
“primer” — 2005/1/19 — 18:36 — page 1 — #23�
�

�
�

�
�

�
�

C H A P T E R 1
G E T T I N G S T A R T E D

CONTENTS

Section 1.1 Writing a Simple C++ Program 2
Section 1.2 A First Look at Input/Output 5
Section 1.3 A Word About Comments 10
Section 1.4 Control Structures 11
Section 1.5 Introducing Classes 20
Section 1.6 The C++ Program 25
Chapter Summary . 28
Defined Terms . 28

This chapter introduces most of the basic elements of C++: built-in,
library, and class types; variables; expressions; statements; and func-
tions. Along the way, we’ll briefly explain how to compile and exe-
cute a program.

Having read this chapter and worked through the exercises, the
reader should be able to write, compile, and execute simple pro-
grams. Subsequent chapters will explain in more detail the topics
introduced here.

1

“primer” — 2005/1/19 — 18:36 — page 2 — #24�
�

�
�

�
�

�
�

2 Getting Started

Learning a new programming language requires writing programs. In this
chapter, we’ll write a program to solve a simple problem that represents a com-
mon data-processing task: A bookstore keeps a file of transactions, each of which
records the sale of a given book. Each transaction contains an ISBN (International
Standard Book Number, a unique identifier assigned to most books published
throughout the world), the number of copies sold, and the price at which each
copy was sold. Each transaction looks like

0-201-70353-X 4 24.99

where the first element is the ISBN, the second is the number of books sold, and the
last is the sales price. Periodically the bookstore owner reads this file and computes
the number of copies of each title sold, the total revenue from that book, and the
average sales price. We want to supply a program do these computations.

Before we can write this program we need to know some basic features of C++.
At a minimum we’ll need to know how to write, compile, and execute a simple
program. What must this program do? Although we have not yet designed our
solution, we know that the program must

• Define variables

• Do input and output

• Define a data structure to hold the data we’re managing

• Test whether two records have the same ISBN

• Write a loop that will process every record in the transaction file

We’ll start by reviewing these parts of C++ and then write a solution to our book-
store problem.

1.1 Writing a Simple C++ Program
Every C++ program contains one or more functions, one of which must be named
main. A function consists of a sequence of statements that perform the work of the
function. The operating system executes a program by calling the function named
main. That function executes its constituent statements and returns a value to the
operating system.

Here is a simple version of main does nothing but return a value:

int main()
{

return 0;
}

The operating system uses the value returned by main to determine whether the
program succeeded or failed. A return value of 0 indicates success.

The main function is special in various ways, the most important of which are
that the function must exist in every C++ program and it is the (only) function that
the operating system explicitly calls.

“primer” — 2005/1/19 — 18:36 — page 3 — #25�
�

�
�

�
�

�
�

Section 1.1 Writing a Simple C++ Program 3

We define main the same way we define other functions. A function definition
specifies four elements: the return type, the function name, a (possibly empty)
parameter list enclosed in parentheses, and the function body. The main function
may have only a restricted set of parameters. As defined here, the parameter list
is empty; Section 7.2.6 (p. 243) will cover the other parameters that can be defined
for main.

The main function is required to have a return type of int, which is the type
that represents integers. The int type is a built-in type, which means that the
type is defined by the language.

The final part of a function definition, the function body, is a block of statements
starting with an open curly brace and ending with a close curly:

{
return 0;

}

The only statement in our program is a return, which is a statement that termi-
nates a function.

Note the semicolon at the end of the return statement. Semicolons
mark the end of most statements in C++. They are easy to overlook,
but when forgotten can lead to mysterious compiler error messages.

When the return includes a value such as 0, that value is the return value of
the function. The value returned must have the same type as the return type of the
function or be a type that can be converted to that type. In the case of main the
return type must be int, and the value 0 is an int.

On most systems, the return value from main is a status indicator. A return
value of 0 indicates the successful completion of main. Any other return value
has a meaning that is defined by the operating system. Usually a nonzero return
indicates that an error occurred. Each operating system has its own way of telling
the user what main returned.

1.1.1 Compiling and Executing Our Program
Having written the program, we need to compile it. How you compile a program
depends on your operating system and compiler. For details on how your particu-
lar compiler works, you’ll need to check the reference manual or ask a knowledge-
able colleague.

Many PC-based compilers are run from an integrated development environ-
ment (IDE) that bundles the compiler with associated build and analysis tools.
These environments can be a great asset in developing complex programs but re-
quire a fair bit of time to learn how to use effectively. Most of these environments
include a point-and-click interface that allows the programmer to write a program
and use various menus to compile and execute the program. Learning how to use
such environments is well beyond the scope of this book.

Most compilers, including those that come with an IDE, provide a command-
line interface. Unless you are already familiar with using your compiler’s IDE,

“primer” — 2005/1/19 — 18:36 — page 4 — #26�
�

�
�

�
�

�
�

4 Getting Started

it can be easier to start by using the simpler, command-line interface. Using the
command-line interface lets you avoid the overhead of learning the IDE before
learning the language.

Program Source File Naming Convention

Whether we are using a command-line interface or an IDE, most compilers expect
that the program we want to compile will be stored in a file. Program files are
referred to as source files. On most systems, a source file has a name that consists
of two parts: a file name—for example, prog1—and a file suffix. By convention,
the suffix indicates that the file is a program. The suffix often also indicates what
language the program is written in and selects which compiler to run. The system
that we used to compile the examples in this book treats a file with a suffix of .cc
as a C++ program and so we stored this program as

prog1.cc

The suffix for C++ program files depends on which compiler you’re running. Other
conventions include

prog1.cxx
prog1.cpp
prog1.cp
prog1.C

INVOKING THE GNU OR MICROSOFT COMPILERS

The command used to invoke the C++ compiler varies across compilers and operating
systems. The most common compilers are the GNU compiler and the Microsoft Visual
Studio compilers. By default the command to invoke the GNU compiler is g++:

$ g++ prog1.cc -o prog1

where $ is the system prompt. This command generates an executable file named
prog1 or prog1.exe, depending on the operating system. On UNIX, executable files
have no suffix; on Windows, the suffix is .exe. The -o prog1 is an argument to the
compiler and names the file in which to put the executable file. If the -o prog1 is
omitted, then the compiler generates an executable named a.out on UNIX systems
and a.exe on Windows.

The Microsoft compilers are invoked using the command cl:

C:\directory> cl -GX prog1.cpp

where C:directory> is the system prompt and directory is the name of the cur-
rent directory. The command to invoke the compiler is cl, and -GX is an option that
is required for programs compiled using the command-line interface. The Microsoft
compiler automatically generates an executable with a name that corresponds to the
source file name. The executable has the suffix .exe and the same name as the source
file name. In this case, the executable is named prog1.exe.

For further information consult your compiler’s user’s guide.

“primer” — 2005/1/19 — 18:36 — page 5 — #27�
�

�
�

�
�

�
�

Section 1.2 A First Look at Input/Output 5

Running the Compiler from the Command Line

If we are using a command-line interface, we will typically compile a program in
a console window (such as a shell window on a UNIX system or a Command
Prompt window on Windows). Assuming that our main program is in a file
named prog1.cc, we might compile it by using a command such as:

$ CC prog1.cc

where CC names the compiler and $ represents the system prompt. The output of
the compiler is an executable file that we invoke by naming it. On our system, the
compiler generates the executable in a file named a.exe. UNIX compilers tend to
put their executables in a file named a.out. To run an executable we supply that
name at the command-line prompt:

$ a.exe

executes the program we compiled. On UNIX systems you sometimes must also
specify which directory the file is in, even if it is in the current directory. In such
cases, we would write

$./a.exe

The “.” followed by a slash indicates that the file is in the current directory.
The value returned from main is accessed in a system-dependent manner. On

both UNIX and Windows systems, after executing the program, you must issue an
appropriate echo command. On UNIX systems, we obtain the status by writing

$ echo $?

To see the status on a Windows system, we write

C:\directory> echo %ERRORLEVEL%

EXE R C I S E S SE C TI ON 1.1.1

Exercise 1.1: Review the documentation for your compiler and determine what file
naming convention it uses. Compile and run the main program from page 2.

Exercise 1.2: Change the program to return -1. A return value of -1 is often treated
as an indicator that the program failed. However, systems vary as to how (or even
whether) they report a failure from main. Recompile and rerun your program to see
how your system treats a failure indicator from main.

1.2 A First Look at Input/Output
C++ does not directly define any statements to do input or output (IO). Instead, IO
is provided by the standard library. The IO library provides an extensive set of

“primer” — 2005/1/19 — 18:36 — page 6 — #28�
�

�
�

�
�

�
�

6 Getting Started

facilities. However, for many purposes, including the examples in this book, one
needs to know only a few basic concepts and operations.

Most of the examples in this book use the iostream library, which handles
formatted input and output. Fundamental to the iostream library are two types
named istream and ostream, which represent input and output streams, respec-
tively. A stream is a sequence of characters intended to be read from or written to
an IO device of some kind. The term “stream” is intended to suggest that the char-
acters are generated, or consumed, sequentially over time.

1.2.1 Standard Input and Output Objects
The library defines four IO objects. To handle input, we use an object of type
istream named cin (pronounced “see-in”). This object is also referred to as the
standard input. For output, we use an ostream object named cout (pronounced
“see-out”). It is often referred to as the standard output. The library also defines
two other ostream objects, named cerr and clog (pronounced “see-err” and
“see-log,” respectively). The cerr object, referred to as the standard error, is typi-
cally used to generate warning and error messages to users of our programs. The
clog object is used for general information about the execution of the program.

Ordinarily, the system associates each of these objects with the window in
which the program is executed. So, when we read from cin, data is read from the
window in which the program is executing, and when we write to cout, cerr, or
clog, the output is written to the same window. Most operating systems give us
a way of redirecting the input or output streams when we run a program. Using
redirection we can associate these streams with files of our choosing.

1.2.2 A Program that Uses the IO Library
So far, we have seen how to compile and execute a simple program, although that
program did no work. In our overall problem, we’ll have several records that
refer to the same ISBN. We’ll need to consolidate those records into a single total,
implying that we’ll need to know how to add the quantities of books sold.

To see how to solve part of that problem, let’s start by looking at how we might
add two numbers. Using the IO library, we can extend our main program to ask
the user to give us two numbers and then print their sum:

#include <iostream>
int main()
{

std::cout << "Enter two numbers:" << std::endl;

int v1, v2;
std::cin >> v1 >> v2;

std::cout << "The sum of " << v1 << " and " << v2
<< " is " << v1 + v2 << std::endl;

return 0;
}

“primer” — 2005/1/19 — 18:36 — page 7 — #29�
�

�
�

�
�

�
�

Section 1.2 A First Look at Input/Output 7

This program starts by printing

Enter two numbers:

on the user’s screen and then waits for input from the user. If the user enters

3 7

followed by a newline, then the program produces the following output:

The sum of 3 and 7 is 10

The first line of our program is a preprocessor directive:

#include <iostream>

which tells the compiler that we want to use the iostream library. The name
inside angle brackets is a header. Every program that uses a library facility must
include its associated header. The #include directive must be written on a single
line—the name of the header and the #include must appear on the same line. In
general, #include directives should appear outside any function. Typically, all
the #include directives for a program appear at the beginning of the file.

Writing to a Stream

The first statement in the body of main executes an expression. In C++ an ex-
pression is composed of one or more operands and (usually) an operator. The
expressions in this statement use the output operator (the << operator) to print the
prompt on the standard output:

std::cout << "Enter two numbers:" << std::endl;

This statement uses the output operator twice. Each instance of the output oper-
ator takes two operands: The left-hand operand must be an ostream object; the
right-hand operand is a value to print. The operator writes its right-hand operand
to the ostream that is its left-hand operand.

In C++ every expression produces a result, which typically is the value gener-
ated by applying an operator to its operands. In the case of the output operator,
the result is the value of its left-hand operand. That is, the value returned by an
output operation is the output stream itself.

The fact that the operator returns its left-hand operand allows us to chain to-
gether output requests. The statement that prints our prompt is equivalent to

(std::cout << "Enter two numbers:") << std::endl;

Because (std::cout << "Enter two numbers:") returns its left operand,
std::cout, this statement is equivalent to

std::cout << "Enter two numbers:";
std::cout << std::endl;

“primer” — 2005/1/19 — 18:36 — page 8 — #30�
�

�
�

�
�

�
�

8 Getting Started

endl is a special value, called a manipulator, that when written to an output
stream has the effect of writing a newline to the output and flushing the buffer
associated with that device. By flushing the buffer, we ensure that the user will see
the output written to the stream immediately.

Programmers often insert print statements during debugging. Such
statements should always flush the stream. Forgetting to do so may
cause output to be left in the buffer if the program crashes, leading to
incorrect inferences about where the program crashed.

Using Names from the Standard Library

Careful readers will note that this program uses std::cout and std::endl
rather than just cout and endl. The prefix std:: indicates that the names cout
and endl are defined inside the namespace named std. Namespaces allow pro-
grammers to avoid inadvertent collisions with the same names defined by a library.
Because the names that the standard library defines are defined in a namespace,
we can use the same names for our own purposes.

One side effect of the library’s use of a namespace is that when we use a name
from the library, we must say explicitly that we want to use the name from the std
namespace. Writing std::cout uses the scope operator (the :: operator) to say
that we want to use the name cout that is defined in the namespace std. We’ll see
in Section 3.1 (p. 78) a way that programs often use to avoid this verbose syntax.

Reading From a Stream

Having written our prompt, we next want to read what the user writes. We start
by defining two variables named v1 and v2 to hold the input:

int v1, v2;

We define these variables as type int, which is the built-in type representing in-
tegral values. These variables are uninitialized, meaning that we gave them no
initial value. Our first use of these variables will be to read a value into them, so
the fact that they have no initial value is okay.

The next statement

std::cin >> v1 >> v2;

reads the input. The input operator (the >> operator) behaves analogously to the
output operator. It takes an istream as its left-hand operand and an object as its
right-hand operand. It reads from its istream operand and stores the value it read
in its right-hand operand. Like the output operator, the input operator returns its
left-hand operand as its result. Because the operator returns its left-hand operand,
we can combine a sequence of input requests into a single statement. In other
words, this input operation is equivalent to

std::cin >> v1;
std::cin >> v2;

“primer” — 2005/1/19 — 18:36 — page 9 — #31�
�

�
�

�
�

�
�

Section 1.2 A First Look at Input/Output 9

The effect of our input operation is to read two values from the standard input,
storing the first in v1 and the second in v2.

Completing the Program

What remains is to print our result:

std::cout << "The sum of " << v1 << " and " << v2
<< " is " << v1 + v2 << std::endl;

This statement, although it is longer than the statement that printed the prompt,
is conceptually no different. It prints each of its operands to the standard output.
What is interesting is that the operands are not all the same kinds of values. Some
operands are string literals, such as

"The sum of "

and others are various int values, such as v1, v2, and the result of evaluating the
arithmetic expression:

v1 + v2

The iostream library defines versions of the input and output operators that ac-
cept all of the built-in types.

When writing a C++ program, in most places that a space appears we
could instead use a newline. One exception to this rule is that spaces
inside a string literal cannot be replaced by a newline. Another excep-
tion is that spaces are not allowed inside preprocessor directives.

KEY CONCEPT: INITIALIZED AND UNINITIALIZED VARIABLES

Initialization is an important concept in C++ and one to which we will return through-
out this book.

Initialized variables are those that are given a value when they are defined. Unini-
tialized variables are not given an initial value:

int val1 = 0; // initialized
int val2; // uninitialized

It is almost always right to give a variable an initial value, but we are not required to
do so. When we are certain that the first use of a variable gives it a new value, then
there is no need to invent an initial value. For example, our first nontrivial program
on page 6 defined uninitialized variables into which we immediately read values.

When we define a variable, we should give it an initial value unless we are certain
that the initial value will be overwritten before the variable is used for any other
purpose. If we cannot guarantee that the variable will be reset before being read, we
should initialize it.

“primer” — 2005/1/19 — 18:36 — page 10 — #32�
�

�
�

�
�

�
�

10 Getting Started

EXE R C I S E S SE C TI ON 1.2.2

Exercise 1.3: Write a program to print “Hello, World” on the standard output.

Exercise 1.4: Our program used the built-in addition operator, +, to generate the sum
of two numbers. Write a program that uses the multiplication operator, *, to generate
the product of two numbers.

Exercise 1.5: We wrote the output in one large statement. Rewrite the program to use
a separate statement to print each operand.

Exercise 1.6: Explain what the following program fragment does:

std::cout << "The sum of " << v1;
<< " and " << v2;
<< " is " << v1 + v2
<< std::endl;

Is this code legal? If so, why? If not, why not?

1.3 A Word About Comments
Before our programs get much more complicated, we should see how C++ handles
comments. Comments help the human readers of our programs. They are typically
used to summarize an algorithm, identify the purpose of a variable, or clarify an
otherwise obscure segment of code. Comments do not increase the size of the
executable program. The compiler ignores all comments.

In this book, we italicize comments to make them stand out from the
normal program text. In actual programs, whether comment text is
distinguished from the text used for program code depends on the so-
phistication of the programming environment.

There are two kinds of comments in C++: single-line and paired. A single-line
comment starts with a double slash (//). Everything to the right of the slashes on
the current line is a comment and ignored by the compiler.

The other delimiter, the comment pair (/* */), is inherited from the C language.
Such comments begin with a /* and end with the next */. The compiler treats
everything that falls between the /* and */ as part of the comment:

#include <iostream>

/* Simple main function: Read two numbers and write their sum */
int main()
{

// prompt user to enter two numbers
std::cout << "Enter two numbers:" << std::endl;

int v1, v2; // uninitialized
std::cin >> v1 >> v2; // read input
return 0;

}

“primer” — 2005/1/19 — 18:36 — page 11 — #33�
�

�
�

�
�

�
�

Section 1.4 Control Structures 11

A comment pair can be placed anywhere a tab, space, or newline is permitted.
Comment pairs can span multiple lines of a program but are not required to do so.
When a comment pair does span multiple lines, it is often a good idea to indicate
visually that the inner lines are part of a multi-line comment. Our style is to begin
each line in the comment with an asterisk, thus indicating that the entire range is
part of a multi-line comment.

Programs typically contain a mixture of both comment forms. Comment pairs
generally are used for multi-line explanations, whereas double slash comments
tend to be used for half-line and single-line remarks.

Too many comments intermixed with the program code can obscure the code.
It is usually best to place a comment block above the code it explains.

Comments should be kept up to date as the code itself changes. Programmers
expect comments to remain accurate and so believe them, even when other forms
of system documentation are known to be out of date. An incorrect comment is
worse than no comment at all because it may mislead a subsequent reader.

Comment Pairs Do Not Nest

A comment that begins with /* always ends with the next */. As a result, one
comment pair cannot occur within another. The compiler error message(s) that
result from this kind of program mistake can be mysterious and confusing. As an
example, compile the following program on your system:

#include <iostream>

/*
* comment pairs /* */ cannot nest.
* ‘‘cannot nest’’ is considered source code,
* as is the rest of the program
*/

int main()
{

return 0;
}

When commenting out a large section of a program, it can seem easiest to put
a comment pair around a region that you want to omit temporarily. The trouble
is that if that code already has a comment pair, then the newly inserted comment
will terminate prematurely. A better way to temporarily ignore a section of code
is to use your editor to insert single-line comment at the beginning of each line of
code you want to ignore. That way, you need not worry about whether the code
you are commenting out already contains a comment pair.

1.4 Control Structures
Statements execute sequentially: The first statement in a function is executed first,
followed by the second, and so on. Of course, few programs—including the one
we’ll need to write to solve our bookstore problem—can be written using only
sequential execution. Instead, programming languages provide various control

“primer” — 2005/1/19 — 18:36 — page 12 — #34�
�

�
�

�
�

�
�

12 Getting Started

EXE R C I S E S SE C TI ON 1.3

Exercise 1.7: Compile a program that has incorrectly nested comments.

Exercise 1.8: Indicate which, if any, of the following output statements, are legal.

std::cout << "/*";
std::cout << "*/";
std::cout << /* "*/" */;

After you’ve predicted what will happen, test your answer by compiling a program
with these three statements. Correct any errors you encounter.

structures that allow for more complicated execution paths. This section will take
a brief look at some of the control structures provided by C++. Chapter 6 covers
statements in detail.

1.4.1 The while Statement
A while statement provides for iterative execution. We could use a while to
write a program to sum the numbers from 1 through 10 inclusive as follows:

#include <iostream>

int main()
{

int sum = 0, val = 1;
// keep executing the while until val is greater than 10
while (val <= 10) {

sum += val; // assigns sum + val to sum
++val; // add 1 to val

}
std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;

return 0;
}

This program when compiled and executed will print:

Sum of 1 to 10 inclusive is 55

As before, we begin by including the iostream header and define a main
function. Inside main we define two int variables: sum, which will hold our
summation, and val, which will represent each of the values from 1 through 10.
We give sum an initial value of zero and start val off with the value one.

The important part is the while statement. A while has the form

while (condition) while_body_statement;

A while executes by (repeatedly) testing the condition and executing the associ-
ated while_body_statement until the condition is false.

“primer” — 2005/1/19 — 18:36 — page 13 — #35�
�

�
�

�
�

�
�

Section 1.4 Control Structures 13

A condition is an expression that is evaluated so that its result can be tested. If
the resulting value is nonzero, then the condition is true; if the value is zero then
the condition is false.

If the condition is true (the expression evaluates to a value other than zero) then
while_body_statement is executed. After executing while_body_statement, the condi-
tion is tested again. If condition remains true, then the while_body_statement is again
executed. The while continues, alternatively testing the condition and executing
while_body_statement until the condition is false.

In this program, the while statement is:

// keep executing the while until val is greater than 10
while (val <= 10) {

sum += val; // assigns sum + val to sum
++val; // add 1 to val

}

The condition in the while uses the less-than-or-equal operator (the <= operator)
to compare the current value of val and 10. As long as val is less than or equal
to 10, we execute the body of the while. In this case, the body of the while is a
block containing two statements:

{
sum += val; // assigns sum + val to sum
++val; // add 1 to val

}

A block is a sequence of statements enclosed by curly braces. In C++, a block may
be used wherever a statement is expected. The first statement in the block uses the
compound assignment operator, (the += operator). This operator adds its right-
hand operand to its left-hand operand. It has the same effect as writing an addition
and an assignment:

sum = sum + val; // assign sum + val to sum

Thus, the first statement adds the value of val to the current value of sum and
stores the result back into sum.

The next statement

++val; // add 1 to val

uses the prefix increment operator (the ++ operator). The increment operator adds
one to its operand. Writing ++val is the same as writing val = val + 1.

After executing the while body we again execute the condition in the while.
If the (now incremented) value of val is still less than or equal to 10, then the
body of the while is executed again. The loop continues, testing the condition
and executing the body, until val is no longer less than or equal to 10.

Once val is greater than 10, we fall out of the while loop and execute the
statement following the while. In this case, that statement prints our output,
followed by the return, which completes our main program.

“primer” -- 2005/1/19 -- 18:36 -- page 14 -- #36�
�

�
�

�
�

�
�

14 Getting Started

KEY CONCEPT: INDENTATION AND FORMATTING OF C++ PROGRAMS

C++ programs are largely free-format, meaning that the positioning of curly braces,
indentation, comments, and newlines usually has no effect on the meaning of our
programs. For example, the curly brace that denotes the beginning of the body of main
could be on the same line as main, positioned as we have done, at the beginning of the
next line, or placed anywhere we’d like. The only requirement is that it be the first
nonblank, noncomment character that the compiler sees after the close parenthesis
that concludes main’s parameter list.

Although we are largely free to format programs as we wish, the choices we make
affect the readability of our programs. We could, for example, have written main on a
single, long line. Such a definition, although legal, would be hard to read.

Endless debates occur as to the right way to format C or C++ programs. Our belief
is that there is no single correct style but that there is value in consistency. We tend
to put the curly braces that delimit functions on their own lines. We tend to indent
compound input or output expressions so that the operators line up, as we did with
the statement that wrote the output in the main function on page 6. Other indentation
conventions will become clear as our programs become more complex.

The important thing to keep in mind is that other ways to format programs are
possible. When choosing a formatting style, think about how it affects readability
and comprehension. Once you’ve chosen a style, use it consistently.

1.4.2 The for Statement
In our while loop, we used the variable val to control how many times we it-
erated through the loop. On each pass through the while, the value of val was
tested and then in the body the value of val was incremented.

The use of a variable like val to control a loop happens so often that the lan-
guage defines a second control structure, called a for statement, that abbreviates
the code that manages the loop variable. We could rewrite the program to sum the
numbers from 1 through 10 using a for loop as follows:

#include <iostream>

int main()
{

int sum = 0;

// sum values from 1 up to 10 inclusive
for (int val = 1; val <= 10; ++val)

sum += val; // equivalent to sum = sum + val

std::cout << "Sum of 1 to 10 inclusive is "
<< sum << std::endl;

return 0;
}

Prior to the for loop, we define sum, which we set to zero. The variable val is
used only inside the iteration and is defined as part of the for statement itself. The
for statement

“primer” — 2005/1/19 — 18:36 — page 15 — #37�
�

�
�

�
�

�
�

Section 1.4 Control Structures 15

for (int val = 1; val <= 10; ++val)
sum += val; // equivalent to sum = sum + val

has two parts: the for header and the for body. The header controls how often
the body is executed. The header itself consists of three parts: an init-statement, a
condition, and an expression. In this case, the init-statement

int val = 1;

defines an int object named val and gives it an initial value of one. The init-
statement is performed only once, on entry to the for. The condition

val <= 10

which compares the current value in val to 10, is tested each time through the
loop. As long as val is less than or equal to 10, we execute the for body. Only
after executing the body is the expression executed. In this for, the expression uses
the prefix increment operator, which as we know adds one to the value of val.
After executing the expression, the for retests the condition. If the new value of
val is still less than or equal to 10, then the for loop body is executed and val is
incremented again. Execution continues until the condition fails.

In this loop, the for body performs the summation

sum += val; // equivalent to sum = sum + val

The body uses the compound assignment operator to add the current value of val
to sum, storing the result back into sum.

To recap, the overall execution flow of this for is:

1. Create val and initialize it to 1.

2. Test whether val is less than or equal to 10.

3. If val is less than or equal to 10, execute the for body, which adds val to
sum. If val is not less than or equal to 10, then break out of the loop and
continue execution with the first statement following the for body.

4. Increment val.

5. Repeat the test in step 2, continuing with the remaining steps as long as the
condition is true.

When we exit the for loop, the variable val is no longer accessible. It
is not possible to use val after this loop terminates. However, not all
compilers enforce this requirement.

In pre-Standard C++ names defined in a for header were accessible
outside the for itself. This change in the language definition can sur-
prise people accustomed to using an older compiler when they instead
use a compiler that adheres to the standard.

“primer” — 2005/1/19 — 18:36 — page 16 — #38�
�

�
�

�
�

�
�

16 Getting Started

COMPILATION REVISITED

Part of the compiler’s job is to look for errors in the program text. A compiler cannot
detect whether the meaning of a program is correct, but it can detect errors in the form
of the program. The following are the most common kinds of errors a compiler will
detect.

1. Syntax errors. The programmer has made a grammatical error in the C++ lan-
guage. The following program illustrates common syntax errors; each comment
describes the error on the following line:

// error: missing ’)’ in parameter list for main
int main ({

// error: used colon, not a semicolon after endl
std::cout << "Read each file." << std::endl:

// error: missing quotes around string literal
std::cout << Update master. << std::endl;

// ok: no errors on this line
std::cout << "Write new master." << std::endl;

// error: missing ’;’ on return statement
return 0

}

2. Type errors. Each item of data in C++ has an associated type. The value 10,
for example, is an integer. The word “hello” surrounded by double quotation
marks is a string literal. One example of a type error is passing a string literal
to a function that expects an integer argument.

3. Declaration errors. Every name used in a C++ program must be declared before
it is used. Failure to declare a name usually results in an error message. The
two most common declaration errors are to forget to use std:: when accessing
a name from the library or to inadvertently misspell the name of an identifier:

#include <iostream>

int main()
{

int v1, v2;
std::cin >> v >> v2; // error: uses "v" not "v1"

// cout not defined, should be std::cout
cout << v1 + v2 << std::endl;
return 0;

}

An error message contains a line number and a brief description of what the com-
piler believes we have done wrong. It is a good practice to correct errors in the se-
quence they are reported. Often a single error can have a cascading effect and cause
a compiler to report more errors than actually are present. It is also a good idea to
recompile the code after each fix—or after making at most a small number of obvious
fixes. This cycle is known as edit-compile-debug.

“primer” -- 2005/1/19 -- 18:36 -- page 17 -- #39�
�

�
�

�
�

�
�

Section 1.4 Control Structures 17

EXE R C I S E S SE C TI ON 1.4.2

Exercise 1.9: What does the following for loop do? What is the final value of sum?

int sum = 0;
for (int i = -100; i <= 100; ++i)

sum += i;

Exercise 1.10: Write a program that uses a for loop to sum the numbers from 50 to
100. Now rewrite the program using a while.

Exercise 1.11: Write a program using a while loop to print the numbers from 10
down to 0. Now rewrite the program using a for.

Exercise 1.12: Compare and contrast the loops you wrote in the previous two exer-
cises. Are there advantages or disadvantages to using either form?

Exercise 1.13: Compilers vary as to how easy it is to understand their diagnostics.
Write programs that contain the common errors discussed in the box on 16. Study
the messages the compiler generates so that these messages will be familiar when you
encounter them while compiling more complex programs.

1.4.3 The if Statement
A logical extension of summing the values between 1 and 10 is to sum the values
between two numbers our user supplies. We might use the numbers directly in our
for loop, using the first input as the lower bound for the range and the second
as the upper bound. However, if the user gives us the higher number first, that
strategy would fail: Our program would exit the for loop immediately. Instead,
we should adjust the range so that the larger number is the upper bound and the
smaller is the lower. To do so, we need a way to see which number is larger.

Like most languages, C++ provides an if statement that supports conditional
execution. We can use an if to write our revised sum program:

#include <iostream>

int main()
{

std::cout << "Enter two numbers:" << std::endl;
int v1, v2;
std::cin >> v1 >> v2; // read input

// use smaller number as lower bound for summation
// and larger number as upper bound
int lower, upper;
if (v1 <= v2) {

lower = v1;
upper = v2;

} else {
lower = v2;
upper = v1;

}

“primer” -- 2005/1/19 -- 18:36 -- page 18 -- #40�
�

�
�

�
�

�
�

18 Getting Started

int sum = 0;

// sum values from lower up to and including upper
for (int val = lower; val <= upper; ++val)

sum += val; // sum = sum + val

std::cout << "Sum of " << lower
<< " to " << upper
<< " inclusive is "
<< sum << std::endl;

return 0;
}

If we compile and execute this program and give it as input the numbers 7 and 3,
then the output of our program will be

Sum of 3 to 7 inclusive is 25

Most of the code in this program should already be familiar from our earlier
examples. The program starts by writing a prompt to the user and defines four
int variables. It then reads from the standard input into v1 and v2. The only new
code is the if statement

// use smaller number as lower bound for summation
// and larger number as upper bound
int lower, upper;
if (v1 <= v2) {

lower = v1;
upper = v2;

} else {
lower = v2;
upper = v1;

}

The effect of this code is to set upper and lower appropriately. The if condition
tests whether v1 is less than or equal to v2. If so, we perform the block that imme-
diately follows the condition. This block contains two statements, each of which
does an assignment. The first statement assigns v1 to lower and the second as-
signs v2 to upper.

If the condition is false—that is, if v1 is larger than v2—then we execute the
statement following the else. Again, this statement is a block consisting of two
assignments. We assign v2 to lower and v1 to upper.

1.4.4 Reading an Unknown Number of Inputs
Another change we might make to our summation program on page 12 would be
to allow the user to specify a set of numbers to sum. In this case we can’t know how
many numbers we’ll be asked to add. Instead, we want to keep reading numbers
until the program reaches the end of the input. When the input is finished, the
program writes the total to the standard output:

“primer” — 2005/1/19 — 18:36 — page 19 — #41�
�

�
�

�
�

�
�

Section 1.4 Control Structures 19

EXE R C I S E S SE C TI ON 1.4.3

Exercise 1.14: What happens in the program presented in this section if the input val-
ues are equal?

Exercise 1.15: Compile and run the program from this section with two equal values
as input. Compare the output to what you predicted in the previous exercise. Explain
any discrepancy between what happened and what you predicted.

Exercise 1.16: Write a program to print the larger of two inputs supplied by the user.

Exercise 1.17: Write a program to ask the user to enter a series of numbers. Print a
message saying how many of the numbers are negative numbers.

#include <iostream>

int main()
{

int sum = 0, value;
// read till end-of-file, calculating a running total of all values read
while (std::cin >> value)

sum += value; // equivalent to sum = sum + value
std::cout << "Sum is: " << sum << std::endl;

return 0;
}

If we give this program the input

3 4 5 6

then our output will be

Sum is: 18

As usual, we begin by including the necessary headers. The first line inside
main defines two int variables, named sum and value. We’ll use value to hold
each number we read, which we do inside the condition in the while:

while (std::cin >> value)

What happens here is that to evaluate the condition, the input operation

std::cin >> value

is executed, which has the effect of reading the next number from the standard
input, storing what was read in value. The input operator (Section 1.2.2, p. 8)
returns its left operand. The condition tests that result, meaning it tests std::cin.

When we use an istream as a condition, the effect is to test the state of the
stream. If the stream is valid—that is, if it is still possible to read another input—
then the test succeeds. An istream becomes invalid when we hit end-of-file or
encounter an invalid input, such as reading a value that is not an integer. An
istream that is in an invalid state will cause the condition to fail.

“primer” — 2005/1/19 — 18:36 — page 20 — #42�
�

�
�

�
�

�
�

20 Getting Started

Until we do encounter end-of-file (or some other input error), the test will suc-
ceed and we’ll execute the body of the while. That body is a single statement
that uses the compound assignment operator. This operator adds its right-hand
operand into the left hand operand.

ENTERING AN END-OF-FILE FROM THE KEYBOARD

Operating systems use different values for end-of-file. On Windows systems we enter
an end-of-file by typing a control-z—simultaneously type the “ctrl” key and a “z.” On
UNIX systems, including Mac OS-X machines, it is usually control-d.

Once the test fails, the while terminates and we fall through and execute the
statement following the while. That statement prints sum followed by endl,
which prints a newline and flushes the buffer associated with cout. Finally, we
execute the return, which as usual returns zero to indicate success.

EXE R C I S E S SE C TI ON 1.4.4

Exercise 1.18: Write a program that prompts the user for two numbers and writes
each number in the range specified by the two numbers to the standard output.

Exercise 1.19: What happens if you give the numbers 1000 and 2000 to the program
written for the previous exercise? Revise the program so that it never prints more than
10 numbers per line.

Exercise 1.20: Write a program to sum the numbers in a user-specified range, omitting
the if test that sets the upper and lower bounds. Predict what happens if the input is
the numbers 7 and 3, in that order. Now run the program giving it the numbers 7 and
3, and see if the results match your expectation. If not, restudy the discussion on the
for and while loop until you understand what happened.

1.5 Introducing Classes
The only remaining feature we need to understand before solving our bookstore
problem is how to write a data structure to represent our transaction data. In C++
we define our own data structure by defining a class. The class mechanism is one
of the most important features in C++. In fact, a primary focus of the design of C++
is to make it possible to define class types that behave as naturally as the built-in
types themselves. The library types that we’ve seen already, such as istream and
ostream, are all defined as classes—that is, they are not strictly speaking part of
the language.

Complete understanding of the class mechanism requires mastering a lot of
information. Fortunately, it is possible to use a class that someone else has written
without knowing how to define a class ourselves. In this section, we’ll describe a
simple class that we can use in solving our bookstore problem. We’ll implement

“primer” — 2005/1/19 — 18:36 — page 21 — #43�
�

�
�

�
�

�
�

Section 1.5 Introducing Classes 21

this class in the subsequent chapters as we learn more about types, expressions,
statements, and functions—all of which are used in defining classes.

To use a class we need to know three things:

1. What is its name?

2. Where is it defined?

3. What operations does it support?

For our bookstore problem, we’ll assume that the class is named Sales_item and
that it is defined in a header named Sales_item.h.

1.5.1 The Sales_item Class
The purpose of the Sales_item class is to store an ISBN and keep track of the
number of copies sold, the revenue, and average sales price for that book. How
these data are stored or computed is not our concern. To use a class, we need not
know anything about how it is implemented. Instead, what we need to know is
what operations the class provides.

As we’ve seen, when we use library facilities such as IO, we must include the
associated headers. Similarly, for our own classes, we must make the definitions
associated with the class available to the compiler. We do so in much the same
way. Typically, we put the class definition into a file. Any program that wants to
use our class must include that file.

Conventionally, class types are stored in a file with a name that, like the name
of a program source file, has two parts: a file name and a file suffix. Usually the file
name is the same as the class defined in the header. The suffix usually is .h, but
some programmers use .H, .hpp, or .hxx. Compilers usually aren’t picky about
header file names, but IDEs sometimes are. We’ll assume that our class is defined
in a file named Sales_item.h.

Operations on Sales_item Objects

Every class defines a type. The type name is the same as the name of the class.
Hence, our Sales_item class defines a type named Sales_item. As with the
built-in types, we can define a variable of a class type. When we write

Sales_item item;

we are saying that item is an object of type Sales_item. We often contract the
phrase “an object of type Sales_item” to “a Sales_item object” or even more
simply to “a Sales_item.”

In addition to being able to define variables of type Sales_item, we can per-
form the following operations on Sales_item objects:

• Use the addition operator, +, to add two Sales_items

• Use the input operator, >>, to read a Sales_item object

“primer” -- 2005/1/19 -- 18:36 -- page 22 -- #44�
�

�
�

�
�

�
�

22 Getting Started

• Use the output operator, <<, to write a Sales_item object

• Use the assignment operator, =, to assign one Sales_item object to another

• Call the same_isbn function to determine if two Sales_items refer to the
same book

Reading and Writing Sales_items

Now that we know the operations that the class provides, we can write some sim-
ple programs to use this class. For example, the following program reads data
from the standard input, uses that data to build a Sales_item object, and writes
that Sales_item object back onto the standard output:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item book;

// read ISBN, number of copies sold, and sales price
std::cin >> book;

// write ISBN, number of copies sold, total revenue, and average price
std::cout << book << std::endl;

return 0;
}

If the input to this program is

0-201-70353-X 4 24.99

then the output will be

0-201-70353-X 4 99.96 24.99

Our input said that we sold four copies of the book at $24.99 each, and the output
indicates that the total sold was four, the total revenue was $99.96, and the average
price per book was $24.99.

This program starts with two #include directives, one of which uses a new
form. The iostream header is defined by the standard library; the Sales_item
header is not. Sales_item is a type that we ourselves have defined. When we
use our own headers, we use quotation marks (" ") to surround the header name.

Headers for the standard library are enclosed in angle brackets (< >).
Nonstandard headers are enclosed in double quotes (" ").

Inside main we start by defining an object, named book, which we’ll use to
hold the data that we read from the standard input. The next statement reads into
that object, and the third statement prints it to the standard output followed as
usual by printing endl to flush the buffer.

“primer” — 2005/1/19 — 18:36 — page 23 — #45�
�

�
�

�
�

�
�

Section 1.5 Introducing Classes 23

KEY CONCEPT: CLASSES DEFINE BEHAVIOR

As we go through these programs that use Sales_items, the important thing to keep
in mind is that the author of the Sales_item class defined all the actions that can
be performed by objects of this class. That is, the author of the Sales_item data
structure defines what happens when a Sales_item object is created and what hap-
pens when the addition or the input and output operators are applied to Sales_item
objects, and so on.

In general, only the operations defined by a class can be used on objects of the class
type. For now, the only operations we know we can peeform on Sales_item objects
are the ones listed on page 21.

We’ll see how these operations are defined in Sections 7.7.3 and 14.2.

Adding Sales_items

A slightly more interesting example adds two Sales_item objects:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item item1, item2;

std::cin >> item1 >> item2; // read a pair of transactions
std::cout << item1 + item2 << std::endl; // print their sum

return 0;
}

If we give this program the following input

0-201-78345-X 3 20.00
0-201-78345-X 2 25.00

our output is

0-201-78345-X 5 110 22

This program starts by including the Sales_item and iostream headers.
Next we define two Sales_item objects to hold the two transactions that we wish
to sum. The output expression does the addition and prints the result. We know
from the list of operations on page 21 that adding two Sales_items together
creates a new object whose ISBN is that of its operands and whose number sold
and revenue reflect the sum of the corresponding values in its operands. We also
know that the items we add must represent the same ISBN.

It’s worth noting how similar this program looks to the one on page 6: We read
two inputs and write their sum. What makes it interesting is that instead of reading
and printing the sum of two integers, we’re reading and printing the sum of two
Sales_item objects. Moreover, the whole idea of “sum” is different. In the case
of ints we are generating a conventional sum—the result of adding two numeric
values. In the case of Sales_item objects we use a conceptually new meaning for
sum—the result of adding the components of two Sales_item objects.

“primer” — 2005/1/19 — 18:36 — page 24 — #46�
�

�
�

�
�

�
�

24 Getting Started

EXE R C I S E S SE C TI ON 1.5.1

Exercise 1.21: The Web site (http://www.awprofessional.com/cpp_primer)
contains a copy of Sales_item.h in the Chapter 1 code directory. Copy that file to
your working directory. Write a program that loops through a set of book sales trans-
actions, reading each transaction and writing that transaction to the standard output.

Exercise 1.22: Write a program that reads two Sales_item objects that have the
same ISBN and produces their sum.

Exercise 1.23: Write a program that reads several transactions for the same ISBN.
Write the sum of all the transactions that were read.

1.5.2 A First Look at Member Functions
Unfortunately, there is a problem with the program that adds Sales_items. What
should happen if the input referred to two different ISBNs? It doesn’t make sense
to add the data for two different ISBNs together. To solve this problem, we’ll first
check whether the Sales_item operands refer to the same ISBNs:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item item1, item2;

std::cin >> item1 >> item2;
// first check that item1 and item2 represent the same book
if (item1.same_isbn(item2)) {

std::cout << item1 + item2 << std::endl;
return 0; // indicate success

} else {
std::cerr << "Data must refer to same ISBN"

<< std::endl;
return -1; // indicate failure

}
}

The difference between this program and the previous one is the if test and its
associated else branch. Before explaining the if condition, we know that what
this program does depends on the condition in the if. If the test succeeds, then
we write the same output as the previous program and return 0 indicating success.
If the test fails, we execute the block following the else, which prints a message
and returns an error indicator.

What Is a Member Function?

The if condition

// first check that item1 and item2 represent the same book
if (item1.same_isbn(item2)) {

“primer” — 2005/1/19 — 18:36 — page 25 — #47�
�

�
�

�
�

�
�

Section 1.6 The C++ Program 25

calls a member function of the Sales_item object named item1. A member
function is a function that is defined by a class. Member functions are sometimes
referred to as the methods of the class.

Member functions are defined once for the class but are treated as members
of each object. We refer to these operations as member functions because they
(usually) operate on a specific object. In this sense, they are members of the object,
even though a single definition is shared by all objects of the same type.

When we call a member function, we (usually) specify the object on which the
function will operate. This syntax uses the dot operator (the “.” operator):

item1.same_isbn

means “the same_isbn member of the object named item1.” The dot operator
fetches its right-hand operand from its left. The dot operator applies only to objects
of class type: The left-hand operand must be an object of class type; the right-hand
operand must name a member of that type.

Unlike most other operators, the right operand of the dot (“.”) opera-
tor is not an object or value; it is the name of a member.

When we use a member function as the right-hand operand of the dot operator,
we usually do so to call that function. We execute a member function in much the
same way as we do any function: To call a function, we follow the function name
by the call operator (the “()” operator). The call operator is a pair of parentheses
that encloses a (possibly empty) list of arguments that we pass to the function.

The same_isbn function takes a single argument, and that argument is an-
other Sales_item object. The call

item1.same_isbn(item2)

passes item2 as an argument to the function named same_isbn that is a member
of the object named item1. This function compares the ISBN part of its argument,
item2, to the ISBN in item1, the object on which same_isbn is called. Thus, the
effect is to test whether the two objects refer to the same ISBN.

If the objects refer to the same ISBN, we execute the statement following the
if, which prints the result of adding the two Sales_item objects together. Oth-
erwise, if they refer to different ISBNs, we execute the else branch, which is a
block of statements. The block prints an appropriate error message and exits the
program, returning -1. Recall that the return from main is treated as a status indi-
cator. In this case, we return a nonzero value to indicate that the program failed to
produce the expected result.

1.6 The C++ Program
Now we are ready to solve our original bookstore problem: We need to read a
file of sales transactions and produce a report that shows for each book the total
revenue, average sales price, and the number of copies sold.

“primer” — 2005/1/19 — 18:36 — page 26 — #48�
�

�
�

�
�

�
�

26 Getting Started

EXE R C I S E S SE C TI ON 1.5.2

Exercise 1.24: Write a program that reads several transactions. For each new transac-
tion that you read, determine if it is the same ISBN as the previous transaction, keeping
a count of how many transactions there are for each ISBN. Test the program by giv-
ing multiple transactions. These transactions should represent multiple ISBNs but the
records for each ISBN should be grouped together.

We’ll assume that all of the transactions for a given ISBN appear together. Our
program will combine the data for each ISBN in a Sales_item object named
total. Each transaction we read from the standard input will be stored in a sec-
ond Sales_item object named trans. Each time we read a new transaction we’ll
compare it to the Sales_item object in total. If the objects refer to the same
ISBN, we’ll update total. Otherwise we’ll print the value in total and reset it
using the transaction we just read.

#include <iostream>
#include "Sales_item.h"

int main()
{

// declare variables to hold running sum and data for the next record
Sales_item total, trans;

// is there data to process?
if (std::cin >> total) {

// if so, read the transaction records
while (std::cin >> trans)

if (total.same_isbn(trans))
// match: update the running total
total = total + trans;

else {
// no match: print & assign to total
std::cout << total << std::endl;
total = trans;

}
// remember to print last record
std::cout << total << std::endl;

} else {
// no input!, warn the user
std::cout << "No data?!" << std::endl;
return -1; // indicate failure

}

return 0;
}

This program is the most complicated one we’ve seen so far, but it uses only
facilities that we have already encountered. As usual, we begin by including the
headers that we use: iostream from the library and Sales_item.h, which is
our own header.

“primer” — 2005/1/19 — 18:36 — page 27 — #49�
�

�
�

�
�

�
�

Section 1.6 The C++ Program 27

Inside main we define the objects we need: total, which we’ll use to sum
the data for a given ISBN, and trans, which will hold our transactions as we read
them. We start by reading a transaction into total and testing whether the read
was successful. If the read fails, then there are no records and we fall through to
the outermost else branch, which prints a message to warn the user that there
was no input.

Assuming we have successfully read a record, we execute the code in the if
branch. The first statement is a while that will loop through all the remaining
records. Just as we did in the program on page 18, our while condition reads a
value from the standard input and then tests that valid data was actually read. In
this case, we read a Sales_item object into trans. As long as the read succeeds,
we execute the body of the while.

The body of the while is a single if statement. We test whether the ISBNs are
equal, and if so we add the two objects and store the result in total. If the ISBNs
are not equal, we print the value stored in total and reset total by assigning
trans to it. After execution of the if, we return to the condition in the while,
reading the next transaction and so on until we run out of records.

Once the while completes, we still must write the data associated with the last
ISBN. When the while terminates, total contains the data for the last ISBN in the
file, but we had no chance to print it. We do so in the last statement of the block
that concludes the outermost if statement.

EXE R C I S E S SE C TI ON 1.6

Exercise 1.25: Using the Sales_item.h header from the Web site, compile and exe-
cute the bookstore program presented in this section.

Exercise 1.26: In the bookstore program we used the addition operator and not the
compound assignment operator to add trans to total. Why didn’t we use the com-
pound assignment operator?

“primer” — 2005/1/19 — 18:36 — page 28 — #50�
�

�
�

�
�

�
�

28 Defined Terms

CH A P T E R SU M M A R Y
This chapter introduced enough of C++ to let the reader compile and execute sim-
ple C++ programs. We saw how to define a main function, which is the function
that is executed first in any C++ program. We also saw how to define variables,
how to do input and output, and how to write if, for, and while statements.
The chapter closed by introducing the most fundamental facility in C++: the class.
In this chapter we saw how to create and use objects of a given class. Later
chapters show how to define our own classes.

DEFINED TERMS

argument A value passed to a function
when it is called.

block Sequence of statements enclosed in
curly braces.

buffer A region of storage used to hold
data. IO facilities often store input (or out-
put) in a buffer and read or write the buffer
independently of actions in the program.
Output buffers usually must be explicitly
flushed to force the buffer to be written. By
default, reading cin flushes cout; cout is
also flushed when the program ends nor-
mally.

built-in type A type, such as int, defined
by the language.

cerr ostream object tied to the standard
error, which is often the same stream as the
standard output. By default, writes to cerr
are not buffered. Usually used for error
messages or other output that is not part of
the normal logic of the program.

cin istream object used to read from the
standard input.

class C++ mechanism for defining our
own data structures. The class is one of the
most fundamental features in C++. Library
types, such as istream and ostream, are
classes.

class type A type defined by a class. The
name of the type is the class name.

clog ostream object tied to the standard
error. By default, writes to clog are

buffered. Usually used to report informa-
tion about program execution to a log file.

comments Program text that is ignored by
the compiler. C++ has two kinds of com-
ments: single-line and paired. Single-line
comments start with a //. Everything from
the // to the end of the line is a comment.
Paired comments begin with a /* and in-
clude all text up to the next */.

condition An expression that is evaluated
as true or false. An arithmetic expression
that evaluates to zero is false; any other
value yields true.

cout ostream object used to write to the
standard output. Ordinarily used to write
the output of a program.

curly brace Curly braces delimit blocks.
An open curly ({) starts a block; a close
curly (}) ends one.

data structure A logical grouping of data
and operations on that data.

edit-compile-debug The process of get-
ting a program to execute properly.

end-of-file System-specific marker in a file
that indicates that there is no more input in
the file.

expression The smallest unit of computa-
tion. An expression consists of one or more
operands and usually an operator. Expres-
sions are evaluated to produce a result. For
example, assuming i and j are ints, then
i + j is an arithmetic addition expression

“primer” — 2005/1/19 — 18:36 — page 29 — #51�
�

�
�

�
�

�
�

Defined Terms 29

and yields the sum of the two int values.
Expressions are covered in more detail in
Chapter 5.

for statement Control statement that pro-
vides iterative execution. Often used to step
through a data structure or to repeat a calcu-
lation a fixed number of times.

function A named unit of computation.

function body Statement block that de-
fines the actions performed by a function.

function name Name by which a function
is known and can be called.

header A mechanism whereby the defini-
tions of a class or other names may be made
available to multiple programs. A header is
included in a program through a #include
directive.

if statement Conditional execution based
on the value of a specified condition. If the
condition is true, the if body is executed. If
not, control flows to the statement following
the else if there is one or to the statement
following the if if there is no else.

iostream library type providing stream-
oriented input and output.

istream Library type providing stream-
oriented input.

library type A type, such as istream, de-
fined by the standard library.

main function Function called by the op-
erating system when executing a C++ pro-
gram. Each program must have one and
only one function named main.

manipulator Object, such as std::endl,
that when read or written “manipulates”
the stream itself. Section A.3.1 (p. 825) cov-
ers manipulators in more detail.

member function Operation defined by a
class. Member functions ordinarily are
called to operate on a specific object.

method Synonym for member function.

namespace Mechanism for putting names
defined by a library into a single place.
Namespaces help avoid inadvertent name
clashes. The names defined by the C++ li-
brary are in the namespace std.

ostream Library type providing stream-
oriented output.

parameter list Part of the definition of a
function. Possibly empty list that speci-
fies what arguments can be used to call the
function.

preprocessor directive An instruction to
the C++ preprocessor. #include is a pre-
processor directive. Preprocessor direc-
tives must appear on a single line. We’ll
learn more about the preprocessor in Sec-
tion 2.9.2.

return type Type of the value returned by
a function.

source file Term used to describe a file that
contains a C++ program.

standard error An output stream intended
for use for error reporting. Ordinarily, on a
windowing operating system, the standard
output and the standard error are tied to the
window in which the program is executed.

standard input The input stream that ordi-
narily is associated by the operating system
with the window in which the program ex-
ecutes.

standard library Collection of types and
functions that every C++ compiler must
support. The library provides a rich set
of capabilities including the types that sup-
port IO. C++ programmers tend to talk
about “the library,” meaning the entire
standard library or about particular parts
of the library by referring to a library
type. For example, programmers also re-
fer to the “iostream library,” meaning the
part of the standard library defined by the
iostream classes.

“primer” — 2005/1/19 — 18:36 — page 30 — #52�
�

�
�

�
�

�
�

30 Defined Terms

standard output The output stream that
ordinarily is associated by the operating
system with the window in which the pro-
gram executes.

statement The smallest independent unit
in a C++ program. It is analogous to a sen-
tence in a natural language. Statements in
C++ generally end in semicolons.

std Name of the namespace used by the
standard library. std::cout indicates that
we’re using the name cout defined in the
std namespace.

string literal Sequence of characters en-
closed in double quotes.

uninitialized variable Variable that has no
initial value specified. There are no unini-
tialized variables of class type. Variables
of class type for which no initial value is
specified are initialized as specified by the
class definition. You must give a value to an
uninitialized variable before attempting to
use the variable’s value. Uninitialized vari-
ables can be a rich source of bugs.

variable A named object.

while statement An iterative control state-
ment that executes the statement that is the
while body as long as a specified condition
is true. The body is executed zero or more
times, depending on the truth value of the
condition.

() operator The call operator: A pair
of parentheses “()” following a function
name. The operator causes a function to be
invoked. Arguments to the function may be
passed inside the parentheses.

++ operator Increment operator. Adds
one to the operand; ++i is equivalent to i
= i + 1.

+= operator A compound assignment op-
erator. Adds right-hand operand to the left
and stores the result back into the left-hand
operand; a += b is equivalent to a = a + b.

. operator Dot operator. Takes two oper-
ands: the left-hand operand is an object and

the right is the name of a member of that ob-
ject. The operator fetches that member from
the named object.

:: operator Scope operator. We’ll see
more about scope in Chapter 2. Among
other uses, the scope operator is used to
access names in a namespace. For exam-
ple, std::cout says to use the name cout
from the namespace std.

= operator Assigns the value of the right-
hand operand to the object denoted by the
left-hand operand.

<< operator Output operator. Writes the
right-hand operand to the output stream
indicated by the left-hand operand: cout
<< "hi" writes hi to the standard output.
Output operations can be chained together:
cout << "hi << "bye" writes hibye.

>> operator Input operator. Reads from
the input stream specified by the left-hand
operand into the right-hand operand: cin
>> i reads the next value on the stan-
dard input into i. Input operations can be
chained together: cin >> i >> j reads first
into i and then into j.

== operator The equality operator. Tests
whether the left-hand operand is equal to
the right-hand.

!= operator Assignment operator. Tests
whether the left-hand operand is not equal
to the right-hand.

<= operator The less-than-or-equal opera-
tor. Tests whether the left-hand operand is
less than or equal to the right-hand.

< operator The less-than operator. Tests
whether the left-hand operand is less than
the right-hand.

>= operator Greater-than-or-equal opera-
tor. Tests whether the left-hand operand is
greater than or equal to the right-hand.

> operator Greater-than operator. Tests
whether the left-hand operand is greater
than the right-hand.

