
237

C H A P T E R 7
Entity Bean Application

Example

THIS chapter uses an example of a distributed application to illustrate how enter-
prise applications use entity beans. The example application is typical of applica-
tions that include components built by multiple organizations. The chapter shows
how the different organizations develop the respective components of the applica-
tion and how, ultimately, the customer deploys the entire application.

The example application illustrates the following:

• The techniques for using entity beans to develop applications for different
customers with different operational environments. An Independent Soft-
ware Vendor (ISV) uses entity beans in the development of an application so
that it can sell the application to as broad a possible range of customers and op-
erational environments. Our example illustrates:

� How the ISV uses entity beans with container-managed persistence to inte-
grate its application with the customer’s existing applications and database.

� How the ISV uses the entity bean client-view API as the integration points
with the different third party components.

• The techniques for integrating application software parts from multiple
vendors into a single application. We illustrate:

� How an ISV enables the customer to extend the application by adding com-
ponents from other vendors.

� How other vendors structure their components to facilitate the integration of
their components with the first ISV.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE238

• The implementation of several entity beans to illustrate the various issues
of the entity bean architecture. Entity beans use different styles to implement
their persistence; thus, we illustrate the use of both container-managed and
bean-managed persistence. In addition, we illustrate different strategies for im-
plementing entity bean state, including:

� An entity bean whose state is implemented in a database using JDBC. This
is the PremiumHealthPlanEJB entity bean.

� An entity bean whose state is implemented by other entity beans. This is the
WrapperPlanEJB entity bean.

� An entity bean whose state is stored in a remote Web server accessible using
XML over HTTP. This is the ProvidencePlanBeanEJB entity bean.

• Various design approaches for an entity bean’s remote interface, plus the
advantages each approach offers to different applications. The developer
should design the remote interface such that its methods support the intended
client use cases.

• The techniques for caching an entity object’s persistent state. The example
illustrates how to use the instance variables of an entity bean class, along with
the ejbLoad and ejbStore methods, to cache the entity object’s persistent state.

• The correct approach that a client application (such as EnrollmentBean)
takes to use the entity bean client-view API.

• The use of an entity bean to aggregate the function of multiple other entity
beans into a single component. WrapperPlanEJB is an entity bean that per-
forms just such a function. Aggregation simplifies the development of an ap-
plication that needs to access multiple entity beans because the application can
access their functions through the single aggregate bean.

• The correspondence of entity beans to database rows. In particular, an en-
tity object does not always correspond to a single row in a database. The ex-
ample illustrates that the state of an entity object can map to multiple rows in
possibly multiple tables in the database. In addition, we show that it is not nec-
essary to expose as entity beans the business objects which are not intended to
be invoked from other applications. These objects could be implemented as de-
pendent objects of the entity beans with which they are associated. For exam-
ple, the Doctor object is implemented as a dependent object of the Plan entity
object.

• The techniques for subclassing an entity bean with container-managed

APPLICATION OVERVIEW 239

persistence to create an entity bean with bean-managed persistence. The
subclass implements the data access methods.

• The packaging of enterprise beans into J2EE standard files. The example
illustrates packaging of the entity beans and their dependent parts into the stan-
dard ejb-jar file and the J2EE enterprise application archive file (.ear file).

• The parts of an application which do not have to be developed. The exam-
ple code is also interesting in what it does not include. The reader will see no
transaction nor security management-related code. The deployment descrip-
tors describe declaratively the transaction and security requirements for entity
beans. The transaction management is described in Chapter 8, Understanding
Transactions, and Chapter 9, Managing Security, describes security manage-
ment.

• A discussion on application integration techniques involving entity beans.

The chapter begins with the description of the problem. Then, to give you a
feel for the scope of the application, it describes the application components from
a high level. This is followed by detailed information on each part of the applica-
tion, from the perspective of the vendor that developed the part.

7.1 Application Overview

Our example application illustrates the development and deployment of an enter-
prise application that consists of components developed by multiple vendors. We
illustrate how using entity beans in the application facilitates the integration of the
components from different vendors.

7.1.1 Problem Description

The example entity bean application implements a benefits self-service application.
An employee uses this application to select and enroll in the benefits plans offered
by the company. From the end user perspective, the application is identical to the
application described in Chapter 4, Working with Session Beans, which in that case
was a benefits application built using session beans. However, the following are the
key differences in the design of the two applications:

• Wombat Inc. developed the core of the application. Wombat is an ISV that spe-

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE240

cializes in the development of benefits applications used by enterprises.
Wombat wants to sell its application to as many different enterprises as it can;
this means that its application must work in a myriad of different operational
environments. In contrast, Star Enterprise’s IT department developed the ap-
plication illustrated in Chapter 4. Because that application was only intended
to be used within Star Enterprise’s own environment, it was developed with no
regard for the application’s portability to operational environments other than
that of Star Enterprise.

• The application described in this chapter allows dynamic changes to the con-
figuration of the available medical and dental plans. For example, a benefits
administrator at Star Enterprise can add and remove medical and dental plans
to the benefits application. In contrast, the application in Chapter 4 requires re-
deployment to change the configuration of the available plans.

• Star Enterprise uses a payroll system from Aardvark (another ISV) that is a
mainframe application. External programs cannot directly access the payroll
system or its database. The PayrollEJB enterprise bean from Aardvark pro-
vides the integration interfaces so that other applications can access the payroll
system.

• The application described in this chapter dynamically interacts with the plan
providers; that is, with the insurance companies. For example, a plan provider
can change the premium calculation formula and manage the list of doctors
participating in the offered plans, and the application reflects these changes. In
contrast, the application in Chapter 4 requires a redeployment to change this
information.

7.1.2 Main Parts of the Application

The example application presented here consists of multiple enterprise beans, Web
applications, and databases. Typical for an application such as this, some parts
already existed at Star Enterprise, while multiple outside organizations developed
the other parts. Figure 7.1 illustrates the logical parts of the application. It is fol-
lowed by a brief description.

APPLICATION OVERVIEW 241

The section “Summary of the Integration Techniques” on page 362 discusses
how to use the EJB architecture to integrate these parts at deployment time.

Figure 7.1 Logical Parts of the Entity Bean Benefits Application

<<Entity Bean>>
ProvidencePlanEJB

<<Entity Bean>>
WrapperPlanEJB

<<Web App>>
BenefitsAdminWeb

<<Web App>>
EnrollmentWeb

<<Session Bean>>
EnrollmentEJB

<<Entity Bean>>
EmployeeEJB

<<Entity Bean>>
SelectionEJB

BenefitsDatabase

<<Entity Bean>>
PremiumHealthPlanEJB

<<Web App>>
Premium

<<Web App>>
ProvidenceServiceWeb

PremiumHealthDatabase

<<Session Bean>>
PayrollEJB

<<Mainframe App>>
Payroll System

EmployeeDatabase

Parts pre-existing
at Star Enterprise

Parts developed by Wombat

Parts developed by
Providence

Parts developed by
Premium Health

Premium
HealthAdminApp

HealthAdminWeb

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE242

The application consists of four principal parts, and these parts come from
four different sources:

• The pre-existing employee and payroll parts in the Star Enterprise’s operation-
al environment

• The Wombat Benefits application, which consists of multiple enterprise beans
and Web applications

• The enterprise bean and Web application parts developed by Premium Health
Insurance

• The enterprise bean and Web application parts developed by Providence Insur-
ance

Prior to the deployment of Wombat’s Benefits application, Star Enterprise uti-
lized the EmployeeDatabase, Payroll System, and PayrollEJB parts. These parts
pertain to the following aspects of Star Enterprise’s business:

• EmployeeDatabase contains the information about Star Enterprise’s employ-
ees.

• Payroll System is a mainframe application that Star enterprise uses for its pay-
roll.

• PayrollEJB is a stateless session bean that provides non-payroll applications
with secure access to the payroll system. Non-payroll applications, including
Wombat’s Benefits application, use PayrollEJB as the payroll integration in-
terface.

Wombat, an ISV, has implemented the bulk of the Benefits application.
Wombat develops multiple Web applications and enterprise beans, as follows:

• EnrollmentWeb is a Web application that implements the presentation logic
for the benefits enrollment process. A Wombat customer’s employees (such as
Star Enterprise’s employees when the application is deployed at Star Enter-
prise) access EnrollmentWeb via a browser.

• BenefitsAdminWeb is a Web application that implements the presentation log-
ic for business processes used by the customer’s benefits administration de-
partment. The benefits administration department uses BenefitsAdminWeb,

APPLICATION OVERVIEW 243

for example, to customize the portfolio of plans offered to the employees.

• EnrollmentEJB is a stateful session bean that implements the benefits enroll-
ment business process. It uses several entity beans to perform its function.

• EmployeeEJB is an entity bean that encapsulates access to the customer’s (Star
Enterprise, in this example) employee information. It is an entity bean with
container-managed persistence and its main role is to allow deployment-time
binding with the customer’s employee database.

• SelectionEJB is an entity bean that encapsulates the benefits selections chosen
by each employee.

• WrapperPlanEJB is an entity bean that aggregates the medical and dental plans
from multiple providers (that is, from the insurance companies). It is the inte-
gration point between the benefits application and the plan entity beans provid-
ed by the insurance companies.

• BenefitsDatabase stores the information used by the SelectionEJB and Wrap-
perPlanEJB entity beans.

Wombat defines what an insurance provider needs to do to integrate its plan
information with Wombat’s Benefits application. This integration technique is
explained in the section “Benefits Plan Integration Approach” on page 295. Our
example shows the parts developed by two insurance providers: Premium Health
and Providence. For the sake of illustration, Premium Health and Providence use
very different techniques to implement access to their plan information.

Premium Health provides PremiumHealthPlanEJB, PremiumHealthAdmin-
Web, PremiumHealthDatabase, and PremiumHealthAdminApp.

• PremiumHealthPlanEJB is an entity bean that implements the interfaces de-
fined by Wombat. PremiumHealthPlanEJB allows the Wombat Benefits appli-
cation to access the information about the medical and dental plans offered by
Premium Health.

• PremiumHealthDatabase is a database residing at Star Enterprise that stores
the data used by PremiumHealthPlanEJB.

• PremiumHealthAdminWeb is a Web application that allows Premium Health
to remotely update the benefits information stored in PremiumHealthDatabase
at Star Enterprise.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE244

• PremiumHealthAdminApp is an application that Premium Health uses to up-
load and modify the plan information in PremiumHealthDatabase.

Providence provides the ProvidencePlanEJB entity bean and ProvidenceSer-
viceWeb Web application.

• ProvidencePlanEJB allows the Wombat Benefits application to access infor-
mation about the medical and dental plans offered by Providence. Providence-
PlanEJB communicates using XML over HTTP with the
ProvidenceServiceWeb located at Providence. This enables the Benefits appli-
cation to get online the information about the medical and dental plans offered
by Providence.

• ProvidenceServiceWeb is a Web application located at the Providence site. It
is used by applications running at customer sites, including the Benefits appli-
cation running at Star Enterprise, to obtain the current plan information for the
plans offered by Providence.

7.1.3 Distributed Deployment

Star Enterprise has deployed the Benefits application across multiple servers,
including six servers within its own enterprise intranet. The Benefits application also
communicates with two servers located at the insurance companies. The deploy-
ment configuration is shown in Figure 7.2:

APPLICATION OVERVIEW 245

Figure 7.2 Benefits Application Deployment

The Benefits application is spread across six servers within Star Enterprise’s
own physical confines. The benefits department has deployed the EnrollmentWeb

<<Web Container>>

Deploys:
EnrollmentWeb
BenefitsAdminWeb

Benefits WebServer

<<EJB Container>>

Deploys:
EnrollmentEJB
SelectionEJB
EmployeeEJB
WrapperPlanEJB
PremiumHealthPlanEJB
ProvidencePlanEJB

Benefits App Server

<<Database Server>>

Deploys:
EmployeeDatabase

HR DB Server

<<EJB Container>>

Deploys:
PayrollEJB

Payroll App Server

<<Mainframe>>
Payroll System

<<Web Container>>

Deploys:
EnrollmentWeb
BenefitsAdminWeb

Extranet Web Server

<<Database Server>>

Deploys:
BenefitsDatabase

Benefits DB Server

PremiumHealthPlan
Server

<<Web Container>>
Providence Web Server

Star Enterprise

Premium Health Providence
Internet Internet

Deploys:
ProvidenceServiceWebDeploys:

PremiumHealthAdminApp

Premium
HealthDatabase

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE246

and BenefitsWeb Web applications on the Benefits Web Server. It has deployed the
enterprise beans EnrollmentEJB, SelectionEJB, EmployeeEJB, WrapperPlanEJB,
PremiumHealthPlanEJB, and ProvidencePlanEJB on the Benefits App Server.
BenefitsDatabase and PremiumHealthDatabase are stored on the Benefits DB
Server. The enterprise bean PayrollEJB is deployed on the Payroll App Server,
which in turn provides the connection to the payroll system on the mainframe.
EmployeeDatabase is stored on the Human Resources (HR) DB Server. The Pre-
miumHealthAdminWeb Web application is deployed on the Extranet Web Server
that Star Enterprise uses for communication with its trading partners.

The deployment diagram also illustrates the two servers that are physically
located outside of Star Enterprise. The Premium Plan Admin App Server is
located at Premium Health and the Providence Web Server is located at Provi-
dence. The Premium Plan Admin App Server runs the PremiumHealthAdminApp
application that communicates with the PremiumHealthAdminWeb located at Star
Enterprise; this application updates the health plan information stored at Star
Enterprise. The Providence Web Server hosts the ProvidenceServiceWeb Web
application, which is invoked by the ProvidencePlanEJB deployed at Star Enter-
prise.

Figure 7.2 illustrates deploying Web applications and enterprise beans across
multiple server machines. This is just one deployment scenario. It is possible to
deploy the application on fewer machines without modification to its components.
For example, the Benefits Web Server, Benefits App Server, Benefits DB Server,
and HR DB Server can all be part of the same J2EE server installed on a single
server machine. The example illustrates the more distributed deployment scenario
because it reflects the traditional division of “information ownership” by multiple
departments within a large enterprise. It also illustrates the power and flexibility of
the EJB architecture for developing and deploying distributed applications.

7.2 Pre-existing Parts at Star Enterprise

This section describes the relevant software and systems at Star Enterprise that pre-
existed the deployment of Wombat’s Benefits application.

7.2.1 EmployeeDatabase

The HR Department at Star Enterprise maintains the information about employees
and the company departments in EmployeeDatabase. The information is stored in

PRE-EXISTING PARTS AT STAR ENTERPRISE 247

multiple tables. The Employees table within the database is relevant to the Benefits
application. Code Example 7.1 shows the SQL CREATE statement defining this table:

CREATE TABLE Employees (

empl_id INT,

empl_first_name VARCHAR(32),

empl_last_name VARCHAR(32),

empl_addr_street VARCHAR(32),

empl_addr_city VARCHAR(32),

empl_addr_zip VARCHAR(10),

empl_addr_state VARCHAR(2),

empl_dept_id VARCHAR(10),

empl_start_date DATE,

empl_position VARCHAR(5),

empl_birth_date DATE,

...

PRIMARY KEY (empl_id)

)

Code Example 7.1 Employees Table Definition

Note that Wombat has no knowledge of the schema of EmployeeDatabase,
nor does it need that knowledge. Wombat must code its Benefits application as
generically as possible. Its primary consideration is that the application work
regardless of an individual customer’s schema and type of database management
system. If Wombat coded the Benefits application using the Star Enterprise’s
schema, the application would be unusable by other customers who are likely to
have a different schema or even a different type of database management system.

7.2.2 Payroll System

Star Enterprise’s payroll system is a mainframe application. It consists of a collec-
tion of CICS Transaction Processing (TP) programs.

Prior to the deployment of Wombat’s Benefits application, Star Enterprise
needed to give its non-mainframe applications access to the payroll information.
To accomplish this, Star Enterprise purchased a mainframe connectivity product
from vendor Aardvark.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE248

Aardvark sells enterprise beans that provide access to popular mainframe
applications, including the payroll system used by Star Enterprise. Star Enterprise
bought Aardvark’s PayrollEJB enterprise bean to enable access to the payroll
system from Java applications.

Aardvark packages the client-view interface files for its enterprise bean prod-
ucts into Java ARchive (JAR) files. Because Aardvark wants to encourage others
to build products utilizing Aardvark’s enterprise beans, it makes these client-view
JAR files available to other ISVs. With the JAR files, other vendors can create Java
applications that communicate with Aardvark’s enterprise beans. The JAR file
payroll_ejb_client.jar contains the client view of PayrollEJB. Wombat, an
ISV, uses the payroll_ejb_client.jar file in its Benefits application to access the
customer’s payroll system.

Star Enterprise deployed Aardvark’s mainframe connectivity product and
PayrollEJB.

7.2.2.1 PayrollEJB Enterprise Bean

Aardvark supplies PayrollEJB, which is a stateless session bean. The external inter-
face of the mainframe payroll system is a procedural interface, and therefore Aard-
vark defined its Java representation using a stateless session bean.

Code Example 7.2 shows the definition for the Payroll interface which is the
PayrollEJB’s remote interface:

package com.aardvark.payroll;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface Payroll extends EJBObject {

void setBenefitsDeduction(int emplNumber, double deduction)

throws RemoteException, PayrollException;

double getBenefitsDeduction(int emplNumber)

throws RemoteException, PayrollException;

double getSalary(int emplNumber)

throws RemoteException, PayrollException;

void setSalary(int emplNumber, double salary)

throws RemoteException, PayrollException;

}

Code Example 7.2 Payroll Remote Interface

PRE-EXISTING PARTS AT STAR ENTERPRISE 249

Code Example 7.3 gives the definition of the PayrollHome home interface:

package com.aardvark.payroll;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface PayrollHome extends EJBHome {

Payroll create() throws RemoteException, CreateException;

}

Code Example 7.3 PayrollHome Home Interface

The implementation of PayrollEJB’s PayrollBean class uses Aardvark’s main-
frame connectivity product. The mainframe connectivity product integrates with
the EJB Container as a resource adapter using the Connector Architecture to com-
municate with the payroll system transaction processing programs on the main-
frame. (Refer to the Java 2 platform, Enterprise Edition Connector Specification.
See “Other Sources of Information” on page xv for the complete reference to this
specification. Also note that the Connector API, while public, is not yet the final
version.)

Code Example 7.4 shows the implementation of the PayrollBean class.

package com.aardvark.payroll.impl;

import javax.ejb.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.resource.cci.ConnectionFactory;

import javax.resource.cci.Connection;

import javax.resource.cci.MappedRecord;

import javax.resource.cci.RecordFactory;

import javax.resource.cci.InteractionSpec;

import javax.resource.cci.Interaction;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE250

import javax.resource.ResourceException;

import com.aardvark.payroll.PayrollException;

public class PayrollBean implements SessionBean {

// Mainframe connection factory.

private ConnectionFactory connectionFactory;

public void setBenefitsDeduction(int emplNumber,

double deduction) throws PayrollException

{

Connection cx = null;

try {

// Obtain connection to mainframe

cx = getConnection();

// Create an interaction object

Interaction ix = cx.createInteraction();

InteractionSpecImpl ixSpec = new InteractionSpecImpl();

// Set the name of the TP program to be invoked

ixSpec.setFunctionName(“SETPAYROLL_DEDUCTION”);

// Specify that we will be sending input parameters

// to the TP program, but are expecting to receive

// no output parameters.

ixSpec.setInteractionVerb(InteractionSpec.SYNC_SEND);

RecordFactory rf = ix.getRecordFactory();

// Create an object that knows how to

// format the input parameters

MappedRecord input =

rf.createMappedRecord(“PAYROLLINFO_DEDUCTION”);

input.put(“EMPLOYEENUMBER”, new Integer(emplNumber));

input.put(“DEDUCTION”, new Double(deduction));

// Execute invokes the TP program, passing it

PRE-EXISTING PARTS AT STAR ENTERPRISE 251

// the input parameters

ix.execute(ixSpec, input);

} catch (ResourceException ex) {

throw new EJBException(ex);

} finally {

try {

if (cx != null) cx.close();

} catch (ResourceException ex) {

}

}

}

public double getBenefitsDeduction(int emplNumber)

throws PayrollException

{

Connection cx = null;

try {

cx = getConnection();

Interaction ix = cx.createInteraction();

InteractionSpecImpl ixSpec = new InteractionSpecImpl();

ixSpec.setFunctionName(“GETPAYROLLDATA”);

ixSpec.setInteractionVerb(

InteractionSpec.SYNC_SEND_RECEIVE);

RecordFactory rf = ix.getRecordFactory();

MappedRecord input =

rf.createMappedRecord(“EMPLOYEEINFO”);

input.put(“EMPLOYEENUMBER”, new Integer(emplNumber));

EmployeeRecord employee = new EmployeeRecordImpl();

if (ix.execute(ixSpec, input, employee))

return employee.getBenefitsDeduction();

else

throw new PayrollException(

PayrollException.INVAL_EMPL_NUMBER);

} catch (ResourceException ex) {

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE252

throw new EJBException(ex);

} finally {

try {

if (cx != null) cx.close();

} catch (ResourceException ex) {

}

}

}

public void setSalary(int emplNumber, double salary)

throws PayrollException

{

Connection cx = null;

try {

cx = getConnection();

Interaction ix = cx.createInteraction();

InteractionSpecImpl ixSpec = new InteractionSpecImpl();

ixSpec.setFunctionName(“SETPAYROLL_SALARY”);

ixSpec.setInteractionVerb(InteractionSpec.SYNC_SEND);

RecordFactory rf = ix.getRecordFactory();

MappedRecord input =

rf.createMappedRecord(“PAYROLLINFO_SALARY”);

input.put(“EMPLOYEENUMBER”, new Integer(emplNumber));

input.put(“SALARY”, new Double(salary));

ix.execute(ixSpec, input);

} catch (ResourceException ex) {

throw new EJBException(ex);

} finally {

try {

if (cx != null) cx.close();

} catch (ResourceException ex) {

}

}

}

PRE-EXISTING PARTS AT STAR ENTERPRISE 253

public double getSalary(int emplNumber)

throws PayrollException

{

Connection cx = null;

try {

cx = getConnection();

Interaction ix = cx.createInteraction();

InteractionSpecImpl ixSpec = new InteractionSpecImpl();

ixSpec.setFunctionName(“GETPAYROLLDATA”);

ixSpec.setInteractionVerb(

InteractionSpec.SYNC_SEND_RECEIVE);

RecordFactory rf = ix.getRecordFactory();

MappedRecord input =

rf.createMappedRecord(“EMPLOYEEINFO”);

input.put(“EMPLOYEENUMBER”, new Integer(emplNumber));

EmployeeRecord employee = new EmployeeRecordImpl();

if (ix.execute(ixSpec, input, employee))

return employee.getSalary();

else

throw new PayrollException(

PayrollException.INVAL_EMPL_NUMBER);

} catch (ResourceException ex) {

throw new EJBException(ex);

} finally {

try {

if (cx != null) cx.close();

} catch (ResourceException ex) {

}

}

}

public void ejbCreate() {}

public void ejbRemove() {}

public void ejbPassivate() {}

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE254

public void ejbActivate() {}

public void setSessionContext(SessionContext sc) {}

private Connection getConnection() {

try {

Connection cx = connectionFactory.getConnection();

return cx;

} catch (ResourceException ex) {

throw new EJBException(ex);

}

}

private void readEnvironment() {

try {

Context nc = new InitialContext();

connectionFactory = (ConnectionFactory)nc.lookup(

“java:comp/env/eis/ConnectionFactory”);

} catch (NamingException ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.4 PayrollBean Class

Let’s look at the implementation of the setBenefitsDeduction method. It first
obtains a Connection object to use for communication with the mainframe. It uses
the Connection object to create an Interaction object. The Interaction object is
used for a single interaction with the mainframe.

Then, the setBenefitsDeduction method creates an InteractionSpecImpl

object and sets on it the name of the target TP mainframe program. It also speci-
fies the direction of the interaction. In our case, the SYNC_SEND verb indicates that
arguments pass only to the mainframe.

The setBenefitsDeduction method next creates a MappedRecord object and
uses the put methods to set the values of input arguments to be sent to the target
mainframe program.

PARTS DEVELOPED BY WOMBAT 255

Finally, the setBenefitsDeduction method invokes the execute method on
the Interaction object, which causes the resource adapter to send the input argu-
ments to the SETPAYROLL_DEDUCTION program on the mainframe. Under the covers,
the EJB Container and the mainframe resource adaptor propagate the transaction
from the PayrollBean instance to the mainframe TP program. The developer of the
PayrollBean did not have to write any transaction-related code to enable this prop-
agation of the transaction.

Refer to “CCI Interface Classes” on page 441 in Appendix B for a more
detailed description of the classes that implement the CCI interface.

7.3 Parts Developed by Wombat

Wombat Inc. is an ISV specializing in the development of applications for enter-
prises to use to administer benefits plans (such as medical and dental insurance
plans). One Wombat application is a Web-based self-service benefits enrollment
application. Employees of an enterprise use the application to make selections from
multiple medical and dental plans offered to them by their employer.

Wombat’s goal is to develop a single generic benefits enrollment application
and sell it to many customer enterprises. The benefits enrollment application is not
an isolated application: it uses data provided by other applications or databases
that exist in the customers’ operational environment. This presents a challenge for
Wombat: every customer is likely to have a different implementation of the appli-
cation or data with which the benefits enrollment application needs to integrate.
For example, the enrollment application needs access to a database that contains
the information about employees. It also needs access to the payroll system so that
it can update benefits-related paycheck deductions. In addition, the enrollment
application needs to be integrated at the customer site with the plan-specific com-
ponents provided by the insurance companies.

Wombat uses entity bean components to integrate the benefits enrollment
application with applications or databases from other parties.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE256

7.3.1 Overview of the Wombat Parts

Wombat develops the Web applications and enterprise beans, which are illustrated
in Figure 7.3. Each application and enterprise bean is detailed throughout this sec-
tion.

Figure 7.3 Web Applications and Enterprise Beans Developed by Wombat

• EnrollmentWeb—A Web application that implements the presentation logic
for the benefits enrollment process. A customer’s employees use Enroll-
mentWeb to enroll into the offered medical and dental plans.

• BenefitsAdminWeb—A Web application that implements the presentation
logic for business processes used by the customer’s benefits administration de-
partment. The benefits administration department uses this web application to
configure and customize the medical and dental plans offered to the employ-
ees.

• EnrollmentEJB—A stateful session bean that implements the benefits enroll-
ment business process.

• EmployeeEJB—An entity bean that encapsulates access to a customer’s em-
ployee information. It is an entity bean with container-managed persistence so
that it can accommodate the different representations of employee databases at
different customer sites. Container-managed persistence allows deployment-
time binding with the customer’s employee database.

<<Entity Bean>>
WrapperPlanEJB

<<Web App>>
BenefitsAdminWeb

<<Web App>>
EnrollmentWeb

<<Session Bean>>
EnrollmentEJB

<<Entity Bean>>
EmployeeEJB

<<Entity Bean>>
SelectionEJB

BenefitsDatabase

PARTS DEVELOPED BY WOMBAT 257

• SelectionEJB—An entity bean that encapsulates the benefits selections cho-
sen by each employee.

• WrapperPlanEJB—An entity bean that aggregates the medical and dental
plans from multiple providers (that is, insurance companies). It takes the dif-
ferent plans from multiple providers and “wraps” them into a single compo-
nent, thus simplifying application development. WrapperPlanEJB insulates the
rest of the enrollment application from the configuration of the individual med-
ical and dental plans. Without this entity bean, the application would have to
be coded to handle several different health plans; with this entity bean, the ap-
plication has only to deal with a single component.

The enterprise beans developed by Wombat store information in BenefitsDa-
tabase. Wombat designs the BenefitsDatabase schema and at deployment time the
customer creates the database on his own site. Wombat also allows the customer
to choose a different schema as a deployment option.

The following sections describe in greater detail the parts developed by
Wombat

7.3.2 EnrollmentEJB Session Bean

EnrollmentEJB is a stateful session bean that implements the benefits enrollment
business process. EnrollmentEJB’s home and remote interfaces are the same as in
the Chapter 4, Working with Session Beans, example. However, while an IT devel-
oper at Star Enterprise defined the interfaces in the session bean chapter, Wombat
defined the home and remote interfaces shown in this chapter.

Code Example 7.5 shows the EnrollmentEJB’s home interface definition:

package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface EnrollmentHome extends EJBHome {

Enrollment create(int emplnum) throws RemoteException,

CreateException, EnrollmentException;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE258

}

Code Example 7.5 EnrollmentHome Home Interface Defined by Wombat

Code Example 7.6 shows the definition of the EnrollmentEJB’s remote inter-
face:

package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface Enrollment extends EJBObject {

EmployeeInfo getEmployeeInfo()

throws RemoteException, EnrollmentException;

Options getCoverageOptions()

throws RemoteException, EnrollmentException;

void setCoverageOption(int choice)

throws RemoteException, EnrollmentException;

Options getMedicalOptions()

throws RemoteException, EnrollmentException;

void setMedicalOption(int choice)

throws RemoteException, EnrollmentException;

Options getDentalOptions()

throws RemoteException, EnrollmentException;

void setDentalOption(int choice)

throws RemoteException, EnrollmentException;

boolean getSmokerStatus()

throws RemoteException, EnrollmentException;

void setSmokerStatus(boolean status)

throws RemoteException, EnrollmentException;

Summary getSummary()

throws RemoteException, EnrollmentException;

void commitSelections()

throws RemoteException, EnrollmentException;

PARTS DEVELOPED BY WOMBAT 259

}

Code Example 7.6 Enrollment Remote Interface Defined by Wombat

The implementation of the EnrollmentBean session bean class is similar to the
implementation illustrated in Chapter 4. However, there are some key differences,
as follows:

• The EnrollmentEJB in Chapter 4 uses command beans to access the employ-
ee’s database. The EnrollmentEJB in this chapter uses the EmployeeEJB entity
bean to encapsulate access to the employee information. Because the Employ-
eeEJB entity bean is implemented with container-managed persistence, the
Deployer can bind the EmployeeEJB bean with the customer’s employee da-
tabase in a standard way.

• The EnrollmentEJB in Chapter 4 uses command beans to access the benefits se-
lection in the BenefitsDatabase. The EnrollmentEJB in this chapter uses the Se-
lectionEJB entity bean to encapsulate the access to the employees’ current
selections. This approach is advantageous because the benefits selection access
is available, via the Selection and SelectionHome client-view interfaces, to other
applications regardless of their location on the network. For example, the Star
Enterprise IT department can develop other applications that use the Selection
and SelectionHome client-view interfaces to access the employees’ benefits se-
lections. In addition, because Wombat also provides a CMP version of the Selec-
tionEJB entity bean (this is the SelectionBeanCMP class), a customer can
customize the format in which the selections are stored, or even store them in a
non-relational database.

• EnrollmentEJB uses the WrapperPlanEJB entity bean to access the medical and
dental plans currently offered to the employees. WrapperPlanEJB integrates
the medical and dental plans provided by multiple insurance companies with
the enrollment application. The WrapperPlanEJB offers the same advantages
as the SelectionEJB: other Star Enterprise applications can use the Wrapper-
PlanEJB to access the available medical and dental plans. The applications do
not have to be concerned with the multiple plan entity beans provided by the
the individual insurance companies.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE260

Code Example 7.7 illustrates the source code for the EnrollmentBean session
bean class, as it has been implemented for the example in this chapter. (Note that
this implementation of EnrollmentBean differs from the implementation in
Chapter 4.)

package com.wombat.benefits;

import javax.ejb.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.wombat.plan.Plan;

import com.wombat.plan.PlanHome;

import com.wombat.plan.PlanInfo;

import com.aardvark.payroll.Payroll;

import com.aardvark.payroll.PayrollHome;

import java.util.Collection;

import java.util.Iterator;

import javax.rmi.PortableRemoteObject;

// PlanCache is a helper class that encapsulates the access

// to a plan object. It caches the PlanInfo associated with

// the plan object to avoid remote calls to the plan.

//

class PlanCache {

private Plan plan;

private PlanInfo planInfo;

public PlanCache(Plan plan, PlanInfo planInfo) {

this.plan = plan;

this.planInfo = planInfo;

}

public Plan getPlan() {

return plan;

}

public PlanInfo getPlanInfo() {

PARTS DEVELOPED BY WOMBAT 261

return planInfo;

}

public String getPlanId() {

return planInfo.getPlanId();

}

public String getPlanName() {

return planInfo.getPlanName();

}

public int getPlanType() {

return planInfo.getPlanType();

}

public double getCost(int coverage, int age, boolean smoker) {

try {

return plan.getCost(coverage, age, smoker);

} catch (Exception ex) {

throw new EJBException(“getCost failed”);

}

}

}

// EnrollmentBean implements the benefits enrollment

// business process.

public class EnrollmentBean implements SessionBean

{

private final static String[] coverageDescriptions = {

“Employee Only”,

“Employee and Spouse”,

“Employee, Spouse, and Children”

};

// Tables of Java classes that are used for calculation of

// of cost of medical and dental benefits

private PlanCache[] medicalPlans;

private PlanCache[] dentalPlans;

// Portion of the benefits cost paid by the employee.

// (A real-life application would read this value from some

// benefits plan configuration database)

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE262

private double employeeCostFactor = 0.10;

// Employee number that uniquely identifies an employee

private int employeeNumber;

private EmployeeHome employeeHome;

private Employee employee;

private EmployeeCopy employeeCopy;

private SelectionHome selectionHome;

private Selection selection;

private SelectionCopy selCopy;

// Indication if a selection record exist for an employee

private boolean recordDoesNotExist = false;

// The following variables are calculated values and are

// used for programming convenience.

private int age;// employee’s age

private int medicalSelection = -1;// index to medicalPlans

private int dentalSelection = -1;// index to dentalPlans

private double totalCost;// total benefits cost

private double payrollDeduction;// payroll deduction

private Payroll payroll;

private PayrollHome payrollHome;

private PlanHome planHome;

// public no-arg constructor

public EnrollmentBean() { }

// business methods follow

// Get employee information.

public EmployeeInfo getEmployeeInfo() {

return new EmployeeInfo(employeeNumber,

employeeCopy.getFirstName(),

employeeCopy.getLastName());

PARTS DEVELOPED BY WOMBAT 263

}

// Get coverage options.

public Options getCoverageOptions() {

Options opt = new Options(coverageDescriptions.length);

opt.setOptionDescription(coverageDescriptions);

opt.setSelectedOption(selCopy.getCoverage());

return opt;

}

// Set selected coverage option.

public void setCoverageOption(int choice)

throws EnrollmentException {

if (choice >= 0 && choice < coverageDescriptions.length) {

selCopy.setCoverage(choice);

} else {

throw new EnrollmentException(

EnrollmentException.INVAL_PARAM);

}

}

// Get list of available medical options.

public Options getMedicalOptions() {

Options opt = new Options(medicalPlans.length);

for (int i = 0; i < medicalPlans.length; i++) {

PlanCache plan = medicalPlans[i];

opt.setOptionDescription(i, plan.getPlanName());

opt.setOptionCost(i, plan.getCost(

selCopy.getCoverage(),

age, selCopy.getSmokerStatus()));

}

opt.setSelectedOption(medicalSelection);

return opt;

}

// Set selected medical option.

public void setMedicalOption(int choice)

throws EnrollmentException

{

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE264

if (choice >= 0 && choice < medicalPlans.length) {

medicalSelection = choice;

selCopy.setMedicalPlan(medicalPlans[choice].getPlan());

} else {

throw new EnrollmentException(

EnrollmentException.INVAL_PARAM);

}

}

// Get list of available dental options.

public Options getDentalOptions() {

Options opt = new Options(dentalPlans.length);

for (int i = 0; i < dentalPlans.length; i++) {

PlanCache plan = dentalPlans[i];

opt.setOptionDescription(i, plan.getPlanName());

opt.setOptionCost(i, plan.getCost(

selCopy.getCoverage(),

age, selCopy.getSmokerStatus()));

}

opt.setSelectedOption(dentalSelection);

return opt;

}

// Set selected dental option.

public void setDentalOption(int choice)

throws EnrollmentException

{

if (choice >= 0 && choice < dentalPlans.length) {

dentalSelection = choice;

selCopy.setDentalPlan(dentalPlans[choice].getPlan());

} else {

throw new EnrollmentException(

EnrollmentException.INVAL_PARAM);

}

}

// Get smoker status.

public boolean getSmokerStatus() {

return selCopy.getSmokerStatus();

PARTS DEVELOPED BY WOMBAT 265

}

// Set smoker status.

public void setSmokerStatus(boolean status) {

selCopy.setSmokerStatus(status);

}

// Get summary of selected options and their cost.

public Summary getSummary() {

calculateTotalCostAndPayrollDeduction();

try {

Summary s = new Summary();

s.setCoverageDescription(

coverageDescriptions[selCopy.getCoverage()]);

s.setSmokerStatus(selCopy.getSmokerStatus());

s.setMedicalDescription(

medicalPlans[medicalSelection].getPlanName());

s.setMedicalCost(

medicalPlans[medicalSelection].getCost(

selCopy.getCoverage(),

age, selCopy.getSmokerStatus()));

s.setDentalDescription(

dentalPlans[dentalSelection].getPlanName());

s.setDentalCost(

dentalPlans[dentalSelection].getCost(

selCopy.getCoverage(),

age, selCopy.getSmokerStatus()));

s.setTotalCost(totalCost);

s.setPayrollDeduction(payrollDeduction);

return s;

} catch (Exception ex) {

throw new EJBException(ex);

}

}

// Update corporate databases with the new selections.

public void commitSelections() {

try {

if (recordDoesNotExist) {

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE266

selection = selectionHome.create(selCopy);

recordDoesNotExist = false;

} else {

selection.updateFromCopy(selCopy);

}

// Update information in the payroll system

payroll.setBenefitsDeduction(employeeNumber,

payrollDeduction);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

// Initialize the state of the EmployeeBean instance.

public void ejbCreate(int emplNum) throws EnrollmentException {

employeeNumber = emplNum;

// Obtain values from bean’s environment.

readEnvironmentEntries();

try {

Collection coll;

Iterator it;

coll = planHome.findMedicalPlans();

medicalPlans = new PlanCache[coll.size()];

it = coll.iterator();

for (int i = 0; i < medicalPlans.length; i++) {

Plan plan = (Plan)PortableRemoteObject.narrow(

 it.next(), Plan.class);

medicalPlans[i] = new PlanCache(

plan, plan.getPlanInfo());

}

coll = planHome.findDentalPlans();

dentalPlans = new PlanCache[coll.size()];

it = coll.iterator();

for (int i = 0; i < dentalPlans.length; i++) {

PARTS DEVELOPED BY WOMBAT 267

Plan plan = (Plan)PortableRemoteObject.narrow(

 it.next(), Plan.class);

dentalPlans[i] = new PlanCache(

plan, plan.getPlanInfo());

}

try {

employee = employeeHome.findByPrimaryKey(

new Integer(emplNum));

} catch (ObjectNotFoundException ex) {

throw new EnrollmentException(

“employee not found”);

}

employeeCopy = employee.getCopy();

selection = selectionHome.findByEmployee(employee);

if (selection == null) {

// This is the first time that the employee

// runs this application. Use values

// for the selections.

selCopy = new SelectionCopy();

selCopy.setEmployee(employee);

selCopy.setCoverage(0);

selCopy.setMedicalPlan(medicalPlans[0].getPlan());

selCopy.setDentalPlan(dentalPlans[0].getPlan());

selCopy.setSmokerStatus(false);

recordDoesNotExist = true;

} else {

selCopy = selection.getCopy();

}

// Calculate employee’s age.

java.util.Date today = new java.util.Date();

age = (int)((today.getTime() -

employeeCopy.getBirthDate().getTime()) /

 ((long)365 * 24 * 60 * 60 * 1000));

// Translate the medical plan id to an index

// into the medicalPlans table.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE268

String medicalPlanId = (String)

selCopy.getMedicalPlan().getPrimaryKey();

for (int i = 0; i < medicalPlans.length; i++) {

if (medicalPlans[i].getPlanId().

equals(medicalPlanId)) {

medicalSelection = i;

break;

}

}

// Translate the dental plan id to an index

// into the dentalPlans table.

String dentalPlanId = (String)

selCopy.getMedicalPlan().getPrimaryKey();

for (int i = 0; i < dentalPlans.length; i++) {

if (dentalPlans[i].getPlanId().

equals(dentalPlanId)) {

dentalSelection = i;

break;

}

}

// create a payroll session object

payroll = (Payroll)payrollHome.create();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

// Clean up any resource held by the instance.

public void ejbRemove() {

try {

payroll.remove();

} catch (Exception ex) {

}

}

public void ejbPassivate() {}

public void ejbActivate() {}

PARTS DEVELOPED BY WOMBAT 269

public void setSessionContext(SessionContext sc) {}

// Helper methods follow

// Calculate total benefits cost and payroll deduction

private void calculateTotalCostAndPayrollDeduction() {

try {

double medicalCost =

medicalPlans[medicalSelection].getCost(

selCopy.getCoverage(),

age, selCopy.getSmokerStatus());

double dentalCost =

dentalPlans[dentalSelection].getCost(

selCopy.getCoverage(),

age, selCopy.getSmokerStatus());

totalCost = medicalCost + dentalCost;

payrollDeduction = totalCost * employeeCostFactor;

} catch (Exception ex) {

throw new EJBException(ex);

}

}

// Read and process enterprise bean’s environment entries.

private void readEnvironmentEntries() {

try {

Context ictx = new InitialContext();

planHome = (PlanHome)

 PortableRemoteObject.narrow(ictx.lookup(

 “java:comp/env/ejb/PlanEJB”),

 PlanHome.class);

employeeHome = (EmployeeHome)

 PortableRemoteObject.narrow(ictx.lookup(

 “java:comp/env/ejb/EmployeeEJB”),

 EmployeeHome.class);

selectionHome = (SelectionHome)

 PortableRemoteObject.narrow(ictx.lookup(

“java:comp/env/ejb/SelectionEJB”),

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE270

 SelectionHome.class);

payrollHome = (PayrollHome)

 PortableRemoteObject.narrow(ictx.lookup(

 “java:comp/env/ejb/PayrollEJB”),

 PayrollHome.class);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.7 EnrollmentBean Class Implementation

The EnrollmentBean class illustrates how applications typically use the entity
bean client-view interfaces. Recall that EnrollmentEJB is a client of the Employ-
eeEJB, SelectionEJB, and WrapperPlanEJB entity beans.

For example, let’s look how EnrollmentEJB uses the SelectionEJB entity
bean. In the ejbCreate method, notice that EnrollmentEJB uses the findByPrima-

ryKey finder method to look up an existing Selection object, as follows:

selection = selectionHome.findByEmployee(employee);

After EnrollmentEJB obtains an object reference to the Selection object, it
invokes a business method on the object. Here, it invokes the Selection object’s
getCopy method to read the current benefit selection values:

selCopy = selection.getCopy();

In the commitSelections method, EnrollmentEJB either creates a new Selec-
tion object by invoking the create method on the SelectionHome interface, or it
updates the existing Selection object by invoking the updateFromCopy business
method on the Selection object, as follows:

if (recordDoesNotExist) {

selection = selectionHome.create(selCopy);

recordDoesNotExist = false;

} else {

PARTS DEVELOPED BY WOMBAT 271

selection.updateFromCopy(selCopy);

}

Note that EnrollmentEJB does not need to remove Selection objects. If it did,
however, it would use the following code fragment:

selection.remove();

Alternatively, EnrollmentEJB could use the SelectionHome interface to
remove a Selection object identified by its primary key:

selectionHome.remove(new Integer(employeeNumber));

EnrollmentEJB uses the other entity beans in much the same manner.

7.3.3 EmployeeEJB Entity Bean

EmployeeEJB is an entity bean with container-managed persistence. It provides an
object-oriented view of the employee data used by the benefits enrollment applica-
tion. Its main role is to allow the integration between the benefits application and
customer’s employee data.

Since Wombat does not impose rules on a customer regarding how it stores
the information about its employees, it must give its customers the means to inte-
grate the application with the customer’s employee data. Wombat uses the con-
tainer-managed persistence mechanism to allow the Deployer to bind the
EmployeeEJB with an existing employee database.

However, Wombat designs the Employee and EmployeeHome interfaces to
meet the needs of the benefits enrollment application.

7.3.3.1 EmployeeEJB’s Primary Key

Wombat uses the employee number as the primary key for the EmployeeEJB entity
bean. Its type is the class java.lang.Integer. Note that it would be an error if the
employee number were the Java primitive type int. This is because the EJB specifi-
cation requires that the primary key type for an entity bean be a Java class. Further-
more, this specification implies that primitives types that are not Java classes cannot
be used directly for the primary key type.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE272

7.3.3.2 Employee Remote Interface

Code Example 7.8 shows the Employee remote interface definition.

package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Date;

public interface Employee extends EJBObject {

EmployeeCopy getCopy()

throws RemoteException, EmployeeException;

void updateFromCopy(EmployeeCopy copy)

throws RemoteException, EmployeeException;

}

Code Example 7.8 Employee Remote Interface

The enrollment application needs access to each employee’s employee
number, first name, last name, and date of birth. To efficiently exchange the infor-
mation between the employee object and the client application (the client is the
EnrollmentBean in our example application), Wombat defines the getCopy and
updateFromCopy methods. The getCopy method returns all the employee attributes
to the client, and the updateFromCopy method updates the employee object using
the modified values passed by the client.

The getCopy and updateFromCopy methods use the EmployeeCopy class,
which is defined as shown in Code Example 7.9.

package com.wombat.benefits;

import java.util.Date;

public class EmployeeCopy implements java.io.Serializable {

private int employeeNumber;

private String firstName;

private String lastName;

private Date birthDate;

PARTS DEVELOPED BY WOMBAT 273

public int getEmployeeNumber() { return employeeNumber; }

public String getFirstName() { return firstName; }

public String getLastName() { return lastName; }

public Date getBirthDate() { return birthDate; }

public void setEmployeeNumber(int v) { employeeNumber = v; }

public void setFirstName(String v) { firstName = v; }

public void setLastName(String v) { lastName = v; }

public void setBirthDate(Date v) { birthDate = v; }

}

Code Example 7.9 EmployeeCopy Class

Note that the EmployeeCopy class implements the java.io.Serializable

interface so that its instances can be passed by value over RMI-IIOP. Refer to the
EmployeeBean class in Code Example 7.11 on page 276 to see how a client uses
the information returned in the EmployeeCopy object.

7.3.3.3 EmployeeHome Home Interface

Code Example 7.10 shows the EmployeeHome interface definition:

package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface EmployeeHome extends EJBHome {

// finder methods

Employee findByPrimaryKey(Integer employeeNumber)

throws RemoteException, FinderException;

}

Code Example 7.10 EmployeeHome Home Interface

The EmployeeHome interface defines only the mandatory findByPrimaryKey

method. It defines no create methods because the Wombat benefits enrollment

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE274

application does not need to create new employee objects in the customer data-
bases.

7.3.3.4 EmployeeBean Entity Bean Class

The EmployeeBean class illustrates how simple it is to develop an entity bean with
container-managed persistence. Notice that the entity bean contains no database
operations. “Summary of the Integration Techniques” on page 362 describes how
the deployer binds the container-managed fields with the columns of the pre-exist-
ing EmployeeDatabase at Star Enterprise. Note also that the entity bean class con-
tains no implementations of any finder methods, although the home interface defines
the findByPrimaryKey method. Because the EmployeeEJB is an entity bean with
container-managed persistence, the implementations of finder methods have to be
supplied at deployment time. Wombat describes in the deployment descriptor those
objects that the finder methods are supposed to return. The Deployer then imple-
ments the finder methods to return the specified objects.

Code Example 7.11 below shows the source code of the EmployeeBean entity
bean class.

package com.wombat.benefits;

import javax.ejb.*;

import java.util.Date;

public class EmployeeBean implements EntityBean {

//

// Container-managed fields

//

public int employeeNumber;

public String firstName;

public String lastName;

public Date birthDate;

public EmployeeCopy getCopy() {

EmployeeCopy ec = new EmployeeCopy();

ec.setEmployeeNumber(employeeNumber);

ec.setFirstName(firstName);

PARTS DEVELOPED BY WOMBAT 275

ec.setLastName(lastName);

ec.setBirthDate(birthDate);

return ec;

}

public void updateFromCopy(EmployeeCopy ec)

throws EmployeeException

{

if (ec.getEmployeeNumber() != employeeNumber) {

throw new EmployeeException(

“can’t change primary key”);

} else {

firstName = ec.getFirstName();

String newLastName = ec.getLastName();

if (newLastName == null ||

 newLastName.length() == 0)

 throw new EmployeeException(

 “last name can’t be blank”);

lastName = newLastName;

birthDate = ec.getBirthDate();

}

}

//

// There are no ejbCreate(...) methods.

//

//

// Methods from EntityBean interface

//

public void setEntityContext(EntityContext ctx) {}

public void unsetEntityContext() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbLoad() {}

public void ejbStore() {}

public void ejbPassivate() {}

}

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE276

Code Example 7.11 EmployeeBean Class Implementation

The implementation of an entity bean class of an entity bean with container-
managed persistence is generally straightforward. The EmployeeBean class is a
good example of a straightforward implementation. Its updateFromCopy method
provides a good illustration of a simple business rules validation. The method
checks that the new last name is not blank. It throws an exception if the client
passes an empty string for the value for last name.

However, there are some important things to note about the implementation of
an entity bean class, particularly concerning container-managed fields and the
primary key. The employeeNumber, lastName, firstName, and birthDate fields are
container-managed fields of the entity bean class. The EJB specification mandates
that the container-managed fields be defined as public, even though a client
program never directly accesses them. These fields must be public so that the con-
tainer can move the data between the fields and the database to keep the content of
the fields synchronized with the information in the database.

The example also illustrates that the primary key of an entity object is not
allowed to change. Changing an entity object’s primary key would result in confu-
sion about object identity in a distributed application. The entity object should
throw an exception if a client attempts to change the primary key. For example,
the updateFromCopy method throws an EmployeeException if a client attempts to
change its primary key.

7.3.4 SelectionEJB Entity Bean

There are two approaches for dealing with entity bean persistence. An entity bean
can use either bean-managed persistence (BMP) or container-managed persistence
(CMP). To provide a choice to its customers, Wombat developed two versions of the
SelectionEJB entity bean. One uses CMP, and the other uses BMP.

Wombat first developed the SelectionEJBCMP entity bean as an entity bean
with container-managed persistence. An entity bean with container-managed per-
sistence can be developed independently from the underlying database schema.
With container-managed persistence, the Deployer binds the database table
columns to the entity bean fields at deployment time by using tools provided by
the Container. Wombat’s SelectionEJBCMP entity bean is independent from the
schema of the database that stores the persistent state of the Selection objects. It is

PARTS DEVELOPED BY WOMBAT 277

even independent from the type of the database in which the state of the Selection
objects are stored. Selection objects can be stored in a relational database or a
non-relational database.

After developing the SelectionEJBCMP entity bean, Wombat defines the
SelectionEJB entity bean with bean-managed persistence; this entity bean uses a
default relational database schema defined by Wombat. The benefit of using the
default schema is simpler deployment, because the Deployer does not have to set
up the binding between the container-managed fields and the database schema.
The SelectionBean entity bean class is a subclass of the SelectionBeanCMP entity
bean class. The Java class hierarchy is illustrated in Figure 7.4:

Figure 7.4 Entity Bean Persistence Class Hierarchy

Wombat defines both the container-managed and bean-managed entity beans
so that it can support customers who want to use a custom database schema and
those content to use the Wombat-supplied default database schema. Wombat
expects that most customers will use the default schema. Customers using the
default database schema can use the SelectionEJB entity bean. Customers who
want to use a custom database schema can use the SelectionEJBCMP entity bean
and define their own binding of the SelectionEJBCMP container-managed fields
to the schema.

7.3.4.1 SelectionEJB’s Primary Key

Wombat uses the employee number as the primary key for the SelectionEJB entity
bean. The type of the primary key is java.lang.Integer.

SelectionBean

SelectionBeanCMP

EntityBean

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE278

7.3.4.2 Selection Remote Interface

Wombat designed the SelectionEJB’s remote interface to meet the needs of its
client, the EnrollmentEJB session bean. The remote interface uses the Selection-
Copy value object to pass the information between the SelectionEJB entity bean and
its client. It uses the getCopy and updateFromCopy design pattern that was also used
in the Employee remote interface.

The Selection interface definition is shown in Code Example 7.12:
package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

import com.wombat.plan.Plan;

public interface Selection extends EJBObject {

SelectionCopy getCopy()

throws RemoteException, SelectionException;

void updateFromCopy(SelectionCopy copy)

throws RemoteException, SelectionException;

}

Code Example 7.12 Selection Interface Definition

The Selection interface defines methods to obtain and update an employee’s
benefits selection. In the Wombat Benefits application, the EnrollmentEJB session
bean, which is the client of SelectionEJB, uses the getCopy method to obtain a
copy of the employee’s benefits selection and the updateFromCopy method to
change the selection.

The Selection interface uses the SelectionCopy value object, which is defined
as shown in Code Example 7.13:

package com.wombat.benefits;

import com.wombat.plan.Plan;

public class SelectionCopy {

private Employee employee;

private int coverage;

PARTS DEVELOPED BY WOMBAT 279

private Plan medicalPlan;

private Plan dentalPlan;

private boolean smokerStatus;

public Employee getEmployee() { return employee; }

public int getCoverage() { return coverage; }

public Plan getMedicalPlan() { return medicalPlan; }

public Plan getDentalPlan() { return dentalPlan; }

public boolean getSmokerStatus() { return smokerStatus; }

public void setEmployee(Employee v) { employee = v; }

public void setCoverage(int v) { coverage = v; }

public void setMedicalPlan(Plan v) { medicalPlan = v; }

public void setDentalPlan(Plan v) { dentalPlan = v; }

public void setSmokerStatus(boolean v) { smokerStatus = v; }

}

Code Example 7.13 SelectionCopy Value Object

The SelectionCopy class defines private fields to hold the information about
an employee’s benefits selection. It also defines public accessor methods (that is,
the getter and setter methods) for each field.

The CoverageCategory interface (see Code Example 7.14) defines the integer
values that represent the different coverage categories.

package com.wombat.benefits;

public class CoverageCategory {

public static final int EMPLOYEE_ONLY = 0;

public static final int EMPLOYEE_SPOUSE = 1;

public static final int EMPLOYEE_SPOUSE_CHILDREN = 2;

}

Code Example 7.14 CoverageCategory Interface

7.3.4.3 SelectionHome Home Interface

Code Example 7.15 shows the definition for the SelectionHome home interface.
package com.wombat.benefits;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE280

import javax.ejb.*;

import java.rmi.RemoteException;

import com.wombat.plan.Plan;

import java.util.Collection;

public interface SelectionHome extends EJBHome {

// create methods

Selection create(SelectionCopy copy)

throws RemoteException, CreateException;

// finder methods

Selection findByPrimaryKey(Integer emplNumber)

throws RemoteException, FinderException;

Selection findByEmployee(Employee employee)

throws RemoteException, FinderException;

Collection findByPlan(Plan plan)

throws RemoteException, FinderException;

}

Code Example 7.15 SelectionHome Home Interface

Notice how the SelectionHome interface uses the SelectionCopy object as the
argument of the create method. A client uses this method to create an entity
object that stores an employee’s benefits selections from a copy of the information
passed by the client.

The SelectionHome interface also defines three entity bean finder methods.
The mandatory findByPrimaryKey method finds the Selection object by the
employee number. The findByEmployee method finds the Selection object for a
given Employee object. The findByPlan finder methods finds a collection of
Selection objects that contain a reference to a given Plan.

The Benefits application does not use the findByEmployee and findByPlan

finder methods. Wombat includes these definitions so that other applications
developed by Wombat customers can more easily reuse SelectionEJB. (We
include them to illustrate how to implement more complex finder methods).

PARTS DEVELOPED BY WOMBAT 281

7.3.4.4 SelectionBeanCMP Entity Bean Class

Code Example 7.16 illustrates the SelectionBeanCMP entity bean class implemen-
tation.

package com.wombat.benefits;

import javax.ejb.*;

import javax.naming.Context;

import javax.naming.InitialContext;

import com.wombat.plan.Plan;

import com.wombat.plan.PlanType;

public class SelectionBeanCMP implements EntityBean

{

// container-managed fields

public int coverage;

public boolean smokerStatus;

public Employee employee;

public Plan medicalPlan;

public Plan dentalPlan;

public Integer employeeNumber;// primary key field

// values obtained from environment

boolean checkPlanType;

// Helper methods.

//

void updateCoverage(int v) throws SelectionException {

switch (coverage) {

case CoverageCategory.EMPLOYEE_ONLY:

case CoverageCategory.EMPLOYEE_SPOUSE:

case CoverageCategory.EMPLOYEE_SPOUSE_CHILDREN:

coverage = v;

break;

default:

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE282

throw new SelectionException(

SelectionException.INVAL_COVERAGE);

}

}

void updateMedicalPlan(Plan p) throws SelectionException {

if (checkPlanType) {

int type;

try {

type = p.getPlanType();

} catch (Exception ex) {

throw new EJBException(ex);

}

if (type != PlanType.MEDICAL)

throw new SelectionException(

SelectionException.INVAL_PLAN_TYPE);

}

medicalPlan = p;

}

void updateDentalPlan(Plan p) throws SelectionException {

if (checkPlanType) {

int type;

try {

type = p.getPlanType();

} catch (Exception ex) {

throw new EJBException(ex);

}

if (type != PlanType.DENTAL)

throw new SelectionException(

SelectionException.INVAL_PLAN_TYPE);

}

dentalPlan = p;

}

void updateSmokerStatus(boolean v) { smokerStatus = v; }

// Business methods from remote interface

//

PARTS DEVELOPED BY WOMBAT 283

public SelectionCopy getCopy() {

SelectionCopy copy = new SelectionCopy();

copy.setEmployee(employee);

copy.setCoverage(coverage);

copy.setMedicalPlan(medicalPlan);

copy.setDentalPlan(dentalPlan);

copy.setSmokerStatus(smokerStatus);

return copy;

}

public void updateFromCopy(SelectionCopy copy)

throws SelectionException

{

try {

if (!employeeNumber.equals(

copy.getEmployee().getPrimaryKey()))

throw new SelectionException(

“can’t change primary key”);

} catch (java.rmi.RemoteException ex) {

throw new EJBException(ex);

}

updateMedicalPlan(copy.getMedicalPlan());

updateDentalPlan(copy.getDentalPlan());

updateSmokerStatus(copy.getSmokerStatus());

updateCoverage(copy.getCoverage());

}

// create(...) methods from home interface

//

public Integer ejbCreate(SelectionCopy copy)

throws SelectionException, CreateException

{

employee = copy.getEmployee();

try {

employeeNumber = (Integer)employee.getPrimaryKey();

} catch (java.rmi.RemoteException ex) {

throw new EJBException(ex);

}

updateMedicalPlan(copy.getMedicalPlan());

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE284

updateDentalPlan(copy.getDentalPlan());

updateSmokerStatus(copy.getSmokerStatus());

updateCoverage(copy.getCoverage());

return null; // ejbCreate returns null in CMP beans

}

public void ejbPostCreate(SelectionCopy copy) {}

// Methods from EntityBean interface

//

public void setEntityContext(EntityContext ctx) {

readEnvironment();

}

public void unsetEntityContext() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbLoad() {}

public void ejbStore() {}

public void ejbPassivate() {}

// Helper methods

private void readEnvironment() {

try {

Context ictx = new InitialContext();

Boolean val = (Boolean)ictx.lookup(

“java:comp/env/checkPlanType”);

checkPlanType = val.booleanValue();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.16 SelectionBeanCMP Entity Bean Class Implementation

First, let’s examine the container-managed fields: coverage, smokerStatus,
employee, medicalPlan, dentalPlan, and employeeNumber. Notice that the
employee, medicalPlan, and dentalPlan fields are references to other enterprise

PARTS DEVELOPED BY WOMBAT 285

beans (Employee and Plan, respectively). The EJB specification allows the con-
tainer-managed fields to include references to other enterprise beans. Allowing
container-managed fields to include references to other enterprise beans has two
benefits, as follows:

• It simplifies the development of the SelectionBeanCMP methods because they
can work directly with object references rather than having to convert object
references to primary keys.

• It avoids hardcoding the database representation of the relationships to the oth-
er entity beans into the SelectionBeanCMP class; it leaves a Deployer free to
choose how to represent the relationships in the underlying database schema.

See “SelectionBean Entity Bean Class” on page 287 for an explanation of
how Wombat implemented the representation of the entity object relationships in
the SelectionBean class.

Let’s take a closer look at the implementation of the SelectionBeanCMP meth-
ods. The SelectionBeanCMP class implements three sets of methods:

• The business methods defined in the Selection remote interface

• The ejbCreate and ejbPostCreate methods that correspond to the create

method defined in the SelectionHome interface

• The container callbacks defined in the EntityBean interface

The SelectionBeanCMP class follows the EJB specification rules and does not
implement the ejbFind methods corresponding to the find methods defined in the
SelectionHome interface.

The business methods and the ejbCreate method read and write the con-
tainer-managed fields. The container loads and stores the contents of the con-
tainer-managed fields according to the rules defined in the EJB specification. The
business methods can assume that the contents of the container-managed fields are
always up-to-date even if other transactions change the underlying selection
record in the database.

The code for the business methods demonstrates how an enterprise might
implement simple business rules. For example, the updateCoverage method
checks that the value of the coverage field is an allowed value, while the update-

MedicalPlan method optionally checks that the value of medicalPlan is indeed a
medical plan, rather than a dental plan. The getCopy, updateFromCopy, and ejb-

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE286

Create methods illustrate how the entity bean class can implement handling value
objects passed between the entity bean and the client. The SelectionBeanCMP
class (within its setEmployee and updateFromCopy methods) enforces the rule that
a client cannot change the primary key of a Selection object.

The SelectionBeanCMP class (within the readEnvironment helper method)
makes access to the environment entry available with the key java:comp/env/

checkPlanType. The value of the entry parameterizes the business logic of the
bean. If the value of the environment entry is true, the setMedicalPlan and set-

DentalPlan methods check that the value of the plan to be set is indeed of the
expected plan type. If the value is false, they do not perform these checks. The
application assembler sets the value of the environment entry at application
assembly time. Wombat made the plan type checks optional to allow the applica-
tion assembler to improve performance by omitting the checks if the clients of
SelectionEJB are known to set the plan types correctly. (We added this somewhat
artificial optional check to illustrate how to use the enterprise bean environment
entries to parameterize the business logic at application assembly or deployment
time).

The ejbCreate method sets up the container-managed fields from the values
passed to it in the method parameter. After the ejbCreate method completes, the
container extracts the values of the container-managed fields and creates a repre-
sentation of the selection object in the database. Note that ejbCreate returns a null
value even though the return value type is declared to be the primary key type.
According to the EJB specification, the container ignores the value returned from
an ejbCreate method of an entity bean with container-managed persistence. How-
ever, the EJB specification requires that the type of the ejbCreate method be the
primary key type to allow a subclass of the SelectionBeanCMP class to be an
entity bean with bean-managed persistence. The SelectionBean class illustrates
this use of subclassing.

Notice that most of the container callbacks inherited from the EntityBean
interface have an empty implementation. More complex entity beans with con-
tainer-managed persistence might use non-empty implementations of these call-
back methods. See “WrapperPlanBeanCMP Entity Bean Class” on page 303 for
an illustration of the use of the ejbLoad method in an entity bean with container-
managed persistence.

PARTS DEVELOPED BY WOMBAT 287

7.3.4.5 SelectionBean Entity Bean Class

There are many possible ways to implement an entity bean’s persistence; that is, its
database access code. The SelectionBean class illustrates one such way: it uses sub-
classing to convert an entity bean with container-managed persistence into an entity
bean with bean-managed persistence. This is accomplished by subclassing the
SelectionBeanCMP entity bean class. While in our example we manually coded the
SelectionBean class, most real development and deployment scenarios use tools to
automatically generate the database access code.

Code Example 7.17 shows the implementation of the SelectionBean class.

package com.wombat.benefits;

import javax.ejb.*;

import javax.naming.InitialContext;

import javax.naming.Context;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import javax.sql.DataSource;

import java.util.Vector;

import java.util.Collection;

import javax.rmi.PortableRemoteObject;

import com.wombat.plan.Plan;

import com.wombat.plan.PlanHome;

import com.wombat.plan.PlanInfo;

import com.wombat.plan.PlanType;

public class SelectionBean extends SelectionBeanCMP

{

private EntityContext entityContext;

private DataSource ds;

private EmployeeHome employeeHome;

private PlanHome planHome;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE288

//

// create(...) methods from home interface

//

public Integer ejbCreate(SelectionCopy copy)

throws SelectionException, CreateException

{

super.ejbCreate(copy);

try {

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“INSERT INTO Selections “ +

“VALUES (?, ?, ?, ?, ?)”

);

pstmt.setInt(1, employeeNumber.intValue());

pstmt.setInt(2, coverage);

pstmt.setString(3, (String)medicalPlan.getPrimaryKey());

pstmt.setString(4, (String)dentalPlan.getPrimaryKey());

pstmt.setString(5, smokerStatus ? “Y” : “N”);

if (pstmt.executeUpdate() == 1) {

con.close();

return employeeNumber;

} else {

con.close();

throw new CreateException();

}

} catch (SQLException ex) {

throw new EJBException(ex);

} catch (java.rmi.RemoteException ex) {

throw new EJBException(ex);

}

}

public Integer ejbFindByPrimaryKey(Integer employeeNumber)

throws FinderException

{

try {

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“SELECT sel_empl “ +

PARTS DEVELOPED BY WOMBAT 289

“FROM Selections “ +

“WHERE sel_empl = ?”

);

pstmt.setInt(1, employeeNumber.intValue());

ResultSet rs = pstmt.executeQuery();

if (rs.next()) {

con.close();

return employeeNumber;

} else {

con.close();

throw new ObjectNotFoundException();

}

} catch (SQLException ex) {

throw new EJBException(ex);

}

}

public Integer ejbFindByEmployee(Employee employee)

 throws FinderException

{

try {

return ejbFindByPrimaryKey(

(Integer)employee.getPrimaryKey());

} catch (java.rmi.RemoteException ex) {

throw new EJBException(ex);

}

}

public Collection ejbFindByPlan(Plan plan)

{

try {

PlanInfo planInfo = plan.getPlanInfo();

int planType = planInfo.getPlanType();

String planId = (String)planInfo.getPlanId();

String columnName = (planType == PlanType.MEDICAL) ?

“sel_medical_plan” : “sel_dental_Plan”;

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE290

“SELECT sel_empl “ +

“FROM Selections “ +

“WHERE “ + columnName + “ = ?”

);

pstmt.setString(1, planId);

ResultSet rs = pstmt.executeQuery();

Vector vec = new Vector();

while (rs.next()) {

int emplnum = rs.getInt(1);

vec.add(new Integer(emplnum));

}

con.close();

return vec;

} catch (Exception ex) {

throw new EJBException(ex);

}

}

//

// Methods from EntityBean interface

//

public void setEntityContext(EntityContext ctx) {

readEnvironment();

super.setEntityContext(ctx);

}

public void ejbRemove() {

super.ejbRemove();

try {

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“DELETE FROM Selections “ +

“WHERE sel_empl = ?”

);

pstmt.setInt(1, employeeNumber.intValue());

pstmt.executeUpdate();

con.close();

PARTS DEVELOPED BY WOMBAT 291

} catch (Exception ex) {

throw new EJBException(ex);

}

}

public void ejbLoad() {

try {

String medicalPlanId;

String dentalPlanId;

employeeNumber =

(Integer)entityContext.getPrimaryKey();

employee =

employeeHome.findByPrimaryKey(employeeNumber);

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“SELECT sel_coverage, sel_smoker, “ +

“sel_medical_plan, sel_dental_plan” +

“FROM Selections “ +

“WHERE sel_empl = ?”

);

pstmt.setInt(1, employeeNumber.intValue());

ResultSet rs = pstmt.executeQuery();

if (rs.next()) {

coverage = rs.getInt(1);

smokerStatus = rs.getString(2).equals(“Y”);

medicalPlanId = rs.getString(3);

dentalPlanId = rs.getString(4);

con.close();

} else {

throw new NoSuchEntityException();

}

medicalPlan = planHome.findByPlanId(medicalPlanId);

dentalPlan = planHome.findByPlanId(dentalPlanId);

} catch (Exception ex) {

throw new EJBException(ex);

}

super.ejbLoad();

}

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE292

public void ejbStore() {

super.ejbStore();

try {

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“UPDATE Selections SET “ +

“sel_coverage = ?, “ +

“sel_medical_plan = ?, “ +

“sel_dental_plan = ?, “ +

“sel_smoker = ? “ +

“WHERE sel_empl = ?”

);

pstmt.setInt(1, coverage);

pstmt.setString(2, (String)medicalPlan.getPrimaryKey());

pstmt.setString(3, (String)dentalPlan.getPrimaryKey());

pstmt.setString(4, smokerStatus ? “Y” : “N”);

pstmt.setInt(5, employeeNumber.intValue());

pstmt.executeUpdate();

con.close();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

//

// Helper methods.

//

private Connection getConnection() {

try {

return ds.getConnection();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

private void readEnvironment() {

try {

PARTS DEVELOPED BY WOMBAT 293

Context ictx = new InitialContext();

planHome = (PlanHome)

 PortableRemoteObject.narrow(ictx.lookup(

 “java:comp/env/ejb/PlanEJB”),

 PlanHome.class);

employeeHome = (EmployeeHome)

 PortableRemoteObject.narrow(ictx.lookup(

 “java:comp/env/ejb/EmployeeEJB”),

EmployeeHome.class);

ds = (DataSource)

ictx.lookup(“java:comp/env/jdbc/BenefitsDB”);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.17 SelectionBean Class Implementation

The SelectionBean class defines the following methods:

• The ejbCreate method. This method overrides the ejbCreate method in the
SelectionBeanCMP superclass.

• All the finder methods defined in the SelectionHome interface.

• The ejbLoad, ejbStore, ejbRemove, and setEntityContext container call-
backs inherited from the EntityBean interface. These callbacks override the
same-named methods in the superclass.

7.3.4.5.1 Invoking Superclass Methods

The above methods (ejbCreate, ejbLoad, ejbStore, ejbRemove, and setEntity-

Context) invoke their corresponding overridden method in the superclass. The
timing of the invocation of the same-named superclass method is significant—the
order in which a method invokes the same-named method in the superclass relative
to the database operations performed in the method is important.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE294

The ejbCreate, ejbRemove, and ejbStore methods invoke the method in the
superclass before they perform the database operations. The ejbLoad method calls
the ejbLoad in the superclass after it performs the database operations. The order
of operations ensures the proper synchronization between the values of the con-
tainer-managed fields, as seen by the superclass methods, and the values of the
fields stored in the database.

7.3.4.5.2 NoSuchEntityException

Note that the ejbLoad method throws the NoSuchEntityException if the representa-
tion of the entity object has been removed from the database and the entity bean
expects that the representation exists. The NoSuchEntityException provides more
information to the container than the generic EJBException thrown on other data-
base errors. If the bean throws the NoSuchEntityException, the container throws
the java.rmi.NoSuchObjectException to the client to indicate that the reason for a
failed method was the removal of the entity object’s representation from the data-
base.

7.3.4.5.3 Representing Object References in a Database

Note how the ejbCreate, ejbLoad, and ejbStore methods handle object references
to other entity beans maintained in the container-managed fields (that is, the
employee, medicalPlan, and dentalPlan fields defined in the SelectionBeanCMP
class). The object references are represented as foreign keys in the Selections data-
base table. However, use of a foreign key is only one possible mechanism for repre-
senting an object reference. “WrapperPlanEJB Entity Bean” on page 295 describes
an entity bean that illustrates how serialized object handles can be used to represent
object references in persistent storage.

7.3.4.5.4 Automatic Closing of Connections on Uncaught Exceptions

While it is a good practice to ensure that a bean always closes its database connec-
tions, we illustrated that it is not necessary to close a database connection when the
bean throws a runtime exception from a method. If the developer has not closed a
database connection when a method throws a runtime exception (for example, the
EJBException) and the exception is not caught within the bean, the EJB Container
will automatically release the connection when it catches the exception. The Con-
tainer will also remove the instance from its pool because the values of the
instance’s variables may be in an inconsistent state after the thrown exception.

PARTS DEVELOPED BY WOMBAT 295

7.3.5 WrapperPlanEJB Entity Bean

The WrapperPlanEJB entity bean aggregates the medical and dental plans provided
by multiple insurance providers into a single entity bean. Aggregation hides the
complexity of managing the configuration of plans from multiple providers, and is a
benefit for applications that need to access these plans. An example of such an appli-
cation is the EnrollmentEJB session bean.

Wombat uses the same approach with persistence for WrapperPlanEJB as it
did for SelectionEJB. Wombat first defines the WrapperPlanEJBCMP entity bean
with container-managed persistence. Wombat then subclasses the WrapperPlan-
BeanCMP entity bean class to create the WrapperPlanBean entity bean class with
bean-managed persistence. This allows the customer to choose between using the
WrapperPlanEJB entity bean, which uses the default BenefitsDatabase schema,
and the WrapperPlanEJBCMP entity bean, which allows the customer to define a
custom database schema, or store the entity bean’s state in a non-relational data-
base.

7.3.5.1 Benefits Plan Integration Approach

Wombat wants to allow its customers to configure the Benefits application with mul-
tiple medical and dental plans that may be provided by multiple insurance compa-
nies. Therefore, Wombat designs the Benefits application to access plan information
from multiple sources.

Wombat uses EJB client-view interfaces as the contract between the Benefits
application and the software from the individual insurance companies. Wombat
defines the Plan remote interface and the PlanHome home interface to be the stan-
dard interfaces for integrating the plan information from an insurance company
with the Benefits application. If an insurance provider wants to support the Bene-
fits application, the insurance provider (or application integrator) must develop an
enterprise bean that uses the Plan and PlanHome interfaces as its client-view inter-
faces.

Figure 7.5 illustrates the ProvidencePlanEJB developed by Providence (Prov-
idence is an insurance company). Note that the “interface implementation” nota-
tion in the diagram does not represent interface implementation in the Java
language sense. Instead, it shows that the remote and home interfaces of the Prov-

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE296

idencePlanEJB entity bean are the Plan and PlanHome interfaces, or their sub-
interfaces.

Figure 7.5 ProvidencePlanEJB

7.3.5.2 Aggregation of Plans into a Single Entity Bean

Though enterprise beans from all the insurance providers have a uniform client view
(that is, they implement the Plan and PlanHome interfaces), dealing with these mul-
tiple enterprise beans can be a tedious task for application programmers. It is tedious
because the programmer must know where to locate all the enterprise beans and
how to deal with the situation in which enterprise beans are added or removed.

To simplify this task, Wombat develops the WrapperPlanEJB entity bean.
WrapperPlanEJB aggregates all the configured enterprise beans from multiple
insurance providers into what looks like a single entity bean to the application
programmer. Figure 7.6 illustrates this.

Figure 7.6 WrapperPlanEJB Aggregation of Enterprise Beans

<<Entity Bean>>
ProvidencePlanEJB

Plan

PlanHome

<<Entity Bean>>
WrapperPlanEJB

Plan

PlanHome
<<Entity Bean>>

ProvidencePlanEJB

Plan

PlanHome

<<Entity Bean>>
PremiumHealthPlanEJB

Plan

PlanHome

<<Entity Bean>>
SomeOtherPlanBean

Plan

PlanHome

Client

PARTS DEVELOPED BY WOMBAT 297

The plan objects implemented by WrapperPlanEJB “wrapper” the plan
objects implemented by the entity beans from the individual insurance providers.
The implementation of the WrapperPlanEJB business methods delegates to the
wrapped plan. The finders implemented in WrapperPlanEJB aggregate the finders
in the individual plan entity beans. WrapperPlanEJB “hides” the primary key of
the wrapped plan. The primary keys visible to a WrapperPlanEJB’s client are cus-
tomer-assigned plan identifiers that must be unique within the scope of the Wrap-
perPlanHome interface. In our example, the Star Enterprise benefits
administration department assigns these primary keys.

A client program deals only with the single WrapperPlanEJB, regardless of
how many different insurance providers are used by the customer. A client of the
WrapperPlanEJB entity bean uses the Plan and PlanHome interfaces to access the
aggregated insurance plan information.

The EnrollmentBean class in “EnrollmentEJB Session Bean” on page 257,
which is a WrapperPlanEJB’s client, illustrates that the existence of multiple
insurance providers is transparent to the client application. The following state-
ment from the EnrollmentBean class finds all the configured medical plans (or,
more accurately, their wrapper plan objects) for all the currently enabled medical
plans.

coll = planHome.findMedicalPlans();

7.3.5.3 Plan Remote Interface

The plan entity beans provided by the individual insurance providers must use the
Plan interface as their remote interfaces. The WrapperPlanEJB entity bean devel-
oped by Wombat also uses the Plan interface as its remote interface.

Code Example 7.18 illustrates the definition of the Plan interface.

package com.wombat.plan;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Collection;

public interface Plan extends EJBObject {

PlanInfo getPlanInfo()

throws RemoteException, PlanException;

int getPlanType() throws RemoteException, PlanException;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE298

double getCost(int coverage, int age, boolean smokerStatus)

throws RemoteException, PlanException;

Collection getAllDoctors()

throws RemoteException, PlanException;

Collection getDoctorsByName(Doctor template)

throws RemoteException, PlanException;

Collection getDoctorsBySpecialty(String specialty)

throws RemoteException, PlanException;

}

Code Example 7.18 Plan Remote Interface

The Plan interface methods do the following operations:

• The getPlanInfo method returns a PlanType value object that contains the
plan attributes. The PlanType class is described later in this section. (See Code
Example 7.20 on page 299.)

• The getPlanType method returns an integer value. The value is equal to Plan-

Type.MEDICAL if the plan is a medical plan, and it is equal to PlanType.DENTAL

if the plan is a dental plan.

• The getCost method returns the monthly premium charged by the plan provid-
er. The premium depends on the coverage category, age, and smoker status.

• The getAllDoctors method returns a Collection of Doctor objects that partic-
ipate in the plan. The Doctor class is described below.

• The getDoctorsByName method returns a Collection of participating doctors
whose names match the information in the template supplied as a method ar-
gument.

• The getDoctorsBySpecialty method returns all the doctors of a given special-
ty.

Code Example 7.19 illustrates the definition of the PlanInfo class.

package com.wombat.plan;

PARTS DEVELOPED BY WOMBAT 299

public class PlanInfo implements java.io.Serializable {

String planId;

String planName;

int planType;

public String getPlanId() { return planId; }

public String getPlanName() { return planName; }

public int getPlanType() { return planType; }

public void setPlanId(String v) { planId = v; }

public void setPlanName(String v) { planName = v; }

public void setPlanType(int v) { planType = v; }

}

Code Example 7.19 PlanInfo Class

The PlanInfo class is part of the Plan remote interface. The getPlanInfo

method uses the PlanInfo class to pass a set of plan attributes to the client. The
attributes are:

• PlanId—This is the unique identifier of the plan. It should be the same as the
primary key of the Plan entity object.

• PlanName—This is a short name for the plan. The GUI portion of the applica-
tion uses this name for display.

• PlanType—This is either PlanType.MEDICAL or PlanType.DENTAL.

Code Example 7.20 illustrates the PlanType class, which defines the integer
values representing the plan types.

package com.wombat.plan;

public class PlanType {

public static final int MEDICAL = 1;

public static final int DENTAL = 2;

}

Code Example 7.20 PlanType Class

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE300

The Doctor class is used to pass information about participating doctors.
Note that we do not implement the Doctor class as an entity bean, but instead,
implement it as a value object that is passed through the Plan interface. Why do
we do this? Our application does not need to view a Doctor object as an entity
object. For example, the client does not have the need to invoke methods on the
Doctor objects, nor to compare Doctor objects for identity. Rather, the application
sees a Doctor object as only a piece of information available through the Plan
entity objects. Therefore, we decided not to implement the Doctor class as an
entity bean. The Doctor class is shown in Code Example 7.21.

package com.wombat.plan;

public class Doctor implements java.io.Serializable {

String lastName;

String firstName;

String specialty;

String hospital;

int practiceSince;

// public get/set methods

public String getLastName() { return lastName; }

public void setLastName(String v) { lastName = v; }

public String getFirstName() { return firstName; }

public void setFirstName(String v) { firstName = v; }

public String getSpecialty() { return specialty; }

public void setSpecialty(String v) { specialty = v; }

public String getHospital() { return hospital; }

public void setHospital(String v) { hospital = v; }

public int getPracticeSince() { return practiceSince; }

public void setPracticeSince(int v) { practiceSince = v; }

}

Code Example 7.21 Implementation of the Doctor Class

PARTS DEVELOPED BY WOMBAT 301

7.3.5.4 PlanHome Home Interface

The plan entity beans provided by the individual insurance providers must extend
the PlanHome interface in their home interfaces. At the same time, the Wrapper-
PlanHome interface of the WrapperPlanEJB entity bean developed by Wombat also
extends the PlanHome interface. Code Example 7.22 shows the definition of the
PlanHome interface.

package com.wombat.plan;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Collection;

public interface PlanHome extends EJBHome {

// finder methods

Plan findByPlanId(String planID)

throws RemoteException, FinderException;

Collection findMedicalPlans()

throws RemoteException, FinderException;

Collection findDentalPlans()

throws RemoteException, FinderException;

Collection findByDoctor(Doctor template)

throws RemoteException, FinderException;

}

Code Example 7.22 PlanHome Home Interface

The PlanHome interface defines the finder methods used by the benefits appli-
cation. The finder methods are:

• The findByPlanId method returns the Plan object for a given plan identifier.
The plan identifier is a primary key that uniquely identifies the plan.

• The findMedicalPlans method returns all the medical plans configured in this
home interface. The objects in the returned Collection implement the Plan in-
terface.

• The findDentalPlans method returns all the dental plans configured in this

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE302

home interface. The objects in the returned Collection implement the Plan in-
terface.

• The findByDoctor method returns all the plans configured in this home inter-
face that include a specified doctor in their preferred doctors list. A template is
used to specify the doctor and to perform a partial match using the first and last
name. The objects in the returned Collection implement the Plan interface.

Note that the PlanHome interface does not define the findByPrimaryKey finder
method. Although it is expected that most plan providers will use the plan identi-
fier as the primary key, not defining the findByPrimaryKey in the PlanHome inte-
face allows the plan provider to choose the primary key type if necessary. The
plan provider must define the findByPrimaryKey method in the subinterface of the
PlanHome interface.

The PlanHome interface defines no create methods. Create methods are not
needed because the Benefits application does not create new medical and dental
plans in the individual entity beans supplied by the insurance companies. An
insurance provider that wants to use the entity bean home interface as the mecha-
nism for creating new insurance plans should define the create methods in a sub-
interface of the PlanHome interface. The PremiumHealthPlanHome home
interface of the PremiumHealthPlanEJB entity bean illustrates extending the
home interface for the purpose of creating a new insurance plan, as does the
WrapperPlanHome home interface (described in the next section). See “Premium-
HealthPlanHome Home Interface” on page 323.

7.3.5.5 WrapperPlanEJB’s Remote Interface

The WrapperPlanEJB uses the com.wombat.plan.Plan interface as its remote
interface. See Code Example 7.18, which lists the Plan remote interface.

7.3.5.6 WrapperPlanHome Home Interface

The WrapperPlanHome interface is the home interface of the WrapperPlanEJB
entity bean. Code Example 7.23 shows its definition.

package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

import com.wombat.plan.Plan;

PARTS DEVELOPED BY WOMBAT 303

import com.wombat.plan.PlanHome;

public interface WrapperPlanHome extends PlanHome {

Plan create(Plan planRef, String wrapperPlanId)

throws RemoteException, CreateException;

Plan findByPrimaryKey(String pkey)

 throws RemoteException, FinderException;

}

Code Example 7.23 WrapperPlanHome Home Interface

The WrapperPlanHome interface extends the PlanHome interface and defines a
single create method. The BenefitsAdminWeb Web application uses this create

method to add a new plan to the plans currently configured for the Benefits enroll-
ment application. The plan argument is an object reference to an actual medical or
dental plan object provided by an insurance company. The wrapperPlanId is a
primary key for the plan visible to the WrapperPlanEJB clients; the customer (Star
Enterprise’s Benefits Administrator in our example) chooses this key. See “Benefit-
sAdminWeb Web application” on page 316 for the description of the BenefitsAd-
minWeb Web application.

7.3.5.7 WrapperPlanBeanCMP Entity Bean Class

The WrapperPlanBeanCMP is an interesting entity bean class from the perspective
of its persistence. Its persistence state consists of two parts. Container-managed
fields implement one part of its persistent state (these fields are ultimately bound to
columns in a database table, which we illustrate in the WrapperPlanBean class),
while delegation to the wrapped actual plan object implements the other part. Our
example implementation also illustrates caching of some of the state obtained from
the wrapped bean. The delegation and caching can be considered as a form of bean-
managed persistence in which the access to the state is made by calls to the wrapped
plan objects.

Code Example 7.24 below illustrates the implementation of the WrapperPlan-
BeanCMP class.

package com.wombat.benefits;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE304

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Collection;

import com.wombat.plan.Plan;

import com.wombat.plan.PlanInfo;

import com.wombat.plan.Doctor;

import com.wombat.plan.PlanException;

public class WrapperPlanBeanCMP implements EntityBean {

// container-managed fields

public String wrapperPlanId;

public Plan plan;

// cached attributes of the wrapped plan

public int planType;

public String planName;

//

// Business methods from WrapperPlan interface

//

public PlanInfo getPlanInfo() {

 PlanInfo pi = new PlanInfo();

 pi.setPlanId(wrapperPlanId);

 pi.setPlanType(planType);

 pi.setPlanName(planName);

 return pi;

}

public int getPlanType() throws PlanException {

return planType;

}

public double getCost(int coverage, int age,

boolean smokerStatus) throws PlanException {

try {

return plan.getCost(coverage, age, smokerStatus);

PARTS DEVELOPED BY WOMBAT 305

} catch (RemoteException ex) {

throw new EJBException(ex);

}

}

public Collection getAllDoctors() throws PlanException {

try {

return plan.getAllDoctors();

} catch (RemoteException ex) {

throw new EJBException(ex);

}

}

public Collection getDoctorsByName(Doctor template)

throws PlanException {

try {

return plan.getDoctorsByName(template);

} catch (RemoteException ex) {

throw new EJBException(ex);

}

}

public Collection getDoctorsBySpecialty(String specialty)

throws PlanException {

try {

return plan.getDoctorsBySpecialty(specialty);

} catch (RemoteException ex) {

throw new EJBException(ex);

}

}

//

// Methods from the home interface WrapperPlanHome

//

public String ejbCreate(Plan plan, String wrapperPlanId) {

// set container-managed fields

this.wrapperPlanId = wrapperPlanId;

this.plan = plan;

return null;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE306

}

public void ejbPostCreate(Plan plan, String wrapperPlanId) {

updateCachedFields();

}

//

// Methods from javax.ejb.EntityBean interface

//

public void setEntityContext(EntityContext ctx) {}

public void unsetEntityContext() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbLoad() {

updateCachedFields();

}

public void ejbStore() {}

public void ejbPassivate() {}

private void updateCachedFields() {

try {

PlanInfo planInfo = plan.getPlanInfo();

this.planType = planInfo.getPlanType();

this.planName = planInfo.getPlanName();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.24 WrapperPlanBeanCMP Class Implementation

The WrapperPlanBeanCMP class defines two container-managed fields:
wrapperPlanId and plan. The wrapperPlanId field is a customer-assigned primary
key that identifies a particular plan at a customer enterprise. The plan field is an
object reference to the actual plan object implemented by an entity bean supplied
by the insurance providers. In our example, this is one of the entity beans provided
by PremiumHealth or Providence.

PARTS DEVELOPED BY WOMBAT 307

The WrapperPlanBeanCMP class also defines two fields that are cached
values obtained from the wrapped actual plan. These fields are planType and
planName. We discuss their use later in this section.

In addition to the fields, the WrapperPlanBeanCMP class implements the
business methods defined in the PlanHome remote interface, the ejbCreate

method that corresponds to the create method defined in the WrapperPlanHome
interface, and the container callbacks defined in the EntityBean interface.

The getCost, getAllDoctors, getDoctorsByName, and getDoctorsBySpe-

cialty methods delegate to the same-named method of the actual plan object
using the plan object reference.

The getPlanInfo method returns the plan attributes cached in the instance
fields. The planId in the PlanInfo object is the wrapperPlanId. Returning the key
in this manner means that the client of the WrapperPlanEJB bean does not see the
primary key of the actual plan object provided by the insurance company.

The getPlanType method returns the value of the planType field.
It is important to note how and when we set the values of the cached fields.

Note how we manage the planType and planName fields. These fields contain
cached values of the wrapped actual plan state. We set the cached fields in the
ejbPostCreate and ejbLoad methods. We use the ejbPostCreate method to set
the values for the first time. (Alternatively, we could have used the ejbCreate

method to set the values.) Because other programs may change the objects from
which the cached fields are obtained, we use the ejbLoad method to refresh the
values of the cached fields. The container invokes the ejbLoad method before it
dispatches the first business method on an instance of the WrapperPlanBeanCMP
class in each transaction unless the Container is certain that the values have not
changed in the underlying objects. The ejbLoad method ensures that the instance
has a chance to refresh the values of the cached fields before the container dis-
patches a business method on the instance. See “Transaction Commit OID” on
page 208 in Chapter 6, Understanding Entity Beans, for a discussion of transac-
tion commit options.

7.3.5.8 WrapperPlanBean Entity Bean Class

The WrapperPlanBean class is the bean-managed persistence version of the Wrap-
perPlanBeanCMP entity bean class. The WrapperPlanBean class extends the Wrap-
perPlanBeanCMP class and implements the data access logic using the
BenefitsDatabase default schema defined by Wombat (See “BenefitsDatabase” on
page 317).

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE308

Code Example 7.25 shows the implementation of the WrapperPlanBean class.

package com.wombat.benefits;

import javax.ejb.*;

import javax.naming.InitialContext;

import javax.naming.Context;

import java.sql.Connection;

import java.sql.PreparedStatement;

import java.sql.ResultSet;

import java.sql.SQLException;

import javax.sql.DataSource;

import java.util.Vector;

import java.util.Collection;

import javax.rmi.PortableRemoteObject;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import com.wombat.plan.Plan;

import com.wombat.plan.PlanHome;

import com.wombat.plan.PlanInfo;

import com.wombat.plan.PlanType;

import com.wombat.plan.Doctor;

public class WrapperPlanBean extends WrapperPlanBeanCMP {

private EntityContext entityContext;

private DataSource ds;

public String ejbCreate(Plan plan, String wrapperPlanId) {

super.ejbCreate(plan, wrapperPlanId);

// Perform database insert

try {

byte[] serHandle = planToSerHandle(plan);

PARTS DEVELOPED BY WOMBAT 309

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“INSERT INTO Wrapper_Plans VALUES (?, ?, ?)”

);

pstmt.setString(1, this.wrapperPlanId);

pstmt.setBytes(2, serHandle);

pstmt.setInt(3, this.plan.getPlanType());

pstmt.executeUpdate();

con.close();

return wrapperPlanId;

} catch (Exception ex) {

throw new EJBException(ex);

}

}

public String ejbFindByPrimaryKey(String planID)

throws ObjectNotFoundException

{

try {

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“SELECT cfg_wrapper_planid “ +

“FROM Wrapper_Plans “ +

“WHERE cfg_wrapper_planid = ?”

);

pstmt.setString(1, planID);

ResultSet rs = pstmt.executeQuery();

if (rs.next()) {

con.close();

return planID;

} else {

con.close();

throw new ObjectNotFoundException();

}

} catch (SQLException ex) {

throw new EJBException(ex);

}

}

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE310

public String ejbFindByPlanId(String planID)

throws ObjectNotFoundException

{

return ejbFindByPrimaryKey(planID);

}

public Collection ejbFindMedicalPlans() {

return findPlans(PlanType.MEDICAL);

}

public Collection ejbFindDentalPlans() {

return findPlans(PlanType.DENTAL);

}

public Collection ejbFindByDoctor(Doctor template) {

try {

Vector vec = new Vector();

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“SELECT cfg_wrapper_planid, cfg_act_plan_handle “ +

“FROM Wrapper_Plans “

);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

String wrapperPK = rs.getString(1);

byte[] serHandle = rs.getBytes(2);

Plan plan = serPlanHandleToRef(serHandle);

Collection coll =

plan.getDoctorsByName(template);

if (coll.size() > 0)

vec.add(wrapperPK);

}

con.close();

return vec;

} catch (Exception ex) {

throw new EJBException(ex);

}

}

PARTS DEVELOPED BY WOMBAT 311

public void setEntityContext(EntityContext ctx) {

readEnvironment();

super.setEntityContext(ctx);

}

public void ejbRemove() {

super.ejbRemove();

try {

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“DELETE FROM Wrapper_Plans “ +

“WHERE cfg_wrapper_planid = ?”);

pstmt.setString(1, wrapperPlanId);

pstmt.executeUpdate();

con.close();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

public void ejbLoad() {

try {

byte[] serHandle;

wrapperPlanId =

(String)entityContext.getPrimaryKey();

// load Plan handle from database

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“SELECT cfg_act_plan “ +

“FROM Wrapper_Plans “ +

“WHERE cfg_wrapper_planid = ?”);

pstmt.setString(1, wrapperPlanId);

ResultSet rs = pstmt.executeQuery();

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE312

if (rs.next()) {

serHandle = rs.getBytes(1);

con.close();

} else {

throw new NoSuchEntityException();

}

// convert handle to Plan reference

plan = serPlanHandleToRef(serHandle);

} catch (Exception ex) {

throw new EJBException(ex);

}

super.ejbLoad();

}

//

// Helper methods.

//

private Connection getConnection() {

try {

return ds.getConnection();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

private void readEnvironment() {

try {

Context ictx = new InitialContext();

ds = (DataSource)

ictx.lookup(“java:comp/env/jdbc/BenefitsDB”);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

private static Plan serPlanHandleToRef(byte[] serHandle) {

try {

PARTS DEVELOPED BY WOMBAT 313

ObjectInputStream inp = new ObjectInputStream(

new ByteArrayInputStream(serHandle));

Handle handle = (Handle)inp.readObject();

return (Plan)PortableRemoteObject.narrow(

handle.getEJBObject(), Plan.class);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

private static byte[] planToSerHandle(Plan plan) {

try {

ByteArrayOutputStream barr =

new ByteArrayOutputStream();

ObjectOutputStream out =

new ObjectOutputStream(barr);

Handle handle = plan.getHandle();

out.writeObject(handle);

return barr.toByteArray();

} catch (Exception ex) {

throw new EJBException(ex);

}

}

private Collection findPlans(int planType) {

try {

Vector vec = new Vector();

Connection con = getConnection();

PreparedStatement pstmt = con.prepareStatement(

“SELECT cfg_wrapper_planid “ +

“FROM Wrapper_Plans “ +

“WHERE cfg_plan_type = ?”

);

pstmt.setInt(1, planType);

ResultSet rs = pstmt.executeQuery();

while (rs.next()) {

String pkey = rs.getString(1);

vec.add(pkey);

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE314

}

con.close();

return vec;

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.25 WrapperPlanBean Class Implementation

The WrapperPlanBean class defines the following methods:

• The ejbCreate method that corresponds to the create method defined in the
WrapperPlanHome interface

• All the finder methods defined in the PlanHome interface

• The ejbLoad, ejbRemove, and setEntityContext container callbacks that over-
ride the same-named callbacks in the superclass

The same principles apply to invoking the above methods for the Wrapper-
PlanBean class as for the SelectionBean class. Refer to “Invoking Superclass
Methods” on page 293, for more information.

The WrapperPlanBean class is of particular interest because it uses an entity
object handle to deal with the persistence of the object references to the actual
plan entity objects implemented by the insurance companies. The WrapperPlan-
Bean class uses handles to store entity object references in persistent storage. Its
ejbCreate and ejbLoad methods illustrate the code to persist an entity object
handle. The ejbCreate method obtains a handle for the plan object reference,
serializes it, and stores it in the cfg_act_Plan_handle database column. The
ejbLoad method reads the handle from the cfg_act_Plan_handle database column
and deserializes it to obtain the object reference to the plan entity object. The size
of a serialized handle depends on how the container implements handles. It is typ-
ically on the order of hundreds of bytes.

Note that Wombat does not override the ejbStore method in the Wrapper-
PlanBean class. This is because Wombat knows that the business methods of the
WrapperPlanBeanCMP class do not modify the container-managed fields. There-

PARTS DEVELOPED BY WOMBAT 315

fore, there is no need to update the database when the Container invokes ejbStore
on the instance.

Using a handle is not the only way to represent an entity object reference in
persistent storage. A handle’s main advantage is that the program storing the
handle does not need to know the JNDI name of the home interface of the entity
object. However, a handle’s main disadvantage is that the handle is a binary object
not understood outside of the Java environment that created the handle. (This
means, for example, that the handle is stored as a VARBINARY data type which is
opaque to SQL queries.) In addition, the serialized handle may become invalid
after a container reconfiguration. Other ways of storing an object reference in per-
sistent storage include:

• Storing the primary key of the entity object (if all the saved object references
have the same home interface).

• Storing both the name of the JNDI home interface and the primary key of the
entity object (if the saved object references have different home interfaces).

The second approach (storing both the JNDI home interface name and
primary key) would be more suitable for our application because the wrapped
actual plans have different home interfaces. A real-life application would probably
use this approach rather than the handle-based approach to avoid storing opaque
binary handles in the relational schema.

Notice that the Wrapper_Plans table maintains the plan type indication in the
cfg_plan_type database column. Keeping the plan type in its own database
column enables a more efficient implementation of the ejbFindMedicalPlans and
ejbFindDentalPlans finder methods. Without this database column, the finder
methods would have to iterate over all rows in the Wrapper_Plans table and invoke
the getPlanType method on all the actual plan objects to find the set of all the con-
figured medical or dental plans.

7.3.5.9 plan_intf. jar JAR File

A Java ARchive (JAR) file is a standard file format for packaging a collection of
compiled Java classes into a unit that can be loaded and executed in a JVM. One use
of a JAR file is for packaging libraries.

To allow the insurance companies or application integrators to develop the
enterprise beans that implement the Plan and PlanHome interfaces, Wombat
creates and publishes the plan_intf.jar JAR file. The plan_intf.jar contains all

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE316

the class files that an entity bean that implements the Plan and PlanHome inter-
faces needs at compile time and at runtime.

The plan_intf.jar file contains the following class files:

com.wombat.plan.Plan.class

com.wombat.plan.PlanHome.class

com.wombat.plan.PlanType.class

com.wombat.plan.PlanInfo.class

com.wombat.plan.Doctor.class

com.wombat.plan.PlanException.class

7.3.6 EnrollmentWeb Web application

The EnrollmentWeb Web application is a set of JavaServer Pages. See the example
in Chapter 4, Working with Session Beans, for a description of the EnrollmentWeb
Web application.

7.3.7 BenefitsAdminWeb Web application

The BenefitsAdminWeb Web application is a set of JavaServer Pages used by the
customer’s benefits administration department to administer its benefits plans.

The BenefitsAdminWeb Web application does the following work:

• It finds all the deployed plan beans from the insurance companies.

• It assumes that all the home interfaces of the deployed plans are located in a
specified JNDI context.

• It uses the finder methods in the WrapperPlanHome interface to find all the
plans that are currently configured for use by the Benefits enrollment applica-
tion.

• It displays the information to the plan administrator and lets her modify the set
of configured plans.

If the plan administrator modifies the set of plans, the BenefitsAdminWeb
Web application uses the WrapperPlanHome interface to add and remove the con-
figured plans. The skeleton code for adding a plan is illustrated below (we show
only the parts that are relevant to the use of the WrapperPlanEJB entity bean):

PARTS DEVELOPED BY WOMBAT 317

...

// Select a plan to add to the set of configured plans. The plan

// is the object reference to the plan to be added.

Plan plan = ...;

// Let the plans administrator to select a primary key that will

// be seen by the clients.

String wrapperPkey = ...;

// Create a wrapper entity object for the plan.

Plan wrapperPlan = WrapperPlanHome.create(wrapperPkey, plan);

...

After the create method completes, the created wrapper plan entity object
becomes available to the Benefits enrollment application.

If a plan administrator wishes to remove a plan from the list of configured
plans, she invokes the remove method on the WrapperPlanHome interface, passing
it the wrapper plan primary key, as follows:

...

WrapperPlanHome.remove(wrapperPkey);

...

7.3.8 BenefitsDatabase

Wombat defines the default schema for BenefitsDatabase, which stores the persis-
tent state of SelectionEJB and WrapperPlanEJB. BenefitsDatabase contains two
tables: the Selections table and the Wrapper_Plans table. The SelectionEJB and
WrapperPlanEJB entity beans access these tables.

If a customer chooses to use a different database schema than the default
schema, the customer needs to use the entity beans with container-managed persis-
tence rather than the entity beans with bean-managed persistence. That is, the cus-
tomer uses the SelectionEJBCMP and WrapperPlanEJBCMP entity beans instead
of the SelectionEJB and WrapperPlanEJB beans. In addition, the customer must
define a custom persistence mechanism that does not use BenefitsDatabase.

The Selections table contains the employee’s current benefits selections. Code
Example 7.26 shows the SQL definition of this table.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE318

CREATE TABLE Selections (

sel_empl INT,

sel_coverage INT,

sel_medical_plan VARCHAR(32),

sel_dental_plan VARCHAR(32),

sel_smoker INT,

PRIMARY KEY (sel_empl)

)

Code Example 7.26 Selections Table

The columns of the Selections table contain the following data:

• sel_empl—The employee number identifying the employee.

• sel_coverage—The coverage selection. sel_coverage accepts three possible
values:

� 0 means “Employee Only”

� 1 means “Employee and Spouse”

� 2 means “Employee, Spouse, and Children”

• sel_medical_plan—The primary key of the medical plan selected by the em-
ployee.

• sel_dental_plan—The primary key of the dental plan selected by the employ-
ee.

• sel_smoker—The indication whether the employee is a smoker or not. The al-
lowed values are ‘Y’ and ‘N’.

The Wrapper_Plans table contains information about the plans configured for
the Benefits enrollment application. Code Example 7.27 shows the SQL definition
for this table.

CREATE TABLE Wrapper_Plans (

cfg_wrapper_planid VARCHAR(32),

cfg_act_plan VARBINARY(1024),

cfg_plan_type INT,

PARTS DEVELOPED BY WOMBAT 319

PRIMARY KEY (cfg_wrapper_planid)

)

Code Example 7.27 Wrapper_Plans Table

The columns of the Wrapper_Plans table contain the following data:

• cfg_wrapper_planid—Identifies the primary key for the wrapper plan. The
customer’s benefits department (such as Star Enterprise) assigns the wrapper
primary key.

• cfg_act_plan—Identifies the serialized handle of the entity object represent-
ing the actual medical or dental plan implemented by an entity bean provided
by an insurance company.

• cfg_plan_type—Provides a means for the WrapperPlanEJB entity bean to op-
timize the implementation of the finder methods. There are two possible values
for cfg_plan_type:

� 1 indicates the plan is a medical plan

� 2 indicates the plan is a dental plan

7.3.9 Packaging of Parts

This section describes how Wombat packages its benefits application for distribution
to customers.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE320

7.3.9.1 benefits.ear File

Wombat packages the benefits application as a single J2EE Enterprise Application
Archive file which it names benefits.ear. (An ear file is an Enterprise Application
Archive resource file.) Figure 7.7 depicts the contents of the benefits.ear file.

Figure 7.7 Contents of the benefits.ear File

The benefits.ear file contains the following parts:

• The enrollment.war file with the EnrollmentWeb Web application. (A war file
is a Web archive file.) The EnrollmentWeb Web application consists of several
Java Server Pages.

• The benefits_admin.war file with the BenefitsAdminWeb Web application.
The BenefitsAdminWeb Web application consists of several JavaServer Pag-
es.

• The benefits_ejb.jar file. This is the ejb-jar file that contains the enterprise
beans developed by Wombat. See “benefits-ejb.jar File” on page 321.

benefits.ear

benefits_admin.war benefits_ejb.jar payroll_client_ejb.jar

EnrollmentEJBBenefitsAdminWeb

enrollment.war

EnrollmentWeb

plan_intf.jar

Contains:Contains: Contains:

JAREJB-
JAR

WAR JARWAR

EAR

SelectionEJB
WrapperPlanEJB
SelectionEJBCMP
WrapperPlanEJBCMP
EmployeeEJB

PARTS DEVELOPED BY WOMBAT 321

• The payroll_client_ejb.jar file. This is the JAR file with the client-view of
the Aardvark PayrollEJB session bean. Wombat needs this file to compile the
EnrollmentEJB classes, and the EnrollmentEJB classes will need this JAR file
at runtime. The benefits_ejb.jar file should note this dependency in the
Manifest file of the benefits.ejb jar file.

• The plan_intf.jar JAR file that contains the Plan and PlanHome interface
files with their dependent class and interfaces. The benefits_ejb.jar file
should note the dependency on this JAR file in the Manifest file of the bene-

fits.ejb jar file

7.3.9.2 benefits-ejb.jar File

The benefits-ejb.jar file is an ejb-jar file that contains the enterprise beans devel-
oped by Wombat. Code Example 7.28 lists the classes that the file contains.

com.wombat.benefits.CoverageCategory.class

com.wombat.benefits.Employee.class

com.wombat.benefits.EmployeeBean.class

com.wombat.benefits.EmployeeCopy.class

com.wombat.benefits.EmployeeException.class

com.wombat.benefits.EmployeeHome.class

com.wombat.benefits.EmployeeInfo.class

com.wombat.benefits.Enrollment.class

com.wombat.benefits.EnrollmentBean.class

com.wombat.benefits.EnrollmentException.class

com.wombat.benefits.EnrollmentHome.class

com.wombat.benefits.Options.class

com.wombat.benefits.Selection.class

com.wombat.benefits.SelectionBean.class

com.wombat.benefits.SelectionBeanCMP.class

com.wombat.benefits.SelectionCopy.class

com.wombat.benefits.SelectionException.class

com.wombat.benefits.SelectionHome.class

com.wombat.benefits.Summary.class

com.wombat.benefits.WrapperPlanBean.class

com.wombat.benefits.WrapperPlanBeanCMP.class

com.wombat.benefits.WrapperPlanHome.class

Code Example 7.28 Contents of the benefits-ejb.jar File

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE322

7.4 Parts Developed by Premium Health

Premium Health is one of the insurance companies that provides insurance plans to
the employees of Star Enterprise. It develops its own Web application and enterprise
beans that are intended for deployment at its customer sites.

7.4.1 Overview

Premium Health develops the parts illustrated in the Figure 7.8.

Figure 7.8 Parts Developed by Premium Health

Premium Health expects its customers to deploy the PremiumHealthAdmin-
Web, PremiumHealthPlanEJB, and PremiumHealthDatabase parts at their own
customer sites. A company such as Star Enterprise that contracts with Premium
Health deploys the three parts at its own site. However, the PremiumHealthAdmi-
nApp is deployed at the Premium Health site, not at the customer site.

PremiumHealthAdminWeb is a Web application deployed at the customer
site. Premium Health uses it to remotely administer the plan information stored
and used at the customer site.

PremiumHealthPlanEJB is an entity bean that implements the Plan and Plan-
Home interfaces. Recall that Wombat developed these interfaces to provide a stan-
dard way for an insurance company to integrate its coverage plans with Wombat’s
Benefits application.

PremiumHealthDatabase is a database that stores the plan information used
by the PremiumHealthPlan bean.

PremiumHealthAdminApp is an application deployed at the Premium Health
site. Premium Health uses the application to upload and modify the plan informa-
tion at the customer sites.

<<Entity Bean>>
PremiumHealthPlanEJB

<<Web App>>
Premium

PremiumHealthDatabase

Premium

PlanHomePlan

HealthAdminApp HealthAdminWeb

PARTS DEVELOPED BY PREMIUM HEALTH 323

7.4.2 PremiumHealthPlanEJB EntityBean

The PremiumHealthPlanEJB entity bean implements the business logic for the
medical and dental plans provided by Premium Health to its customers. It uses the
Plan remote interface and the PremiumHealthPlanHome home interface. This
section describes the remote and home interfaces, and the entity bean implementa-
tion class.

7.4.2.1 PremiumHealthPlanEJB Remote Interface

PremiumHealthPlanEJB uses the com.wombat.plan.Plan interface as its remote
interface. See Code Example 7.18.

7.4.2.2 PremiumHealthPlanHome Home Interface

The PremiumHealthPlanHome interface extends the PlanHome interface and adds a
single create method. Code Example 7.29 shows the definition of this home inter-
face:

package com.premiumhealth.plan;

import javax.ejb.*;

import java.rmi.RemoteException;

import com.wombat.plan.Plan;

import com.wombat.plan.PlanHome;

public interface PremiumHealthPlanHome extends PlanHome {

Plan create(Plan planRef, String planName,

 int planType)throws RemoteException, CreateException;

Plan findByPrimaryKey(String planId)

 throws RemoteException, FinderException;

}

Code Example 7.29 PremiumHealthPlanHome Home Interface

The PremiumHealthAdminWeb Web application invokes the create method
when adding a new plan to the list of the available plans administered by Premium
Health and offered to a given customer enterprise.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE324

7.4.2.3 PremiumHealthPlanBean Entity Bean Class

The PremiumHealthPlanBean entity bean class defines the implementation of the
plan business logic. Code Example 7.30 shows the implementation of the Premium-
HealthPlanBean class.

package com.premiumhealth.plan;

import javax.ejb.*;

import java.util.Vector;

import java.util.Collection;

import com.wombat.plan.Plan;

import com.wombat.plan.PlanHome;

import com.wombat.plan.PlanInfo;

import com.wombat.plan.PlanType;

import com.wombat.plan.PlanException;

import com.wombat.plan.Doctor;

import java.sql.SQLException;

import javax.sql.DataSource;

import javax.naming.InitialContext;

import javax.naming.Context;

import com.premiumhealth.plan.db.DBDeletePremiumByPlanId;

import com.premiumhealth.plan.db.DBQueryPremium;

import com.premiumhealth.plan.db.DBDeleteDoctorByPlanId;

import com.premiumhealth.plan.db.DBQueryAllDoctors;

import com.premiumhealth.plan.db.DBQueryDoctorByName;

import com.premiumhealth.plan.db.DBQueryDoctorBySpecialty;

import com.premiumhealth.plan.db.DBInsertPlan;

import com.premiumhealth.plan.db.DBDeletePlan;

import com.premiumhealth.plan.db.DBUpdatePlan;

import com.premiumhealth.plan.db.DBQueryPlan;

import com.premiumhealth.plan.db.DBQueryPlanByDoctor;

import com.premiumhealth.plan.db.DBQueryPlanByType;

public class PremiumHealthPlanBean implements EntityBean {

PARTS DEVELOPED BY PREMIUM HEALTH 325

// cached persistent state

String planId;// primary key

int planType;

String planName;

// other instance variables

DataSource ds;

EntityContext ctx;

// Business methods from the remote interface

// com.wombat.plan.Plan

public PlanInfo getPlanInfo() {

 PlanInfo pi = new PlanInfo();

 pi.setPlanId(planId);

 pi.setPlanType(planType);

 pi.setPlanName(planName);

 return pi;

}

public int getPlanType() { return planType; }

public double getCost(int coverage, int age,

boolean smokerStatus) throws PlanException

{

DBQueryPremium cmd = null;

try {

cmd = new DBQueryPremium(ds);

cmd.setPlanId(planId);

cmd.setAge(age);

cmd.setSmokerStatus(smokerStatus ? “Y” : “N”);

cmd.setCoverage(coverage);

cmd.execute();

if (!cmd.next()) {

throw new PlanException(

“premium information unavailable”);

}

double amount = cmd.getAmount();

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE326

return amount;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection getAllDoctors()

{

DBQueryAllDoctors cmd = null;

try {

cmd = new DBQueryAllDoctors(ds);

cmd.setPlanId(planId);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

Doctor doc = new Doctor();

doc.setFirstName(cmd.getFirstName());

doc.setLastName(cmd.getLastName());

doc.setSpecialty(cmd.getSpecialty());

doc.setHospital(cmd.getHospital());

doc.setPracticeSince(cmd.getPracticeSince());

vec.add(doc);

}

return vec;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection getDoctorsByName(Doctor template)

{

DBQueryDoctorByName cmd = null;

try {

cmd = new DBQueryDoctorByName(ds);

PARTS DEVELOPED BY PREMIUM HEALTH 327

cmd.setPlanId(planId);

cmd.setFirstName(template.getFirstName() + “%”);

cmd.setLastName(template.getLastName() + “%”);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

Doctor doc = new Doctor();

doc.setFirstName(cmd.getFirstName());

doc.setLastName(cmd.getLastName());

doc.setSpecialty(cmd.getSpecialty());

doc.setHospital(cmd.getHospital());

doc.setPracticeSince(cmd.getPracticeSince());

vec.add(doc);

}

return vec;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection getDoctorsBySpecialty(String specialty)

{

DBQueryDoctorBySpecialty cmd = null;

try {

cmd = new DBQueryDoctorBySpecialty(ds);

cmd.setPlanId(planId);

cmd.setSpecialty(specialty);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

Doctor doc = new Doctor();

doc.setFirstName(cmd.getFirstName());

doc.setLastName(cmd.getLastName());

doc.setSpecialty(cmd.getSpecialty());

doc.setHospital(cmd.getHospital());

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE328

doc.setPracticeSince(cmd.getPracticeSince());

vec.add(doc);

}

return vec;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

// Methods from the home interface

// com.wombat.plan.PremiumHealthPlanHome

public String ejbCreate(String planId, String planName,

int planType)

{

this.planId = planId;

this.planName = planName;

this.planType = planType;

DBInsertPlan cmd = null;

try {

cmd = new DBInsertPlan(ds);

cmd.setPlanId(planId);

cmd.setPlanType(planType);

cmd.setPlanDescr(planName);

cmd.execute();

return planId;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public void ejbPostCreate(String planId, String planName,

int planType) {}

PARTS DEVELOPED BY PREMIUM HEALTH 329

// Finder methods

public String ejbFindByPrimaryKey(String planId)

 throws FinderException

{

DBQueryPlan cmd = null;

try {

cmd = new DBQueryPlan(ds);

cmd.setPlanId(planId);

cmd.execute();

Vector vec = new Vector();

if (cmd.next()) {

return planId;

} else {

throw new ObjectNotFoundException();

}

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public String ejbFindByPlanId(String planId)

 throws FinderException

{

 return ejbFindByPrimaryKey(planId);

}

public Collection ejbFindMedicalPlans()

{

DBQueryPlanByType cmd = null;

try {

cmd = new DBQueryPlanByType(ds);

cmd.setPlanType(PlanType.MEDICAL);

cmd.execute();

Vector vec = new Vector();

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE330

while (cmd.next()) {

vec.add(cmd.getPlanId());

}

return vec;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection ejbFindDentalPlans()

{

DBQueryPlanByType cmd = null;

try {

cmd = new DBQueryPlanByType(ds);

cmd.setPlanType(PlanType.DENTAL);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

vec.add(cmd.getPlanId());

}

return vec;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection ejbFindByDoctor(Doctor template)

{

DBQueryPlanByDoctor cmd = null;

try {

cmd = new DBQueryPlanByDoctor(ds);

cmd.setFirstName(template.getFirstName() + “%”);

cmd.setLastName(template.getLastName() + “%”);

cmd.execute();

PARTS DEVELOPED BY PREMIUM HEALTH 331

Vector vec = new Vector();

while (cmd.next()) {

vec.add(cmd.getPlanId());

}

return vec;

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

//

// Methods from javax.ejb.EntityBean interface

//

public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;

readEnvironment();

}

public void unsetEntityContext() {}

public void ejbRemove()

{

DBDeletePlan cmd = null;

DBDeletePremiumByPlanId cmd2 = null;

DBDeleteDoctorByPlanId cmd3 = null;

try {

// Delete dependent premium information.

cmd2 = new DBDeletePremiumByPlanId(ds);

cmd2.setPlanId(planId);

cmd2.execute();

// Delete dependent doctor information.

cmd3 = new DBDeleteDoctorByPlanId(ds);

cmd3.setPlanId(planId);

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE332

cmd3.execute();

// Delete plan record.

cmd = new DBDeletePlan(ds);

cmd.setPlanId(planId);

cmd.execute();

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

if (cmd2 != null) cmd2.release();

if (cmd3 != null) cmd3.release();

}

}

public void ejbActivate() {

planId = (String)ctx.getPrimaryKey();

}

public void ejbPassivate() { planId = null; }

public void ejbLoad()

{

DBQueryPlan cmd = null;

try {

cmd = new DBQueryPlan(ds);

cmd.setPlanId(planId);

cmd.execute();

if (!cmd.next()) {

throw new NoSuchEntityException();

}

planName = cmd.getPlanDescr();

planType = cmd.getPlanType();

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

PARTS DEVELOPED BY PREMIUM HEALTH 333

public void ejbStore()

{

DBUpdatePlan cmd = null;

try {

cmd = new DBUpdatePlan(ds);

cmd.setPlanId(planId);

cmd.setPlanType(planType);

cmd.setPlanDescr(planName);

cmd.execute();

} catch (SQLException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

private void readEnvironment() {

try {

Context ictx = new InitialContext();

ds = (DataSource)ictx.lookup(

“java:comp/env/jdbc/PremiumHealthDB”);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.30 PremiumHealthPlanBean Entity Bean Class

The PremiumHealthPlanBean class is a typical entity bean class with bean-
managed persistence. As such, it manages its own database access by making use
of command beans. See “Data Access Command Beans” on page 112 for an
explanation of command beans.

The entity object caches some parts of the persistent state (planType and
planName) to reduce the number of database accesses. The entity object does not
cache other parts of the PremiumHealthPlanEJB state. For example, it does not

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE334

cache the Doctor information. Instead, the entity object’s business methods access
the database directly when Doctor information is needed.

Refer to “Data Access Command Beans” on page 446 to see the implementa-
tions of the different data access command beans used by the entity example.

7.4.3 HelperEJB Session Bean

The HelperEJB is a stateless session bean which the PremiumHealthAdmin Web
application uses to create and maintain the benefits information in the database. We
do not show its implementation in the book because it is not relevant to the rest of
the application.

7.4.4 PremiumHealthAdminWeb Web Application

The PremiumHealthAdminWeb Web application is a set of servlets which the
Premium Health insurance company uses to maintain plan information at its cus-
tomer sites. The PremiumHealthAdminWeb Web application is deployed at the cus-
tomer site. Premium Health sends XML requests over the Internet to make online
updates to the plan information at the customer site.

The PremiumHealthAdminWeb Web application uses the PremiumHealth-
PlanEJB and HelperEJB to perform the updates to the plan information.

We briefly mention the Web application only because it is one part of the
entire example. The Web application consists of servlets, and these servlets are
important to EJB. We do not discuss the Web application and servlets in more
detail because the focus of this book is Enterprise JavaBeans.

7.4.5 PremiumHealthAdminApp

PremiumHealthAdminApp is an application deployed at Premium Health. Premi-
umHealthAdminApp acts as the client of the PremiumHealthAdminWeb Web appli-
cation. It is used to upload and maintain the plan information at the customer sites.

We do not describe the architecture and implementation of PremiumHealth-
AdminApp in this book.

7.4.6 PremiumHealthDatabase

PremiumHealthDatabase is a relational database that exists at the customer site. It
contains the plan information needed by the PremiumHealthPlanEJB entity bean.

PARTS DEVELOPED BY PREMIUM HEALTH 335

Using the PremiumHealthAdminWeb Web application, the Premium Health insur-
ance company updates the plan information in the database via the Internet.

The PremiumHealthDatabase schema defines three tables. The Plans table con-
tains the plans offered by Premium Health. The Premium table contains the infor-
mation about the plan premium. The Doctor table contains the information about the
participating doctors.

Code Example 7.31 shows the definition of the Plans table.

CREATE TABLE Plans (

plan_id VARCHAR(32),

plan_descr VARCHAR(32),

plan_type INT,

PRIMARY KEY (plan_id)

)

Code Example 7.31 Plans Table

The columns of the Plans table contain the following data:

• plan_id column—Contains the unique identifier for the plan.

• plan_descr column—Holds a short description of the plan suitable for display
within a GUI form.

• plan_type column—Indicates whether the plan is a medical or dental plan.
When equal to 1, the plan is a medical plan; when equal to 2, the plan is a dental
plan.

Code Example 7.32 shows the SQL statements defining the Premium table:

CREATE TABLE Premium (

prem_plan_id VARCHAR(32),

prem_age INT,

prem_smoker_status CHAR(1),

prem_coverage INT,

prem_amount DECIMAL(6.2),

PRIMARY KEY (prem_plan_id, prem_age, prem_smoker_status,

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE336

prem_coverage)

)

Code Example 7.32 Premium Table

The columns of the Premium table contain information that the application
uses to calculate an employee’s premium deduction. An employee’s premium
amount is determined by the selected plan, his or her age, smoker status, and
extent of coverage. The columns of the Premium table hold the following data:

• prem_plan_id column—Holds the unique identifier of the plan.

• prem_age column—Indicates the age of the employee.

• prem_smoker_status column—Indicates whether the employee is a smoker or
not. The allowed values are ‘Y’ and ‘N’.

• prem_coverage column—Indicates the coverage category selected by the em-
ployee.

• prem_amount column—Holds the amount of the plan premium.

Code Example 7.33 shows the SQL definition of the Doctors table.

CREATE TABLE Doctors (

doc_id INT,

doc_plan_id VARCHAR(32),

doc_first_name VARCHAR(32),

doc_last_name VARCHAR(32),

doc_specialty VARCHAR(32),

doc_hospital VARCHAR(32),

doc_practice_since INT,

PRIMARY KEY (doc_id, doc_plan_id)

)

Code Example 7.33 Doctors Table

PARTS DEVELOPED BY PREMIUM HEALTH 337

The columns of the Doctors table hold information about the different doctors
affiliated with a particular plan. These columns contain the following data:

• doc_id column—An identifier for a particular doctor

• doc_plan_id column—The identifier for a particular plan

• doc_first_name column—The doctor’s first name

• doc_last_name column—The doctor’s last name

• doc_specialty column—A short description of the doctor’s field of specialty

• doc_hospital column—The name of the hospital to which the doctor is affil-
iated

• doc_practice_since column—The year when the doctor first began his prac-
tice

The doc_id and doc_plan_id columns together uniquely identify a row in the
Doctors table, and this is noted as the primary key. Note that the database is not in
normalized form. Because of this, it would be possible (though not desirable) to
have the same doctor listed in different plans with inconsistent information.

7.4.7 Packaging

This section describes the packaging of the parts developed by Premium Health.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE338

7.4.7.1 premiumhealth.ear Archive File

Premium Health packages the parts that support the benefits application as a single
J2EE Enterprise Application Archive file which it names premiumhealth.ear.
Figure 7.9 depicts the contents of the premiumhealth.ear file.

Figure 7.9 Premium Health’s Enterprise Application Archive File

The premiumhealth.ear file contains the following parts:

• premiumhealth_admin.war file—This Web Application Archive file contains
the PremiumHealthAdminWeb Web application. The Web application con-
sists of several servlets. A war file is a Web archive resource file that contains
the class files for servlets and JSPs.

• premiumhealth_ejb.jar file—This ejb-jar file contains the enterprise beans
(PremiumHealthPlanEJB and the HelperEJB) developed by Premium Health.

• plan_intf.jar file—This is the JAR file published by Wombat. Because the
PremiumHealthPlanEJB depends on the contents of this JAR file at runtime, it
is included in the premiumhealth.ear file. The Class-Path attribute in the
Manifest of the premiumhealth_ejb.jar file lists this dependency on the
plan_intf.jar file.

premiumhealth.ear

premiumhealth_ejb.jar plan_intf.jar
Contains:

PremiumHealthPlanEJB
HelperEJB

premiumhealth_admin.war

Contains:
PremiumHealthAdminWeb

JAREJB-
JAR

WAR

EAR

PARTS DEVELOPED BY PROVIDENCE 339

7.4.7.2 premiumhealth_ejb.jar File

The premiumhealth_ejb.jar file is an ejb-jar file that contains the enterprise beans
developed by Premium Health. Code Example 7.34 shows the Java class files con-
tained by the file.

com.premiumhealth.plan.PremiumHealthPlan.class

com.premiumhealth.plan.PremiumHealthPlanBean.class

com.premiumhealth.plan.PremiumHealthPlanException.class

com.premiumhealth.plan.PremiumHealthPlanHome.class

com.premiumhealth.plan.db.DBDeletePlan.class

com.premiumhealth.plan.db.DBDeletePremiumByPlanId.class

com.premiumhealth.plan.db.DBDeleteDoctorByPlanId.class

com.premiumhealth.plan.db.DBInsertPlan.class

com.premiumhealth.plan.db.DBQueryAllDoctors.class

com.premiumhealth.plan.db.DBQueryBean.class

com.premiumhealth.plan.db.DBQueryDoctorsByName.class

com.premiumhealth.plan.db.DBQueryDoctorsBySpecialty.class

com.premiumhealth.plan.db.DBQueryPlan.class

com.premiumhealth.plan.db.DBQueryPlanByDoctor.class

com.premiumhealth.plan.db.DBQueryPlanByType.class

com.premiumhealth.plan.db.DBQueryPremium.class

com.premiumhealth.plan.db.DBUpdateBean.class

com.premiumhealth.plan.db.DBUpdatePlan.class

com.premiumhealth.helper.Helper.class

com.premiumhealth.helper.HelperBean.class

com.premiumhealth.helper.HelperException.class

com.premiumhealth.helper.HelperHome.class

Code Example 7.34 premiumhealth_ejb.jar File

7.5 Parts Developed by Providence

Providence is another insurance provider that interoperates with Wombat’s benefits
application. Providence, however, differs radically from Premium Health in its
approach to exchanging information with its customers. While Premium Health
maintains a database with the plan information at each customer site, Providence

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE340

maintains the plan data at its own site. An application that needs to access the Provi-
dence plan data must access the Providence Web site to obtain the plan data.

7.5.1 Overview

Figure 7.10 illustrates the main parts developed by Providence:

Figure 7.10 Providence’s Benefits Plan Parts

ProvidencePlanEJB is an entity bean that enables Providence’s plan to be
integrated with the Wombat Benefits application. Providence accomplishes this by
defining ProvidencePlanEJB’s remote and home interfaces to be compatible with
the Plan and PlanHome interfaces defined by Wombat. ProvidencePlanEJB uses
HTTP and XML to communicate with ProvidenceServiceWeb to obtain the Prov-
idence plan information.

ProvidenceServiceWeb is a Web application deployed at the Providence site.
Customers access it remotely from their own sites to obtain the up-to-date plan
information.

7.5.2 ProvidencePlanEJB EntityBean

The ProvidencePlanEJB entity bean uses the Plan remote interface and the Provi-
dencePlanHome home interface. This section describes these two interfaces as well
as the entity bean implementation class.

7.5.2.1 ProvidencePlanEJB Remote Interface

ProvidencePlanEJB uses the com.wombat.plan.Plan interface as its remote inter-
face. See Code Example 7.18.

<<Entity Bean>>
ProvidencePlanEJB

<<Web App>>
ProvidenceServiceWeb

Plan

PlanHome

PARTS DEVELOPED BY PROVIDENCE 341

7.5.2.2 ProvidencePlanHome Home Interface

The ProvidencePlanHome interface is the home interface for ProvidencePlanEJB.
This interface extends the Wombat PlanHome interface. It neither defines nor over-
rides any methods. See Code Example 7.35.

package com.providence.plan;

import java.rmi.RemoteException;

import javax.ejb.FinderException;

public interface ProvidencePlanHome

 extends com.wombat.plan.PlanHome {

Plan ejbFindByPrimaryKey(String planId)

 throws RemoteException, FinderException;

}

Code Example 7.35 ProvidencePlanHome Home Interface

7.5.2.3 ProvidencePlanBean Entity Bean Class

The ProvidencePlanBean class demonstrates the implementation of an entity bean
whose persistent state is not stored directly in a local database. Instead, the state is
obtained by making requests to a remote application. In our case, the remote appli-
cation is the ProvidenceServiceWeb Web application at the Providence site. The
communication is over HTTP in the XML format. Code Example 7.36 shows the
implementation of the ProvidencePlanBean entity bean class.

package com.providence.plan;

import javax.ejb.*;

import java.rmi.RemoteException;

import java.util.Vector;

import java.util.Collection;

import java.util.Iterator;

import javax.naming.Context;

import javax.naming.InitialContext;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE342

import com.wombat.plan.Plan;

import com.wombat.plan.PlanHome;

import com.wombat.plan.PlanInfo;

import com.wombat.plan.PlanType;

import com.wombat.plan.PlanException;

import com.wombat.plan.Doctor;

import com.providence.plan.cb.GetCostBean;

import com.providence.plan.cb.GetPlansBean;

import com.providence.plan.cb.GetPlanInfoBean;

import com.providence.plan.cb.GetDoctorsBean;

import com.providence.plan.cb.HttpCommandBeanException;

public class ProvidencePlanBean implements EntityBean {

EntityContext ctx;

String baseURL;

String planId;

String planName;

int planType;

// Business methods from the remote interface

// com.wombat.plan.Plan

public PlanInfo getPlanInfo() {

PlanInfo pi = new PlanInfo();

pi.setPlanId(planId);

pi.setPlanName(planName);

pi.setPlanType(planType);

return pi;

}

public int getPlanType() { return planType; }

public double getCost(int coverage, int age,

boolean smokerStatus)

{

GetCostBean cmd = null;

try {

PARTS DEVELOPED BY PROVIDENCE 343

cmd = new GetCostBean();

cmd.setBaseURL(baseURL);

cmd.setPlanId(planId);

cmd.setCoverage(coverage);

cmd.setAge(age);

cmd.setSmoker(smokerStatus);

cmd.execute();

return cmd.getCost();

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection getAllDoctors()

{

GetDoctorsBean cmd = null;

try {

cmd = new GetDoctorsBean();

cmd.setBaseURL(baseURL);

cmd.setPlanId(planId);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

Doctor doc = new Doctor();

doc.setLastName(cmd.getLastName());

doc.setFirstName(cmd.getFirstName());

doc.setSpecialty(cmd.getSpecialty());

doc.setPracticeSince(cmd.getPracticeSince());

doc.setHospital(cmd.getHospital());

vec.add(doc);

}

return vec;

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null)

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE344

cmd.release();

}

}

public Collection getDoctorsByName(Doctor template) {

GetDoctorsBean cmd = null;

try {

cmd = new GetDoctorsBean();

cmd.setBaseURL(baseURL);

cmd.setPlanId(planId);

cmd.setLastName(template.getLastName());

cmd.setFirstName(template.getFirstName());

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

Doctor doc = new Doctor();

doc.setLastName(cmd.getLastName());

doc.setFirstName(cmd.getFirstName());

doc.setSpecialty(cmd.getSpecialty());

doc.setPracticeSince(cmd.getPracticeSince());

doc.setHospital(cmd.getHospital());

vec.add(doc);

}

return vec;

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null)

cmd.release();

}

}

public Collection getDoctorsBySpecialty(String specialty) {

GetDoctorsBean cmd = null;

try {

cmd = new GetDoctorsBean();

cmd.setBaseURL(baseURL);

cmd.setPlanId(planId);

PARTS DEVELOPED BY PROVIDENCE 345

cmd.setSpecialty(specialty);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

Doctor doc = new Doctor();

doc.setLastName(cmd.getLastName());

doc.setFirstName(cmd.getFirstName());

doc.setSpecialty(cmd.getSpecialty());

doc.setPracticeSince(cmd.getPracticeSince());

doc.setHospital(cmd.getHospital());

vec.add(doc);

}

return vec;

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

// Finder methods

public String ejbFindByPrimaryKey(String planId)

throws ObjectNotFoundException

{

GetPlansBean cmd = null;

try {

cmd = new GetPlansBean();

cmd.setBaseURL(baseURL);

cmd.setPlanId(planId);

cmd.execute();

Vector vec = new Vector();

if (cmd.next()) {

return planId;

} else {

throw new ObjectNotFoundException();

}

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE346

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public String ejbFindByPlanId(String planId)

throws ObjectNotFoundException

{

return ejbFindByPrimaryKey(planId);

}

public Collection ejbFindMedicalPlans()

{

GetPlansBean cmd = null;

try {

cmd = new GetPlansBean();

cmd.setBaseURL(baseURL);

cmd.setPlanType(“medical”);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

vec.add(cmd.getPlanId());

}

return vec;

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection ejbFindDentalPlans()

{

GetPlansBean cmd = null;

try {

cmd = new GetPlansBean();

PARTS DEVELOPED BY PROVIDENCE 347

cmd.setBaseURL(baseURL);

cmd.setPlanType(“dental”);

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

vec.add(cmd.getPlanId());

}

return vec;

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public Collection ejbFindByDoctor(Doctor template)

{

GetPlansBean cmd = null;

try {

cmd = new GetPlansBean();

cmd.setBaseURL(baseURL);

cmd.setLastName(template.getLastName());

cmd.setFirstName(template.getFirstName());

cmd.execute();

Vector vec = new Vector();

while (cmd.next()) {

vec.add(cmd.getPlanId());

}

return vec;

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

//

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE348

// Methods from javax.ejb.EntityBean interface

//

public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;

readEnvironment();

}

public void unsetEntityContext() {}

public void ejbRemove() throws RemoveException {

throw new RemoveException(

 “application is not allowed to remove plan”);

}

public void ejbActivate() {

planId = (String)ctx.getPrimaryKey();

}

public void ejbPassivate() { planId = null; }

public void ejbLoad()

{

GetPlanInfoBean cmd = null;

try {

cmd = new GetPlanInfoBean();

cmd.setBaseURL(baseURL);

cmd.setPlanId(planId);

cmd.execute();

planName = cmd.getPlanName();

planType = cmd.getPlanType();

} catch (HttpCommandBeanException ex) {

throw new EJBException(ex);

} finally {

if (cmd != null) cmd.release();

}

}

public void ejbStore() {}

PARTS DEVELOPED BY PROVIDENCE 349

private void readEnvironment() {

try {

Context ictx = new InitialContext();

baseURL = (String)ictx.lookup(

“java:comp/env/ProvidenceServiceWebURL”);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

}

Code Example 7.36 ProvidencePlanBean Class

The ProvidencePlanBean class depends on several command beans to
perform the invocation of the HTTP requests to the ProvidenceServiceWeb.

The ejbLoad method loads the basic information about a plan and caches it in
the planName and planType instance fields. Although the ProvidencePlanBean
methods are assigned the NotSupported transaction attribute, we use the ejbLoad

method to cache the plan information. Though in general it is not possible to use
the ejbLoad and ejbStore methods to cache information for entity beans with
non-transactional methods (see “Using the ejbLoad and ejbStore Methods” on
page 217), it is possible to use the ejbLoad method to cache information that is
immutable, such as the plan name and plan type.

A business method obtains other information, such as Doctor lists, directly
from ProvidenceServiceWeb when needed. The ProvidencePlanBean class also
implements the finder methods defined in the PlanHome interface.

Note that the ProvidencePlanBean class obtains the URL of the ProvidenceS-
erviceWeb from an environment entry of the ProvidencePlanEJB entity bean.

7.5.2.4 HTTP Command Beans

Code Example 7.38 through Code Example 7.42 illustrate the implementation of the
command beans that make the HTTP calls to the ProvidenceServiceWeb.

The command beans use the APIs defined in the org.w3.dom and org.xml.sax

packages to process XML. They use the java.net package to make HTTP calls to

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE350

the ProvidenceServiceWeb. This book does not describe the use of these APIs.
“XML Message Formats” on page 358 describes the format of the message.

package com.providence.plan.cb;

import java.io.InputStream;

import java.net.URL;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

import org.xml.sax.Parser;

import org.xml.sax.InputSource;

import com.sun.xml.tree.XmlDocumentBuilder;

public class HttpCommandBean {

private String baseURL;

private String params = ““;

private int paramCount = 0;

private Element elem;

public void setBaseURL(String url) {

this.baseURL = url;

}

public void release() {

}

protected void addParam(String name, String value) {

if (paramCount == 0)

params = “?” + name + “=” + value;

else

params = params + “&” + name + “=” + value;

paramCount++;

}

protected void addParam(String name, int value) {

addParam(name, String.valueOf(value));

}

PARTS DEVELOPED BY PROVIDENCE 351

protected void addParam(String name, double value) {

addParam(name, String.valueOf(value));

}

protected void callServer() throws HttpCommandBeanException

{

try {

URL u = new URL(baseURL + params);

Object xmlReply = u.getContent();

XmlDocumentBuilder builder =

new XmlDocumentBuilder();

Parser parser = new com.sun.xml.parser.Parser();

parser.setDocumentHandler(builder);

builder.setParser(parser);

builder.setDisableNamespaces(true);

parser.parse(new InputSource((InputStream)xmlReply));

elem = builder.getDocument().getDocumentElement();

} catch (Exception ex) {

throw new HttpCommandBeanException(ex);

}

}

protected static String getElementValue(Element elem,

String tagName)

{

NodeList li = elem.getElementsByTagName(tagName);

if (li.getLength() == 1) {

return li.item(0).getFirstChild().getNodeValue();

} else {

return null;

}

}

protected Element getTopElement() {

return elem;

}

}

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE352

Code Example 7.37 HttpCommandBean Command Bean

package com.providence.plan.cb;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

public class GetCostBean extends HttpCommandBean {

public GetCostBean() {

super();

addParam(“method”, “calc-cost”);

}

public void setCoverage(int coverage) {

addParam(“coverage”, coverage);

}

public void setPlanId(String planId) {

addParam(“plan-id”, planId);

}

public void setAge(int age) {

addParam(“age”, age);

}

public void setSmoker(boolean smoker) {

addParam(“smoker”, smoker ? “Y” : “N”);

}

public void execute() throws HttpCommandBeanException {

callServer();

}

public double getCost() {

String s = getElementValue(getTopElement(), “cost”);

return Double.parseDouble(s);

}

}

Code Example 7.38 GetCostBean Command Bean

PARTS DEVELOPED BY PROVIDENCE 353

package com.providence.plan.cb;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

public class GetDoctorsBean extends HttpCommandBean {

private NodeList list;

private int listLength;

private int listIndex = -1;

private Element elem;

public GetDoctorsBean() {

super();

addParam(“method”, “get-doctors”);

}

public void setPlanId(String planId) {

addParam(“plan-id”, planId);

}

public void setLastName(String lastName) {

addParam(“last-name”, lastName);

}

public void setFirstName(String firstName) {

addParam(“first-name”, firstName);

}

public void setSpecialty(String specialty) {

addParam(“specialty”, specialty);

}

public void execute() throws HttpCommandBeanException {

callServer();

list = getTopElement().getElementsByTagName(“doctor”);

listLength = list.getLength();

}

public String getLastName() {

return getElementValue(elem, “last-name”);

}

public String getFirstName() {

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE354

return getElementValue(elem, “first-name”);

}

public String getSpecialty() {

return getElementValue(elem, “specialty”);

}

public int getPracticeSince() {

return Integer.parseInt(

getElementValue(elem, “practice-since”));

}

public String getHospital() {

return getElementValue(elem, “hospital”);

}

public boolean next() {

if (++listIndex < listLength) {

elem = (Element)list.item(listIndex);

return true;

} else {

return false;

}

}

}

Code Example 7.39 GetDoctorsBean Command Bean

package com.providence.plan.cb;

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

import com.wombat.plan.PlanType;

public class GetPlanInfoBean extends HttpCommandBean {

public GetPlanInfoBean() {

super();

addParam(“method”, “get-plan-info”);

}

PARTS DEVELOPED BY PROVIDENCE 355

public void setPlanId(String planId) {

addParam(“plan-id”, planId);

}

public void execute() throws HttpCommandBeanException {

callServer();

}

public String getPlanId() {

return getElementValue(getTopElement(), “plan-id”);

}

public String getPlanName() {

return getElementValue(getTopElement(), “plan-name”);

}

public int getPlanType()

throws HttpCommandBeanException

{

return convertPlanType(

 getElementValue(getTopElement(), “plan-type”));

}

static private int convertPlanType(String s)

 throws HttpCommandBeanException

{

if (s.equals(“Medical”))

return PlanType.MEDICAL;

else if (s.equals(“Dental”))

return PlanType.DENTAL;

else

throw new HttpCommandBeanException(

 “Bad plan type from server”);

}

}

Code Example 7.40 GetPlanInfoBean Command Bean

package com.providence.plan.cb;

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE356

import org.w3c.dom.Element;

import org.w3c.dom.NodeList;

public class GetPlansBean extends HttpCommandBean {

private NodeList list;

private int listLength;

private int listIndex = -1;

private Element elem;

public GetPlansBean() {

super();

addParam(“method”, “get-plans”);

}

public void setLastName(String lastName) {

addParam(“last-name”, lastName);

}

public void setFirstName(String firstName) {

addParam(“first-name”, firstName);

}

public void setSpecialty(String specialty) {

addParam(“specialty”, specialty);

}

public void setPlanId(String planId) {

addParam(“plan-id”, planId);

}

public void setPlanType(String planType) {

addParam(“plan-type”, planType);

}

public void execute() throws HttpCommandBeanException {

callServer();

list = getTopElement().getElementsByTagName(“plan-id”);

listLength = list.getLength();

}

public String getPlanId() {

return elem.getFirstChild().getNodeValue();

}

PARTS DEVELOPED BY PROVIDENCE 357

public boolean next() {

if (++listIndex < listLength) {

elem = (Element)list.item(listIndex);

return true;

} else {

return false;

}

}

}

Code Example 7.41 GetPlansBean Command Bean

package com.providence.plan.cb;

public class HttpCommandBeanException extends java.lang.Exception {

 private Exception causeException = null;

 public HttpCommandBeanException() {

 }

 public HttpCommandBeanException(String message) {

super(message);

 }

 public HttpCommandBeanException(Exception ex) {

super();

causeException = ex;

 }

 public Exception getCausedByException() {

return causeException;

 }

}

Code Example 7.42 HttpCommandBeanException Command Bean

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE358

7.5.2.5 XML Message Formats

XML stands for eXtensible Markup Language. XML is the industry standard used
both for documents and for exchange of data between organizations. The structure
of an XML document is defined using Document Type Description (DTD).

The following DTD defines the formats of the XML messages returned from
ProvidenceServiceWeb to ProvidencePlanEJB. Code Example 7.43 shows the
DTD for Providence’s messages.

<!ELEMENT plan-ids (plan-id*)>

<!ELEMENT plan-id (#PCDATA)>

<!ELEMENT plans (plan*)>

<!ELEMENT plan (plan-id, plan-name, plan-type)>

<!ELEMENT plan-name (#PCDATA)>

<!ELEMENT plan-type (#PCDATA)>

<!ELEMENT premium-quote (coverage, age, smoker, cost)>

<!ELEMENT coverage (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT smoker (#PCDATA)>

<!ELEMENT cost (#PCDATA)>

<!ELEMENT doctors (doctor*)>

<!ELEMENT doctor (last-name, first-name, specialty,

practice-since, hospital)>

<!ELEMENT last-name (#PCDATA)>

<!ELEMENT first-name (#PCDATA)>

<!ELEMENT specialty (#PCDATA)>

<!ELEMENT practice-since (#PCDATA)>

<!ELEMENT hospital (#PCDATA)>

Code Example 7.43 XML DTD for Providence

PARTS DEVELOPED BY PROVIDENCE 359

In conjunction with the above DTD, Table 7.1 describes the HTTP requests
and XML replies between the ProvidencePlanBean and the ProvidenceServiceWeb
Web application.

The table describes the HTTP requests sent by the ProvidencePlanBean class
methods and the corresponding XML replies sent by ProvidenceServiceWeb. The
arguments ID, LN, FN, SP, CV, AG, and SM are, respectively, the plan identifier, doctor’s
last name, doctor’s first name, doctor’s specialty, coverage category, age, and
smoker status.

For example, the getDoctorsByName bean method might send the following
request to ProvidenceServiceWeb to find all the doctors whose last names start with
the string “Ford” and who participate in the plan identified by plan id PRUD-01.

http://serviceweb.Providence.com/star/plans?method=get-doc-

tors&plan-id=PRUD-01&last-name=Ford&first-name=

Table 7.1 XML Replies to Providence HTTP Requests

Method Query String in Request
Returned
XML

ejbFindByPrima-
ryKey

method=get-plans&plan-id=ID plan-ids

ejbFindMedi-
calPlans

method=get-plans&plan-type=medical plan-ids

ejbFindDental-
Plans

method=get-plans&plan-type=dental plan-ids

ejbFindByDoctor method=get-plans?last-
name=LN&first-name=FN

plan-ids

ejbLoad method=get-plan-info&plan-id=ID plan

getAllDoctors method=get-doctors&plan-id=ID doctors

getDoctorsByName method=get-doctors&plan-id=ID&last-
name=LN&firstname=FN

doctors

getDoctorsBySpe-
cialty

method=get-doctors&plan-id=ID&spe-
cialty=SP

doctors

getCost method=calc-cost&plan-id=ID&cover-
age=CV&age=AG&smoker=SM

cost

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE360

ProvidenceServiceWeb might send the following reply to the above request.

<doctors>

 <doctor>

 <last-name>Ford</last-name>

 <first-name>Harrison</first-name>

 <specialty>Surgeon</specialty>

 <practice-since>1990</practice-since>

 <hospital>Stanford</hospital>

 </doctor>

 <doctor>

 <last-name>Ford</last-name>

 <first-name>Betty</first-name>

 <specialty>Pediatrics</specialty>

 <practice-since>1992</practice-since>

 <hospital>Palo Alto Clinic</hospital>

 </doctor>

</doctors>

We assumed in the example that the environment entry java:comp/env/Prov-

idenceServiceWebURL of ProvidencePlanEJB was set to http://service-

web.providence.com/star/plans, the URL at which ProvidenceServiceWeb
maintains the plan information for the plans that it offers to Star Enterprise.

7.5.3 ProvidenceServiceWeb Web Application

ProvidenceServiceWeb is a Web application which consists of a number of servlets.
The servlets handle the HTTP requests sent by ProvidencePlanBean instances; they
return the requested plan information in XML format. This book does not describe
the design of ProvidenceServiceWeb.

7.5.4 Packaging

This section described the packaging of the parts developed by Providence.

PARTS DEVELOPED BY PROVIDENCE 361

7.5.4.1 providence.ear Archive File

Providence packages the parts that support the benefits application as a single J2EE
Enterprise Application Archive file which it names providence.ear. Figure 7.11
depicts the contents of the providence.ear file.

Figure 7.11 Providence’s Enterprise Application Archive File

The providence.ear file contains two parts:

• providence_ejb.jar file—This ejb-jar file contains the ProvidencePlanEJB
enterprise bean developed by Providence.

• plan_intf.jar file—This is the JAR file published by Wombat. Because the
ProvidencePlanEJB depends on the contents of this JAR file at runtime, it is in-
cluded in the providence.ear file. The Class-Path attribute in the Manifest of
the providence_ejb.jar file lists this dependency on the plan_intf.jar file.

7.5.4.2 providence_ejb.jar File

The providence_ejb.jar file is an ejb-jar file that contains the enterprise beans
developed by Providence. Code Example 7.44 shows the Java class files contained
by the file.

providence.ear

providence_ejb.jar

Contains:
ProvidencePlanEJB

plan_intf.jar

JAREJB
JAR

EAR

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE362

com.providence.plan.ProvidencePlan.class

com.providence.plan.ProvidencePlanBean.class

com.providence.plan.ProvidencePlanHome.class

com.providence.plan.db.GetCostBean.class

com.providence.plan.db.GetDoctorsBean.class

com.providence.plan.db.GetPlanInfoBean.class

com.providence.plan.db.GetPlansBean.class

com.providence.plan.db.HttpCommandBean.class

com.providence.plan.db.HttpCommandBeanException.class

Code Example 7.44 providence_ejb.jar File

7.6 Summary of the Integration Techniques

The complete benefits application includes parts developed by several companies.
This section discusses the techniques used to integrate these different parts into an
operational application. As the discussion proceeds, notice how the EJB architec-
ture simplifies the integration of components from multiple organizations.

We start the discussion by focusing on the key integration points. These are
the points where the parts developed by different organizations come together.
Figure 7.12 illustrates these integration points.

SUMMARY OF THE INTEGRATION TECHNIQUES 363

Figure 7.12 Integration of the Benefits Application Parts

The application illustrates the following three different techniques for inte-
grating components.

• The client developer relies on the Bean Provider to publish the EJB client-view
interfaces. This is the case of the Wombat’s EnrollmentEJB, which is depen-

<<Entity Bean>>
ProvidencePlanEJB

<<Entity Bean>>
WrapperPlanEJB

<<Session Bean>>
EnrollmentEJB

<<Entity Bean>>
EmployeeEJB

<<Entity Bean>>
PremiumHealthPlanEJB

<<Session Bean>>
PayrollEJB

EmployeeDatabase

from Aardvark

from
Star Enterprise

from
insurance companies

from Wombat

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE364

dent on PayrollEJB from Aardvark. EnrollmentEJB’s dependency is as a client
of PayrollEJB.

• The Bean Provider relies on the client provider to publish the EJB client-view
interfaces so that it can develop an entity bean that can be integrated with the
client application. This is the case of the integration of the WrapperPlanEJB
from Wombat with the individual plan entity beans, such as ProvidencePlanE-
JB and PremiumHealthEJB, from the insurance companies. WrapperPlanEJB
is the client of the ProvidencePlanEJB and PremiumHealthEJB entity beans.

• The Bean Provider uses container-managed persistence to allow the integra-
tion with its customers’ existing databases or applications. This is the case of
the integration of Wombat’s EmployeeEJB with the pre-existing Employee-
Database at Star Enterprise.

The following subsections explain these different techniques in more detail.

7.6.1 Bean Provider Publishes EJB Client-view Interfaces

Let’s look at how to integrate EnrollmentEJB from Wombat with PayrollEJB from
vendor Aardvark. PayrollEJB implements the remote access to Star Enterprise’s
payroll system and can be used by non-payroll applications to access the payroll
system. For example, EnrollmentEJB uses PayrollEJB to update the payroll infor-
mation at the end of the benefits enrollment process.

The following six steps describe the integration of these two enterprise beans.
Note that in our scenario, PayrollEJB pre-existed the development of Wombat’s
Benefits application.

1. Aardvark implements PayrollEJB.

2. Aardvark creates the payroll_ejb_client.jar JAR file, which contains the
client-view interfaces and classes for PayrollEJB’s client view. Aardvark
makes the payroll_ejb_client.jar file available to companies that have a
need to invoke PayrollEJB.

3. Star Enterprise deploys PayrollEJB at its site. When it deploys PayrollEJB, it
also makes the PayrollEJB’s home object available to other applications in the
JNDI name space.

4. Wombat obtains the payroll_ejb_client.jar file from Aardvark. The class
EnrollmentBean imports the package com.aardvark.payroll and uses the
Payroll and PayrollHome interfaces to invoke PayrollEJB.

SUMMARY OF THE INTEGRATION TECHNIQUES 365

5. Wombat declares the dependency on PayrollEJB interfaces using the EJB ref-
erence mechanism. The EJB reference is an environment entry in the Enroll-
mentEJB’s deployment descriptor.

6. When the Deployer at Star Enterprise deploys the application from Wombat,
he discovers the EJB reference to PayrollEJB. He resolves the EJB reference
by linking it to the PayrollEJB’s home object, which was created in step 3.

Keep in mind that the payroll_ejb_client.jar file created by Aardvark and
used by Wombat contains all the Java class files that comprise the PayrollEJB’s
client view. Wombat needs the payroll_ejb_client.jar when compiling the
EnrollmentBean class. Because the EnrollmentEJB classes need access to the
payroll_ejb_client.jar file at runtime, Wombat includes the
payroll_ejb_client.jar file in the benefits.ear file. (The benefits.ear file
contains the parts of the applications developed by Wombat.)

7.6.2 Client Provider Publishes EJB Client-view Interfaces

Let’s look at how Wombat’s Benefits enrollment application integrates with the indi-
vidual plan entity beans provided by the insurance companies. This is a good illus-
tration of how a bean developed by one vendor implements the EJB client-view
interfaces defined by another vendor.

1. Wombat designs the Plan and PlanHome interfaces. Wombat assumes that
these interfaces will be implemented by the plan entity beans developed by the
individual insurance companies. Wombat packages the class files for these in-
terfaces with their dependent class files into the plan_intf.jar JAR file, and
makes the plan_intf.jar file available to the insurance companies.

2. Wombat develops the Benefits enrollment application. The WrapperPlanBean
component functions as the client of the plan entity beans developed by the in-
surance providers. WrapperPlanEJB uses the Plan and PlanHome interfaces to
invoke the individual plan beans.1

3. An insurance company, such as Providence, obtains the plan_intf.jar file
from Wombat. Providence implements the ProvidencePlanEJB entity bean
such that its remote and home interfaces are compatible with the Plan and Plan-
Home interfaces.

1. The fact that WrapperPlanBean also implements the Plan and PlanHome interface in its
client-view is irrelevant to the discussion here.

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE366

4. The Deployer at Star Enterprise deploys the Wombat Benefits enrollment ap-
plication.

5. The Deployer at Star Enterprise deploys the ProvidencePlanEJB entity bean
from Providence so that the home interface of ProvidencePlanEJB is made
available to the BenefitsAdminWeb Web application. The Deployer does this
by binding the home interface object to an entry in the JNDI context that
BenefitsAdminWeb uses to find all the deployed plan beans.

6. The BenefitsAdminWeb Web application finds the home interface of Provi-
dencePlanEJB at runtime, displays all the individual plans offered by Provi-
dence to Star Enterprise, and allows the Star Enterprise’s benefits plan
administrator to add one or more of the benefits plans to the list of plans aggre-
gated by the WrapperPlanEJB entity bean. The benefits plan administrator
adds the Providence benefits plans by calling the create method on the Wrap-
perPlanEJB’s home interface. This creates wrapper plan objects that are then
used by the EnrollmentEJB bean.

While the discussion of the integration of the benefits application with the
individual plan beans seems complicated, in reality it actually is not. The apparent
complication is due to Wombat’s action combining the integration of the individ-
ual plans with their aggregation into a single entity bean (WrapperPlanEJB) at one
time.

7.6.3 Use of Container-managed Persistence

In this section, we look at how the Bean Provider can use container-managed persis-
tence to integrate the application with existing databases and customer applications.

1. The customer, Star Enterprise in this case, has EmployeeDatabase. Star Enter-
prise created EmployeeDatabase before the deployment of the Wombat Bene-
fits application. The designer of the EmployeeDatabase schema had no
knowledge of the Wombat application. Many Star Enterprise applications use
the EmployeeDatabase to obtain employee information.

2. Wombat develops the Benefits application. It develops the EmployeeEJB en-
tity bean that provides the application’s interface to the customer’s employee
data. The remainder of the Wombat application, including the EnrollmentEJB
session bean, uses the EmployeeEJB client-view interfaces to access the cus-
tomer’s employee data. It is important to note that Wombat had no knowledge
of the Star Enterprise’s EmployeeDatabase schema when developing the Em-

CONCLUSION 367

ployeeEJB entity bean—Wombat had to design the EmployeeEJB bean such
that it works with many customers’ employee databases.

3. When Star Enterprise deploys the Wombat application, the Deployer has to
bind the container-managed fields of EmployeeEJB to columns in the Employ-
eeDatabase database, which stores the Star Enterprise’s employee information.
The Deployer may either use the tools provided by the container vendor or
manually write code that performs the binding. For example, the Deployer
could write code to subclass the EmployeeBean class to create an entity bean
with bean-managed persistence, as illustrated with the SelectionEJB and
WrapperPlanEJB entity beans.

Container-managed persistence allows not only the integration of an EJB
application with a relational database, but also the integration of an EJB applica-
tion with non-EJB applications. For example, the EmployeeEJB bean can be inte-
grated with an Enterprise Resource Planning (ERP) system that a customer uses to
manage its employee information. Because most ERP systems do not expose the
database schema to third party applications, the third party applications need to
invoke the integration interfaces published by the ERP vendor rather than access-
ing the ERP system’s database directly. For example, if the benefits application
needed to be integrated with an ERP system, the deployment-generated classes
that implement the EmployeeEJB bean’s container-managed persistence would
make calls to the ERP applications rather than directly accessing the database
used by the ERP system.

7.7 Conclusion

We have now completed our examination of entity beans. This chapter presented an
employee benefits enrollment application that is very similar to the example pre-
sented earlier. However, this example was built and deployed using entity beans
where appropriate rather than relying completely on session beans.

The example application clearly illustrates the differences, from a developer’s
point of view, of using entity beans. It focused on the various techniques for
working with entity beans, such as caching persistent state, aggregating applica-
tion functionality into a single component, subclassing techniques, among others,
and how best to use the features of these types of beans.

The chapter showed how entity beans are more appropriate for applications
that must be easily adapted for different customers with different operational envi-

CHAPTER 7 ENTITY BEAN APPLICATION EXAMPLE368

ronments. Typically, these are applications built by ISVs rather than applications
developed by an enterprise’s in-house IT department.

