
rubin-60083 book June 1, 2001 9:34

Chapter 6

Secure Backup
Problem Statement
Alice considers her data very important. She has been around long enough to
experience the painful loss of files due to arbitrary failures of software and
hardware. The data on Alice’s machine is of a very sensitive nature. She is
very good at physically securing her machine and protecting her data while it
is in her possession, but how does she back up her data in such a way that
the backups are reliable and also secure?

Threat model
The adversary in this scenario is a user who manages to get read access to Al-
ice’s backup tapes. It should be impossible for him to learn anything about the
data that is stored there. In addition, it should be impossible for an adversary
to destroy the keys that are used to protect the backup tapes.

6.1 Secure Backups
When I give talks about computer security, viruses, worms, Trojan horses, and
other threats, I’m often asked what the state of the art in defense mechanisms
is. My reply is always “back up, back up, back up.” If you have never lost any
data due to some kind of failure that wasn’t your fault, you have probably not
been using computers for very long.

If you ask me what the easiest way to steal information from a highly secure
site is, I will probably not suggest trying to exploit a misconfiguration in the
firewall and subverting the perimeter protection to get an account inside and
then using that account to break into a protected database. A much easier way

� 103 �

rubin-60083 book June 1, 2001 9:34

104 � CHAPTER 6 SECURE BACKUP

is to bribe the truck driver, who transfers the backup tapes from the building
to a physically secure site, to look away for a couple of hours while you copy
the tapes. This attack will only cost you a few hundred dollars; you may even
be able to pull it off for a six-pack of beer.

Backup is one of the most overlooked processes when it comes to site security.
However, backup is crucial. Backup is important for recovering from loss due
to accidental or malicious failure. You would be hard-pressed to find a per-
son or organization that hasn’t had to restore from a backup at some point.
When faced with data loss or corruption, the backup archive is one of the most
appreciated and loved objects in the entire universe.

What is interesting is that even though backup tapes, by definition, contain
data that is just as sensitive as the data being backed up, they rarely receive
the same protection as the original data itself. Why is that? Well, the purpose
of backup is to recover after some kind of a problem. So, if encrypted data is
backed up in its encrypted form, then what happens if the unfortunate event
that led to the loss of data also results in a loss of the keys? Encrypted backups
without the keys are about as useful as a wad of cash when you are stranded
on a deserted island. It seems like they should be worth something, but trying
to use them proves futile. Even if you were to store the money away until you
were rescued, by the time that happened, inflation would make the wad of
cash practically worthless, but here, the analogy kind of breaks down.

6.2 Physical Security
One approach to secure backup is to physically protect backups. If you are
an individual user, then you can purchase an external Jaz drive, or a PC card
with FLASH memory, copy your sensitive files to the external device, keep it in
your possession at all times until you get home, and then bury it ten feet deep
in your back yard. Make sure to mark the spot carefully, and to put a mean
dog in the yard, preferably one that does not like to dig.

If you are an organization, you could implement a process whereby backups
are done under the supervision of security personnel, and the tapes are phys-
ically transported to a safe location.

I don’t like relying on physical security for several reasons. First of all, it is
difficult to find security personnel who are completely trustworthy. Most secu-
rity compromises are initiated by insiders, and there are few physical security

rubin-60083 book June 1, 2001 9:34

6.3 BACKUP OVER A NETWORK � 105

types who are paid as much as the value of your data. Put another way, you’d
be crazy to spend more on your security personnel than your data is worth.
So, you are potentially vulnerable to bribery of your security personnel.

Physical security is not a bad idea, but I do not recommend relying on it ex-
clusively to protect your data. Instead, couple it with software protection (en-
cryption and authentication).

6.3 Backup over a Network
Backup data is vulnerable to attack at several points. If you are backing up
your data onto a physical device such as a Jaz drive, then you do not need to
worry about somebody sniffing on the physical connection between your com-
puter and the drive. However, most backup techniques today involve trans-
ferring data over a network. It doesn’t make sense to use strong encryption
in your backups and good key recovery mechanisms, if you transfer files to a
remote backup server in the clear.

The right way to back up files remotely is to perform all of the compression
and encryption (in that order!) locally, and then to transfer the backups to the
remote site for storage. The reason to compress before encrypting is that en-
crypted data contains very little redundancy, and so compression of ciphertext
is not very effective. Many remote storage facilities further encrypt the data.
While the encryption of the data on your local machine protects you against
network attacks and from the storage server, the further encryption at the re-
mote server is intended to protect your data from compromise of the server in
the case where you have a poorly chosen passphrase. The super-encryption
(encrypting encrypted data) at the remote site is a great marketing gimmick
by many of the backup storage vendors, but it doesn’t really buy you much
because you should protect it with good keys in the first place. Furthermore,
you are now running the risk of not only the loss of your passphrase, but loss
of the key used by the backup server.

Another issue in the remote backup process is user authentication. If you
back up your files over a network to a centralized server, make sure that the
server does proper user authentication. If it does not, then even though the
information on that server is unreadable, assuming it is properly encrypted,
there may be nothing preventing another user from corrupting or destroying
your backups.

rubin-60083 book June 1, 2001 9:34

106 � CHAPTER 6 SECURE BACKUP

Many remote backup facilities allow for an automatic unattended backup to be
scheduled. That means that users can tell the system to make a backup in the
middle of the night of files that have changed. Of course, the whole purpose
of this is to perform a backup while the user is sleeping. It is unlikely that
the user will want to wake up each night and enter the passphrase to derive
the key for the backup. So, these systems require that the key be available
to the program whenever it needs it. To accomplish this, the key must be in
memory on the computer. In practice, many vendors keep the user key on disk
somewhere. In either case, the key is vulnerable. The most secure systems
require a passphrase to be entered whenever a backup or restore is about to
take place, and they erase the key from disk and memory as soon as the work
is done. Unfortunately, this is rarely the way these products operate.

Another common “feature” of many remote backup products is that they give
the user a choice of key lengths and algorithms. In several cases, products
offer 40-bit DES, 56-bit DES, 3-DES, and Blowfish or CAST. Average users are
about as qualified to pick the bit size of their keys as they are to set the correct
refresh rate on their computer monitor. The difference is that when setting the
refresh rate on a monitor, you get some feedback if you select stupid settings.
With crypto, you just get an insecure system. When questioned, one vendor
replied that 3-DES is too slow for some users and that 40-bit is included in
the product for export reasons. Huh?!? I asked him if the 40-bit version and
the 3-DES version shipped as different products, and he said no. Apparently,
there are companies out there that think their product is exportable if they
add weak crypto to it, in addition to the strong crypto.

6.4 Key Granularity
The most common technique for protecting backups is to encrypt files locally
using a key derived from a passphrase. There are several commercial products
that do this, as I will discuss shortly. One choice that needs to be made is
how many keys to use. If you use one key to encrypt all of the files that are
backed up, then loss or compromise of that key means loss or compromise
of the entire archive. Breaking backups down into finer-grained keys is much
more complicated and difficult to maintain. You could have a program with a
database for controlling all the keys, but you had better back that database
up very carefully. In the end, the problem reduces to protecting and backing
up keys securely.

rubin-60083 book June 1, 2001 9:34

6.5 BACKUP PRODUCTS � 107

6.5 Backup Products
There are many commercial offerings that provide backup service. Here are
some of the more interesting ones. Ultimately, you should try several of them
out for yourself before deciding on one. A great list of companies that provide
backup can be found at http://uk.dir.yahoo.com/Business_and_

Economy/Companies/Computers/Business_to_Business/Services/

Backup/. Many of these have a security component to them. You can use the
information in this chapter to help evaluate the level of security that they offer.
Keep in mind that just because a company says that they use triple DES to
encrypt does not mean that their product is secure. Here is a list of questions
to ask yourself before choosing a product:

• Does this product compress and encrypt locally before transmission?

• What encryption algorithms are used?

• Do they also perform data authentication? If so, what authentication
algorithm is used?

• How are keys derived?

• Is there a secure channel between my computer and the server?

• Are file names protected, as well?

• What is the key granularity?

• Does the server super-encrypt?

• How easy is it to restore files?

• Is there user authentication for storage and recovery?

• What is the user interface for backup and recovery?

• Is there any reason I should trust this vendor?

• Do they use well-known published algorithms and protocols, or their own
proprietary ones?

• How are the keys stored?

Keep in mind that almost all network backup systems require you to install
client software. Installing client software over the Internet and even from a
CD-ROM is a sensitive operation. It is a point at which an adversary could

rubin-60083 book June 1, 2001 9:34

108 � CHAPTER 6 SECURE BACKUP

install a virus, or worm, or Trojan horse on your machine. By installing a
native application, in a sense, you are completely trusting the distributor with
your computer. While a product may claim to encrypt before sending a file,
you have no guarantee that the product isn’t also shipping the key in some
covert manner (say, encrypted with a key that only the vendor knows) back to
the vendor.

Also, even if the software vendor is totally reliable, there is no guarantee that
their site has not been hacked. There are public domain tools for inserting
a virus or any other malicious code into an existing application. A favorite is
a program called infect, which asks for a filename to infect and the name of
a malicious program, and then installs the malicious program in the target
executable. I saw a demo of this. It’s pretty scary.

With that in mind, here is a summary of the products. As you can see, the
amount of information I was able to collect about these products from their
literature and from contacting the companies for technical explanations varies
widely.

6.5.1 @backup
This product has one of the nicer user interfaces. You can simply right-click
on a file and you have the option to back it up. You can also restore different
versions of a file based on the date it was backed up. All of the files are en-
crypted using a single key derived from a user passphrase. There is no claim
that the product provides authentication in addition to encryption. The prod-
uct encrypts files locally and then super-encrypts them on the server with the
vendor’s key. The product is pricier than most, costing $99 per year for 100
megabytes at the time of this writing. The URL is http://www.backup.com/.

6.5.2 BitSTOR
This product has a similar interface to the previous one, that is, using an
Explorer-like interface to determine which files to back up. There is an auto-
mated unattended backup facility available. The user has the option of using
DES, 3-DES, or Blowfish. The encryption key is derived from a user passphrase,
and there appears to be no data authentication. One nice feature is that
there is a separate user authentication stage for storage and recovery, so
users need to remember a passphrase for the key and a user password to
authenticate. The product also sets up an encrypted channel to the server
before any communication takes place. In addition to encrypting the data,

rubin-60083 book June 1, 2001 9:34

6.5 BACKUP PRODUCTS � 109

this product also encrypts the file names for additional privacy. The URL is
http://www.BitSTOR.com.

6.5.3 Secure Backup Systems
It is not clear how this product encrypts or how keys are chosen. The program
compresses and then encrypts data that needs to be backed up, and it is
stored in a physically protected offsite vault. The product automatically scans
for changed files within a selected area of the file system and marks data for
backup.

6.5.4 BackJack
This is a product that was designed specifically for the Macintosh. However,
there is nothing in the protocol that is specific to the Mac. It provides for
remote backup and restore over an insecure network. Users receive the first
100 megabytes for free, as of this writing. The product uses a passphrase-
derived key and performs CAST encryption with a 128-bit key and MD5 for
authentication. The URL is http://www.backjack.com/.

6.5.5 Datalock
This product is another remote backup-and-restore product. Files are com-
pressed and encrypted locally with 3-DES using a passphrase-derived key.
There is a facility for scheduling unattended backups. The URL is http://

www.datalock.com/.

6.5.6 NetMass SystemSafe
In this remote backup-and-restore system, users are given a choice of 40-
or 56-bit DES, or 3-DES, and keys are derived from a passphrase. There is
a nice graphical user interface for administering the backups. An interest-
ing feature of this system is that it can back up partial files by only backing
up the disk blocks that have changed since the last backup. The URL is
http://www.systemrestore.com/.

6.5.7 Saf-T-Net
This remote backup-and-restore program performs user authentication via an
ID and a PIN. The product tries to obtain security by obscurity (deplored by
the security community). It implements a proprietary communication protocol
with variable-length packets and proprietary compression to achieve “secu-
rity.” It has an additional property of performing virus checking on the client

rubin-60083 book June 1, 2001 9:34

110 � CHAPTER 6 SECURE BACKUP

side before copying the backup files to the server. There is no mention of en-
cryption or keys—proprietary compression seems to be used for that purpose.
This goes against all of the conventional wisdom in the security community.
The URL is http://www.trgcomm.com/.

6.5.8 Safeguard Interactive
This product uses a user-supplied passphrase to derive a key used for
DES encryption. Files are backed up and restored over a network. The URL is
http://www.sgii.com/.

6.5.9 Veritas Telebackup
In this product, authentication of files is done using a cyclic redundancy check
(CRC) instead of a cryptographic hash. This is not good practice. There is an
authentication code stored in the client software to validate a session. This is
also the wrong way to do it. Not only are sessions not encrypted, but anyone
who ever gets access to the software can then spoof a session. There are a
lot of obscurity games in this product such as variable-length packets, pro-
prietary compression in place of encryption, and randomized storage of files
on the server. None of these things would hold up against a serious attacker.
Why not just encrypt and MAC the data, authenticate users, and derive 3-DES
keys from passphrases? Everybody else seems to understand this to some de-
gree. If you are curious, the URL is http://www.veritas.com/us/products/
telebackup/.

6.6 Deleting Backups
While data backup provides a convenient way to recover from crashes and
other losses of data, it comes at the cost of long-term persistence of the data.
Imagine that you have a file that contains all of your old e-mail. At some point,
you realize that having such a file implicates you in several “situations” that
you would rather forget. Deleting your mail file is not enough. You have to
delete all of the backup copies. If you did a very good job backing up your files,
then there are many, many copies of the file at all different stages on all sorts
of backup servers. Hopefully all of them are encrypted, but if you used a weak
cipher such as 56-bit DES, which was believed to be secure several years ago,
then that won’t be very useful. Even if they are encrypted, you may discover

rubin-60083 book June 1, 2001 9:34

6.7 CASE STUDY � 111

that your backup software kept a copy of the key, which was the same key that
you used to encrypt all of your backups on the local disk, and that you were
hit by a virus that targets that backup system and copies the keys to remote
locations. Yikes!

Boneh and Lipton [19] describe a revocable backup system. In their system,
all data is encrypted by short-lived keys that expire at intervals defined by the
user. A master key is used to encrypt all of the keys in the system. To make
a backup of a file useless, all a user has to do is erase the key that was used
for that file, and all of the previous versions of the backed-up file are rendered
useless. In practice, the master key could be derived from the user-defined
passphrase that is used in existing commercial systems, and the details of the
revocable backup scheme could be hidden from the users.

6.7 Case Study
In this case study, I will walk you through the proper design of a remote backup
system. Keep in mind our trust model—the local environment is trusted; the
network is not, and neither is the remote server.

Assume that there is a secure way to obtain a client-side program. While this is
a leap of faith, we have to start somewhere. Perhaps the client backup program
has a well-known hash, and you are able to verify it on the client end. Anyway,
if you cannot obtain a secure version of your security software, you are in big
trouble.

So, what is the software that you are running locally? Ideally it is a crypto-
graphic file system like the ones described in Chapter 4. If that were the case,
then you could simply ship out the encrypted versions of files and store those
remotely.

There are several reasons why this is not practical. Cryptographic file systems
(CFSs) require some understanding on the part of the user that he is using a
CFS. Also, the installation may not be trivial. Not all users are sophisticated
enough to manage this. Furthermore, the user may be running applications
that do not let him control where files are stored, so there may be no way to
mount those files in a CFS. Thus, in this case study, we focus on a backup
system that is retrofitted to a commonly used environment, such as a Windows
PC.

rubin-60083 book June 1, 2001 9:34

112 � CHAPTER 6 SECURE BACKUP

6.7.1 The Client Software
In my view of the ideal remote backup system, a user first starts a session,
which is an interaction with the software for the purposes of backup or re-
store. When the user starts a session, he is prompted for a passphrase. He
then selects whether or not this session is a backup or a restore. If it is a
backup, then the system does some proactive checking and makes sure that
the passphrase has enough entropy. One good way to accomplish this is to
show a progress bar and require the user to keep entering characters until the
progress bar is full. A sensible algorithm is then used to derive two 128-bit
keys from the passphrase. The first is for authentication, and the second is for
encryption. In practice, the user should probably use the same passphrase for
all sessions, otherwise he is likely to forget it or write it down somewhere.

The client software would ideally resemble a nice graphical file manager. Per-
haps it could be identical in look and feel to Windows Explorer, with folders
and icons for files. In fact, a very good program would simply add functionality
to the existing Windows Explorer. The user presses the shift and control keys
and uses the mouse to select which files to back up, or alternatively, picks
from a previously saved list of files. Next, the user activates the backup by
pressing a button or selecting from a menu. For security reasons, unattended
backups are not allowed.

At this point, the software kicks in. First, a bundle is created. Each file is
compressed and added to the bundle. In practice, this could be the same as
a zip archive or a UNIX tar.gz file. Then, the authentication key is used to
compute the HMAC (see Chapter 8) of the bundle, and the output is added to
the bundle. Finally, the bundle is encrypted with the encryption key using a
strong block cipher, such as triple DES or AES. The bundle is then tagged with
the user name, the address of the user’s machine, and a time and date, and
is sent over to the untrusted remote backup server. The remote server then
stores the bundle, indexed by the tags. One nice thing about this way of doing
things is that the file system structure and the file names are hidden from the
remote server and from anyone listening in on the network.

If the session is a restore, then the user is prompted to pick a date. A list of
all of the previous backup dates is downloaded from the server and shown,
and the user selects which date he wishes to restore. The software imports the
corresponding bundle from the server and decrypts it using the key derived
from the passphrase. The authentication is then checked, and if it verifies
correctly, the restore proceeds. Next, a Windows Explorer view of all of the

rubin-60083 book June 1, 2001 9:34

6.7 CASE STUDY � 113

restored files is presented, anchored at a new root directory. For example, the
old file system view is mounted at C:\restore\old root. The user can preview
all of the files in their restored format and decide to accept or reject the restore.
If it is accepted, then all of the files are restored in the actual file system. The
user can also select to restore on a per-file basis as opposed to taking the
whole bundle.

One interesting feature of the scheme presented here is that there need not
be any user authentication for a restore session. The servers can make all of
the bundles available to the world. The strong encryption and authentication
properties make them tamper evident and opaque to anyone who cannot obtain
a user passphrase or break the authentication and encryption functions.

However, it is desirable to have some user authentication when a user performs
a backup. Otherwise, attackers could fill up the disks on the servers with
anything they wanted. Users should be strongly advised not to use their data
backup passphrase to authenticate to the remote backup server.

6.7.2 Incremental Backups
In a typical backup scenario, the user selects a set of files in the file system
to back up. The set is often given a name or an icon, and there is an easy
mechanism for the user to execute a backup of that set of files. It is inefficient
to back up all of the files in a particular set every time. A common technique
for avoiding this is to perform a full backup periodically, in which all of the
files are copied. Then, whenever a backup is needed in between full backups,
an incremental backup is done. An incremental backup consists of copying
only those files that have changed since the last backup. To accomplish this, a
local database is maintained containing filenames and modification times for
all files that have been backed up. When it is time for an incremental backup,
the software checks this database to see which files in the file system have a
more recent modification time than is shown in the database, and these files
are backed up.

To restore incremental backups, the system simply restores the most recent
full backup and then restores each of the subsequent incremental backups in
order of least recent first. Thus, files get restored to the view of the file system
at the last incremental backup. It is not necessary to back up the incremental
backup database, as long as the order of incremental backups is maintained on
the remote backup server. If the database gets trashed, then the next backup
must be a full one.

rubin-60083 book June 1, 2001 9:34

114 � CHAPTER 6 SECURE BACKUP

There are, however, some security considerations when doing incremental
backups. Assuming that there is an adversary out to get you, there is a basic
attack that could wreak havoc with your backups. If an attacker can change
the modification times in the database, he can set the time ahead, and the
system will not back up files, even though they have changed. In fact, in most
deployed systems, an attacker could set the modification times of all files in
the database to some time far into the future, and the software would probably
not detect it.

The defense against this attack is straightforward. When I discussed perform-
ing backups, I already described two keys: an authentication key and an en-
cryption key that are derived from the user passphrase and available in mem-
ory at the time of the backup. A secure remote backup system should use the
authentication key to compute a MAC on the incremental backup database af-
ter every legitimate change. The MAC can be stored together with the database.
The cryptographic properties of the MAC are such that nobody can modify
the file or the MAC in a way that modifications to either will not be detected.
Of course, it is important that the MAC be verified before every incremental
backup. Again, keep in mind that attacking the database only disrupts the
backup process, not the restore process. The database is not used for restor-
ing files.

6.8 Further Reading
For more information on the material in this chapter, check out the following
resources.

Articles
D. Boneh and R. Lipton. A Revocable Backup System. USENIX Security

Conference VI, pages 91–96, 1996.

Web Sites
http://uk.dir.yahoo.com/Business and Economy/Companies/

Computers/Business to Business/Services/Backup A great resource for
finding online backup systems.

Here are the Web addresses of the companies providing backup systems that
are discussed in this chapter:

rubin-60083 book June 1, 2001 9:34

6.8 FURTHER READING � 115

http://www.backup.com/

http://www.BitSTOR.com/

http://www.backjack.com/

http://www.datalock.com/

http://www.systemrestore.com/

http://www.trgcomm.com/

http://www.sgii.com/

http://www.veritas.com/us/products/telebackup/

rubin-60083 book June 1, 2001 9:34

116

