
1

Item 2: Predicates, Part 1:
What remove() Removes

.

1. What does the std::remove() algorithm do? Be specific.
2. Write code that eliminates all values equal to 3 from a std::vector<int>.
3. A programmer working on your team wrote the following alternative pieces of

code to remove the n-th element of a container.

 // Method 1: Write a special-purpose
 // remove_nth algorithm.
 //
 template<typename FwdIter>
 FwdIter remove_nth(FwdIter first, FwdIter last, size_t n)
 {
 /* ... */
 }
 // Method 2: Write a function object which returns
 // true the nth time it's applied, and use
 // that as a predicate for remove_if.
 //
 class FlagNth
 {

ITEM 2: PREDICATES, PART 1: WHAT remove()
REMOVES DIFFICULTY: 4

This Item lets you test your standard algorithm skills. What does the standard library algo-
rithm remove() actually do, and how would you go about writing a generic function to
remove only the third element in a container?

ITEM1_11new.fm Page 1 Tuesday, November 27, 2001 12:18 PM

2 Item 2: Predicates, Part 1: What remove() Removes

 public:
 FlagNth(size_t n) : current_(0), n_(n) { }

 template<typename T>
 bool operator()(const T&) { return ++current_ == n_; }

 private:
 size_t current_;
 const size_t n_;
 };

 // Example invocation
 ... remove_if(v.begin(), v.end(), FlagNth(3)) ...

a) Implement the missing part of Method 1.
b) Which method is better? Why? Discuss anything that might be problematic

about either solution.

What remove() Removes

1. What does the std::remove() algorithm do? Be specific.

The standard algorithm remove() does not physically remove objects from a con-
tainer; the size of the container is unchanged after remove() has done its thing.
Rather, remove() shuffles up the “unremoved” objects to fill in the gaps left by
removed objects, leaving at the end one “dead” object for each removed object.
Finally, remove() returns an iterator pointing at the first “dead” object, or, if no
objects were removed, remove() returns the end() iterator.

For example, consider a vector<int> v that contains the following nine
elements:

 1 2 3 1 2 3 1 2 3

Say that you used the following code to try to remove all 3’s from the container:

 // Example 2-1
 //
 remove(v.begin(), v.end(), 3); // subtly wrong

SOLUTION

ITEM1_11new.fm Page 2 Tuesday, November 27, 2001 12:18 PM

Item 2: Predicates, Part 1: What remove() Removes 3

What would happen? The answer is something like this:

 1 2 1 2 1 2 ? ? ?

 unremoved "dead"
 objects objects

 �
 iterator returned by
 remove() points to
 the third-last object
 (because three were
 removed)

Three objects had to be removed, and the rest were copied to fill in the gaps. The
objects at the end of the container may have their original values (1 2 3), or they may
not; don’t rely on that. Again, note that the size of the container is left unchanged.

If you’re wondering why remove() works that way, the most basic reason is that
remove() doesn’t operate on a container, but rather on a range of iterators, and there’s
no such iterator operation as “remove the element this iterator points to from whatever
container it’s in.” To do that, we have to actually get at the container directly. For fur-
ther information about remove(), see also Andrew Koenig’s thorough treatment of
this topic in [Koenig99].

2. Write code that removes all values equal to 3 from a std::vector<int>.

Here’s a one-liner to do it, where v is a vector<int>:

 // Example 2-2: Removing 3's from a vector<int> v
 //
 v.erase(remove(v.begin(), v.end(), 3), v.end());

The call to remove(v.begin(), v.end(), 3) does the actual work, and returns
an iterator pointing to the first “dead” element. The call to erase() from that point
until v.end() gets rid of the dead elements so that the vector contains only the unre-
moved objects.

3. A programmer working on your team wrote the following alternative pieces of
code to remove the n-th element of a container.

 // Example 2-3(a)
 //
 // Method 1: Write a special-purpose
 // remove_nth algorithm.
 //

ITEM1_11new.fm Page 3 Tuesday, November 27, 2001 12:18 PM

4 Item 2: Predicates, Part 1: What remove() Removes

 template<typename FwdIter>
 FwdIter remove_nth(FwdIter first, FwdIter last, size_t n)
 {
 /* ... */
 }

 // Example 2-3(b)
 //
 // Method 2: Write a function object which returns
 // true the nth time it’s applied, and use
 // that as a predicate for remove_if.
 //
 class FlagNth
 {
 public:
 FlagNth(size_t n) : current_(0), n_(n) { }

 template<typename T>
 bool operator()(const T&) { return ++current_ == n_; }

 private:
 size_t current_;
 const size_t n_;
 };

 // Example invocation
 ... remove_if(v.begin(), v.end(), FlagNth(3)) ...

a) Implement the missing part of Method 1.

People often propose implementations that have the same bug as the following
code. Did you?

 // Example 2-3(c): Can you see the problem(s)?
 //
 template<typename FwdIter>
 FwdIter remove_nth(FwdIter first, FwdIter last, size_t n)
 {
 for(; n > 0; ++first, --n)
 ;
 if(first != last)
 {
 FwdIter dest = first;
 return copy(++first, last, dest);
 }
 return last;
 }

There is one problem in Example 2-3(c), and that one problem has two aspects:

ITEM1_11new.fm Page 4 Tuesday, November 27, 2001 12:18 PM

Item 2: Predicates, Part 1: What remove() Removes 5

1. Correct preconditions: We don’t require that n <= distance(first, last), so
the initial loop may move first past last, and then [first,last) is no longer a
valid iterator range. If so, then in the remainder of the function, Bad Things will
happen.

2. Efficiency: Let’s say we decided to document (and test!) a precondition that n be
valid for the given range, as a way of addressing problem #1. Then we should still
dispense with the iterator-advancing loop entirely and simply write advance(
first, n). The standard advance() algorithm for iterators is already aware of
iterator categories, and is automatically optimized for random-access iterators. In
particular, it will take constant time for random-access iterators, instead of the lin-
ear time required for other iterators.

Here is a reasonable implementation:

 // Example 2-3(d): Solving the problems
 //
 // Precondition:
 // - n must not exceed the size of the range
 //
 template<typename FwdIter>
 FwdIter remove_nth(FwdIter first, FwdIter last, size_t n)
 {
 // Check precondition. Incurs overhead in debug mode only.
 assert(distance(first, last) >= n);

 // The real work.
 advance(first, n);
 if(first != last)
 {
 FwdIter dest = first;
 return copy(++first, last, dest);
 }
 return last;
 }

b) Which method is better? Why? Discuss anything that might be problem-
atic about either solution.

Method 1 has two main advantages:

1. It is correct.
2. It can take advantage of iterator traits, specifically the iterator category, and so can

perform better for random-access iterators.

Method 2 has corresponding disadvantages, which we’ll analyze in detail in the
second part of this miniseries.

.

ITEM1_11new.fm Page 5 Tuesday, November 27, 2001 12:18 PM

