
“main”
2001/11/26
page 41i

i
i
i

i
i

i
i

Chapter 3

A BGL Tutorial

As discussed in the previous chapter,conceptsplay a central role in generic programming.
Concepts are the interface definitions that allow many different components to be used with
the same algorithm. The Boost Graph Library defines a large collection of concepts that cover
various aspects of working with a graph, such as traversing a graph or modifying its structure.
In this chapter, we introduce these concepts and also provide some motivation for the choice
of concepts in the BGL.

From the description of the generic programming process (see page 19), concepts are
derived from the algorithms that are used to solve problems in particular domains. In this
chapter we examine the problem of tracking file dependencies in a build system. For each
subproblem, we examine generalizations that can be made to the solutions, with the goal of
increasing the reusability (the genericity) of the solution. The result, at the end of the chapter,
is a generic graph algorithm and its application to the file-dependency problem.

Along the way, we also cover some of the more mundane but necessary topics, such as
how to create a graph object and fill in the vertices and edges.

3.1 File Dependencies

A common use of the graph abstraction is to represent dependencies. One common type of
dependency that we programmers deal with on a routine basis is that of compilation depen-
dencies between files in programs that we write. Information about these dependencies is
used by programs such asmake, or by IDEs such as Visual C++, to determine which files
must be recompiled to generate a new version of a program (or, in general, of some target)
after a change has been made to a source file.

Figure 3.1 shows a graph that has a vertex for each source file, object file, and library that
is used in thekillerapp program. An edge in the graph shows that a target depends on another
target in some way (such as a dependency due to inclusion of a header file in a source file, or
due to an object file being compiled from a source file).

41

“main”
2001/11/26
page 42i

i
i
i

i
i

i
i

42 CHAPTER 3. A BGL TUTORIAL

dax.h

bar.o foo.ozag.o

yow.hboz.h

zig.o

zow.hbar.cpp

libfoobar.a

foo.cppzig.cpp

libzigzag.a

zag.cpp

killerapp

Figure 3.1A graph representing file dependencies.

Answers to many of the questions that arise in creating a build system such as make can
be formulated in terms of the dependency graph. We might ask these questions:

• If all of the targets need to be made, in what order should that be accomplished?

• Are there any cycles in the dependencies? A dependency cycle is an error, and an
appropriate message should be emitted.

• How many steps are required to make all of the targets? How many steps are required
to make all of the targets if independent targets are made simultaneously in parallel
(using a network of workstations or a multiprocessor, for example)?

In the following sections these questions are posed in graph terms, and graph algorithms
are developed to provide solutions. The graph in Figure 3.1 is used in all of the examples.

3.2 Graph Setup

Before addressing these questions directly, we must first find a way to represent the file-
dependency graph of Figure 3.1 in memory. That is, we need to construct a BGL graph
object.

‘‘main’’
2001/11/26
page 43i

i
i
i

i
i

i
i

3.2. GRAPH SETUP 43

Deciding Which Graph Class To Use

There are several BGL graph classes from which to choose. Since BGL algorithms are
generic, they can also be used with any conforming user-defined graph class, but in this
chapter we restrict our discussion to BGL graph classes. The principle BGL graph classes
are theadjacencylist andadjacencymatrix classes. Theadjacencylist class is a good choice
for most situations, particularly for representing sparse graphs. The file-dependencies graph
has only a few edges per vertex, so it is sparse. Theadjacencymatrix class is a good choice
for representing dense graphs, but a very bad choice for sparse graphs.

The adjacencylist class is used exclusively in this chapter. However, most of what is
presented here also applies directly to theadjacencymatrix class because its interface is almost
identical to that of theadjacencylist class. Here we use the same variant ofadjacencylist as
was used in§1.4.1.

typedef adjacencylist<
listS, // Store out-edges of each vertex in a std::list
vecS, // Store vertex set in a std::vector
directedS // The file dependency graph is directed
> file dep graph;

Constructing a Graph Using Edge Iterators

In §1.2.4 we showed how theadd vertex() andadd edge() functions can be used to create a
graph. Those functions add vertices and edges one at a time, but in many cases one would like
to add them all at once. To meet this need theadjacencylist graph class has a constructor that
takes two iterators that define a range of edges. The edge iterators can be anyInputIterator that
dereference to astd::pair of integers(i, j) that represent an edge in the graph. The two integers
i andj represent vertices where0 ≤ i < |V | and0 ≤ j < |V |. Then andm parameters
say how many vertices and edges will be in the graph. These parameters are optional, but
providing them improves the speed of graph construction. The graph properties parameter
p is attached to the graph object. The function prototype for the constructor that uses edge
iterators is as follows:

template<typename EdgeIterator>
adjacencylist(EdgeIterator first, EdgeIterator last,

verticessize type n = 0, edgessize type m = 0,
const GraphProperties& p = GraphProperties())

The following code demonstrates the use of the edge iterator constructor to create a graph.
Thestd::istreamiterator is used to make an input iterator that reads the edges in from the file.
The file contains the number of vertices in the graph, followed by pairs of numbers that specify
the edges. The second default-constructed input iterator is a placeholder for the end of the
input. Thestd::istreamiterator is passed directly into the constructor for the graph.

“main”
2001/11/26
page 44i

i
i
i

i
i

i
i

44 CHAPTER 3. A BGL TUTORIAL

std::ifstream file in(" makefile-dependencies.dat");
typedef graphtraits<file dep graph>::vertices size type sizetype;
size type n vertices;
file in >> n vertices; // read in number of vertices
std::istreamiterator<std::pair<size type, size type> > input begin(file in), input end;
file dep graph g(input begin, input end, n vertices);

Since the value type of thestd::istreamiterator is std::pair, an input operator needs to be de-
fined forstd::pair.

namespace std{
template<typename T>
std::istream& operator>>(std::istream& in, std::pair<T, T>& p) {

in >> p. first >> p. second;
return in;
}
}

3.3 Compilation Order

The first question that we address is that of specifying an order in which to build all of the
targets. The primary consideration here is ensuring that before building a given target, all the
targets that it depends on are already built. This is, in fact, the same problem as in§1.4.1,
scheduling a set of errands.

3.3.1 Topological Sort via DFS

As mentioned in§1.4.2, a topological ordering can be computed using a depth-first search
(DFS). To review, a DFS visits all of the vertices in a graph by starting at any vertex and then
choosing an edge to follow. At the next vertex another edge is chosen to follow. This pro-
cess continues until a dead end (a vertex with no out-edges that lead to a vertex not already
discovered) is reached. The algorithm then backtracks to the last discovered vertex that is
adjacent to a vertex that is not yet discovered. Once all vertices reachable from the starting
vertex are explored, one of the remaining unexplored vertices is chosen and the search contin-
ues from there. The edges traversed during each of these separate searches form adepth-first
tree; and all the searches form adepth-first forest. A depth-first forest for a given graph is not
unique; there are typically several valid DFS forests for a graph because the order in which
the adjacent vertices are visited is not specified. Each unique ordering creates a different DFS
tree.

Two useful metrics in a DFS are thediscover timeandfinish timeof a vertex. Imagine
that there is an integer counter that starts at zero. Every time a vertex is first visited, the value
of the counter is recorded as the discover time for that vertex and the value of the counter
is incremented. Likewise, once all of the vertices reachable from a given vertex have been

“main”
2001/11/26
page 45i

i
i
i

i
i

i
i

3.3. COMPILATION ORDER 45

visited, then that vertex is finished. The current value of the counter is recorded as the finish
time for that vertex and the counter is incremented. The discover time of a parent in a DFS
tree is always earlier than the discover time of a child. Similarly, the finish time of a parent
is always later than the finish time of a child. Figure 3.2 shows a depth-first search of the file
dependency graph, with the tree edges marked with black lines and with the vertices labeled
with their discover and finish times (written as discover/finish).

dax.h 1/14

bar.o 2/9 foo.o 10/11zag.o 12/13

yow.h 15/16boz.h 17/20

zig.o 18/19

zow.h 21/22bar.cpp 23/24

libfoobar.a 3/8

foo.cpp 25/26zig.cpp 27/28

libzigzag.a 4/7

zag.cpp 29/30

killerapp 5/6

Figure 3.2A depth-first search of the file dependency graph. Edges in the DFS tree are black
and non-tree edges are gray. Each vertex is labeled with its discover and finish time.

The relationship between topological ordering and DFS can be explained by considering
three different cases at the point in the DFS when an edge(u, v) is examined. For each case,
the finish time ofv is always earlier than the finish time ofu. Thus, the finish time is simply
the topological ordering (in reverse).

1. Vertexv is not yet discovered. This means thatv will become a descendant ofu and will
therefore end up with a finish time earlier thanu because DFS finishes all descendants
of u before finishingu.

2. Vertexv was discovered in an earlier DFS tree. Therefore, the finish time ofv must be
earlier than that ofu.

3. Vertexv was discovered earlier in the current DFS-tree. If this case occurs, the graph
contains a cycle and a topological ordering of the graph is not possible. Acycle is a
path of edges such that the first vertex and last vertex of the path are the same vertex.

“main”
2001/11/26
page 46i

i
i
i

i
i

i
i

46 CHAPTER 3. A BGL TUTORIAL

The main part of the depth-first search is a recursive algorithm that calls itself on each
adjacent vertex. We will create a function namedtopo sort dfs() that will implement a depth-
first search modified to compute a topological ordering. This first version of the function will
be a straightforward, nongeneric function. In the following sections we will make modifica-
tions that will finally result in a generic algorithm.

The parameters totopo sort dfs() include the graph, the starting vertex, a pointer to an
array to record the topological order, and an array for recording which vertices have been
visited. Thetopo order pointer starts at the end of the array and then decrements to obtain the
topological ordering from the reverse topological ordering. Note thattopo order is passed by
reference so that the decrement made to it in each recursive call modifies the original object
(if topo order were instead passed by value, the decrement would happen instead to a copy of
the original object).

void
topo sort dfs(const file dep graph& g, vertex t u, vertex t*& topo order, int* mark)
{

mark[u] = 1; // 1 means visited, 0 means not yet visited
〈For each adjacent vertex, make recursive call 47〉
*−−topo order = u;
}

Thevertex t type andedget types are the vertex and edge descriptors for thefile depgraph.

typedef graphtraits<file dep graph>::vertex descriptor vertext;
typedef graphtraits<file dep graph>::edge descriptor edget;

3.3.2 Marking Vertices Using External Properties

Each vertex should be visited only once during the search. To record whether a vertex has
been visited, we can mark it by creating an array that stores the mark for each vertex. In
general, we use the termexternal property storageto refer to the technique of storing vertex
or edge properties (marks are one such property) in a data structure like an array or hash table
that is separate from the graph object (i.e., that isexternalto the graph). Property values are
looked up based on some key that can be easily obtained from a vertex or edge descriptor. In
this example, we use a version ofadjacencylist where the the vertex descriptors are integers
from zero tonum vertices(g) - 1. As a result, the vertex descriptors themselves can be used as
indexes into the mark array.

3.3.3 Accessing Adjacent Vertices

In the topo sort dfs() function we need to access all the vertices adjacent to the vertexu.
The BGL conceptAdjacencyGraph defines the interface for accessing adjacent vertices. The
function adjacentvertices() takes a vertex and graph object as arguments and returns a pair

“main”
2001/11/26
page 47i

i
i
i

i
i

i
i

3.3. COMPILATION ORDER 47

of iterators whose value type is a vertex descriptor. The first iterator points to the first ad-
jacent vertex, and the second iterator points past the end of the last adjacent vertex. The
adjacent vertices are not necessarily ordered in any way. The type of the iterators is theadja-
cencyiterator type obtained from thegraph traits class. The reference section foradjacencylist
(§14.1.1) reveals that the graph type we are using,adjacencylist, models theAdjacencyGraph
concept. We may therefore correctly use the functionadjacentvertices() with our file depen-
dency graph. The code for traversing the adjacent vertices intopo sort dfs() follows.

〈 For each adjacent vertex, make recursive call 47〉 ≡
graph traits<file dep graph>::adjacency iterator vi, vi end;
for (tie(vi, vi end) = adjacentvertices(u, g); vi != vi end; ++ vi)

if (mark[* vi] == 0)
topo sort dfs(g, * vi, topo order, mark);

3.3.4 Traversing All the Vertices

One way to ensure that an ordering is obtained for every vertex in the graph (and not just those
vertices reachable from a particular starting vertex) is to surround the call totopo sort dfs()
with a loop through every vertex in the graph. The interface for traversing all the vertices in a
graph is defined in theVertexListGraph concept. Thevertices() function takes a graph object
and returns a pair of vertex iterators. The loop through all the vertices and the creation of the
mark array is encapsulated in a function calledtopo sort() .

void toposort(const file dep graph& g, vertex t* topo order)
{

std::vector<int> mark(num vertices(g), 0);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

if (mark[* vi] == 0)
topo sort dfs(g, * vi, topo order, & mark[0]);

}

To make the output fromtopo sort() more user friendly, we need to convert the vertex
integers to their associated target names. We have the list of target names stored in a file (in
the order that matches the vertex number) so we read in this file and store the names in an
array, which we then use when printing the names of the vertices.

std::vector<std::string> name(num vertices(g));
std::ifstream namein(" makefile-target-names.dat");
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

name in >> name[* vi];

‘‘main’’
2001/11/26
page 48i

i
i
i

i
i

i
i

48 CHAPTER 3. A BGL TUTORIAL

Now we create the order array to store the results and then apply the topological sort function.

std::vector<vertex t> order(num vertices(g));
topo sort(g, & order[0] + num vertices(g));
for (int i = 0; i < num vertices(g); ++ i)

std::cout << name[order[i]] << std::endl;

The output is

zag. cpp
zig. cpp
foo. cpp
bar. cpp
zow. h
boz. h
zig. o
yow. h
dax. h
zag. o
foo. o
bar. o
libfoobar. a
libzigzag. a
killerapp

3.4 Cyclic Dependencies

One important assumption in the last section is that the file dependency graph does not have
any cycles. As stated in§3.3.1, a graph with cycles does not have a topological ordering. A
well-formed makefile will have no cycles, but errors do occur, and our build system should
be able to catch and report such errors.

Depth-first search can also be used for the problem of detecting cycles. If DFS is applied
to a graph that has a cycle, then one of the branches of a DFS tree will loop back on itself.
That is, there will be an edge from a vertex to one of its ancestors in the tree. This kind of edge
is called aback edge. This occurrence can be detected if we change how we mark vertices.
Instead of marking each vertex as visited or not visited, we use a three-way coloring scheme:
white means undiscovered, gray means discovered but still searching descendants, and black
means the vertex and all of its descendants have been discovered. Three-way coloring is
useful for several graph algorithms, so the header fileboost/graph/properties.hppdefines the
following enumerated type.

enum default color type { white color, gray color, black color };

A cycle in the graph is identified by an adjacent vertex that is gray, meaning that an edge loops
back to an ancestor. The following code is a version of DFS instrumented to detect cycles.

“main”
2001/11/26
page 49i

i
i
i

i
i

i
i

3.5. TOWARD A GENERIC DFS: VISITORS 49

bool hascycle dfs(const file dep graph& g, vertex t u, default color type* color)
{

color[u] = gray color;
graph traits<file dep graph>::adjacency iterator vi, vi end;
for (tie(vi, vi end) = adjacentvertices(u, g); vi != vi end; ++ vi)

if (color[* vi] == white color)
if (has cycle dfs(g, * vi, color))

return true; // cycle detected, return immediately
else if (color[* vi] == gray color) // *vi is an ancestor!

return true;
color[u] = black color;
return false;
}

As with the topological sort, in thehas cycle() function the recursive DFS function call is
placed inside of a loop through all of the vertices so that we catch all of the DFS trees in the
graph.

bool hascycle(const file dep graph& g)
{

std::vector<default color type> color(num vertices(g), white color);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

if (color[* vi] == white color)
if (has cycle dfs(g, * vi, & color[0]))

return true;
return false;
}

3.5 Toward a Generic DFS: Visitors

At this point we have completed two functions,topo sort() andhas cycle() , each of which
is implemented using depth-first search, although in slightly different ways. However, the
fundamental similarities between the two functions provide an excellent opportunity for code
reuse. It would be much better if we had a single generic algorithm for depth-first search that
expresses the commonality betweentopo sort() andhas cycle() and then used parameters to
customize the DFS for each of the different problems.

The design of the STL gives us a hint for how to create a suitably parameterized DFS al-
gorithm. Many of the STL algorithms can be customized by providing a user-defined function
object. In the same way, we would like to parameterize DFS in such a way thattopo sort()
andhas cycle() can be realized by passing in a function object.

Unfortunately, the situation here is a little more complicated than in typical STL algo-
rithms. In particular, there are several different locations in the DFS algorithm where cus-
tomized actions must occur. For instance, thetopo sort() function records the ordering at the

‘‘main’’
2001/11/26
page 50i

i
i
i

i
i

i
i

50 CHAPTER 3. A BGL TUTORIAL

bottom of the recursive function, whereas thehas cycle() function needs to insert an operation
inside the loop that examines the adjacent vertices.

The solution to this problem is to use a function object with more than one callback
member function. Instead of a singleoperator() function, we use a class with several mem-
ber functions that are called at different locations (we refer to these places asevent points).
This kind of function object is called analgorithm visitor. The DFS visitor will have five
member functions:discoververtex() , tree edge() , back edge() , forward or crossedge() , and
finish vertex() . Also, instead of iterating over the adjacent vertices, we iterator over out-edges
to allow passing edge descriptors to the visitor functions and thereby provide more informa-
tion to the user-defined visitor. This code for a DFS function has a template parameter for a
visitor:

template<typename Visitor>
void dfs v1(const file dep graph& g, vertex t u, default color type* color, Visitor vis)
{

color[u] = gray color;
vis. discoververtex(u, g);
graph traits<file dep graph>::out edgeiterator ei, ei end;
for (tie(ei, ei end) = out edges(u, g); ei != ei end; ++ ei) {

if (color[target(* ei, g)] == white color) {
vis. tree edge(* ei, g);
dfs v1(g, target(* ei, g), color, vis);
} else if (color[target(* ei, g)] == gray color)

vis. back edge(* ei, g);
else

vis. forward or crossedge(* ei, g);
}
color[u] = black color;
vis. finish vertex(u, g);
}

template<typename Visitor>
void genericdfs v1(const file dep graph& g, Visitor vis)
{

std::vector<default color type> color(num vertices(g), white color);
graph traits<file dep graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi) {

if (color[* vi] == white color)
dfs v1(g, * vi, & color[0], vis);

}
}

The five member functions of the visitor provide the flexibility we need, but a user that
only wants to add one action should not have to write four empty member functions. This is
easily solved by creating a default visitor from which user-defined visitors can be derived.

‘‘main’’
2001/11/26
page 51i

i
i
i

i
i

i
i

3.5. TOWARD A GENERIC DFS: VISITORS 51

struct default dfs visitor {
template<typename V, typename G>
void discoververtex(V, const G&) { }

template<typename E, typename G>
void treeedge(E, const G&) { }

template<typename E, typename G>
void backedge(E, const G&) { }

template<typename E, typename G>
void forward or crossedge(E, const G&) { }

template<typename V, typename G>
void finish vertex(V, const G&) { }
};

To demonstrate that this generic DFS can solve our problems, we reimplement the
topo sort() andhas cycle() functions. First we need to create a visitor that records the topo-
logical ordering on the “finish vertex” event point. The code for this visitor follows.

struct topovisitor : public default dfs visitor {
topo visitor(vertex t*& order) : topo order(order) { }
void finish vertex(vertex t u, const file dep graph&) {

*−−topo order = u;
}
vertex t*& topo order;
};

Only two lines of code are required in the body oftopo sort() when implemented using
generic DFS. One line creates the visitor object and one line calls the generic DFS.

void toposort(const file dep graph& g, vertex t* topo order)
{

topo visitor vis(topo order);
generic dfs v1(g, vis);
}

To reimplement thehas cycle() function, we use a visitor that records that the graph has
a cycle whenever the back edge event point occurs.

struct cycledetector : public defaultdfs visitor {
cycle detector(bool& cycle) : has cycle(cycle) { }
void backedge(edget, const file dep graph&) {

has cycle = true;
}
bool& has cycle;
};

‘‘main’’
2001/11/26
page 52i

i
i
i

i
i

i
i

52 CHAPTER 3. A BGL TUTORIAL

The newhas cycle() function creates a cycle detector object and passes it to the generic DFS.

bool hascycle(const file dep graph& g)
{

bool hascycle = false;
cycle detector vis(has cycle);
generic dfs v1(g, vis);
return has cycle;
}

3.6 Graph Setup: Internal Properties

Before addressing the next question about file dependencies, we are going to take some time
out to switch to a different graph type. In the previous sections we used arrays to store
information such as vertex names. When vertex or edge properties have the same lifetime as
the graph object, it can be more convenient to have the properties somehow embedded in the
graph itself (we call theseinternal properties). If you were writing your own graph class you
might add data members for these properties to a vertex or edge struct.

The adjacencylist class has template parameters that allow arbitrary properties to be at-
tached to the vertices and edge: theVertexPropertiesandEdgePropertiesparameters. These
template parameters expect the argument types to be theproperty<Tag, T> class, whereTag
is a type that specifies the property andT gives the type of the property object. There are a
number of predefined property tags (see§15.2.3) such asvertexname t andedgeweight t. For
example, to attach astd::string to each vertex use the following property type:

property<vertex name t, std::string>

If the predefined property tags do not meet your needs, you can create a new one. One way to
do this is to define an enumerated type namedvertexxxx t or edgexxx t that contains an enum
value with the same name minus thet and give the enum value a unique number. Then use
BOOSTINSTALL PROPERTYto create the required specializations of thepropertykind and
propertynum traits classes.1 Here we create compile-time cost property that we will use in
the next section to compute the total compile time.

namespace boost{
enum vertexcompile cost t { vertex compile cost = 111 }; // a unique #
BOOST INSTALL PROPERTY(vertex, compile cost);
}

Thepropertyclass has an optional third parameter that can be used to nest multipleproperty
classes thereby attaching multiple properties to each vertex or edge. Here we create a new
typedef for the graph, this time adding two vertex properties and an edge property.

1Defining new property tags would be much simpler if more C++ compilers were standards conformant.

‘‘main’’
2001/11/26
page 53i

i
i
i

i
i

i
i

3.6. GRAPH SETUP: INTERNAL PROPERTIES 53

typedef adjacencylist<
listS, // Store out-edges of each vertex in a std::list
listS, // Store vertex set in a std::list
directedS, // The file dependency graph is directed
// vertex properties
property<vertex name t, std::string,

property<vertex compile cost t, float,
property<vertex distancet, float,

property<vertex color t, default color type> > > >,
// an edge property
property<edgeweight t, float>
> file dep graph2;

We have also changed the second template argument toadjacencylist from vecSto listS.
This has some important implications. If we were to remove a vertex from the graph it would
happen in constant time (withvecSthe vertex removal time is linear in the number of vertices
and edges). On the down side, the vertex descriptor type is no longer an integer, so storing
properties in arrays and using the vertex as an offset will no longer work. However, the
separate storage is no longer needed because we now have the vertex properties stored in the
graph.

In §1.2.2 we introduced the notion of a property map. To review, a property map is an
object that can be used to map from a key (such as a vertex) to a value (such as a vertex
name). When properties have been specified for anadjacencylist (as we have just done),
property maps for these properties can be obtained using thePropertyGraph interface. The
following code shows an example of obtaining two property maps: one for vertex names and
another for compile-time cost. Thepropertymap traits class provides the type of the property
map.

typedef propertymap<file dep graph2, vertex name t>::type namemap t;
typedef propertymap<file dep graph2, vertex compile cost t>::type

compile cost map t;
typedef propertymap<file dep graph2, vertex distancet>::type distancemap t;
typedef propertymap<file dep graph2, vertex color t>::type color map t;

Theget() function returns a property map object.

name map t name map = get(vertex name, g);
compile cost map t compile cost map = get(vertex compile cost, g);
distancemap t distancemap = get(vertex distance, g);
color map t color map = get(vertex color, g);

There will be another file containing the estimated compile time for each makefile target. We
read this file using astd::ifstreamand write the properties into the graph using the property
maps,namemap and compilecostmap. These property maps are models ofLvalueProper-
tyMap so they have anoperator[]() that maps from vertex descriptors to a reference to the
appriopriate vertex property object.

“main”
2001/11/26
page 54i

i
i
i

i
i

i
i

54 CHAPTER 3. A BGL TUTORIAL

std::ifstream namein(" makefile-target-names.dat");
std::ifstream compilecost in(" target-compile-costs.dat");
graph traits<file dep graph2>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi) {

name in >> name map[* vi];
compile cost in >> compile cost map[* vi];
}

In the following sections we will modify the topological sort and DFS functions to use the
property map interface to access vertex properties instead of hard-coding access with a pointer
to an array.

3.7 Compilation Time

The next questions we need to answer are, “How long will a compile take?” and “How long
will a compile take on a parallel computer?” The first question is easy to answer. We simply
sum the compile time for all the vertices in the graph. Just for fun, we do this computa-
tion using thestd::accumulatefunction. To use this function we need iterators that, when
dereferenced, yield the compile cost for the vertex. The vertex iterators of the graph do not
provide this capability. When dereferenced, they yield vertex descriptors. Instead, we use the
graph property iter rangeclass (see§16.8) to generate the appropriate iterators.

graph property iter range<file dep graph2, vertex compile cost t>::iterator ci, ci end;
tie(ci, ci end) = get property iter range(g, vertex compile cost);
std::cout << " total (sequential) compile time:"

<< std::accumulate(ci, ci end, 0.0) << std::endl;

The output of the code sequence is

total (sequential) compile time: 21.3

Now suppose we have a parallel super computer with hundreds of processors. If there are
build targets that do not depend on each other, then they can be compiled at the same time
on different processors. How long will the compile take now? To answer this, we need to
determine the critical path through the file dependency graph. Or, to put it another way, we
need to find the longest path through the graph.

The black lines in Figure 3.3 show the file dependency oflibfoobar.a. Suppose that we
have already determined whenbar.o and foo.o will finish compiling. Then the compile time
for libfoobar.awill be the longer of the times forbar.oandfoo.oplus the cost for linking them
together to form the library file.

Now that we know how to compute the “distance” for each vertex, in what order should
we go through the vertices? Certainly if there is an edge(u, v) in the graph, then we better
compute the distance foru beforev because computing the distance tov requires the distance
to u. This should sound familiar. We need to consider the vertices in topological order.

“main”
2001/11/26
page 55i

i
i
i

i
i

i
i

3.8. A GENERIC TOPOLOGICAL SORT AND DFS 55

dax.h

bar.o foo.ozag.o

yow.hboz.h

zig.o

zow.hbar.cpp

libfoobar.a

foo.cppzig.cpp

libzigzag.a

zag.cpp

killerapp

Figure 3.3Compile time contributions tolibfoobar.a.

3.8 A Generic Topological Sort and DFS

Due to the change in graph type (fromfile depgraph to file depgraph2) we can no longer
use thetopo sort() function that we developed in§3.4. Not only does the graph type not
match, but also thecolor array used inside ofgenericdfs v1() relies on the fact that vertex
descriptors are integers (which is not true forfile depgraph2). These problems give us an
opportunity to create an even more generic version of topological sort and the underlying
DFS. We parameterize thetopo sort() function in the following way.

• The specific typefile depgraph is replaced by the template parameterGraph. Merely
changing to a template parameter does not help us unless there is a standard interface
shared by all the graph types that we wish to use with the algorithm. This is where
the BGL graph traversal concepts come in. Fortopo sort() we need a graph type that
models theVertexListGraph andIncidenceGraph concepts.

• Using avertex t* for the ordering output is overly restrictive. A more generalized way
to output a sequence of elements is to use an output iterator, just as the algorithms in
the C++ Standard Library do. This gives the user much more options in terms of where
to store the results.

• We need to add a parameter for the color map. To make this as general as possible, we
only want to require what isessential. In this case, thetopo sort() function needs to
be able to map from a vertex descriptor to a marker object for that vertex. The Boost
Property Map Library (see Chapter 15) defines a minimalistic interface for performing

“main”
2001/11/26
page 56i

i
i
i

i
i

i
i

56 CHAPTER 3. A BGL TUTORIAL

this mapping. Here we use theLvaluePropertyMap interface. The internalcolor map
that we obtained from the graph in§3.6 implements theLvaluePropertyMap interface,
as does the color array we used in§3.3.4. A pointer to an array of color markers can be
used as a property map because there are function overloads inboost/propertymap.hpp
that adapt pointers to satisfy theLvaluePropertyMap interface.

The following is the implementation of our generictopo sort() . The topo visitor and
genericdfs v2() are discussed next.

template<typename Graph, typename OutputIterator, typename ColorMap>
void toposort(const Graph& g, OutputIterator topoorder, ColorMap color)
{

topo visitor<OutputIterator> vis(topo order);
generic dfs v2(g, vis, color);
}

The topo visitor class is now a class template to accommodate the output iterator. Instead of
decrementing, we now increment the output iterator (decrementing an output iterator is not
allowed). To get the same reversal behavior as in the first version oftopo sort() , the user can
pass in a reverse iterator or something like a front insert iterator for a list.

template<typename OutputIterator>
struct topovisitor : public default dfs visitor {

topo visitor(OutputIterator& order) : topo order(order) { }
template<typename Graph>
void finish vertex(typename graphtraits<Graph>::vertex descriptor u, const Graph&)
{ * topo order++ = u; }

OutputIterator& topo order;
};

The generic DFS changes in a similar fashion, with the graph type and color map becom-
ing parameterized. In addition, we do nota priori know the color type, so we must get the
color type by asking theColorMap for its value type (though theproperty traits class). Instead
of using constants such aswhite color, we use the color functions defined incolor traits.

template<typename Graph, typename Visitor, typename ColorMap>
void genericdfs v2(const Graph& g, Visitor vis, ColorMap color)
{

typedef colortraits<typename propertytraits<ColorMap>::value type> ColorT;
typename graphtraits<Graph>::vertex iterator vi, vi end;
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

color[* vi] = ColorT::white();
for (tie(vi, vi end) = vertices(g); vi != vi end; ++ vi)

if (color[* vi] == ColorT::white())
dfs v2(g, * vi, color, vis);

}

“main”
2001/11/26
page 57i

i
i
i

i
i

i
i

3.9. PARALLEL COMPILATION TIME 57

The logic from thedfs v1does not need to change; however, there are a few small changes
required due to making the graph type parameterized. Instead of hard-codingvertex t as the
vertex descriptor type, we extract the appropriate vertex descriptor from the graph type using
graph traits. The fully generic DFS function follows. This function is essentially the same as
the BGLdepthfirst visit() .

template<typename Graph, typename ColorMap, typename Visitor>
void dfs v2(const Graph& g,

typename graphtraits<Graph>::vertex descriptor u,
ColorMap color, Visitor vis)
{

typedef typename propertytraits<ColorMap>::value type color type;
typedef colortraits<color type> ColorT;
color[u] = ColorT::gray();
vis. discoververtex(u, g);
typename graphtraits<Graph>::out edgeiterator ei, ei end;
for (tie(ei, ei end) = out edges(u, g); ei != ei end; ++ ei)

if (color[target(* ei, g)] == ColorT::white()) {
vis. tree edge(* ei, g);
dfs v2(g, target(* ei, g), color, vis);
} else if (color[target(* ei, g)] == ColorT::gray())

vis. back edge(* ei, g);
else

vis. forward or crossedge(* ei, g);
color[u] = ColorT::black();
vis. finish vertex(u, g);
}

The real BGLdepthfirst search() andtopological sort() functions are quite similar to the
generic functions that we developed in this section. We give a detailed example of using the
BGL depthfirst search() function in §4.2, and the documentation fordepthfirst search() is
in §13.2.3. The documentation fortopological sort() is in §13.2.5.

3.9 Parallel Compilation Time

Now that we have a generic topological sort and DFS, we are ready to solve the problem
of finding how long the compilation will take on a parallel computer. First, we perform a
topological sort, storing the results in thetopo order vector. We pass the reverse iterator of
the vector intotopo sort() so that we end up with the topological order (and not the reverse
topological order).

std::vector<vertex t> topo order(num vertices(g));
topo sort(g, topo order. rbegin(), color map);

‘‘main’’
2001/11/26
page 58i

i
i
i

i
i

i
i

58 CHAPTER 3. A BGL TUTORIAL

Before calculating the compile times we need to set up the distance map (which we are
using to store the compile time totals). For vertices that have no incoming edges (we call these
source vertices), we initialize their distance to zero because compilation of these makefile
targets can start right away. All other vertices are given a distance of infinity. We find the
source vertices by marking all vertices that have incoming edges.

graph traits<file dep graph2>::vertex iterator i, i end;
graph traits<file dep graph2>::adjacency iterator vi, vi end;

// find source vertices with zero in-degree by marking all vertices with incoming edges
for (tie(i, i end) = vertices(g); i != i end; ++ i)

color map[* i] = white color;
for (tie(i, i end) = vertices(g); i != i end; ++ i)

for (tie(vi, vi end) = adjacentvertices(* i, g); vi != vi end; ++ vi)
color map[* vi] = black color;

// initialize distances to zero, or for source vertices to the compile cost
for (tie(i, i end) = vertices(g); i != i end; ++ i)

if (color map[* i] == white color)
distancemap[* i] = compile cost map[* i];

else
distancemap[* i] = 0;

Now we are ready to compute the distances. We go through all of the vertices stored
in topo order, and for each one we update the distance (total compile time) for each adjacent
vertex. What we are doing here is somewhat different than what was described earlier. Before,
we talked about each vertex looking “up” the graph to compute its distance. Here, we have
reformulated the computation so that instead we are pushing distances “down” the graph. The
reason for this change is that looking “up” the graph requires access to in-edges, which our
graph type does not provide.

std::vector<vertex t>::iterator ui ;
for (ui = topo order. begin(); ui != topo order. end(); ++ ui) {

vertex t u = * ui;
for (tie(vi, vi end) = adjacentvertices(u, g); vi != vi end; ++ vi)

if (distancemap[* vi] < distancemap[u] + compile cost map[* vi])
distancemap[* vi] = distancemap[u] + compile cost map[* vi];

}

The maximum distance value from among all the vertices tells us the total parallel compile
time. Again we usegraph property iter rangeto create property iterators over vertex distances.
Thestd::max element() function does the work of locating the maximum.

graph property iter range<file dep graph2, vertex distancet>::iterator ci, ci end;
tie(ci, ci end) = get property iter range(g, vertex distance);
std::cout << " total (parallel) compile time:"

<< * std::max element(ci, ci end) << std::endl;

“main”
2001/11/26
page 59i

i
i
i

i
i

i
i

3.10. SUMMARY 59

The output is

total (parallel) compile time: 11.9

Figure 3.4 shows two numbers for each makefile target: the compile cost for the target and
the time at which the target will finish compiling during a parallel compile.

dax.h [0, 0]

bar.o [1.5, 1.5] foo.o [2.8, 2.8]zag.o [8.7, 8.7]

yow.h [0, 0]boz.h [0, 0]

zig.o [3.6, 3.6]

zow.h [0, 0]bar.cpp [0, 0]

libfoobar.a [1.5, 4.3]

foo.cpp [0, 0]zig.cpp [0, 0]

libzigzag.a [1.1, 9.8]

zag.cpp [0, 0]

killerapp [2.1, 11.9]

Figure 3.4 For each vertex there are two numbers: compile cost and accumulated compile
time. The critical path consists of black lines.

3.10 Summary

In this chapter we have applied BGL to answer several questions that would come up in
constructing a software build system: In what order should targets be built? Are there any
cyclic dependencies? How long will compilation take? In answering these questions we
looked at topological ordering of a directed graph and how this can be computed via a depth-
first search.

“main”
2001/11/26
page 60i

i
i
i

i
i

i
i

60 CHAPTER 3. A BGL TUTORIAL

To implement the solutions we used the BGLadjacencylist to represent the file depen-
dency graph. We wrote straightforward implementations of topological sort and cycle de-
tection. We then identified common pieces of code and factored them out into a generic
implementation of depth-first search. We used algorithm visitors to parameterize the DFS
and then wrote specific visitors to implement the topological sort and the cycle detection.

We then looked at using a different variation of theadjacencylist class that allowed prop-
erties such as vertex name and compile cost to be attached to the vertices of the graph. We
then further generalized the generic DFS by parameterizing the graph type and the property
access method. The chapter finished with an application of the generic topological sort and
DFS to compute the time it would take to compile all the targets on a parallel computer.

