

19

2

Evaluating a Software
Architecture

 Marry your architecture in haste and you can repent in leisure.

—Barry Boehm
from a keynote address:

And Very Few Lead Bullets Either

How can you be sure whether the architecture chosen for your software is the
right one? How can you be sure that it won’t lead to calamity but instead will
pave the way through a smooth development and successful product?

It’s not an easy question, and a lot rides on the outcome. The foundation
for any software system is its architecture. The architecture will allow or pre-
clude just about all of a system’s quality attributes. Modifiability, performance,
security, availability, reliability—all of these are precast once the architecture
is laid down. No amount of tuning or clever implementation tricks will wring
any of these qualities out of a poorly architected system.

To put it bluntly, an architecture is a bet, a wager on the success of a system.
Wouldn’t it be nice to know in advance if you’ve placed your bet on a winner,
as opposed to waiting until the system is mostly completed before knowing
whether it will meet its requirements or not? If you’re buying a system or pay-
ing for its development, wouldn’t you like to have some assurance that it’s
started off down the right path? If you’re the architect yourself, wouldn’t you
like to have a good way to validate your intuitions and experience, so that you
can sleep at night knowing that the trust placed in your design is well founded?

Until recently, there were almost no methods of general utility to validate a
software architecture. If performed at all, the approaches were spotty, ad hoc,
and not repeatable. Because of that, they weren’t particularly trustworthy. We
can do better than that.

20

Evaluating a Software Architecture

This is a guidebook of software architecture evaluation. It is built around a
suite of three methods, all developed at the Software Engineering Institute, that
can be applied to any software-intensive system:

• ATAM: Architecture Tradeoff Analysis Method

• SAAM: Software Architecture Analysis Method

• ARID: Active Reviews for Intermediate Designs

The methods as a group have a solid pedigree, having been applied for
years on dozens of projects of all sizes and in a wide variety of domains. With
these methods, the time has come to include software architecture evaluation as
a standard step of any development paradigm. Evaluations represent a wise
risk-mitigation effort and are relatively inexpensive. They pay for themselves
in terms of costly errors and sleepless nights avoided.

Whereas the previous chapter introduced the concept of software architec-
ture, this chapter lays the conceptual groundwork for architectural evaluation.
It defines what we mean by software architecture and explains the kinds of
properties for which an architecture can (and cannot) be evaluated.

First, let’s restate what it is we’re evaluating:

The software architecture of a program or computing system is the
structure or structures of the system, which comprise software compo-
nents, the externally visible properties of those components, and the
relationships among them. [Bass 98]

By “externally visible” properties, we are referring to those assumptions
other components can make of a component, such as its provided services, per-
formance characteristics, fault handling, shared resource usage, and so on. The
intent of this definition is that a software architecture must abstract some infor-
mation about the system (otherwise there is no point looking at the architec-
ture—we are simply viewing the entire system) and yet provide enough
information to be a basis for analysis, decision making, and hence risk reduc-
tion (see the sidebar What’s Architectural?).

The architecture defines the components (such as modules, objects, pro-
cesses, subsystems, compilation units, and so forth) and the relevant relations
(such as calls, sends-data-to, synchronizes-with, uses, depends-on, instantiates,
and many more) among them. The architecture is the result of early design
decisions that are necessary before a group of people can collaboratively build
a software system. The larger or more distributed the group, the more vital the
architecture is (and the group doesn’t have to be very large before the architec-
ture is vital).

One of the insights about architecture from Chapter 1 that you must fully
embrace before you can understand architecture evaluation is this:

Architectures allow or preclude nearly all of the system’s quality
attributes.

What’s Architectural?

Sooner or later everyone asks the question: “What’s architectural?” Some peo-
ple ask out of intellectual curiosity, but people who are evaluating architec-
tures have a pressing need to understand what information is in and out of their
realm of concern. Maybe you didn’t ask the question exactly that way. Perhaps
you asked it in one of the following ways:

• What is the difference between an architecture and a high-level
design?

• Are details such as priorities of processes architectural?

• Why should implementation considerations such as buffer overflows
be treated as architectural?

• Are interfaces to components part of the architecture?

• If I have class diagrams, do I need anything else?

• Is architecture concerned with run-time behavior or static structure?

• Is the operating system part of the architecture? Is the programming
language?

• If I’m constrained to use a particular commercial product, is that archi-
tectural? If I’m free to choose from a wide range of commercial prod-
ucts, is that architectural?

Let’s think about this in two ways.
First, consider the definition of architecture that we quoted in Chapter 1

of this book. Paraphrasing: A software architecture concerns the gross organi-
zation of a system described in terms of its components, their externally visi-
ble properties, and the relationships among them. True enough, but it fails to
explicitly address the notion of context. If the scope of my concern is confined
to a subsystem within a system that is part of a system of systems, then what I
consider to be architectural will be different than what the architect of the sys-
tem of systems considers to be architectural. Therefore, context influences
what’s architectural.

Second, let’s ask, what is

not

architectural? It has been said that algo-
rithms are not architectural; data structures are not architectural; details of data
flow are not architectural. Well, again these statements are only partially true.
Some properties of algorithms, such as their complexity, might have a dra-
matic effect on performance. Some properties of data structures, such as

Evauluating Software Architecture

21

This leads to the most fundamental truth about architecture evaluation: If
architectural decisions determine a system’s quality attributes, then it is possi-
ble to evaluate architectural decisions with respect to their impact on those
attributes.

22

Evaluating a Software Architecture

whether they need to support concurrent access, directly impact performance
and reliability. Some of the details of data flow, such as how components
depend on specific message types or which components are allowed access to
which data types, impact modifiability and security, respectively.

So is there a principle that we can use in determining what is architec-
tural? Let’s appeal to what architecture is used for to formulate our principle.
Our criterion for something to be architectural is this: It must be a component,
or a relationship between components, or a property (of components or rela-
tionships)

that needs to be externally visible

 in order to reason about the ability
of the system to meet its quality requirements or to support decomposition of
the system into independently implementable pieces. Here are some corollar-
ies of this principle:

•

Architecture describes what is in your system.

 When you have deter-
mined your context, you have determined a boundary that describes
what is in and what is out of your system (which might be someone
else’s subsystem). Architecture describes the part that is in.

•

An architecture is an abstract depiction of your system.

The informa-
tion in an architecture is the most abstract and yet meaningful depic-
tion of that aspect of the system. Given your architectural
specification, there should not be a need for a more abstract descrip-
tion. That is not to say that all aspects of architecture are abstract, nor
is it to say that there is an abstraction threshold that needs to be
exceeded before a piece of design information can be considered
architectural. You shouldn’t worry if your architecture encroaches on
what others might consider to be a more detailed design.

•

What’s architectural should be critical for reasoning about critical
requirements.

 The architecture bridges the gap between requirements
and the rest of the design. If you feel that some information is critical
for reasoning about how your system will meet its requirements then it
is architectural. You, as the architect, are the best judge. On the other
hand, if you can eliminate some details and still compose a forceful
argument through models, simulation, walk-throughs, and so on about
how your architecture will satisfy key requirements then those details
do not belong. However, if you put too much detail into your architec-
ture then it might not satisfy the next principle.

•

An architectural specification needs to be graspable.

 The whole point
of a gross-level system depiction is that you can understand it and rea-
son about it. Too much detail will defeat this purpose.

•

An architecture is constraining.

 It imposes requirements on all lower-
level design specifications. I like to distinguish between when a deci-
sion is made and when it is realized. For example, I might determine a

2.1 Why Evaluate an Architecture?

23

process prioritization strategy, a component redundancy strategy, or a
set of encapsulation rules when designing an architecture; but I might not
actually make priority assignments, determine the algorithm for a redun-
dant calculation, or specify the details of an interface until much later.

In a nutshell:

To be architectural is to be the most abstract depiction of the system that
enables reasoning about critical requirements and constrains all subse-
quent refinements.

If it sounds like finding all those aspects of your system that are architec-
tural is difficult, that is true. It is unlikely that you will discover everything that
is architectural up front, nor should you try. An architectural specification will
evolve over time as you continually apply these principles in determining
what’s architectural.

—MHK

2.1 Why Evaluate an Architecture?

The earlier you find a problem in a software project, the better off you are. The
cost to fix an error found during requirements or early design phases is orders
of magnitudes less to correct than the same error found during testing. Archi-
tecture is the product of the early design phase, and its effect on the system and
the project is profound.

An unsuitable architecture will precipitate disaster on a project. Perfor-
mance goals will not be met. Security goals will fall by the wayside. The cus-
tomer will grow impatient because the right functionality is not available, and
the system is too hard to change to add it. Schedules and budgets will be blown
out of the water as the team scrambles to back-fit and hack their way through
the problems. Months or years later, changes that could have been anticipated
and planned for will be rejected because they are too costly. Plagues and pesti-
lence cannot be too far behind.

Architecture also determines the structure of the project: configuration
control libraries, schedules and budgets, performance goals, team structure,
documentation organization, and testing and maintenance activities all are
organized around the architecture. If it changes midstream because of some
deficiency discovered late, the entire project can be thrown into chaos. It is
much better to change the architecture before it has been frozen into existence
by the establishment of downstream artifacts based on it.

24

Evaluating a Software Architecture

Architecture evaluation is a cheap way to avoid disaster. The methods in
this book are meant to be applied while the architecture is a paper specification
(of course, they can be applied later as well), and so they involve running a
series of simple thought experiments. They each require assembling relevant
stakeholders for a structured session of brainstorming, presentation, and analy-
sis. All told, the average architecture evaluation adds no more than a few days
to the project schedule.

To put it another way, if you were building a house, you wouldn’t think of
proceeding without carefully looking at the blueprints before construction
began. You would happily spend the small amount of extra time because you
know it’s much better to discover a missing bedroom while the architecture is
just a blueprint, rather than on moving day.

2.2 When Can an Architecture Be Evaluated?

The classical application of architecture evaluation occurs when the architec-
ture has been specified but before implementation has begun. Users of iterative
or incremental life-cycle models can evaluate the architectural decisions made
during the most recent cycle. However, one of the appealing aspects of archi-
tecture evaluation is that it can be applied at any stage of an architecture’s life-
time, and there are two useful variations from the classical: early and late.

Early.

Evaluation need not wait until an architecture is fully specified. It can
be used at any stage in the architecture creation process to examine those archi-
tectural decisions already made and choose among architectural options that
are pending. That is, it is equally adept at evaluating architectural decisions
that have already been made and those that are being considered.

Of course, the completeness and fidelity of the evaluation will be a direct
function of the completeness and fidelity of the architectural description
brought to the table by the architect. And in practice, the expense and logistical
burden of convening a full-blown evaluation is seldom undertaken when
unwarranted by the state of the architecture. It is just not going to be very
rewarding to assemble a dozen or two stakeholders and analysts to evaluate the
architect’s early back-of-the-napkin sketches, even though such sketches will
in fact reveal a number of significant architecture paths chosen and paths not
taken.

Some organizations recommend what they call a

discovery review

, which
is a very early mini-evaluation whose purpose is as much to iron out and prior-
itize troublesome requirements as analyzing whatever “proto-architecture”

2.2 When Can an Architecture Be Evaluated?

25

may have been crafted by that point. For a discovery review, the stakeholder
group is smaller but must include people empowered to make requirements
decisions. The purpose of this meeting is to raise any concerns that the archi-
tect may have about the feasibility of

any

 architecture to meet the combined
quality and behavioral requirements that are being levied while there is still
time to relax the most troubling or least important ones. The output of a discov-
ery review is a much stronger set of requirements and an initial approach to sat-
isfying them. That approach, when fleshed out, can be the subject of a full
evaluation later.

We do not cover discovery reviews in detail because they are a straightfor-
ward variation of an architecture evaluation. If you hold a discovery review,
make sure to

• Hold it before the requirements are frozen and when the architect has a
good idea about how to approach the problem

• Include in the stakeholder group someone empowered to make require-
ments decisions

• Include a prioritized set of requirements in the output, in case there is no
apparent way to meet all of them

Finally, in a discovery review, remember the words of the gifted aircraft
designer Willy Messerschmitt, himself no stranger to the burden of require-
ments, who said:

You can have any combination of features the Air Ministry desires, so
long as you do not also require that the resulting airplane fly.

Late.

The second variation takes place when not only the architecture is
nailed down but the implementation is complete as well. This case occurs when
an organization inherits some sort of legacy system. Perhaps it has been pur-
chased on the open market, or perhaps it is being excavated from the organiza-
tion’s own archives. The techniques for evaluating a legacy architecture are the
same as those for one that is newborn. An evaluation is a useful thing to do
because it will help the new owners understand the legacy system, and let them
know whether the system can be counted on to meet its quality and behavioral
requirements.

In general, when can an architectural evaluation be held? As soon as there
is enough of an architecture to justify it. Different organizations may measure
that justification differently, but a good rule of thumb is this: Hold an evalua-
tion when development teams start to make decisions that depend on the archi-
tecture and the cost of undoing those decisions would outweigh the cost of
holding an evaluation.

26

Evaluating a Software Architecture

2.3 Who’s Involved?

There are two groups of people involved in an architecture evaluation.

1.

Evaluation team.

 These are the people who will conduct the evaluation
and perform the analysis. The team members and their precise roles will
be defined later, but for now simply realize that they represent one of the
classes of participants.

2.

Stakeholders.

 Stakeholders are people who have a vested interest in the
architecture and the system that will be built from it. The three evaluation
methods in this book all use stakeholders to articulate the specific require-
ments that are levied on the architecture, above and beyond the require-
ments that state what functionality the system is supposed to exhibit.
Some, but not all, of the stakeholders will be members of the development
team: coders, integrators, testers, maintainers, and so forth.

A special kind of stakeholder is a project decision maker. These are
people who are interested in the outcome of the evaluation and have the
power to make decisions that affect the future of the project. They include
the architect, the designers of components, and the project’s management.
Management will have to make decisions about how to respond to the
issues raised by the evaluation. In some settings (particularly government
acquisitions), the customer or sponsor may be a project decision maker as
well.

Whereas an arbitrary stakeholder says what he or she wants to be true
about the architecture, a decision maker has the power to expend resources
to

make

 it true. So a project manager might say (as a stakeholder), “I
would like the architecture to be reusable on a related project that I’m
managing,” but as a decision maker he or she might say, “I see that the
changes you’ve identified as necessary to reuse this architecture on my
other project are too expensive, and I won’t pay for them.” Another differ-
ence is that a project decision maker has the power to speak authoritatively
for the project, and some of the steps of the ATAM method, for example,
ask them to do precisely that. A garden-variety stakeholder, on the other
hand, can only hope to influence (but not control) the project. For more on
stakeholders, see the sidebar Stakeholders on page 63 in Chapter 3.

The client for an architecture evaluation will usually be a project decision
maker, with a vested interest in the outcome of the evaluation and holding
some power over the project.

Sometimes the evaluation team is drawn from the project staff, in which
case they are also stakeholders. This is not recommended because they will
lack the objectivity to view the architecture in a dispassionate way.

2.4 What Result Does an Architecture Evaluation Produce?

27

2.4 What Result Does an Architecture
Evaluation Produce?

In concrete terms, an architecture evaluation produces a report, the form and
content of which vary according to the method used. Primarily, though, an
architecture evaluation produces information. In particular, it produces answers
to two kinds of questions.

1.

Is this architecture suitable for the system for which it was designed?

2.

Which of two or more competing architectures is the most suitable one for
the system at hand?

Suitability for a given task, then, is what we seek to investigate. We say
that an architecture is suitable if it meets two criteria.

1.

The system that results from it will meet its quality goals. That is, the sys-
tem will run predictably and fast enough to meet its performance (timing)
requirements. It will be modifiable in planned ways. It will meet its secu-
rity constraints. It will provide the required behavioral function. Not every
quality property of a system is a direct result of its architecture, but many
are, and for those that are, the architecture is suitable if it provides the
blueprint for building a system that achieves those properties.

2.

The system can be built using the resources at hand: the staff, the budget,
the legacy software (if any), and the time allotted before delivery. That is,
the architecture is

buildable

.

This concept of suitability will set the stage for all of the material that fol-
lows. It has a couple of important implications. First, suitability is only relevant
in the context of specific (and specifically articulated) goals for the architecture
and the system it spawns. An architecture designed with high-speed perfor-
mance as the primary design goal might lead to a system that runs like the wind
but requires hordes of programmers working for months to make any kind of
modification to it. If modifiability were more important than performance

 for
that system

, then that architecture would be unsuitable

for that system

(but
might be just the ticket for another one).

In

Alice in Wonderland,

Alice encounters the Cheshire Cat and asks for
directions. The cat responds that it depends upon where she wishes to go. Alice
says she doesn’t know, whereupon the cat tells her it doesn’t matter which way
she walks. So

If the sponsor of a system cannot tell you what any of the quality goals
are for the system, then any architecture will do.

An overarching part of an architecture evaluation is to capture and priori-
tize specific goals that the architecture must meet in order to be considered

28

Evaluating a Software Architecture

Why Should I Believe You?

Frequently when we embark on an evaluation we are outsiders. We have been
called in by a project leader or a manager or a customer to evaluate a project.
Perhaps this is seen as an audit, or perhaps it is just part of an attempt to
improve an organization’s software engineering practice. Whatever the reason,
unless the evaluation is part of a long-term relationship, we typically don’t
personally know the architect, or we don’t know the major stakeholders.

Sometimes this distance is not a problem—the stakeholders are receptive and
enthusiastic, eager to learn and to improve their architecture. But on other occa-
sions we meet with resistance and perhaps even fear. The major players sit there
with their arms folded across their chests, clearly annoyed that they have been
taken away from their

real

 work, that of architecting, to pursue this silly manage-
ment-directed evaluation. At other times the stakeholders are friendly and even
receptive, but they are skeptical. After all, they are the experts in their domains and
they have been working in the area, and maybe even on this system, for years.

In either case their attitudes, whether friendly or unfriendly, indicate a
substantial amount of skepticism over the prospect that the evaluation can
actually help. They are in effect saying, “What could a bunch of outsiders pos-
sibly have to tell us about

our

 system that we don’t already know?” You will
probably have to face this kind of opposition or resistance at some point in
your tenure as an architecture evaluator.

There are two things that you need to know and do to counteract this
opposition. First of all, you need to counteract the fear. So keep calm. If you
are friendly and let them know that the point of the meeting is to learn about
and improve the architecture (rather than pointing a finger of blame) then you
will find that resistance melts away quickly. Most people actually enjoy the
evaluation process and see the benefits very quickly. Second, you need to
counteract the skepticism. Of course they are the experts in the domain. You
know this and they know this, and you should acknowledge this up front. But
you are the architecture and quality attribute expert. No matter what the domain,
architectural approaches for dealing with and analyzing quality attributes
don’t vary much. There are relatively few ways to approach performance or
availability or security on an architectural level. As an experienced evaluator
(and with the help of the insight from the quality attribute communities) you
have seen these before, and they don’t change much from domain to domain.

Furthermore, as an outsider you bring a “fresh set of eyes,” and this alone
can often bring new insights into a project. Finally, you are following a pro-
cess that has been refined over dozens of evaluations covering dozens of dif-
ferent domains. It has been refined to make use of the expertise of many
people, to elicit, document, and cross-check quality attribute requirements and
architectural information. This alone will bring benefit to your project—we
have seen it over and over again. The process works!

—RK

2.4 What Result Does an Architecture Evaluation Produce?

29

suitable. In a perfect world, these would all be captured in a requirements doc-
ument, but this notion fails for two reasons: (1) Complete and up-to-date
requirements documents don’t always exist, and (2) requirements documents
express the requirements for a

system

. There are additional requirements levied
on an architecture besides just enabling the system’s requirements to be met.
(Buildability is an example.)

The second implication of evaluating for suitability is that the answer that
comes out of the evaluation is not going to be the sort of scalar result you may
be used to when evaluating other kinds of software artifacts. Unlike code met-
rics, for example, in which the answer might be 7.2 and anything over 6.5 is
deemed unacceptable, an architecture evaluation is going to produce a more
thoughtful result.

We are not interested in precisely characterizing any quality attribute
(using measures such as mean time to failure or end-to-end average latency).
That would be pointless at an early stage of design because the actual parameters
that determine these values (such as the actual execution time of a component)
are often implementation dependent. What we are interested in doing—in the
spirit of a risk-mitigation activity—is learning where an attribute of interest is
affected by architectural design decisions, so that we can reason carefully about
those decisions, model them more completely in subsequent analyses, and devote
more of our design, analysis, and prototyping energies to such decisions.

An architectural evaluation will tell you that the architecture has been
found suitable with respect to one set of goals and problematic with respect to
another set of goals. Sometimes the goals will be in conflict with each other, or
at the very least, some goals will be more important than other ones. And so the
manager of the project will have a decision to make if the architecture evalu-
ates well in some areas and not so well in others. Can the manager live with the
areas of weakness? Can the architecture be strengthened in those areas? Or is it
time for a wholesale restart? The evaluation will help reveal where an architec-
ture is weak, but weighing the cost against benefit to the project of strengthen-
ing the architecture is solely a function of project context and is in the realm of
management. So

An architecture evaluation doesn’t tell you “yes” or “no,” “good” or
“bad,” or “6.75 out of 10.” It tells you where you are at risk.

Architecture evaluation can be applied to a single architecture or to a
group of competing architectures. In the latter case, it can reveal the strengths
and weaknesses of each one. Of course, you can bet that no architecture will
evaluate better than all others in all areas. Instead, one will outperform others
in some areas but underperform in other areas. The evaluation will first identify
what the areas of interest are and then highlight the strengths and weaknesses
of each architecture in those areas. Management must decide which (if any) of

30

Evaluating a Software Architecture

the competing architectures should be selected or improved or whether none of
the candidates is acceptable and a new architecture should be designed.

1

2.5 For What Qualities Can We Evaluate an
Architecture?

In this section, we say more precisely what suitability means. It isn’t quite true
that we can tell from looking at an architecture whether the ensuing system
will meet

all

 of its quality goals. For one thing, an implementation might
diverge from the architectural plan in ways that subvert the quality plans. But
for another, architecture does not strictly determine all of a system’s qualities.

Usability is a good example. Usability is the measure of a user’s ability to
utilize a system effectively. Usability is an important quality goal for many sys-
tems, but usability is largely a function of the user interface. In modern systems
design, particular aspects of the user interface tend to be encapsulated within
small areas of the architecture. Getting data to and from the user interface and
making it flow around the system so that the necessary work is done to support
the user is certainly an architectural issue, as is the ability to change the user
interface should that be required. However, many aspects of the user inter-
face—whether the user sees red or blue backgrounds, a radio button or a dialog
box—are by and large not architectural since those decisions are generally con-
fined to a limited area of the system.

But other quality attributes lie squarely in the realm of architecture. For
instance, the ATAM concentrates on evaluating an architecture for suitability in
terms of imbuing a system with the following quality attributes. (Definitions
are based on Bass et al. [Bass 98])

•

Performance:

 Performance refers to the responsiveness of the system—the
time required to respond to stimuli (events) or the number of events pro-
cessed in some interval of time. Performance qualities are often expressed
by the number of transactions per unit time or by the amount of time it
takes to complete a transaction with the system. Performance measures are
often cited using

benchmarks

, which are specific transaction sets or work-
load conditions under which the performance is measured.

•

Reliability:

 Reliability is the ability of the system to keep operating over
time. Reliability is usually measured by mean time to failure.

1. This is the last time we will address evaluating more than one architecture at a time since the
methods we describe are carried out in the same fashion for either case.

2.5 For What Qualities Can We Evaluate an Architecture?

31

•

Availability:

 Availability is the proportion of time the system is up and
running. It is measured by the length of time between failures as well as
how quickly the system is able to resume operation in the event of failure.

•

Security:

 Security is a measure of the system’s ability to resist unautho-
rized attempts at usage and denial of service while still providing its ser-
vices to legitimate users. Security is categorized in terms of the types of
threats that might be made to the system.

•

Modifiability:

 Modifiability is the ability to make changes to a system
quickly and cost effectively. It is measured by using specific changes as
benchmarks and recording how expensive those changes are to make.

•

Portability:

 Portability is the ability of the system to run under different
computing environments. These environments can be hardware, software,
or a combination of the two. A system is portable to the extent that all of
the assumptions about any

particular

 computing environment are confined
to one component (or at worst, a small number of easily changed compo-
nents). If porting to a new system requires change, then portability is sim-
ply a special kind of modifiability.

•

Functionality:

 Functionality is the ability of the system to do the work for
which it was intended. Performing a task requires that many or most of the
system’s components work in a coordinated manner to complete the job.

•

Variability:

 Variability is how well the architecture can be expanded or
modified to produce new architectures that differ in specific, preplanned
ways. Variability mechanisms may be run-time (such as negotiating on the
fly protocols), compile-time (such as setting compilation parameters to
bind certain variables), build-time (such as including or excluding various
components or choosing different versions of a component), or code-time
mechanisms (such as coding a device driver for a new device). Variability
is important when the architecture is going to serve as the foundation for a
whole family of related products, as in a product line.

•

Subsetability:

 This is the ability to support the production of a subset of
the system. While this may seem like an odd property of an architecture, it
is actually one of the most useful and most overlooked. Subsetability can
spell the difference between being able to deliver nothing when schedules
slip versus being able to deliver a substantial part of the product. Subset-
ability also enables incremental development, a powerful development
paradigm in which a minimal system is made to run early on and functions
are added to it over time until the whole system is ready. Subsetability is a
special kind of variability, mentioned above.

•

Conceptual integrity:

 Conceptual integrity is the underlying theme or
vision that unifies the design of the system at all levels. The architecture
should do similar things in similar ways. Conceptual integrity is exempli-
fied in an architecture that exhibits consistency, has a small number of data

32

Evaluating a Software Architecture

and control mechanisms, and uses a small number of patterns throughout
to get the job done.

By contrast, the SAAM concentrates on modifiability in its various forms
(such as portability, subsetability, and variability) and functionality. The ARID
method provides insights about the suitability of a portion of the architecture to
be used by developers to complete their tasks.

If some other quality than the ones mentioned above is important to you,
the methods still apply. The ATAM, for example, is structured in steps, some of
which are dependent upon the quality being investigated, and others of which
are not. Early steps of the ATAM allow you to define new quality attributes by
explicitly describing the properties of interest. The ATAM can easily accom-
modate new quality-dependent analysis. When we introduce the method, you’ll
see where to do this. For now, though, the qualities in the list above form the
basis for the methods’ capabilities, and they also cover most of what people
tend to be concerned about when evaluating an architecture.

2.6 Why Are Quality Attributes Too Vague for
Analysis?

Quality attributes form the basis for architectural evaluation, but simply nam-
ing the attributes by themselves is not a sufficient basis on which to judge an
architecture for suitability. Often, requirements statements like the following
are written:

• “The system shall be robust.”

• “The system shall be highly modifiable.”

• “The system shall be secure from unauthorized break-in.”

• “The system shall exhibit acceptable performance.”

Without elaboration, each of these statements is subject to interpretation
and misunderstanding. What you might think of as robust, your customer
might consider barely adequate—or vice versa. Perhaps the system can easily
adopt a new database but cannot adapt to a new operating system. Is that sys-
tem maintainable or not? Perhaps the system uses passwords for security,
which prevents a whole class of unauthorized users from breaking in, but has
no virus protection mechanisms. Is that system secure from intrusion or not?

The point here is that quality attributes are not absolute quantities; they
exist in the context of specific goals. In particular:

2.6 Why Are Quality Attributes Too Vague for Analysis?

33

• A system is modifiable (or not) with respect to a specific kind of change.

• A system is secure (or not) with respect to a specific kind of threat.

• A system is reliable (or not) with respect to a specific kind of fault occurrence.

• A system performs well (or not) with respect to specific performance criteria.

• A system is suitable (or not) for a product line with respect to a specific set
or range of envisioned products in the product line (that is, with respect to
a specific product line

scope

).

• An architecture is buildable (or not) with respect to specific time and bud-
get constraints.

If this doesn’t seem reasonable, consider that no system can ever be, for
example, completely reliable under all circumstances. (Think power failure,
tornado, or disgruntled system operator with a sledgehammer.) Given that, it is
incumbent upon the architect to understand under exactly what circumstances
the system should be reliable in order to be deemed acceptable.

In a perfect world, the quality requirements for a system would be com-
pletely and unambiguously specified in a requirements document. Most of us
do not live in such a world. Requirements documents are not written, or are
written poorly, or are not finished when it is time to begin the architecture.
Also, architectures have goals of their own that are not enumerated in a
requirements document for the system: They must be built using resources at
hand, they should exhibit conceptual integrity, and so on. And so the first job of
an architecture evaluation is to elicit the specific quality goals against which
the architecture will be judged.

If all of these goals are specifically, unambiguously articulated, that’s
wonderful. Otherwise, we ask the stakeholders to help us write them down dur-
ing an evaluation. The mechanism we use is the

scenario

. A scenario is a short
statement describing an interaction of one of the stakeholders with the system.
A user would describe using the system to perform some task; these scenarios
would very much resemble

use cases

 in object-oriented parlance. A mainte-
nance stakeholder would describe making a change to the system, such as
upgrading the operating system in a particular way or adding a specific new
function. A developer’s scenario might involve using the architecture to build
the system or predict its performance. A customer’s scenario might describe
the architecture reused for a second product in a product line or might assert
that the system is buildable given certain resources.

Each scenario, then, is associated with a particular stakeholder (although
different stakeholders might well be interested in the same scenario). Each sce-
nario also addresses a particular quality, but in specific terms. Scenarios are
discussed more fully in Chapter 3.

34

Evaluating a Software Architecture

2.7 What Are the Outputs of an Architecture
Evaluation?

2.7.1 Outputs from the ATAM, the SAAM, and ARID

An architecture evaluation results in information and insights about the archi-
tecture. The ATAM, the SAAM, and the ARID method all produce the outputs
described below.

Prioritized Statement of Quality Attribute Requirements

An architecture evaluation can proceed only if the criteria for suitability are
known. Thus, elicitation of quality attribute requirements against which the
architecture is evaluated constitutes a major portion of the work. But no archi-
tecture can meet an unbounded list of quality attributes, and so the methods use
a consensus-based prioritization. Having a prioritized statement of the quality
attributes serves as an excellent documentation record to accompany any archi-
tecture and guide it through its evolution. All three methods produce this in the
form of a set of quality attribute scenarios.

Mapping of Approaches to Quality Attributes

The answers to the analysis questions produce a mapping that shows how the
architectural approaches achieve (or fail to achieve) the desired quality
attributes. This mapping makes a splendid rationale for the architecture. Ratio-
nale is something that every architect should record, and most wish they had
time to construct. The mapping of approaches to attributes can constitute the
bulk of such a description.

Risks and Nonrisks

Risks are potentially problematic architectural decisions. Nonrisks are good
decisions that rely on assumptions that are frequently implicit in the architec-
ture. Both should be understood and explicitly recorded.

2

Documenting of risks and nonrisks consists of

• An architectural decision (or a decision that has not been made)

• A specific quality attribute response that is being addressed by that deci-
sion along with the consequences of the predicted level of the response

2. Risks can also emerge from other, nonarchitectural sources. For example, having a manage-
ment structure that is misaligned with the architectural structure might present an organiza-
tional risk. Insufficient communication between the stakeholder groups and the architect is a
common kind of management risk.

2.7 What Are the Outputs of an Architecture Evaluation?

35

• A rationale for the positive or negative effect that decision has on meeting
the quality attribute requirement

An example of a risk is

The rules for writing business logic modules in the second tier of your
three-tier client-server style are not clearly articulated (

a decision that has
not been made

). This could result in replication of functionality, thereby
compromising modifiability of the third tier (

a quality attribute response
and its consequences

). Unarticulated rules for writing the business logic
can result in unintended and undesired coupling of components (

rationale
for the negative effect

).

An example of a nonrisk is

Assuming message arrival rates of once per second, a processing time of
less than 30 milliseconds, and the existence of one higher priority process
(

the architectural decisions

), a one-second soft deadline seems reasonable
(

the quality attribute response and its consequences

) since the arrival rate
is bounded and the preemptive effects of higher priority processes are
known and can be accommodated (

the rationale

).

For a nonrisk to remain a nonrisk the assumptions must not change (or at
least if they change, the designation of nonrisk will need to be rejustified). For
example, if the message arrival rate, the processing time, or the number of
higher priority processes changes in the example above, the designation of
nonrisk could change.

2.7.2 Outputs Only from the ATAM

In addition to the preceding information, the ATAM produces an additional set
of results described below.

Catalog of Architectural Approaches Used

Every architect adopts certain design strategies and approaches to solve the
problems at hand. Sometimes these approaches are well known and part of the
common knowledge of the field; sometimes they are unique and innovative to
the system being built. In either case, they are the key to understanding
whether the architecture will meet its goals and requirements. The ATAM
includes a step in which the approaches used are catalogued, and this catalog
can later serve as an introduction to the architecture for people who need to
familiarize themselves with it, such as future architects and maintainers for the
system.

36

Evaluating a Software Architecture

Approach- and Quality-Attribute-Specific Analysis Questions

The ATAM poses analysis questions that are based on the attributes being
sought and the approaches selected by the architect. As the architecture
evolves, these questions can be used in future mini-evaluations to make sure
that the evolution is not taking the architecture in the wrong direction.

Sensitivity Points and Tradeoff Points

We term key architectural decisions

sensitivity points

 and

tradeoff points

. A
sensitivity point is a property of one or more components (and/or component
relationships) that is critical for achieving a particular quality attribute
response. For example:

• The level of confidentiality in a virtual private network might be sensitive
to the number of bits of encryption.

• The latency for processing an important message might be sensitive to the
priority of the lowest priority process involved in handling the message.

• The average number of person-days of effort it takes to maintain a system
might be sensitive to the degree of encapsulation of its communication
protocols and file formats.

Sensitivity points tell a designer or analyst where to focus attention when
trying to understand the achievement of a quality goal. They serve as yellow
flags:

“

Use caution when changing this property of the architecture.” Particular
values of sensitivity points may become risks when realized in an architecture.
Consider the examples above. A particular value in the encryption level—say,
32-bit encryption—may present a risk in the architecture. Or having a very low
priority process in a pipeline that processes an important message may become
a risk in the architecture.

A

tradeoff point

 is a property that affects more than one attribute and is a
sensitivity point for more than one attribute. For example, changing the level of
encryption could have a significant impact on both security and performance.
Increasing the level of encryption improves the predicted security but requires
more processing time. If the processing of a confidential message has a hard
real-time latency requirement then the level of encryption could be a tradeoff
point. Tradeoff points are the most critical decisions that one can make in an
architecture, which is why we focus on them so carefully.

Finally, it is not uncommon for an architect to answer an elicitation ques-
tion by saying, “We haven’t made that decision yet.” In this case you cannot
point to a component or property in the architecture and call it out as a sensitiv-
ity point because the component or property might not exist yet. However, it is
important to flag key decisions that have been made as well as key decisions
that have not yet been made.

2.8 What Are the Benefits and Costs of Performing an Architecture Evaluation?

37

2.8 What Are the Benefits and Costs of
Performing an Architecture Evaluation?

The main, and obvious, benefit of architecture evaluation is, of course, that it
uncovers problems that if left undiscovered would be orders of magnitude
more expensive to correct later. In short, architecture evaluation produces bet-
ter architectures. Even if the evaluation uncovers no problems that warrant
attention, it will increase everyone’s level of confidence in the architecture.

But there are other benefits as well. Some of them are hard to measure, but
they all contribute to a successful project and a more mature organization. You
may not experience all of these on every evaluation, but the following is a list
of the benefits we’ve often observed.

Puts Stakeholders in the Same Room

An architecture evaluation is often the first time that many of the stakeholders
have ever met each other; sometimes it’s the first time the architect has met
them. A group dynamic emerges in which stakeholders see each other as all
wanting the same thing: a successful system. Whereas before, their goals may
have been in conflict with each other (and in fact, still may be), now they are
able to explain their goals and motivations so that they begin to understand
each other. In this atmosphere, compromises can be brokered or innovative
solutions proposed in the face of greater understanding. It is almost always the
case that stakeholders trade phone numbers and e-mail addresses and open
channels of communication that last beyond the evaluation itself.

Forces an Articulation of Specific Quality Goals

The role of the stakeholders is to articulate the quality goals that the architec-
ture should meet in order to be deemed successful. These goals are often not
captured in any requirements document, or at least not captured in an unambig-
uous fashion beyond vague platitudes about reliability and modifiability. Sce-
narios provide explicit quality benchmarks.

Results in the Prioritization of Conflicting Goals

Conflicts that might arise among the goals expressed by the different stake-
holders will be aired. Each method includes a step in which the goals are prior-
itized by the group. If the architect cannot satisfy all of the conflicting goals, he
or she will receive clear and explicit guidance about which ones are considered
most important. (Of course, project management can step in and veto or adjust
the group-derived priorities—perhaps they perceive some stakeholders and
their goals as “more equal” than others—but not unless the conflicting goals
are aired.)

38 Evaluating a Software Architecture

Forces a Clear Explication of the Architecture

The architect is compelled to make a group of people not privy to the architec-
ture’s creation understand it, in detail, in an unambiguous way. Among other
things, this will serve as a dress rehearsal for explaining it to the other design-
ers, component developers, and testers. The project benefits by forcing this
explication early.

Improves the Quality of Architectural Documentation

Often, an evaluation will call for documentation that has not yet been prepared.
For example, an inquiry along performance lines will reveal the need for docu-
mentation that shows how the architecture handles the interaction of run-time
tasks or processes. If the evaluation requires it, then it’s an odds-on bet that
somebody on the project team (in this case, the performance engineer) will
need it also. Again, the project benefits because it enters development better
prepared.

Uncovers Opportunities for Cross-Project Reuse

Stakeholders and the evaluation team come from outside the development
project, but often work on or are familiar with other projects within the same
parent organization. As such, both are in a good position either to spot compo-
nents that can be reused on other projects or to know of components (or other
assets) that already exist and perhaps could be imported into the current project.

Results in Improved Architecture Practices

Organizations that practice architecture evaluation as a standard part of their
development process report an improvement in the quality of the architectures
that are evaluated. As development organizations learn to anticipate the kinds
of questions that will be asked, the kinds of issues that will be raised, and the
kinds of documentation that will be required for evaluations, they naturally
preposition themselves to maximize their performance on the evaluations.
Architecture evaluations result in better architectures not only after the fact but
before the fact as well. Over time, an organization develops a culture that pro-
motes good architectural design.

Now, not all of these benefits may resonate with you. If your organization
is small, maybe all of the stakeholders know each other and talk regularly. Per-
haps your organization is very mature when it comes to working out the
requirements for a system, and by the time the finishing touches are put on the
architecture the requirements are no longer an issue because everyone is com-
pletely clear what they are. If so, congratulations. But many of the organiza-
tions in which we have carried out architecture evaluations are not quite so
sophisticated, and there have always been requirements issues that were raised
(and resolved) when the architecture was put on the table.

2.8 What Are the Benefits and Costs of Performing an Architecture Evaluation? 39

There are also benefits to future projects in the same organization. A criti-
cal part of the ATAM consists of probing the architecture using a set of quality-
specific analysis questions, and neither the method nor the list of questions is a
secret. The architect is perfectly free to arm her- or himself before the evalua-
tion by making sure that the architecture is up to snuff with respect to the rele-
vant questions. This is rather like scoring well on a test whose questions you’ve
already seen, but in this case it isn’t cheating: it’s professionalism.

The costs of architecture evaluation are all personnel costs and opportunity
costs related to those personnel participating in the evaluation instead of some-
thing else. They’re easy enough to calculate. An example using the cost of an
ATAM-based evaluation is shown in Table 2.1. The left-most column names
the phases of the ATAM (which will be described in subsequent chapters). The
other columns split the cost among the participant groups. Similar tables can
easily be constructed for other methods.

Table 2.1 shows figures for what we would consider a medium-size evalu-
ation effort. While 70 person-days sounds like a substantial sum, in actuality it
may not be so daunting. For one reason, the calendar time added to the project
is minimal. The schedule should not be impacted by the preparation at all, nor
the follow-up. These activities can be carried out behind the scenes, as it were.
The middle phases consume actual project days, usually three or so. Second,
the project normally does not have to pay for all 70 staff days. Many of the

Table 2.1 Approximate Cost of a Medium-Size ATAM-Based Evaluation

Stakeholders

Participant
Group
ATAM Phase

Evaluation Team
(assume 5
members)

Project Decision
Makers (assume
architect, project
manager, customer)

Other Stakeholders
(assume 8)

Phase 0:
Preparation

1 person-day by
team leader

1 person-day 0

Phase 1:
Initial
evaluation
(1 day)

5 person-days 3 person-days 0

Phase 2:
Complete
evaluation
(3 days)

15 person-days 9 person-days +
2 person-days to
prepare

16 person-days (most
stakeholders present
only for 2 days)

Phase 3:
Follow-up

15 person-days 3 person-days to read
and respond to report

0

TOTAL 36 person-days 18 person-days 16 person-days

40 Evaluating a Software Architecture

stakeholders work for other cost centers, if not other organizations, than the
development group. Stakeholders by definition have a vested interest in the
system, and they are often more than willing to contribute their time to help
produce a quality product.

It is certainly easy to imagine larger and smaller efforts than the one char-
acterized by Table 2.1. As we will see, all of the methods are flexible, struc-
tured to iteratively spiral down into as much detail as the evaluators and
evaluation client feel is warranted. Cursory evaluations can be done in a day;
excruciatingly detailed evaluations could take weeks. However, the numbers in
Table 2.2 represent what we would call nominal applications of the ATAM. For
smaller projects, Table 2.2 shows how those numbers can be halved.

If your group evaluates many systems in the same domain or with the
same architectural goals, then there is another way that the cost of evaluation
can be reduced. Collect and record the scenarios used in each evaluation. Over
time, you will find that the scenario sets will begin to resemble each other.
After you have performed several of these almost-alike evaluations, you can
produce a “canonical” set of scenarios based on past experience. At this point,
the scenarios have in essence graduated to become a checklist, and you can dis-
pense with the bulk of the scenario-generation part of the exercise. This saves
about a day. Since scenario generation is the primary duty of the stakeholders, the
bulk of their time can also be done away with, lowering the cost still further.

Table 2.2 Approximate Cost of a Small ATAM-Based evaluation

Stakeholders

Participant
Group
ATAM Phase

Evaluation team
(assume 2
members)

Project Decision
Makers (assume
architect, project
manager)

Other Stakeholders
(assume 3)

Phase 0:
Preparation

1 person-day by
team leader

1 person-day 0

Phase 1:
Initial
evaluation
(1 day)

2 person-days 2 person-days 0

Phase 2:
Complete
evaluation
(2 days)

4 person-days 4 person-days +
2 person-days to
prepare

6 person-days

Phase 3:
Follow-up

8 person-days 2 person-days to read
and respond to report

0

TOTAL 15 person-days 11 person-days 6 person-days

2.9 For Further Reading 41

(You still may want to have a few key stakeholders, including the customer, to
validate the applicability of your checklist to the new system.) The team size
can be reduced, since no one is needed to record scenarios. The architect’s
preparation time should be minimal since the checklist will be publicly avail-
able even when he or she begins the architecture task.

Table 2.3 shows the cost of a medium-size checklist-based evaluation
using the ATAM, which comes in at about 4⁄7 of the cost of the scenario-based
evaluation of Table 2.1.

The next chapter will introduce the first of the three architecture evaluation
methods in this book: the Architecture Tradeoff Analysis Method.

2.9 For Further Reading

The For Further Reading list of Chapter 9 (Comparing Software Architecture
Evaluation Methods) lists good references on various architecture evaluation
methods.

Table 2.3 Approximate Cost of a Medium-Size Checklist-based ATAM-Based
Evaluation

Stakeholders

Participant
Group
ATAM Phase

Evaluation Team
(assume 4
members)

Project Decision
Makers (assume
architect, project
manager, customer)

Other Stakeholders
(assume the customer
validates the checklist)

Phase 0:
Preparation

1 person-day by
team leader

1 person-day 0

Phase 1:
Initial
evaluation
(1 day)

4 person-days 3 person-days 0

Phase 2:
Complete
evaluation
(2 days)

8 person-days 6 person-days 2 person-days

Phase 3:
Follow-up

12 person-days 3 person-days to read
and respond to report

0

TOTAL 25 person-days 13 person-days 2 person-days

42 Evaluating a Software Architecture

Zhao has assembled a nice collection of literature resources dealing with
software architecture analysis [Zhao 99].

Once an architecture evaluation has identified changes that should be
made to an architecture, how do you prioritize them? Work is emerging to help
an architect or project manager assign quantitative cost and benefit information
to architectural decisions [Kazman 01].

2.10 Discussion Questions

1. How does your organization currently decide whether a proposed software
architecture should be adopted or not? How does it decide when a soft-
ware architecture has outlived its usefulness and should be discarded in
favor of another?

2. Make a business case, specific to your organization, that tells whether or
not conducting a software architecture evaluation would pay off. Assume
the cost estimates given in this chapter if you like, or use your own.

3. Do you know of a case where a flawed software architecture led to the fail-
ure or delay of a software system or project? Discuss what caused the
problem and whether a software architecture evaluation might have pre-
vented the calamity.

4. Which quality attributes tend to be the most important to systems in your
organization? How are those attributes specified? How does the architect
know what they are, what they mean, and what precise levels of each are
required?

5. For each quality attribute discussed in this chapter—or for each that you
named in answer to the previous question—hypothesize three different
architectural decisions that would have an effect on that attribute. For
example, the decision to maintain a backup database would probably
increase a system’s availability.

6. Choose three or four pairs of quality attributes. For each pair (think about
tradeoffs), hypothesize an architectural decision that would increase the
first quality attribute at the expense of the second. Now hypothesize a dif-
ferent architectural decision that would raise the second but lower the first.

