
Chapter 11
Metamodels as a Piece of the Pie

If you think you can, you can.And if
you think you can’t, you’re right.

—Mary Kay Ash

The four previous chapters focused on the customization of metadata require-
ments. As a result, we have created several metamodels—organized views of
metadata boundaries. Many metadata solution efforts seem focused entirely on
this aspect of the solution, that is, the “what”of the problem. I cannot overem-
phasize the potential harm that tunnel vision can play—and this tunnel vision
also applies to the incompleteness of a metadata solution design. This chapter
defines metadata solution. We will briefly revisit its remaining objectives as a
reminder that metamodels are indeed only one piece of the pie,and then focus
the rest of the chapter on the metamodels themselves. The remaining aspects
of the metadata solution are addressed in more detail in Part IV.

Defining the Metadata Solution

When we look at an organized set of metadata, we realize now that the meta-
data itself exists in many places. It is the metadata solution that puts some
semblance of purpose and order around this disparate metadata. It is obvious,
therefore, that the metadata solution encompasses many additional compo-
nents, which may or may not be a part of the component that stores or gener-
ates the integrated metadata view.

157

Note: Ash quote (in The New York Times, October 20, 1985) from The New York Public
Library Book of Twentieth-Century American Quotations. Copyright © 1992 by The
Stonesong Press, Inc., and The New York Public Library. Used with permission.

ch11.qxd 7/18/01 1:50 PM Page 157

❖ Metadata solution An organized and integrated set of related meta-
data, logically connected but physically separate, with common access
points and methods. The solution can embrace one or more metadata stores
with distinct or common metamodels and must be accessible to metadata
suppliers and beneficiaries who may or may not reside in the metadata solu-
tion’s architecture.

Interpreting the definition confirms that metamodels are indeed just one piece
of the pie.

Remembering the Objective

Why are we designing and implementing a metadata solution? Often, partici-
pants forget the main objective. Despite this seemingly myopic vision,“solu-
tions” do result, but they are not always geared to original purpose. A
continued naïveté almost always reflects in the metadata requirements them-
selves. It is essential to realize that a standalone metamodel will not serve meta-
data objectives if it becomes the only implemented component of a metadata
solution.

How will the metamodels be populated? Will they be populated at all?
How will the metamodels serve as access points for the metadata beneficia-
ries? How will metadata remain up to date? What relationship will the metadata
suppliers, often tools, have with the metamodel contents?

Reviewing the 5 Questions

Although the 5 Questions1 focus on data and its qualities, they are transferred
easily to the metadata arena. When we review them, it is clear that the meta-
model in and of itself will not handle the objectives of any metadata solution.

1. What metadata do we have? Although a metamodel depicts the scope
of metadata coverage, the traversal of the model is often quite clumsy and inef-
ficient for most metadata beneficiaries. Therefore, to answer the question, a
directory or high-level categorization of the metamodel contents is often an
additional requirement.

158 Part II Metadata as Part of the Solution

1. The 5 Questions is a trademark of and the questions and method are copyrighted by Data-
base Design Solutions, Inc., Bernardsville, New Jersey.

ch11.qxd 7/18/01 1:50 PM Page 158

2. What does it mean? How did we come up with the instance values of
metadata? What does “Data Element Definition”really mean? Is it the definition
according to one set of users,or is it a definition that has been sanctified as cor-
porate? Where can we find out how this value was obtained? Do we define
metadata, or just metadata instances?

3. Where is it? The location of the metamodel contents has not been dis-
cussed yet. This is a crucial component of all metadata solutions and depends
on many architectural factors.

4. How did it get there? How and when was the metadata created? Why
was it created and stored in its current location? This information is always of
great significance to the metadata beneficiaries and often implies levels of
credibility that are not necessarily documented.

5. How do I get it (Go get it for me!)? Last,but certainly not least,access
to the validated and organized metadata must not be forgotten. If all this work
goes into designing and creating a metadata solution,it should be available to all
metadata beneficiaries—they are tools,users, applications,or repositories.

We address each of these questions in this chapter and validate our definition
of metadata solution.

Storing Metadata

Perhaps the most common metadata storage mechanism is the centralized,
custom-developed metadata database. This option seems to be the easiest to
implement; most beneficiaries appear to get what they want immediately. In
fact, the population of this storage solution is also quite simple; many imple-
menters manually reinput metadata that already exists throughout the organi-
zation. There are many options to the storage scenario, including not storing
the metadata directly in the repository solution. The pros and cons of each
option vary with the timing and planned duration of the metadata solution.

Options

Once the metamodels are defined and the metadata instances have been offi-
cially sourced, it is important to decide how the metadata instances will be a
part of the metadata solution. Simply speaking, this means deciding how and
where to store the metadata. There are various options, none of which is nec-
essarily better or worse than the others,but they depend on many architectural

Chapter 11 Metamodels as a Piece of the Pie 159

ch11.qxd 7/18/01 1:50 PM Page 159

issues at hand,all of which need to be revisited. In addition, the storage option
could address not only Question 1 (What metadata do I have?), but also Ques-
tions 3 (Where is it?) and 5 (How do I get it?).

The metamodel and its associated storage capabilities are related directly
to the type of storage option(s) selected. Specifically, choices include one or
any combination of the following:

Centralized custom database designed to reflect an integrated, all-
encompassing metamodel perspective.

Metadata storage at the source with a main database functioning as the
metadata directory or gateway by interpreting each metamodel’s address-
ing and location-specific information.

Distributed metadata storage with separate metamodels and associated meta-
data instances residing in distinct locations. A master metamodel or search
engine would be available to track and locate specific metadata instances
(similar to the enterprise portal,which is discussed in Chapter 15).

Centralized repository tool with vendor-supplied metamodels populated
either manually or via vendor-supplied interfaces and APIs.

Distributed repository tools, also with vendor-supplied metamodels, but
populated in a distributed scenario such that coexistence is planned and
integrated.

Let’s discuss each option from the perspective of advantages and disadvantages.

Centralized Custom Database
Based on the ease of setup, this solution directly mirrors the results of the
metadata requirements analysis. All metamodels are combined, typically at
junction points, and each metamodel component represents a table in a rela-
tional database implementation. Instances are loaded either via bulk one-time
load, with periodic updates, or manually, depending primarily on volume and
the frequency of update. Front-ends can be simple client (e.g.,VB) access,or in
many cases, intranet search engines are placed “on top of”the custom database
to allow subject-based queries and access.

In the best of worlds, this custom database is monitored and quality is con-
trolled by an individual assigned to metadata administration. His or her respon-
sibilities include the validation of metadata instances as well as the guarantee
of the database’s availability. Database design and enhancement also fall within
this individual’s job description, and the position remains filled even after this

160 Part II Metadata as Part of the Solution

ch11.qxd 7/18/01 1:50 PM Page 160

individual moves on. The metadata database remains an active part of its bene-
ficiaries’ metadata analyses. Figure 11-1 illustrates this scenario.

In the worst of worlds,this database is soon out of date. In most cases it is es-
tablished to meet a narrowly scoped initial objective (e.g., one data warehouse,
definitions of one OTS package’s data) and is typically requested by one specific
user community. Despite the fact that the metadata probably exists elsewhere, it
is recreated yet again so that the beneficiaries have easy access based on its new,
integrated single location. In a short time, typically one year, the metadata data-
base is no longer in demand because of its inaccuracy, and metadata beneficia-
ries seldom use it. The number of active users dwindles, and those responsible
for its initial design and creation move on to newer endeavors.

In the most likely scenario, the metadata database’s content and scope are
too restrictive. Designed to meet a specific metadata beneficiary’s set of re-
quirements, they are usually not flexible enough to expand beyond that initial
focus. Because the metamodel is one part of the metadata solution, a direct
implementation without the other architectural features is incomplete. As
metadata requirements and/or the number and types of metadata beneficiaries
expand, the initial implementation loses its leverage and a more flexible,better
planned metadata solution typically replaces this custom database within two
years. The result is yet another node on the corporate metadata web.

Chapter 11 Metamodels as a Piece of the Pie 161

DBMS
Catalog

Metadata
Database

Initial and
regular loads

Direct
Interface

Development
Tool

Metadata
Database

Reporting
Tool

Metadata
Database

Metadata
Database

Figure 11-1 A centralized custom metadata database

ch11.qxd 7/18/01 1:50 PM Page 161

Metadata Storage at the Source
In response to the trend of reducing unnecessary redundancy in both the data
as well as the metadata worlds, most metadata solutions are adopting the phi-
losophy of leaving metadata where it is used. In many cases, this metadata is
created, updated, and maintained within a specific development or reporting
tool, or in some cases, as part of a custom or purchased application package.
Here, the metamodels and metadata requirements analysis consider the loca-
tion of the metadata of record, as previously discussed. In other words,
whether an official value exists to correct conflicting metadata instances is
usually the key to whether metadata can remain solely where it is.2 In situa-
tions where metadata instances conflict based on instance value but not in-
tent or meaning, the metadata solution design must have assigned metadata of
records and active maintenance plans tied to the overall architecture. Without
such a strategy, the various metadata values and conflicts will eventually sever
the overall architecture. Metadata maintenance strategies must coexist with
the overall architectural plans.3

By keeping metadata in diverse locations, as illustrated in Figure 11-2, the
metadata solution database becomes a metadata directory or gateway. Instead
of tracking metadata instances, the database contains the metamodel, depict-
ing metadata interrelationships as well as location specifics (answers to Ques-
tions 1, 2, and 5) for unique and specific metamodels. As anticipated, the
specifics of the addressing schemes depend on the deployed technology and
architecture of each metadata source. In addition, the ability of the deployed
metadata database technology to interface with each of the metadata sources
puts a major emphasis on the feasibility of the solution.

From a benefit perspective, this type of implementation obviously targets
the reduction and eventual elimination of metadata conflict. As metadata in-
stances are requested, typically they are retrieved from their actual source,
with the metadata repository functioning as a gateway. As metadata is updated,
the latest instances are accessed. There is no need for synchronization among
separate metadata stores, because they are all connected via the gateway’s
common metamodel.

On the downside, technology certainly plays a major role in the feasibility
of this solution. Metadata standards are moving toward universal metamodels
with associated access routines. Our patience is worth its weight in this sce-

162 Part II Metadata as Part of the Solution

2. For a full discussion of the treatment of the metadata of record, see Chapter 9.

3. Maintenance plans are discussed in Chapter 30.

ch11.qxd 7/18/01 1:50 PM Page 162

nario. Until standards become universal and easy to plug in, interface capabili-
ties depend on the compatibility of the underlying metadata stores as well as
the completeness of API (application programming interface) sets or the matu-
rity of standard intertool exchange mechanisms such as XML.4

Distributed Metadata Storage
In the distributed scenario illustrated in Figure 11-3, metamodels and their
metadata instances reside at distinct locations. There is no master metamodel
or repository, as there is with the previous option, because the search engines
have the ability to scan the contents of each metadata store directly, typically
by accessing individual metamodels in order to retrieve the metadata of
choice. There is no need to organize or integrate the various metadata stores,
but the practicality of this solution depends substantially on the deployed

Chapter 11 Metamodels as a Piece of the Pie 163

Metadata
Gateway

Search and retrieve

Metadata
Database

Metadata
Database

Metadata
Database

Reporting
Tool

Development
Tool

DBMS
Catalog

Figure 11-2 Metadata storage at the source

4. XML is discussed in Part III.

ch11.qxd 7/18/01 1:50 PM Page 163

search engine and the existence of the particular engine’s required contents in
each distinct metadata area.

Distributed metadata storage is becoming more popularly known as an en-
terprise portal. Although most portals are used to retrieve data, the same con-
cepts apply with metadata retrieval. In this implementation, the search targets
remain unchanged, except for some standard portal-wary identification. The
search engines become the power behind the practicality of this solution.
Despite this apparent ease of implementation, the efficiency of such a setup
depends substantially on how well organized each metadata store is in rela-
tionship to the others. For example,having the same information in more than
one place without forethought as to a logical separation concept guarantees
only that the same information, with perhaps different intentions, is retrieved
over and over again.

Properly implemented portals require both architectural and metadata in-
stance planning. Without such advanced design, the portal can end up return-
ing lots of unrelated metadata and the user would be stuck with making sense
of it all.

164 Part II Metadata as Part of the Solution

Search and retrieve

Metadata
Database

Development
Tool

Metadata
Database

Reporting
Tool

Metadata
Database

DBMS
Catalog

Figure 11-3 Distributed metadata storage

ch11.qxd 7/18/01 1:50 PM Page 164

Centralized Repository Tool
Repository tools, vendor supplied, offer much more than metadata databases.
Their architecture assumes interfaces,and in many cases,full sets of APIs are in-
cluded as part of the base repository offering. Although their full design and
functionality is covered in a later chapter,5 it is necessary to introduce them
here as an option in the storage of metadata. Most initial metadata solutions
during the 1990s involved repository technology. The amount of functionality
that was part of the standard tools varied substantially by vendor,and the latter
part of the 1990s involved many vendor acquisitions and mergers so that to-
day’s offerings represent distinct architectural variations.

With a centralized repository tool, most installations use the repository’s
metadata store as the sole integrated metadata area. Initially, other sources of
metadata are loaded into the repository, usually through a vendor-supplied
batch interface. The means of metadata maintenance varies from installation to
installation, but in general, a repository administrator oversees the integrity of
the repository’s contents. Likewise, some aspect of metadata creation usually
involves automated repository update.

Purchased repository tools are often called a “repository in a box”because
the vendor provides metamodels along with standard interfaces to and from
the populated repository. The supplied functionality comes with a price tag,
however, and therefore purchased repository tools are not usually considered
for small-scope metadata solutions. Finally, as discussed in Chapter 14, each
repository product is typically focused on a specific type of metadata func-
tionality (e.g., data management, application development, or data warehouse
support) and therefore is architecturally designed to interface only with prod-
ucts that are targeted to support the same functional market space.

Distributed Repository Tools
When vendor-supplied repository tools are designed to coexist, metadata stor-
age takes on another option. In this scenario, the tools are deployed through-
out an organization, typically with each metadata repository representing a
subset of the overall enterprise’s metadata. The synchronization of these tool
instances as well as their participation in the full metadata indexing schema is
quite vendor dependent. Again,as with distributed metadata storage,an overall
metadata distribution plan is a prerequisite to success in this scenario.

Chapter 11 Metamodels as a Piece of the Pie 165

5. Repository tools are discussed in Chapter 14.

ch11.qxd 7/18/01 1:50 PM Page 165

Distributed repository tool implementations are not the same as distrib-
uted database implementations. Repository software provides a key part of the
metadata-based functionality and must also be functionally distributed.

Accessing Metadata

Once metadata is stored, it must be accessed. Metadata beneficiaries have dif-
ferent access requirements,and a beneficiary-specific analysis process,covered
in Part IV, is a prerequisite to finalizing the overall metadata solution interfaces.
The following metadata access possibilities exist:

Direct query—Either via a front-end interface or a DBMS query language, the
metadata store is queried directly based on its underlying schema.

Tool-driven access—An interfacing tool (development tool, reporting tool,
etc.) presents metadata to the beneficiary. The metadata exists in the
tool’s metadata store.

API-driven access—Tools, applications, or other software use metadata
solution-specific APIs to get to the stored metadata.

Remote procedure calls (RPCs)—From a reverse point of view, the metadata
solution uses procedures inherent to the “keepers of the metadata,” so to
speak, as a means of retrieving metadata from its resting place. Typically,
metamodels in this scenario need to accommodate the location and ac-
cess procedures associated with each metadata source that falls within
the scope of the served beneficiaries.

Batch export—Creation of a simple extract, download, or file brings a set of
metadata from the metadata solution to the requesting beneficiary.

Standards-based metadata exchange—As exchange standards become final-
ized, more metadata solution implementations leave the access of the
metadata to exchange mechanisms that are not vendor specific. XML is a
popular example.

Portal/directory-based access—Based on specific search engines, metadata is
retrieved and displayed to the requestor by matching metadata instances
to search requirements.

The type of access that is best for a beneficiary is selected based on the analy-
sis of architectural requirements.

166 Part II Metadata as Part of the Solution

ch11.qxd 7/18/01 1:50 PM Page 166

Revisiting the Metadata Architecture

Metadata everywhere, beneficiaries everywhere, and the relationships among
them never seem to be planned or logical. The metadata architecture orga-
nizes the metamodel components based on a logical spread of metadata
sources. Specifically, metadata of record assignments are validated based on
the availability of a specific metadata store,whether it is part of a tool, applica-
tion, or other metadata solution. Consider Figure 11-4 and the patterned rela-
tionships among metamodels. In a well-planned metadata architecture, the
integrated metamodel represents a uniform conglomeration of the specific
and unique metamodels that reside across the architecture. Common metadata

Chapter 11 Metamodels as a Piece of the Pie 167

Metadata
Database

Metadata
Database

Development
Tool

DBMS
Catalog

The Integrated
Metamodel

Metadata
Database

Reporting
Tool

Unique development metamodel constructs

Unique reporting tool metamodel constructs

Common metamodel constructs

Figure 11-4 A sample metadata architecture

ch11.qxd 7/18/01 1:50 PM Page 167

is represented in a common metamodel. It is then supplemented with the
interface points that may be necessary to connect the common metadata to
the metamodels of each architectural component.

Where the Tools Fit In

As we evaluate metadata access,one questions always is,How do various meta-
data suppliers and recipients fit into the overall plan? The most common meta-
data forces in the architecture are those tools we all know and love. We use
them to create data, analyze data, and process data. We use them to develop
source code, configure applications, and maintain hardware/software assign-
ments. We use them to tune our databases and monitor system performance. A
day without tools is like a day without sunshine. As we use all these tools, we
create and use metadata over and over again. Now that we have not only strate-
gically identified which metadata is of importance to our beneficiaries,but also
sourced all of it, the tools are crucial components of the overall metadata solu-
tion inasmuch as they buy and sell metadata. The metadata solution architec-
ture relates all components into an organized and accessible set of logical
metadata.

Determining the Scope of Coverage

As we evolve our metadata architecture, focusing on the participating tools
and their ability to either access metadata or be accessed, the scope of meta-
data coverage begins to tighten. Although there are formal ways to scope a
metadata solution,6 it is important to note that sometimes technical issues
force the elimination or redirection of some metadata aspects of the solution.
If some tools are full of valuable metadata, but have no clear-cut way of being
accessed, many metadata solution designers may rethink the immediate solu-
tion to account for this lack of clear interface capability. Other ways of scoping
the metadata solution relate the amount of beneficiaries to be covered in the
first implementation to the specific functions that will be addressed by the
metadata solution, or even to what metadata will be included.

Metadata solutions that try to address all needs with the first implementa-
tion are destined to fail. When metadata solutions are scoped so that increased
functionality, metadata accessibility, and beneficiary service are added over
time, the metadata solution becomes exponentially more successful.

168 Part II Metadata as Part of the Solution

6. Scoping is covered in Chapter 17.

ch11.qxd 7/18/01 1:50 PM Page 168

Consider the fact that metadata is just one part of the overall metadata
solution. Consider also that metadata is typically addressed by a full metadata
solution as part of an overall metamodel or series of metamodels.

Metamodel and Metadata Relationships

Remember that our focus on metadata and its associated beneficiaries will
now take a step up to a higher level of sorts, that of the metamodel. As dis-
cussed in the previous chapter, metamodels depict metadata relationships
graphically, at the entity or object level. By grouping various metadata ele-
ments according to “what is being described,” we create a series of entities.
Each entity must have a primary key or identifier; relationships happen at the
level of the primary key. For example, in relating customers to stores,we know
that every customer visits one or more stores, and all stores are visited by one
or more customers. Without getting into too much jargon, we can consider
this a many-to-many relationship. The importance, however, rests with the fact
that we identify stores, perhaps, by store numbers, and we identify customers,
perhaps, by customer name and credit card number combined (a compound
key). For simplicity, we assume no cash transactions.

Taking this analogy back to the world of metadata,remember that Data Ele-
ment Business Name and Data Element Description were two pieces of meta-
data that were common throughout our examples. Where in the metamodel
would they fit? It is often hard for newcomers to the world of metadata to real-
ize that Data Element is a major topic or, in fact, what is being described by
many of the other metadata elements, including Data Element Description.
Hence, in a metamodel, Data Element would be an entity unto itself, and par-
ticipate in many relationships, including relationships with specific types of
data stores (files,databases, tables), entities within logical data models, reports,
and applications, to name a few.

So as we evaluate any metamodel, we have to realize the level of our eval-
uation. Metamodels reflect a specific perspective on the way entities can con-
nect. Each entity consists of a series of attributes, most typically our metadata
elements; but sometimes, as previously discussed, other information needs to
be tracked in order to maintain the stability of the metadata.

If we look again at the metamodel for our common metadata, illustrated in
Figure 11-5, note that the two metadata elements that we are discussing (Data
Element Business Name and Data Element Definition) are attributes of the Log-
ical Data Element entity. This entity relates to Physical Data Element from the

Chapter 11 Metamodels as a Piece of the Pie 169

ch11.qxd 7/18/01 1:50 PM Page 169

common perspective of all beneficiaries. The perspective is an important one
to keep in our back pockets as we look at some of today’s competing models.

Sample Metamodels

Metamodels can be purchased, downloaded, copied, or custom developed.
Sometimes,metamodels are an inherent part of a metadata solution,and imple-
menters simply adopt them. It is always valuable to look at what is out there as
a means of justifying your specific metadata approach or to help you decide
whether to buy or build (more on that topic in Chapter 20).

Metamodel Types

Perspectives are represented via distinct metamodels. The types of perspec-
tive include the following:

Tool-specific—The metamodel reflects the way a tool uses its own metadata.
In many cases, this metamodel is a logical or physical data model of the
tool’s underlying database.

Methodology-specific—The metamodel’s representation is based on a particu-
lar modeling methodology, most typically object-oriented versus entity-
relationship modeling. Current efforts are trying to adopt the Unified
Modeling Language (UML) as a standard means of structure (content) as

170 Part II Metadata as Part of the Solution

Logical Data
Element

Physical Data
Element

Data Store

Resides in

Application
Accessed by

Source Target

Data Element Business Name
Data Element Definition

Physical Data Element Name
(Source Data Element Name)

Application Name
(Source Application Name)

Implemented as

Figure 11-5 Revisiting a metamodel

ch11.qxd 7/18/01 1:50 PM Page 170

well as syntax. Models that appear later in this chapter are illustrated
with UML.

Function-supporting—Metamodel constructs represent those used to sup-
port a particular task, set of tasks, or function. For example, there are con-
figuration management metamodels, application testing metamodels, and
data management metamodels.

Generic—Usually used for integration, these metamodels represent the com-
ponents that are common to all renditions of the metadata-described in-
formation. Generic metamodels are intended to be compatible with this
information irrespective of where it exists.

The sample metamodel in Figure 11-6 depicts the entities and relation-
ships aspect of the Object Management Group’s Open Information Model,part
of their efforts to set standards.7 This model, diagrammed in UML, reflects the

Chapter 11 Metamodels as a Piece of the Pie 171

Key

Is Unique : Boolean
Is Alternate : Boolean
Is Primary : Boolean

ModelElement
(from Core)

ObjectType
(from Common Data Types)

DataTypeEntity

MinVolume : Integer
MaxVolume : Integer
AvgVolume : Integer
GrowthRate : Integer
GrowthPeriod : String

Classifier
(from Core)

Attribute

Sample : String

Attribute
(from Core)

1 1

+ParentAttribute
+ChildAttribute

0..*

0..*

0..*

0..*

+Attributes

+Attributes
*

1..*

+Keys

+Type

Figure 11-6 The OMG Open Information Model, entities and relationships
Source: Used with permission from the Object Management Group, Needham, Mass. Copyright © OMG, 1993–2001.

7. Metadata standards are discussed in Chapter 16.

ch11.qxd 7/18/01 1:50 PM Page 171

metadata relationships to be used by all compliant tools, thus guaranteeing
metadata interaction and shareability. Compare this model to your data model-
ing thinking. If connections or entities seem to be missing, it is easy to assume
that the standard will not address your needs. In addition,it may be too easy for
vendor tools to comply with a model that is not detailed enough to address the
full usage of entities and relationships. Finally, it is safe to assume that parts of
compliant tools will be shareable,while the nonaddressed items will remain in
the vendor’s control.

The Attributes and Model Packaging submodels of the Open Information
Model (Figures 11-7 and 11-8) show us more of the OMG’s metamodel per-
spectives. Notice some differences with our requirements. In Figure 11-7,
Domain, for example,although directly tied to an Attribute,can consist of par-
ent and child domains, all of which are named and tied to a specific Classifier.
This approach encourages the reusability of domains in a model, across many,
if not all, attributes. However, when this model is compared with Figure 11-8,

172 Part II Metadata as Part of the Solution

Attribute
(from Core)

Classifier
(from Core)

ModelElement
(from Core)

Constraint
(from Core)

ObjectType
(from Common Data Types)

Value

NumericValue : Integer
StoredValue : String
ValueExpression : String

Attribute

Sample : String

DataType

ValidationRule

Domain

Is Null : Boolean
Precision : String
Scale : String

0..*

0..*

0..* 0..1

0..1

0..* 0..*

0..*

+ValidationRule

+ValidValues

+Domain 1

1

1

1

+DefaultValue

+DefaultType

+ParentDomain

+ChildDomain

Figure 11-7 The OMG Open Information Model, attributes
Source: Used with permission from the Object Management Group, Needham, Mass. Copyright © OMG, 1993–2001.

ch11.qxd 7/18/01 1:50 PM Page 172

which represents Model Packaging, it is clear that Domain is intended to be
reusable across models; there is a relationship between Domain and Model,
irrespective of Attribute.

As we evaluate existing metamodels and compare them to our require-
ments, we need to consider whether their way is better than our way, or
whether our way is an absolute requirement. If the latter is the case, we must
consider extending a purchased or noncustomized metamodel.

Extensions are any changes made to a marketplace model. They are easy to
make, but not always so easy to maintain. The benefits and disadvantages
should be weighed.

As we conclude Part II, you should have a firm feeling for the characteris-
tics and power of metadata. Part III takes us into the heart of metadata solu-
tions by describing how metadata comes together across the metamodels
within an implemented metadata solution.

Chapter 11 Metamodels as a Piece of the Pie 173

Subsystem
(from Model Management)

Model
(from Model Management)

Package
(from Model Management)

Diagram
(from Presentation and View Elements)

ModelLibrary

ModelCount : Integer
TotalObjectCount : Integer

Domain

IsNull : Boolean
Precision : String
Scale : String

Model

AttributeCount : Integer
TotalObjectCount : Integer
EntityCount : Integer

StoredDisplay

Author : String
RelationshipLineType : String
IsLogical : Boolean

SubjectArea

IsPrimary : Boolean
1

1

1

1
1+Models

0..*

0..*
0..*

+ParentDomain

+Diagrams

+Domains

+SubjectAreas

1..*

0..*

Figure 11-8 The OMG Open Information Model, model packaging
Source: Used with permission from the Object Management Group, Needham, Mass. Copyright © OMG, 1993–2001.

ch11.qxd 7/18/01 1:50 PM Page 173

ch11.qxd 7/18/01 1:50 PM Page 174

