number of test cases attempted by week (or other time unit) 
�� Number of test cases completed successfully by week (or other time unit) 

The purpose of this metric is to track test progress and compare it to the plan, and
therefore be able to take action upon early indications that testing activity is falling
behind. It is well known that when the schedule is under pressure, testing, especially
development testing, is affected most significantly. Schedule slippage occurs day
by day and week by week. With a formal test progress metric in place, it is much
more difficult for the team to ignore the problem. From the project planning perspec-
tive, an S curve forces better planning (see further discussion in the following
paragraphs). 

Figure 10.2 is an example of the component test metric at the end of the test of a
major release of an integrated operating system. As can be seen from the figure, the
testing plan is expressed in terms of a line curve, which is put in place before the test
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IBM Rochester’s systems software devel-
opment process has a strong focus on the
front-end phases such as requirements,
architecture, design and design verifica-
tion, code integration quality, and driver
builds. For example, the completion of
high-level design review (I0) is always a
key event in the system schedule and
managed as an intermediate deliverable.
At the same time, testing (development
tests and independent tests) and cus-
tomer validation are the key process
phases with equally strong focus. As Fig-
ure 10.1 shows, the common industry
model of testing includes functional test,
system test, and customer beta test
before the product is shipped. Integration
and solution testing can occur before or
after the product ships. It is often con-
ducted by customers because the cus-
tomer’s integrated solution may consist of
products from different vendors. For IBM
Rochester, the first test phase after unit
testing and code integration into the sys-
tem library consists of component test
(CT) and component regression test
(CRT), which is equivalent to functional
test. The next test phase is system test
(ST), which is conducted by an indepen-
dent test group. To ensure entry criteria is
met, an acceptance test (STAT) is con-
ducted before system test start. The main
path of the test process is from
CT → CTR → STAT → ST. Parallel to the
main path are several development and
independent tests:

� Along with component test, a stress
test is conducted in a large network en-
vironment with performance workload
running in the background to stress the
system.
� When significant progress is made in
component test, a product-level test (PLT),

which focuses on the subsystems of an
overall integrated software system (e.g.,
database, client access, clustering), starts.
� The network test is a specific product-
level test focusing on communications
subsystems and related error recovery
processes.
� The independent test group also con-
ducts a software installation test, which
runs from the middle of the component
test until the end of the system test.

The component test and the component
regression test are done by the develop-
ment teams. The stress test, the product-
level test, and the network test are done
by development teams in special test
environments maintained by the indepen-
dent test group. The install and system
tests are conducted by the independent
test team. Each of these different tests
plays an important role in contributing to
the high quality of an integrated software
system for the IBM eServer iSeries and
AS/400 computer system. Later in this
chapter, another shaded box provides an
overview of the system test and its work-
load characteristics.

As Figure 10.1 shows, several early
customer programs occur at the back end
of the development process:

� Customer invitational program: Se-
lected customer invited to the develop-
ment laboratory to test the new functions
and latest technologies. This is done
when component and component regres-
sion tests are near completion.
� Internal beta: The development site
uses the latest release for its IT production
operations (i.e., eating one’s own cooking)
� Beta program with business partners
� Customer beta program

IBM Rochester’s Software Test Process
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begins. The empty bars indicate the cumulative number of test cases attempted and
the solid bars represent the number of successful test cases. With the plan curve in
place, each week when the test is in progress, two bars (one for attempted and one for
successful) are added to the graph. This example shows that during the rapid test
ramp-up period (the steep slope of the curve), for some weeks the test cases
attempted were slightly ahead of plan (which is possible), and the successes were
slightly behind plan.

Because some test cases are more important than others, it is not unusual in soft-
ware testing to assign scores to the test cases. Using test scores is a normalization
approach that provides more accurate tracking of test progress. The assignment of
scores or points is normally based on experience, and at IBM Rochester, teams usu-
ally use a 10-point scale (10 for the most important test cases and 1 for the least). To
track test points, the teams need to express the test plan (amount of testing done
every week) and track the week-by-week progress in terms of test points. The exam-
ple in Figure 10.3 shows test point tracking for a product level test, which was under-
way, for a systems software. It is noted that there is always an element of subjectivity
in the assignment of weights. The weights and the resulting test points should be
determined in the test planning stage and remain unchanged during the testing
process. Otherwise, the purpose of this metric will be compromised in the reality of
schedule pressures. In software engineering, weighting and test score assignment
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Sample Test Progress S Curve



remains an interesting area where more research is needed. Possible guidelines from
such research will surely benefit the planning and management of software testing. 

For tracking purposes, test progress can also be weighted by some measurement
of coverage. Coverage weighting and test score assignment consistency become
increasingly important in proportion to the number of development groups involved
in a project. Lack of attention to tracking consistency across functional areas can
result in a misleading view of the overall project’s progress.

When a plan curve is in place, the team can set up an in-process target to reduce
the risk of schedule slippage. For instance, a disparity target of 15% between
attempted (or successful) and planned can be used to trigger additional actions. Al-
though the test progress S curves, as shown in Figures 10.2 and 10.3, give a quick
visual status of the progress against the total plan and plan-to-date (the eye can
quickly determine if testing is ahead or behind on planned attempts and successes), it
may be difficult to discern the exact amount of slippage. This is particularly true for
large testing efforts, where the number of test cases is in the hundreds of thou-
sands. For that reason, it is useful to also display the test status in tabular form, as
in Table 10.1. The table also shows underlying data broken out by department and
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TABLE 10.1
Test Progress Tracking—Planned, Attempted, Successful

No. of Planned
No. of Test Cases Percent of Percent of Test Cases Not Percent of Percent of
Planned to Date Plan Attempted Plan Successful Yet Attempted Total Attempted Total Successful

System 60577 90.19 87.72 5940 68.27 66.10
Dept A 1043 66.83 28.19 346 38.83 15.60
Dept B 708 87.29 84.46 90 33.68 32.59
Dept C 33521 87.72 85.59 4118 70.60 68.88
Dept D 11275 96.25 95.25 423 80.32 78.53
Dept E 1780 98.03 94.49 35 52.48 50.04
Dept F 4902 100.00 99.41 0 96.95 95.93
Product A 13000 70.45 65.10 3841 53.88 49.70
Product B 3976 89.51 89.19 417 66.82 66.50
Product C 1175 66.98 65.62 388 32.12 31.40
Product D 277 0 0 277 0 0
Product E 232 6.47 6.470 214 3.78 3.70
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product or component, which helps to identify problem areas. In some cases, the
overall test curve may appear to be on schedule, but when progress is viewed only at
the system level, because some areas are ahead of schedule, they may mask areas that
are behind schedule. Of course, test progress S curves are also used for functional
areas and for specific products.

An initial plan curve should be subject to brainstorming and challenges. For
example, if the curve shows a very steep ramp-up in a short period of time, the
project manager may challenge the team with respect to how doable the plan is or the
team’s specific planned actions to execute the plan successfully. As a result, better
planning will be achieved. Caution: Before the team settles on a plan curve and uses
it to track progress, a critical evaluation of what the plan curve represents must be
made. Is the total test suite considered effective? Does the plan curve represent high
test coverage (functional coverage)? What are the rationales for the sequences of test
cases in the plan? This type of evaluation is important because once the plan curve is
in place, the visibility of this metric tends to draw the whole team’s attention to the
disparity between attempted, successful, and the planned testing. 

Once the plan line is set, any proposed or actual changes to the plan should be
reviewed. Plan slips should be evaluated against the project schedule. In general,
the baseline plan curve should be maintained as a reference. Ongoing changes to the
planned testing schedule can mask schedule slips by indicating that attempts are on
track, while the plan curve is actually moving to the right. 

In addition, this metric can be used for release-to-release or project-to-project
comparisons, as the example in Figure 10.4 shows. For release-to-release compar-
isons, it is important to use time units (weeks or days) before product ship (or general
availability, GA) as the unit for the X-axis. By referencing the ship dates, the com-
parison provides a true status of the project in process. In Figure 10.4, it can be
observed that Release B, represented by the dotted line, is more back-end loaded
than Release A, which is represented by the solid line. In this context, the metric is
both a quality and a schedule statement for the testing of the project. This is because
late testing causes late cycle defect arrivals and therefore negatively affects the qual-
ity of the final product. With this type of comparison, the project team can plan ahead
(even before the testing starts) to mitigate the risks.

To implement this metric, the test execution plan needs to be laid out in terms of
the weekly target, and actual data needs to be tracked on a weekly basis. For small to
medium projects, such planning and tracking activities can use common tools such as
Lotus 1-2-3 or other project management tools. For large and complex projects, a
stronger tools support facility normally associated with the development environment
may be needed. Many software tools are available for project management and qual-
ity control, including tools for defect tracking and defect projections. Testing tools
usually include test library tools for keeping track of test cases and for test automa-
tion, test coverage analysis tools, test progress tracking, and defect tracking tools.
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10.1.2 Testing Defect Arrivals over Time

Defect tracking and management during the testing phase is highly recommended as
a standard practice for all software testing. Tracking testing progress and defects are
common features of many testing tools. At IBM Rochester, defect tracking is done
via the problem tracking report (PTR) tool. We have discussed PTR-related models
and reports previously. In this chapter we revisit two testing defect metrics (arrivals
and backlog) with more details. We recommend tracking the defect arrival pattern
over time, in addition to tracking by test phase. Overall defect density during testing,
or for a particular test, is a summary indicator, but not really an in-process indicator.
The pattern of defect arrivals over time gives more information. As discussed in
Chapter 4 (section 4.2.2), even with the same overall defect rate during testing, dif-
ferent patterns of defect arrivals may imply different scenarios of field quality. We
recommend the following for this metric:

�� Always include data for a comparable baseline (a prior release, a similar proj-
ect, or a model curve) in the chart if such data is available. If a baseline is not
available, at the minimum, when tracking starts, set some expected level of
defect arrivals at key points of the project schedule (e.g., midpoint of functional
test, system test entry, etc.).
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�� The unit for the X-axis is weeks (or other time units ) before product ship 
�� The unit for the Y-axis is the number of defect arrivals for the week, or its

variants.

Figure 10.5 is an example of this metric for releases of an integrated operating
system. For this example, the main goal is release-to-release comparison at the
system level. The metric can be used for the defect arrival patterns based on the
total number of defects from all test phases, and for defect arrivals for specific tests.
It can be used to compare actual data with a PTR arrival model, as discussed in
Chapter 9. 

Figure 10.5 has been simplified for presentation. The real graph has much more
information on it including vertical lines to depict the key dates of the development
cycle and system schedules such as last new function integration, development test
completion, start of system test, and so forth. There are also variations of the metric:
total defect arrivals, severe defects (e.g., severity 1 and 2 defects in a 4-point severity
scale), defects normalized to size of the release (new and changed code plus a partial
weight for ported code), and total defect arrivals versus valid defects. The main, and
the most useful, chart is the total number of defect arrivals. In our projects, we also
include a high severity (severity 1 and 2) defect chart and a normalized view as main-
stays of tracking. The normalized defect arrival chart can eliminate some of the
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visual guesswork of comparing current progress to historical data. In conjunction
with the severity chart, a chart that displays the percentage of severity 1 and 2 PTRs
per week can be useful. As Figure 10.6 shows, the percentage of high severity prob-
lems increases as the release progresses toward the product ship date. Generally, this
is because the urgency for problem resolution increases when approaching product
delivery, therefore, the severity of the defects was elevated. Unusual swings in the
percentage of high severity problems, however, could signal serious problems and
should be investigated. 

When do the defect arrivals peak relative to time to product delivery? How does
this pattern compare to previous releases? How high do they peak? Do they decline
to a low and stable level before delivery? Questions such as these are key to the
defect arrival metric, which has significant quality implications for the product in
the field. A positive pattern of defect arrivals is one with higher arrivals earlier, an
earlier peak (relative to the baseline), and a decline to a lower level earlier before the
product ship date, or one that is consistently lower than the baseline when it is certain
that the effectiveness of testing is at least as good as previous testing. The tail end of
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the curve is especially important because it is indicative of the quality of the product
in the field. High defect activity before product delivery is more often than not a sign
of quality problems. To interpret the defect arrivals metrics properly, refer to the
scenarios and questions discussed in Chapter 4 section 4.2.1. 

In addition to being an important in-process metric, the defect arrival pattern is
the data source for projection of defects in the field. If we change from the weekly
defect arrival curve (a density form of the metric) to a cumulative defect curve (a
cumulative distribution form of the metric), the curve becomes a well-known form of
the software reliability growth pattern. Specific reliability models, such as those
discussed in Chapters 8 and 9, can be applied to the data to project the number of
residual defects in the product. Figure 10.7 shows such an example. The actual test-
ing defect data represents the total cumulative defects removed when all testing is
complete. The fitted model curve is a Weibull distribution with the shape parameter
(m) being 1.8. The projected latent defects in the field is the difference in the Y-axis
of the model curve between the product ship date and when the curve is approaching
its limit. If there is a time difference between the end date of testing and the product
ship date, such as this case, the number of latent defects represented by the section of
the model curve for this time segment has to be included in the projected number of
defects in the field. 
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10.1.3 Testing Defect Backlog over Time

We define the number of testing defects (or problem tracking reports, PTRs) remain-
ing at any given time as the defect backlog (PTR backlog). Simply put, defect back-
log is the accumulated difference between defect arrivals and defects that were
closed. Defect backlog tracking and management is important from the perspective
of both test progress and customer rediscoveries. A large number of outstand-
ing defects during the development cycle will impede test progress. When a product
is about to ship to customers, a high defect backlog means more customer re-
discoveries of the defects already found during the development cycle. For soft-
ware organizations that have separate teams to conduct development testing and
to fix defects, defects in the backlog should be kept at the lowest possible level at
all times. For organizations that have the same teams responsible for development
testing and fixing defects, however, there are appropriate timing windows in the
development cycle for which the priority of focuses may vary. While the defect
backlog should be managed at a reasonable level at all times, it should not be the
highest priority during a period when making headway in functional testing is
the critical-path development activity. During the prime time for development test-
ing, the focus should be on test effectiveness and test execution, and defect dis-
covery should be encouraged to the maximum possible extent. Focusing too early
on overall defect backlog reduction may conflict with these objectives. For example,
the development team may be inclined not to open defect records. The focus dur-
ing this time should be on the fix turnaround of the critical defects that impede
test progress instead of the entire backlog. Of course, when testing is approaching
completion, strong focus for drastic reduction in the defect backlog should take
place.

For software development projects that build on existing systems, a large back-
log of “aged” problems can develop over time. These aged defects often represent
fixes or enhancements that developers believe would legitimately improve the prod-
uct, but which get passed over during development due to resource or design con-
straints. They may also represent problems that have been fixed or are obsolete as a
result of other changes. Without a concerted effort, this aged backlog can build over
time. This is one area of the defect backlog that warrants attention early in the devel-
opment cycle, even prior to the start of development testing.

Figure 10.8 is an example of the defect backlog metric for several releases of a
systems software product. Again, release-to-release comparisons and actual data
versus targets are the main objectives. Target X was a point target for a specific event
in the project schedule. Target Y was for the period when the product was being read-
ied to ship. 

Note that for this metric, a sole focus on the numbers is not sufficient. In addition
to the overall reduction, deciding which specific defects should be fixed first is very



important in terms of achieving early system stability. In this regard, the expertise
and ownership of the development and test teams are crucial.

Unlike defect arrivals, which should not be controlled artificially, the defect
backlog is completely under the control of the development organization. For the
three metrics we have discussed so far, we recommend the following overall project
management approach:

�� When a test plan is in place and its effectiveness evaluated and accepted, man-
age test progress to achieve an early ramp-up in the S curve.

�� Monitor defect arrivals and analyze the problems (e.g., defect cause analysis
and Pareto analysis of problem areas of the product) to gain knowledge for
improvement actions. Do not artificially control defect arrivals, which is a func-
tion of test effectiveness, test progress, and the intrinsic quality of the code (the
amount of latent defects in the code). Do encourage opening defect records
when defects are found. 

�� Strongly manage defect backlog reduction and achieve predetermined targets
associated with the fix integration dates in the project schedule. Known defects
that impede testing progress should be accorded the highest priority. 

The three metrics discussed so far are obviously related, and they should be
viewed together. We’ll come back to this point in the section on the effort/outcome
model.
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10.1.4 Product Size over Time 

Lines of code or another indicator of the project size that is meaningful to the devel-
opment team can also be tracked as a gauge of the “effort” side of the development
equation. During product development, there is a tendency toward growth as require-
ments and designs are fleshed out. Functions may continue to be added to meet late
requirements or the development team wants more enhancements. A project size
indicator, tracked over time, can serve as an explanatory factor for test progress,
defect arrivals, and defect backlog. It can also relate the measurement of total defect
volume to per unit improvement or deterioration. Figure 10.9 shows a project’s
release size pattern with rapid growth during release definition, stabilization, and
then possibly a slight reduction in size toward release completion, as functions that
fail to meet schedule or quality objectives are deferred. In the figure, the different
segments in the bars represent the different layers in the software system. This metric
is also known as an indicator of scope creep. Note that lines of code is only one of the
size indicators. The number of function points is another common indicator, espe-
cially in application software. We have also seen the number of bytes of memory that
the software will use as the size indicator for projects with embedded software. 
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10.1.5 CPU Utilization During Test 

For computer systems or software products for which a high level of stability is
required to meet customers’ needs, it is important that the product perform well
under stress. In software testing during the development process, the level of CPU
utilization is an indicator of the system’s stress. 

To ensure that its software testing is effective, the IBM Rochester software
development laboratory sets CPU utilization targets for the software stress test and
the system test. Stress testing starts at the middle of the component test phase and
may run into the system test time frame with the purpose of stressing the system in
order to uncover latent defects that cause system crashes and hangs that are not easily
discovered in normal testing environments. It is conducted with a network of
systems. System test is the final test phase with a customerlike environment. Test
environment, workload characteristics, and CPU stress level are major factors con-
tributing to the effectiveness of the test. The accompanying box provides an overview
of the IBM Rochester system test and its workload characteristics.

286 Chapter 10: In-Process Metrics for Software Testing

IBM Rochester’s system test serves as a
means to provide a predelivery readiness
assessment of the product’s ability to be
installed and operated in customerlike
environments. These test environments
focus on the total solution, including cur-
rent release of the operating system, new
and existing hardware, and customerlike
applications. The resulting test scenarios
are written to exercise the operating sys-
tem and related products in a manner
similar to customers’ businesses. These
simulated environments do not attempt to
replicate a particular customer, but repre-
sent a composite of customer types in the
target market.

The model used for simulating cus-
tomerlike environments is referred to as
the RAISE (Reliability, Availability, Install-
ability, Serviceability, and Ease of use)
environment. It is designed to represent
an interrelated set of companies that use
the IBM products to support and drive

their day-to-day business activities. Test
scenarios are defined to simulate the 
different types of end-user activities, work-
flow, and business applications. They in-
clude CPU-intensive applications and 
interaction-intensive computing. During
test execution, the environment is run 
as a 24-hour-a-day, 7-day-a-week (24x7)
operation.

Initially, work items are defined to
address complete solutions in the RAISE
environment. From these work items
come more detailed scenario definitions.
These scenarios are written to run in the
respective test environment, performing a
sequence of tasks and executing a set of
test applications to depict some customer-
like event. Scenario variations are used to
cater test effort to different workloads,
operating environments, and run-time
duration.The resulting interaction of multi-
ple scenarios executing across a network
of systems provides a representation

System Test Overview and Workload Characteristics
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of real end-user environments. This pro-
vides an assessment of the overall func-
tionality in the release, especially in terms
of customer solutions.

Some areas that scenario testing con-
centrates on include:

� Compatibility of multiple products run-
ning together
� Integration and interoperability of prod-
ucts across a complex network
� Coexistence of multiple products on
one hardware platform
� Areas of potential customer dissatis-
faction:

–Unacceptable performance
–Unsatisfactory installation
–Migration/upgrade difficulties
–Incorrect and/or difficult-to-use docu-
mentation
–Overall system usability

As is the case for many customers,
most system test activities require more
than one system to execute. This fact is
essential to understand, from both prod-
uct integration and usage standpoints,
and also because this represents a more
realistic, customerlike setup. In driving
multiple, interrelated, and concurrent
activities across our network, we tend to
“shake out” those hard-to-get-at latent
problems. In such a complex environ-
ment, these types of problems tend to be
difficult to analyze, debug, and fix, be-
cause of the layers of activities and prod-
ucts used. Additional effort to fix these
problems is time well spent, because
many of them could easily become critical
situations to customers.

Workloads for the RAISE test envi-
ronments are defined to place an
emphasis on stressful, concurrent prod-
uct interaction. Workload characteristics
include:

� Stressing some of the more complex
new features of the system 
� Running automated tests to provide
background workload for additional con-
currence and stress testing and to test
previous release function for regression
� Verifying that the software installation
instructions are accurate and understand-
able and that the installation function
works properly
� Testing release-to-release compatibil-
ity, including n to n−1 communications
connectivity and system interoperability
� Detecting data conversion problems by
simulating customers performing installa-
tions from a prior release
� Testing availability and recovery func-
tions
� Artistic testing involving disaster and
error recovery
� Performing policy-driven system main-
tenance (e.g., backup, recovery, and
applying fixes)
� Defining and managing different secu-
rity levels for systems, applications, docu-
ments, files, and user/group profiles
� Using the tools and publications that
are available to the customer or IBM ser-
vice personnel when diagnosing and
resolving problems

Another objective during the RAISE
system test is to maintain customer envi-
ronment systems at stable hardware and
software levels for an extended time (one
month or more). A guideline for this would
be minimum number of unplanned initial
program loads (IPL, or reboot) except for
maintenance requiring an IPL. The intent
is to simulate an active business and
detect problems that occur only after the
systems and network have been operat-
ing for an extended, uninterrupted period
of time.



The data in Figure 10.10 indicate the recent CPU utilization targets for the IBM
Rochester’s system test. Of the five systems in the system test environment, there is
one system with a 2-way processor (VA), two systems with 4-way processors (TX
and WY), and one system each with 8-way and 12-way processors. The upper CPU
utilization limits for TX and WY are much lower because these two systems are used
for interactive processing. For the overall testing network, the baseline targets for
system test and the acceptance test of system test are also shown. 

The next example, shown in Figure 10.11, demonstrates the tracking of CPU
utilization over time for the software stress test. There is a two-phase target as repre-
sented by the step-line in the chart. The original target was set at 16 CPU hours per
system per day on the average, with the following rationale:

�� The stress test runs 20 hours per day, with 4 hours of system maintenance.
�� The CPU utilization target is 80% or higher.

The second phase of the target, set at 18 CPU hours per system per day, is for the
back end of the stress test. As the figure shows, a key element of this metric, in addi-
tion to comparison of actual and target data, is release-to-release comparison. One
can observe that the curve for release C had more data points in the early develop-
ment cycle, which were at higher CPU utilization levels. This is because pretest runs
were conducted prior to availability of the new release content. For all three releases,
the CPU utilization metric shows an increasing trend with the stress test progress.
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* Priorities set for interactive user response time; 70 percent seems to be the upper
limit based on prior release testing.

** Average minimum needed to meet test case and system aging requirements.
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The CPU utilization metric is used together with the system crashes and hangs met-
ric. This relationship is discussed in the next section.

To collect CPU utilization data, a performance monitor tool runs continuously
(24x7) on each test system. Through the communication network, the data
from the test systems are sent to a nontest system on a real-time basis. By means of a
Lotus Notes database application, the final data can be easily tallied, displayed, and
monitored. 

10.1.6 System Crashes and Hangs 

Hand in hand with the CPU utilization metric is the system crashes and hangs metric.
This metric is operationalized as the number of unplanned initial program loads
(IPLs, or reboots) because for each crash or hang, the system has to be re-IPLed
(rebooted). For software tests whose purpose is to improve the stability of the sys-
tem, we need to ensure that the system is stressed and testing is conducted effectively
to uncover latent defects that would lead to system crashes and hangs, or in general
any unplanned IPLs. When such defects are discovered and fixed, stability of the sys-
tem improves over time. Therefore, the metrics of CPU utilization (stress level) and
unplanned IPLs describe the effort aspect and the outcome aspect respectively, of the
effectiveness of the test.
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Figure 10.12 shows the system crashes and hangs metric for the same three
releases shown in Figure 10.11. The target curve was derived based on data from
prior releases by fitting an exponential model.

In terms of data collection, when a system crash or hang occurs and the tester
reboots (re-IPLs) the system, the performance monitor and IPL tracking tool pro-
duces a screen prompt and requests information about the last system crash or hang.
The tester can ignore the prompt temporarily, but it will reappear regularly after a
certain time until the questions are answered. Information elicited via this tool
includes test system, network ID, tester name, IPL code and reason (and additional
comments), system reference code (SRC) if available, data and time system went
down, release, driver, PTR number (the defect that caused the system crash or hang),
and the name of the product. The IPL reason code consists of the following
categories:

�� 001 Hardware problem (unplanned)
�� 002 Software problem (unplanned)
�� 003 Other problem (unplanned)
�� 004 Load fix (planned)

Because the volume and trend of system crashes and hangs are germane to the
stability of the product in the field, we highly recommend this in-process metric for
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software for which stability is an important attribute. These data should also be used
to make release-to-release comparisons and as leading indicators to product delivery
readiness. While CPU utilization tracking definitely requires a tool, tracking of sys-
tem crashes and hangs can start with pencil and paper if a disciplined process is in
place.

10.1.7 Mean Time to Unplanned IPL

Mean time to failure (MTTF), or mean time between failures (MTBF), are the stan-
dard measurements of reliability. In software reliability literature, this metric and
various models associated with it have been discussed extensively. Predominantly,
the discussions and use of this metric are related to academic research or specific-
purpose software systems. To the author’s awareness, implementation of this metric
is rare in organizations that develop commercial systems. This may be due to several
reasons including issues related to single-system versus multiple-systems testing, the
definition of a failure, the feasibility and cost in tracking all failures and detailed
time-related data (Note: Failures are different from defects or faults; a single defect
can cause multiple failures and in different machines) in commercial projects, and
the value and return on investment of such tracking. 

System crashes and hangs (unplanned IPLs) are the more severe forms of failure.
Such failures are clear-cut and easier to track, and metrics based on such data are
more meaningful. Therefore, at IBM Rochester, we use mean time to unplanned IPL
(MTI) as the software reliability metric. This metric is used only during the system
testing period, which, as previously described, is a customerlike system integration
test prior to product delivery. Using this metric for other tests earlier in the develop-
ment cycle is possible but will not be as meaningful because all the components of
the system cannot be addressed collectively until the final system test. The formula to
calculate the MTI metric is:

where
n = Number of weeks that testing has been performed (i.e., the current week

of test)
H = Total of weekly CPU run hours
W = Weighting factor
I = Number of weekly (unique) unplanned IPLs (due to software failures)

Basically the formula takes the total number of CPU run hours for each week (H
i
),

divides it by the number of unplanned IPLs plus 1 (I
i

+ 1), then applies a set of

Weekly MTI = •
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∑
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weighting factors to get the weighted MTI number, if weighting is desired. For
example, if the total CPU run hours from all test systems for a specific week was 320
CPU hours and there was one unplanned IPL due to a system crash, then the
unweighted MTI for that week would be 320/(1+1) = 160 CPU hours. In the IBM
Rochester implementation, we apply a set of weighting factors based on results from
prior baseline releases. The purpose of weighting factors is to take the outcome from
the prior weeks into account so that at the end of the system test (with a duration of
10 weeks), the MTI represents an entire system test statement. It is the practitioner’s
decision whether to use a weighting factor or how to distribute the weights heuristi-
cally. Deciding factors may include type of products and systems under test, test
cycle duration, and how the test period is planned and managed. 

Figure 10.13 is an example of the MTI metric for the system test of a recent
release of an integrated operating system. The X-axis represents the number of weeks
before product ship. The Y-axis on the right side is MTI and on the left side is the
number of unplanned IPLs. Inside the chart, the shaded areas represent the number of
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unique unplanned IPLs (crashes and hangs) encountered. From the start of the accep-
tance test of the system test, the MTI metric is shown tracking to plan until week 10
before product ship, when three system crashes occurred during one week. From the
significant drop of the MTI, it was evident that with the original test plan, there
would not be enough burn-in time for the system to reach the MTI target. Because
this lack of burn-in time might result in undetected critical problems, additional test-
ing was done and the system test was lengthened by three weeks. The product ship
date remained unchanged. 

Clearly, discrepancies between actual and targeted MTI should trigger early,
proactive decisions to adjust testing plans and schedules to make sure that product
ship criteria for burn-in can be achieved. At a minimum, the risks should be well un-
derstood and a risk mitigation plan should be developed. Action plans might include:

�� Extending test duration and/or adding resources
�� Providing for a more exhaustive regression test period if one were planned
�� Adding a regression test if one were not planned
�� Taking additional actions to intensify problem resolution and fix turnaround

time (assuming that there is enough time available until the test cycle is planned
to end)

10.1.8 Critical Problems: Showstoppers

This showstopper parameter is very important because the severity and impact of
software defects varies. Regardless of the volume of total defect arrivals, it takes only
a few showstoppers to render a product dysfunctional. This metric is more qualitative
than the metrics discussed earlier. There are two aspects of this metric. The first is the
number of critical problems over time, with release-to-release comparison. This
dimension is quantitative. The second, more important, dimension is concerned with
the types of the critical problems and the analysis and resolution of each problem. 

The IBM Rochester’s implementation of this tracking and focus is based on the
general criteria that any problem that will impede the overall progress of the project
or that will have significant impact on customer’s business (if not fixed) belongs to
such a list. The tracking normally starts at the middle of the component test phase
when a critical problem meeting by the project management team (with representa-
tives from all functional areas) takes place once a week. When it gets closer to sys-
tem test and product delivery time, the focus intensifies and daily meetings take
place. The objective is to facilitate cross-functional teamwork to resolve the prob-
lems swiftly. Although there is no formal set of criteria, problems on the critical
problem list tend to be problems related to installation, system stability, security, data
corruption, and so forth. All problems on the list must be resolved before product
delivery.



10.2 In-Process Metrics and Quality Management 

On the basis of the previous discussions of specific metrics, we have the follow-
ing recommendations for implementing in-process metrics for software testing in
general:

�� Whenever possible, use calendar time, instead of phases of the development
process, as the measurement unit for in-process metrics. There are some phase-
based metrics or defect cause analysis methods available, which we also use.
However, in-process metrics based on calendar time provide a direct statement
on the status of the project with regard to whether it can be developed on time
with desirable quality. As appropriate, a combination of time-based metrics and
phase-based metrics may be desirable.

�� For time-based metrics, use ship date as the reference point for the X-axis and
use week as the unit of measurement. By referencing the ship date, the metric
portrays the true in-process status and conveys a “marching toward completion”
message. In terms of time units, we found that data at the daily level proved to
have too much fluctuation and data at the monthly level lost its timeliness, and
neither can provide a trend that can be spotted easily. Weekly data proved opti-
mal in terms of both measurement trends and cycles for actions. Of course,
when the project is approaching the back end of the development cycle, some
metrics may need to be monitored and actions taken daily. For very small proj-
ects, the time units should be scaled according to the length of the test cycle
and the pattern of defect arrivals. For instance, the example in Chapter 12
(Figure 12.5) shows the relationship between defect arrivals and hours of test-
ing. The testing cycle was about 80 hours so the time unit was hour. One can
observe that the defect arrival pattern by hour of testing shows a start, ramp-up,
and then stabilizing pattern, which is a positive pattern. 

�� Metrics should indicate “good” or “bad” in terms of quality or schedule. To
achieve these objectives, a comparison baseline (a model or some history)
should always be established. Metrics should also have a substantial visual
component so that “good” and “bad” are observable by the users without signif-
icant analysis. In this regard, we recommend frequent use of graphs and trend
charts. 

�� Some metrics are subject to strong management actions, whereas a few specific
ones should not be intervened with. For example, defect arrival pattern is an
important quality indicator of the project. It is driven by test effectiveness and
test progress. It should not be artificially controlled. When defects are discov-
ered by testing, defect reports should be opened and tracked. On the other hand,
testing progress can be managed. Therefore, defect arrival pattern can be influ-
enced only indirectly via managing the testing. In contrast, defect backlog is
completely subject to management and control.
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�� Finally, the metrics should be able to drive improvements. The ultimate ques-
tions for the value of metrics is, as a result of metrics, what kind and how much
improvement will be made and to what extent will the final product quality be
influenced? 

With regard to the last item in the list, to drive specific improvement actions, some-
times the metrics have to be analyzed at a granular level. As a real-life example, for
the test progress and defect backlog (PTR backlog) metrics, the following analysis
was conducted and guidelines for action were provided for the component teams for
an IBM Rochester project near the end of the component test (CT) phase. 

�� Components that were behind in the CT were identified using the following
methods:

• Sorting all components by “% of total test cases attempted” and selecting
those that are less than 65%. In other words, with less than 3 weeks to com-
ponent test complete, these components have more than one-third of testing
left.

• Sorting all components by “number of planned cases not attempted” and
selecting those that have 100 or larger, and adding these components to those
identified in step 1. In other words, these several additional components may
be on track or not seriously behind percentage-wise, but because of the large
number of test cases they have, a large amount of work remains.

(Because the unit (test case, or test variation) is not of the same weight across
components, step 1 was used as the major criterion, supplemented by step 2.)

�� Components with double-digit PTR backlogs were identified. 

�� Guidelines for actions were devised:

• If CT is way behind and PTR backlog is not high, the first priority is to focus
on finishing CT.

• If CT is on track and PTR backlog is high, the key focus is on reducing PTR
backlog.

• If CT is way behind and PTR backlog is high, then these components are
really in trouble. GET HELP (e.g., extra resources, temporary help from
other component teams who have experience with this component).

• For the rest of the components, continue to keep a strong focus both on fin-
ishing CT and reducing PTR backlog.

Furthermore, analysis on defect cause, symptoms, defect origin (in terms of devel-
opment phase), and where found can provide more information for possible im-
provement actions. Such analyses are discussed in previous chapters. Tables 10.2
and 10.3 show two examples on defect cause distribution and the distribution of
defects found by test phase across development teams for a systems software project.
The defect causes are categorized into initialization-related problems (INIT), data



TABLE 10.2
Percent Distribution of Defect Cause by Development Team

Defect Cause Team A Team B Team C Team D Team E Team F Team G Team H Project Overall

Initialization (INIT) 111.5% 119.8% 112.3% 119.6% 110.6% 110.4% 113.9% 16.4% 110.6%
Definition (DEFN) 115.5 134.9 118.5 116.6 112.8 110.9 119.5 18.3 110.7
Interface (INTF) 110.6 116.3 115.8 131.3 118.3 119.3 112.0 11.3 115.6
Logic, algorithm 159.9 126.1 154.2 141.4 154.4 149.7 148.6 64.9 150.4

(LGC)
Machine readable 113.7 111.4 113.1 110.5 110.9 111.8 110.7 11.1 111.7

information (MRI)
Complex problems 118.8 111.6 116.1 110.6 123.0 117.9 115.3 17.9 111.0

(CPLX)

TOTAL (n) 100.0% 100.1% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9% 100.0%
(217) (215) (260) (198) (217) (394) (274) (265) (2040)
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definition–related problems (DEFN), interface problems (INTF), logical and algo-
rithmic problems (LGC), problems related to messages, translation, and machine-
readable information (MRI), and complex configuration and timing problems
(CPLX). The test phases include unit test (UT), component test (CT), component
regression test (CRT), artistic test, product level test (PLT), and system test (ST).
Artistic test is the informal testing done by developers during the formal CT, CRT,
and PLT test cycles. It usually results from a “blitz test” focus on specific functions,
additional testing triggered by in-process quality indicators, or new test cases in
response to newly discovered problems in the field. In both tables, the percentages
that are highlighted in bold numbers differ substantially from the pattern for the over-
all project.

Metrics are a tool for project and quality management. For many types of
projects, including software development, commitment by the teams is very impor-
tant. Experienced project managers know, however, that subjective commitment is
not enough. Do you commit to the system schedules and quality goals? Will you
deliver on time with desirable quality? Even with strong commitment by the devel-
opment teams to the project manager, these objectives are often not met for a host of
reasons, right or wrong. In-process metrics provide the added value of objective indi-
cation. It is the combination of subjective commitments and objective measurements
that will make the project successful.

To successfully manage in-process quality and therefore the quality of the final
deliverables, in-process metrics must be used effectively. We recommend an inte-
grated approach to project and quality management vis-à-vis these metrics in which
quality is managed as vigorously as factors such as schedule, cost, and content.
Quality should always be an integral part of the project status report and checkpoint
reviews. Indeed, many examples described here are metrics for both quality and

TABLE 10.3
Percent Distribution of Defect Found by Testing Phase by Development Team

Team UT CT CRT Artistic PLT ST Total (n)

A 26.7% 35.9% 9.2% 18.4% 16.9% 12.9% 100.0% (217)
B 25.6 24.7 17.4 38.1 12.8 11.4 100.0 (215)
C 31.9 33.5 19.2 12.3 15.4 17.7 100.0 (260)
D 41.9 29.8 11.1 12.1 11.5 13.6 100.0 (198)
E 38.2 23.5 11.1 15.0 11.1 11.1 100.0 (217)
F 18.0 39.1 17.4 13.3 25.3 16.9 100.0 (394)
G 19.0 29.9 18.3 21.5 14.4 16.9 100.0 (274)
H 26.0 36.2 17.7 12.8 14.2 13.1 100.0 (265)
Proejct Overall 27.1% 32.3% 11.4% 13.4% 19.1% 16.7% 100.0% (2040)



schedules (those weeks to delivery date measurements) because the two parameters
are often intertwined. 

One common observation with regard to metrics in software development is that
project teams often explain away the negative signs indicated by the metrics. There
are two key reasons for this phenomenon. First, in practice many metrics are inade-
quate to measure the quality of the project. Second, project managers might not be
action-oriented or not willing to take ownership of quality management. Therefore,
the effectiveness, reliability, and validity of metrics are far more important than the
quantity of metrics. We recommend using only a few important and manageable met-
rics during the project. When a negative trend is observed, an early urgent response
can prevent schedule slips and quality deterioration. Such an approach can be sup-
ported by setting in-process metric targets. Corrective actions should be triggered
when the measurements fall below a predetermined target. 

10.2.1 Effort/Outcome Model

It is clear that some metrics are often used together to provide adequate interpretation
of the in-process quality status. For example, test progress and defect arrivals (PTR
arrivals), and CPU utilization and the number of system crashes and hangs are two
obvious pairs. If we take a closer look at the metrics, we can classify them into two
groups: those that measure the testing effectiveness or testing effort, and those that
indicate the outcome of the test in terms of quality, or the lack thereof. We call the
two groups the effort indicators (e.g., test effectiveness assessment, test progress S
curve, CPU utilization during test) and the outcome indicators (PTR arrivals—total
number and arrivals pattern, number of system crashes and hangs, mean time to
unplanned initial program load (IPL) ), respectively. 

To achieve good test management, useful metrics, and effective in-process 
quality management, the effort/outcome model should be used. The 2x2 matrix in
Figure 10.14 for testing-related metrics is equivalent to that in Figures 9.4 and 9.17
for inspection-related metrics. For the matrix on test effectiveness and the number of
defects:

�� Cell 2 is the best-case scenario. It is an indication of good intrinsic quality of
the design and code of the software—low error injection during the develop-
ment process—and verified by effective testing.

�� Cell 1 is a good/not bad scenario. It represents the situation that latent defects
were found via effective testing. 

�� Cell 3 is the worst-case scenario. It indicates buggy code and probably prob-
lematic designs—high error injection during the development process. 

�� Cell 4 is the unsure scenario. One cannot ascertain whether the lower defect
rate is a result of good code quality or ineffective testing. In general, if the test
effectiveness does not deteriorate substantially, lower defects is a good sign. 
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It should be noted that in an effort/outcome matrix, the better/worse and higher/
lower designations should be carefully determined based on project-to-project,
release-to-release, or actual-to-model comparisons. This effort/outcome approach
also provides an explanation of Myers (1979) counterintuitive principle of software
testing as discussed in previous chapters. This framework can be applied to pairs of
specific metrics. For testing and defect volumes (or defect rate), the model can be
applied to the overall project level and in-process metrics level. At the overall project
level, the effort indicator is the assessment of test effectiveness compared to the base-
line, and the outcome indicator is the volume of all testing defects (or overall defect
rate) compared to the baseline, when all testing is complete. As discussed earlier, it is
difficult to derive a quantitative indicator of test effectiveness. But an ordinal assess-
ment (better, worse, about equal) can be made via test coverage (functional or some
coverage measurements), extra testing activities (e.g., adding a separate phase), and
so forth. 

At the in-process status level, the test progress S curve is the effort indicator and
the defect arrival pattern (PTR arrivals) is the outcome indicator. The four scenarios
will be as follows:

�� Positive Scenarios

• The test progress S curve is the same as or ahead of baseline (e.g., a previous
release) and the defect arrival curve is lower (than that of a previous release).
This is the cell 2 scenario. 

• The test progress S curve is the same as or ahead of the baseline and the
defect arrival is higher in the early part of the curve—chances are the defect
arrivals will peak earlier and decline to a lower level near the end of testing.
This is the cell 1 scenario.
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An Effort/Outcome Matrix



�� Negative Scenarios

• The test progress S curve is significantly behind and the defect arrival curve
is higher (compared with baseline)—chances are the PTR arrivals will peak
later and higher and the problem of late cycle defect arrivals will emerge.
This is the cell 3 scenario.

• The test S curve is behind and the defect arrival is lower in the early part of
the curve —this is an unsure scenario. This is the cell 4 scenario.

Both cell 3 (worst case) and cell 4 (unsure) scenarios are unacceptable from
quality management’s point of view. To improve the situation at the overall project
level, if the project is still in early development the test plans have to be more effec-
tive. If testing is almost complete, additional testing for extra defect removal needs to
be done. The improvement scenarios take three possible paths:

1. If the original scenario is cell 3 (worst case), the only possible improvement
scenario is cell 1 (good/not bad). This means achieving quality via extra testing.

2. If the original scenario is cell 4 (unsure), the improvement scenario can be one
of the following two:

�� Cell 1 (good/not bad) means more testing leads to more defect removal, and
the original low defect rate was truly due to insufficient effort.

�� Cell 2 (best case) means more testing confirmed that the intrinsic code qual-
ity was good, that the original low defect rate was due to lower latent defects
in the code.

For in-process status, the way to improve the situation is to accelerate the test
progress. The desirable improvement scenarios take two possible paths:

1. If the starting scenario is cell 3 (worst case), then the improvement path is cell
3 to cell 1 to cell 2.

2. If the starting scenario is cell 4 (unsure), improvement path could be:

�� Cell 4 to cell 2
�� Cell 4 to cell 1 to cell 2 

The difference between the overall project level and the in-process status level is
that for the latter situation, cell 2 is the only desirable outcome. In other words, to
ensure good quality, the defect arrival curve has to decrease to a low level when
active testing is still going on. If the defect arrival curve stays high, it implies that
there are substantial latent defects in the software. One must keep testing until the
defect arrivals show a genuine pattern of decline. At the project level, because the
volume of defects (or defect rate) is cumulative, both cell 1 and cell 2 are desirable
outcomes from a testing perspective.
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Generally speaking, outcome indicators are fairly common; effort indicators are
more difficult to establish. Moreover, different types of software and tests may need
different effort indicators. Nonetheless, the effort/outcome model forces one to
establish appropriate effort measurements, which in turn, drives the improvements in
testing. For example, the metric of CPU utilization is a good effort indicator for sys-
tems software. In order to achieve a certain level of CPU utilization, a stress environ-
ment needs to be established. Such effort increases the effectiveness of the test. The
level of CPU utilization (stress level) and the trend of the number of system crashes
and hangs are a good pair of effort/outcome metrics.

For integration type software where a set of vendor software are integrated
together with new products to form an offering, effort indicators other than CPU
stress level may be more meaningful. One could look into a test coverage-based
metric including the major dimensions of testing such as:

�� Setup
�� Install
�� Min/max configuration
�� Concurrence
�� Error-recovery
�� Cross-product interoperability
�� Cross-release compatibility
�� Usability
�� Double-byte character set (DBCS)

A five-point score (1 being the least effective and 5 being the most rigorous
testing) can be assigned for each dimension and their sum can represent an overall
coverage score. Alternatively, the scoring approach can include the “should be” level
of testing for each dimension and the “actual” level of testing per the current test plan
based on independent assessment by experts. Then a “gap score” can be used to drive
release-to-release or project-to-project improvement in testing. For example, assume
the test strategy for a software offering calls for the following dimensions to be
tested, each with a certain sufficiency level: setup, 5; install, 5; cross-product inter-
operability, 4; cross-release compatibility, 5; usability, 4; and DBCS, 3. Based on
expert assessment of the current test plan, the sufficiency levels of testing are setup,
4; install, 3; and cross-product interoperability, 2; cross-release compatibility, 5;
usability, 3; DBCS, 3. Therefore the “should be” level of testing would be 26 and the
“actual” level of testing would be 20, with a gap score of 6. This approach may be
somewhat subjective but it also involves in the assessment process the experts who
can make the difference. Although it would not be easy in real-life implementation,
the point here is that the effort/outcome paradigm and the focus on effort metrics
have direct linkage to test improvements. Further research in this area or implemen-
tation experience will be useful.



For application software in the external user test environment, usage of key fea-
tures of the software and hours of testing would be good effort indicators, and the
number of defects found can be the outcome indicator. Again to characterize the
quality of the product, the defect curve must be interpreted with data about feature
usage and effort of testing. Caution: To define and develop effort indicators, the
focus should be on the effectiveness of testing rather than on the person-hour (or
person-month) effort in testing per se. A good testing strategy should strive for effi-
ciency (via tools and automation) as well as effectiveness.

10.3 Possible Metrics for Acceptance Testing to
Evaluate Vendor-Developed Software 

Due to business considerations, a growing number of organizations rely on external
vendors to develop the software for their needs. These organizations typically con-
duct an acceptance test to validate the software. In-process metrics and detailed
information to assess the quality of the vendors’ software are generally not available
to the contracting organizations. Therefore, useful indicators and metrics related to
acceptance testing are important for the assessment of the software. Such metrics
would be different from the calendar-time–based metrics discussed in previous sec-
tions because acceptance testing is normally short and there may be multiple code
drops and, therefore, multiple mini acceptance tests in the validation process. 

The IBM 2000 Sydney Olympics project was one such project, in which IBM
evaluated vendor-delivered code to ensure that all elements of a highly complex sys-
tem could be integrated successfully (Bassin, Biyani, and Santhanam, 2002). The
summer 2000 Olympic Games was considered the largest sporting event in the
world. For example, there were 300 medal events, 28 different sports, 39 competition
venues, 30 accreditation venues, 260,000 INFO users, 2,000 INFO terminals, 10,000
news records, 35,000 biographical records, and 1.5 million historical records. There
were 6.4 million INFO requests per day on the average and the peak Internet hits per
day was 874.5 million. For the Venue Results components of the project, Bassin,
Biyani, and Santhanam developed and successfully applied a set of metrics for
IBM’s testing of the vendor software. The metrics were defined based on test case
data and test case execution data; that is, when a test case was attempted for a given
increment code delivery, an execution record was created. Entries for a test case exe-
cution record included the date and time of the attempt, and the execution status, test
phase, pointers to any defects found during execution, and other ancillary informa-
tion. There were five categories of test execution status: pass, completed with errors,
fail, not implemented, and blocked. A status of “failed” or “completed with errors”
would result in the generation of a defect record. A status of “not implemented” indi-
cated that the test case did not succeed because the targeted function had not yet been
implemented, because this was in an incremental code delivery environment. The
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“blocked” status was used when the test case did not succeed because access to the
targeted area was blocked by code that was not functioning correctly. Defect records
would not be recorded for these latter two statuses. The key metrics derived and used
include the following:

Metrics related to test cases

�� Percentage of test cases attempted—used as an indicator of progress relative to
the completeness of the planned test effort

�� Number of defects per executed test case—used as an indicator of code quality
as the code progressed through the series of test activities

�� Number of failing test cases without defect records—used as an indicator of the
completeness of the defect recording process

Metrics related to test execution records

�� Success rate—The percentage of test cases that passed at the last execution was
an important indicator of code quality and stability.

�� Persistent failure rate—The percentage of test cases that consistently failed or
completed with errors was an indicator of code quality. It also enabled the iden-
tification of areas that represented obstacles to progress through test activities.

�� Defect injection rate—The authors used the percentage of test cases whose
status went from pass to fail or error, fail to error, or error to fail, as an indicator
of the degree to which inadequate or incorrect code changes were being made.
Again, the project involves multiple code drops from the vendor. When the
status of a test case changes from one code drop to another, it is an indication
that a code change was made. 

�� Code completeness—The percentage of test executions that remained “not
implemented” or “blocked” throughout the execution history was used as an
indicator of the completeness of the coding of component design elements.

With these metrics and a set of in-depth defect analysis referenced as orthogonal
defect classification, Bassin and associates were able to provide value-added reports,
evaluations, and assessments to the project team. 

These metrics merit serious considerations for software projects in similar envi-
ronments. The authors contend that the underlying concepts are useful, in addition to
vendor-delivered software, for projects that have the following characteristics:

�� Testers and developers are managed by different organizations.
�� The tester population changes significantly, for skill or business reasons.
�� The development of code is iterative.
�� The same test cases are executed in multiple test activities.

It should be noted these test case execution metrics require tracking at a very
granular level. By definition, the unit of analysis is at the execution level of each test



case. They also require the data to be thorough and complete. Inaccurate or incom-
plete data will have much larger impact on the reliability of these metrics than on
metrics based on higher-level units of analysis. Planning the implementation of these
metrics therefore must address the issues related to the test and defect tracking sys-
tem as part of the development process and project management system. Among the
most important issues are cost and behavioral compliance with regard to the record-
ing of accurate data. Finally, these metrics measure the outcome of test executions.
When using these metrics to assess the quality of the product to be shipped, the effec-
tiveness of the test plan should be known or assessed a priori, and the framework of
effort/outcome model should be applied.

10.4 How Do You Know Your Product Is Good
Enough to Ship?

Determining when a product is good enough to ship is a complex issue. It involves
the types of products (e.g., a shrink-wrap application software versus an operating
system), the business strategy related to the product, market opportunities and tim-
ing, customers requirements, and many more factors. The discussion here pertains to
the scenario in which quality is an important consideration and that on-time delivery
with desirable quality is the major project goal.

A simplistic view is that one establishes a target for one or several in-process
metrics, and if the targets are not met, then the product should not be shipped per
schedule. We all know that this rarely happens in real life, and for legitimate reasons.
Quality measurements, regardless of their maturity levels, are never as black and
white as meeting or not meeting a delivery date. Furthermore, there are situations
where some metrics are meeting targets and others are not. There is also the ques-
tion of how bad is the situation. Nonetheless, these challenges do not diminish the
value of in-process measurements; they are also the reason for improving the matu-
rity level of software quality metrics. 

In our experience, indicators from at least the following dimensions should be
considered together to get an adequate picture of the quality of the product.

�� System stability, reliability, and availability
�� Defect volume
�� Outstanding critical problems
�� Feedback from early customer programs
�� Other quality attributes that are of specific importance to a particular product

and its customer requirements and market acceptance (e.g., ease of use, perfor-
mance, security, and portability.)
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When various metrics are indicating a consistent negative message, the product
will not be good enough to ship. When all metrics are positive, there is a good chance
that the product quality will be positive in the field. Questions arise when some of the
metrics are positive and some are not. For example, what does it mean to the field
quality of the product when defect volumes are low and stability indicators are posi-
tive but customer feedback is less favorable than that of a comparable release? How
about when the number of critical problems is significantly higher and all other
metrics are positive? In those situations, at least the following points have to be
addressed:

�� Why is this and what is the explanation?
�� What is the influence of the negative in-process metrics on field quality?
�� What can be done to control and mitigate the risks?
�� For the metrics that are not meeting targets, how bad is the situation?

Answers to these questions are always difficult, and seldom expressed in quantitative
terms. There may not even be right or wrong answers. On the question of how bad is
the situation for metrics that are not meeting targets, the key issue is not one of sta-
tistical significance testing (which helps), but one of predictive validity and possible
negative impact on field quality after the product is shipped. How adequate the
assessment is and how good the decision is depend to a large extent on the nature of
the product, experience accumulated by the development organization, prior empiri-
cal correlation between in-process metrics and field performance, and experience
and observations of the project team and those who make the GO or NO GO deci-
sion. The point is that after going through all metrics and models, measurements and
data, and qualitative indicators, the team needs to step back and take a big-picture
view, and subject all information to its experience base in order to come to a final
analysis. The final assessment and decision making should be analysis driven, not
data driven. Metric aids decision making, but do not replace it. 

Figure 10.15 is an example of an assessment of in-process quality of a release of
a systems software product when it was near the ship date. The summary table out-
lines the indicators used (column 1), key observations of the status of the indicators
(column 2), release-to-release comparisons (columns 3 and 4), and an assessment
(column 5). Some of the indicators and assessments are based on subjective informa-
tion. Many parameters are based on in-process metrics and data. The assessment was
done about two months before the product ship date, and actions were taken to
address the areas of concern from this assessment. The release has been in the field
for more than two years and has demonstrated excellent field quality. 



Versus Versus
Indicator Observation Release A Release B Assessment

Component Test Base complete. Product X to complete 7/31. ⇔ ⇔ Green

PTR Arrivals Peak earlier than Release A and Release B, and lower at 
back end — for both absolute numbers and normalized ⇑ ⇑ Green
(to size) rates.

PTR Severity Lower than Release A and Release B at back end. ⇑ ⇑ Green
Distribution

PTR Backlog Excellent backlog management, lower than Release A and 
Release B, and achieved targets at Checkpoint Z. Needs ⇔ ⇔ Green
focus for final take-down before product ship.

Number of Pending Higher than Release B at same time before product ship. ⇔ ⇓ Yellow
Fixes Need focus to minimize customer rediscovery.

Critical Problems Strong problem management. Number of problems on the ⇑ ⇑ Green
critical list similar to Release B.

System Stability Stability similar to, maybe slightly better than, Release B.
– Unplanned IPLs ⇑ ⇑ Green
– CPU Run Time

Plan Change Plan changes not as pervasive as Release B N/A ⇑ Green

Timeliness of Trans- Early and proactive build daily meetings. National language 
lation and National testing behind, but schedules achievable. ⇔ ⇔ Green
Language Testing

Hardware System Test Target complete: 7/31/xx. Focusing on backlog reduction. ⇑ ⇔ Green
XX is a known problem area but receiving focus.
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FIGURE 10.15
A Quality Assessment Summary

Hardware Reliability Projected to meet target (better than prior releases) for all ⇑ ⇑ Green
models.

Product Level Test Testing continues for components DD and WWDatabase, ⇑ ⇔ Green
but no major problems.

Install Test Phase II testing ahead of plan. One of the cleanest releases ⇑ ⇑ Green
in install test.

Serviceability and Concern with configurator readiness, software order ⇔ ⇓ Red:
Upgrade Testing structure in manufacturing. Concern

Software System Test Release looks good overall. ⇔ ⇔ Green

Service Readiness Worldwide service community is on track to be ready to ⇑ ⇑ Green
support the release.

Early Customer Good early customer feedback on the release. ⇔ ⇔ Green
Programs

Manufacturing Build Still early, but no major problems. ⇔ ⇔ Green
and Test

Key: ⇑ : Better than comparison release
⇔ : Same as comparison release

⇓ : Worse than comparison release
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10.5 Summary 

In this chapter we discuss a set of in-process metrics for the testing phases of the
software development process. We provide real-life examples based on implementa-
tion experiences at the IBM Rochester software development laboratory. We also
revisit the effort/outcome model as a framework for establishing and using in-
process metrics for quality management.

There are certainly many more in-process metrics for software test that are not
covered here; it is not our intent to provide a comprehensive coverage. Furthermore,
not every metric we discuss here is applicable universally. We recommend that the
several metrics that are basic to software testing (e.g., the test progress curve, defect
arrivals density, critical problems before product ship) be integral parts of all soft-
ware testing. 

It can never be overstated that it is the effectiveness of the metrics that matters,
not the number of metrics used. There is a strong temptation for quality practitioners
to establish more and more metrics. However, ill-founded metrics are not only use-
less, they are actually counterproductive and add costs to the project. Therefore, we
must take a serious approach to metrics. Each metric should be subjected to the
examination of basic principles of measurement theory and be able to demonstrate
empirical value. For example, the concept, the operational definition, the measure-
ment scale, and validity and reliability issues should be well thought out. At a macro
level, an overall framework should be used to avoid an ad hoc approach. We discuss
the effort/outcome framework in this chapter, which is particularly relevant for in-
process metrics. We also recommend the Goal/Question/Metric (GQM) approach in
general for any metrics (Basili, 1989, 1995). 
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For small organizations that don’t have a
metrics program in place and that intend
to practice a minimum number of metrics,
we recommend these metrics as basic to
software testing: test progress S curve,
defect arrival density, and critical prob-
lems or showstoppers.

For any projects and organizations we
strongly recommend the effort/outcome
model for interpreting the metrics for soft-
ware testing and in managing their in-
process quality. Metrics related to the
effort side of the equation are especially

important in driving improvement of soft-
ware tests.

Finally, the practice of conducting an
evaluation on whether the product is good
enough to ship is highly recommended.
The metrics and data available to support
the evaluation may vary, and so may the
quality criteria and the business strategy
related to the product. Nonetheless, hav-
ing such an evaluation based on both
quantitative metrics and qualitative as-
sessments is what good quality manage-
ment is about.

Recommendations for Small Organizations



References 309

At the same time, to enhance success, one should take a dynamic and flexible
approach, that is, tailor the metrics to the needs of a specific team, product, and orga-
nization. There must be buy-in by the team (development and test) in order for the
metrics to be effective. Metrics are a means to an end—the success of the project—
not an end itself. The project team that has intellectual control and thorough under-
standing of the metrics and data they use will be able to make the right decisions. As
such, the use of specific metrics cannot be mandated from the top down. 

While good metrics can serve as a useful tool for software development and
project management, they do not automatically lead to improvement in testing and
in quality. They do foster data-based and analysis-driven decision making and pro-
vide objective criteria for actions. Proper use and continued refinement by those
involved (e.g., the project team, the test community, the development teams) are
therefore crucial. 
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