
1

Item 1: Switching Streams

1. What are the types of std::cin and std::cout?
2. Write an ECHO program that simply echoes its input and that can be invoked equiv-

alently in the two following ways:
 ECHO <infile >outfile

 ECHO infile outfile

In most popular command-line environments, the first command assumes that the
program takes input from cin and sends output to cout. The second command tells
the program to take its input from the file named infile and to produce output in the
file named outfile. The program should be able to support all of the above input/output
options.

1. What are the types of std::cin and std::cout?

The short answer is that cin boils down to:

 std::basic_istream<char, std::char_traits<char> >

ITEM 1: SWITCHING STREAMS DIFFICULTY: 2

What’s the best way to dynamically use different stream sources and targets, including the
standard console streams and files?

SOLUTION

ITEM1_11new.fm Page 1 Tuesday, November 27, 2001 12:12 PM

2 Item 1: Switching Streams

and cout boils down to:

 std::basic_ostream<char, std::char_traits<char> >

The longer answer shows the connection by following some standard typedefs
and templates. First, cin and cout have type std::istream and std::ostream,
respectively. In turn, those are typdef’d as std::basic_istream<char> and
std::basic_ostream<char>. Finally, after accounting for the default template argu-
ments, we get the above.

Note: If you are using a prestandard implementation of the iostreams subsystem,
you might still see intermediate classes, such as istream_with_assign. Those classes
do not appear in the standard.

2. Write an ECHO program that simply echoes its input and that can be invoked
equivalently in the two following ways:

 ECHO <infile >outfile

 ECHO infile outfile

The Tersest Solution
For those who like terse code, the tersest solution is a program containing just a single
statement:

 // Example 1-1: A one-statement wonder
 //
 #include <fstream>
 #include <iostream>

 int main(int argc, char* argv[])
 {
 using namespace std;

 (argc > 2
 ? ofstream(argv[2], ios::out | ios::binary)
 : cout)
 <<
 (argc > 1
 ? ifstream(argv[1], ios::in | ios::binary)
 : cin)
 .rdbuf();
 }

This works because of two cooperating facilities: First, basic_ios provides a
convenient rdbuf() member function that returns the streambuf used inside a given
stream object, in this case either cin or a temporary ifstream, both of which are

ITEM1_11new.fm Page 2 Tuesday, November 27, 2001 12:12 PM

Item 1: Switching Streams 3

derived from basic_ios. Second, basic_ostream provides an operator<<() that
accepts just such a basic_streambuf object as its input, which it then happily reads to
exhaustion. As the French would say, “C’est ça” (“and that’s it”).

Toward More-Flexible Solutions
The approach in Example 1-1 has two major drawbacks: First, the terseness is border-
line, and extreme terseness is not suitable for production code.

Second, although Example 1-1 answers the immediate question, it’s only good when
you want to copy the input verbatim. That may be enough today, but what if tomorrow
you need to do other processing on the input, such as converting it to upper case or
calculating a total or removing every third character? That may well be a reasonable
thing to want to do in the future, so it would be better right now to encapsulate the
processing work in a separate function that can use the right kind of input or output
object polymorphically:

 #include <fstream>
 #include <iostream>

 int main(int argc, char* argv[])
 {
 using namespace std;

 fstream in, out;
 if(argc > 1) in.open (argv[1], ios::in | ios::binary);
 if(argc > 2) out.open(argv[2], ios::out | ios::binary);

 Process(in.is_open() ? in : cin,
 out.is_open() ? out : cout);
 }

But how do we implement Process()? In C++, there are four major ways to get
polymorphic behavior: virtual functions, templates, overloading, and conversions.
The first two methods are directly applicable here to express the kind of polymor-
phism we need.

Guideline

Prefer readability. Avoid writing terse code (brief, but difficult to understand and main-
tain). Eschew obfuscation.

ITEM1_11new.fm Page 3 Tuesday, November 27, 2001 12:12 PM

4 Item 1: Switching Streams

Method A: Templates (Compile-Time Polymorphism)
The first way is to use compile-time polymorphism using templates, which merely
requires the passed objects to have a suitable interface (such as a member function
named rdbuf()):

 // Example 1-2(a): A templatized Process()
 //
 template<typename In, typename Out>
 void Process(In& in, Out& out)
 {
 // ... do something more sophisticated,
 // or just plain "out << in.rdbuf();"...
 }

Method B: Virtual Functions (Run-Time Polymorphism)
The second way is to use run-time polymorphism, which makes use of the fact that
there is a common base class with a suitable interface:

 // Example 1-2(b): First attempt, sort of okay
 //
 void Process(basic_istream<char>& in,
 basic_ostream<char>& out)
 {
 // ... do something more sophisticated,
 // or just plain "out << in.rdbuf();"...
 }

Note that in Example 1-2(b), the parameters to Process() are not of type
basic_ios<char>& because that wouldn’t permit the use of operator<<().

Of course, the approach in Example 1-2(b) depends on the input and output
streams being derived from basic_istream<char> and basic_ostream<char>. That
happens to be good enough for our example, but not all streams are based on plain
chars or even on char_traits<char>. For example, wide character streams are based
on wchar_t, and Exceptional C++ [Sutter00] Items 2 and 3 showed the potential use-
fulness of user-defined traits with different behavior (in those cases, ci_char_traits
provided case insensitivity).

So even Method B ought to use templates and let the compiler deduce the argu-
ments appropriately:

 // Example 1-2(c): Better solution
 //
 template<typename C = char, typename T = char_traits<C> >
 void Process(basic_istream<C,T>& in,
 basic_ostream<C,T>& out)
 {

ITEM1_11new.fm Page 4 Tuesday, November 27, 2001 12:12 PM

Item 1: Switching Streams 5

 // ... do something more sophisticated,
 // or just plain "out << in.rdbuf();"...
 }

Sound Engineering Principles
All of these answers are “right” as far as they go, but in this situation I personally tend
to prefer Method A. This is because of two valuable guidelines. The first is this:

Avoid writing code that solves only the immediate problem. Writing an extensible
solution is almost always better—as long as we don’t go overboard, of course.

Balanced judgment is one hallmark of the experienced programmer. In particular,
experienced programmers understand how to strike the right balance between writing
special-purpose code that solves only the immediate problem (shortsighted, hard to
extend) and writing a grandiose general framework to solve what should be a simple
problem (rabid overdesign).

Compared with the approach in Example 1-1, Method A has about the same over-
all complexity but it’s easier to understand and more extensible, to boot. Compared
with Method B, Method A is at once simpler and more flexible; it is more adaptable to
new situations because it avoids being hardwired to work with the iostreams hierarchy
only.

So if two options require about the same effort to design and implement and are
about equally clear and maintainable, prefer extensibility. This advice is not intended
as an open license to go overboard and overdesign what ought to be a simple system;
we all do that too much already. This advice is, however, encouragement to do more
than just solve the immediate problem, when a little thought lets you discover that the
problem you’re solving is a special case of a more general problem. This is especially
true because designing for extensibility often implicitly means designing for encapsu-
lation.

As far as possible, one piece of code—function or class—should know about and be
responsible for one thing.

Guideline

Prefer extensibility.

Guideline

Prefer encapsulation. Separate concerns.

ITEM1_11new.fm Page 5 Tuesday, November 27, 2001 12:12 PM

6 Item 1: Switching Streams

Arguably best of all, Method A exhibits good separation of concerns. The code
that knows about the possible differences in input/output sources and sinks is sepa-
rated from the code that knows how to actually do the work. This separation also
makes the intent of the code clearer, easier for a human to read and digest. Good sepa-

ITEM1_11new.fm Page 6 Tuesday, November 27, 2001 12:12 PM

