
Chapter

11
Kerberizing Applications
Using Security Support

Provider Interface

In this chapter, we examine the Security Support Provider Interface (SSPI), the
common interface to request security services in Windows 2000, and show how to
use SSPI to kerberize applications. We also define some important security concepts
and explain how Windows 2000 provides security services to applications.

SSPI and Windows 2000 Security Architecture
The Security Support Provider Interface (SSPI) is an application programming
interface (API) that applications should use to request security services from security
service providers. In Windows 2000, a security support provider—also called a
security provider—is a dynamic link library that supports the SSPI specification
and provides one or more security support packages. Each security support pack-
age (SSP)—also called security package—supports one specific security protocol
and implements the SSPI functions according to that security protocol. Kerberos,
NTLM, and SSL are examples of security packages that are provided by the default
security provider in Windows 2000.

SSPI defines the following interface categories:

• Credential management interfaces to access credentials, such as passwords,
tickets, or to free accessed credentials.

• Context management interfaces to create and to use security contexts. Secu-
rity contexts, created by both sides of a communication link, provide the informa-
tion needed by message-support interfaces to carry out secure communication.

• Message support interfaces to provide communication integrity and privacy.

• Package management interfaces to get information about the packages sup-
ported by the security provider.

293

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 293

In a typical SSPI scenario, applications first load a security provider DLL and
use the package management functions to find information about the security pack-
age they want to use. Then, the applications initialize the desired security context
through the context management functions and, finally, use the message support func-
tions to sign and to encrypt messages or to verify signatures and to decrypt encrypted
messages. By providing these common interfaces, SSPI hides the details of how to use
a specific package from the application and also allows an application to use services
provided by any security package without changing the interface to use such services.

It is important to know that SSPI does not provide any interfaces for sending
and receiving messages. Distributed applications should use other interfaces, such
as WinSock, to transfer messages constructed by the SSPI functions.

Figure 11-1 shows how SSPI fits into the overall security architecture of Win-
dows 2000. SSPI is the abstraction layer between applications and security proto-
cols supported by Windows 2000. Applications can use the services of a security
package in various ways: either directly or through higher-level protocols or APIs,
such as RPC, DCOM, WinSock, or WinInet. Nevertheless, one way or another, access
to the security services is always through the SSPI layer.

SSPI Functions

Table 11-1 shows the SSPI functions supported by the credential management, context
management, message support, and package management interface categories,
respectively. The InitSecurityInterface function returns a pointer to a function table
structure that contains pointers to all the SSPI functions. After loading a security

K E R B E R I Z I N G A P P L I C A T I O N S294

Figure 11-1 SSPI and the overall Windows 2000 distributed
security architecture

NTLM SSP Kerberos SSP SSL SSP

Distributed Applications:
Java Apps, DCOM Apps, Internet Apps

DCOM WinSock 2.0 Interface
WinInet

RPC

Security Support Provider Interface (SSPI)

SSPI- TCP/IP
Provider

. . .

. . .

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 294

S S P I A N D W I N D O W S 2 0 0 0 S E C U R I T Y A R C H I T E C T U R E 295

Function Description

Credential Management

AcquireCredentialsHandle Acquires a handle to the credentials of the specified
principal. Refer to Chapter 1 for the definition of a
security principal.

FreeCredentialsHandle Releases a credential handle and associated
resources.

QueryCredentialAttributes Queries credential attributes.

Context Management

InitializeSecurityContext Initiates a security context by generating a security
token that must be passed to the server. The applica-
tion that uses this function is called an SSPI client.

AcceptSecurityContext Initiates a security context using the security token
received from the client. The application that uses
this function is called an SSPI server.

DeleteSecurityContext Frees a security context and associated resources.

QueryContextAttributes Queries security context attributes for information
needed when signing or encrypting messages, and
so on.

QuerySecurityContextToken Obtains Windows 2000 access token associated with
a client security context for direct use.

ApplyControlToken Applies a control token to an existing security con-
text. A control token can be used, for example, to
gracefully shut down a secure connection in SSL.
SSPI applications using Kerberos would not need
this function.

CompleteAuthToken Completes an authentication token. Used in some
protocols, such as DCE RPC, in which the security
context needs to be revised after the application has
updated some message fields. Not used in Kerberos.

FreeContextBuffer Frees a memory buffer allocated by the security
provider.

ImpersonateSecurityContext Impersonates the client’s security context.

RevertSecurityContext Stops impersonation.

ExportSecurityContext Exports a security context into a buffer for later use.

Table 11-1 SSPI Functions

(continued)

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 295

provider DLL, SSPI clients bind to the implementation of the SSPI functions at run-
time by calling the InitSecurityInterface function. All the SSPI functions are called
by using this function table. If a function is not implemented, its function pointer is set
to NULL in the function table. SSPI clients should make sure that a function is imple-
mented by comparing the function pointer to NULL before calling the function.

Using SSPI

To use SSPI, distributed applications go through the following three major steps:

1. Initialize the SSPI.

2. Authenticate the connection.

3. Exchange secure messages over the authenticated connection, using security
services, such as integrity, privacy, and so on.

The rest of this section gives an overview of what happens in each of these three
steps on each side of the communication link. More detailed information comes

K E R B E R I Z I N G A P P L I C A T I O N S296

Function Description

ImportSecurityContext Imports an exported security context into the
current process.

Message Support

DecryptMessage Decrypts a message created by a call to
EncryptMessage.

EncryptMessage Encrypts a message.

MakeSignature Signs a message.

VerifySignature Verifies a signature created by a call to
MakeSignature.

Package Management

InitSecurityInterface Returns a pointer to the SSPI function table.

EnumerateSecurityPackages Lists all available security packages and their
attributes.

QuerySecurityPackageInfo Queries an individual security package for its
attributes.

Table 11-1 SSPI Functions (cont.)

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 296

later, when we go through our SSPI sample project on how to kerberize a distributed
application.

Initializing the SSPI

Table 11-2 summarizes what needs to be done to initialize a security support pack-
age. Both the client and the server go through the initialization step in the same way
and should choose the same package in order to be able to establish an authenti-
cated connection and exchange messages.

Windows 2000 supports a security negotiation package that automatically
selects a security package acceptable to both ends of communication. The negotiate
package attempts to use the Kerberos package first and, if security negotiation fails,
tries the NTLIM package next.

Authenticating the Connection

Establishing an authenticated connection is more complicated and differs for the
client and the server. Here, the term client means SSPI client, which is that side of
the communication that starts the process of building the security context by calling
the InitializeSecurityContext function. The term server means SSPI server, which
is the side that waits to receive a security token from the SSPI client and calls the
AcceptSecurityContext function. An SSPI client could be the server part of a distrib-
uted application. Tables 11-3 and 11-4 summarize the steps to initialize a security
support package on the client and server side, respectively.

When AcquireCredentialsHandle is called, the name of the chosen security pack-
age is passed to obtain the correct type of credential. Each security package requires a
different type of credential, and the specifics of this operation are abstracted by SSPI.

S S P I A N D W I N D O W S 2 0 0 0 S E C U R I T Y A R C H I T E C T U R E 297

Step Description

Load the security support Use the LoadLibrary function to load the DLL that
provider. implements the package. Load secur32.dll for the

default security provider.

Get a pointer to the package Use the GetProcAddress function to obtain the
function table. address of the InitSecurityInterface function. Get

the security provider’s function table by calling the
InitSecurityInterface function.

Find the desired security Call the EnumerateSecurityPackages function to get
package information about security packages and choose one.

Table 11-2 Initializing the SSPI for Client and Server

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 297

In their calls to InitializeSecurityContext and AcceptSecurityContext, the
client and the server, respectively, can specify the type of authentication and secu-
rity environment needed. At the end of the authentication step, each side should
check and make sure that the established environment has the required security
attributes and close the communication channel if that is not the case. Every call to
these functions may have some output data that must be sent to the other. The
return values of these functions specify whether they need to be called again. If so,
the client or the server has to wait to receive security data from the other side and
pass it to the function in the next call.

When Kerberos is used, a three-leg authentication is carried out, regardless of the
client’s choice for mutual authentication.This means that there will be two calls to the
InitializeSecurityContext function and one call to the AcceptSecurityContext func-
tion. In the first call to InitializeSecurityContext, the client communicates with the
Key Distribution Center (KDC) to obtain a session ticket for the specified server, as
specified by the Ticket Granting Service (TGS) Exchange protocol, if such a ticket is
not already in the ticket cache. When it receives the session ticket—the output from
the InitializeSecurityContext function—the server validates the ticket by calling
the AcceptSecurityContext function, as specified by the Client/Server (CS) Exchange

K E R B E R I Z I N G A P P L I C A T I O N S298

Step Description

Get a handle to the credentials to use Use the AcquireCredentialsHandle func-
for authentication. tion to get a handle to the client’s credentials.

Authenticate and build the security Call the InitializeSecurityContext func-
context. tion as many times as needed to authenticate

the connection and to build the security con-
text. After each call, send any output from this
function to the server. If you need to call this
function again, wait to receive information
from the server, and pass the received informa-
tion to this function. The return value of this
function tells you whether you need to call this
function again.

Check the security context. Make sure that the final attributes of the
security context, returned in the final call to
InitializeSecurityContext, are sufficient.
If not, you may want to deny the connection.

Table 11-3 Authentication Steps for the Client

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 298

protocol. The output of the AcceptSecurityContext function needs to be sent to the
client so that it can complete the construction of its security token. If mutual
authentication is requested, this output also contains the authenticator message—
the KRB_AP_REP message—that the client validates in its second call to the Initial-
izeSecurityContext function.

As mentioned earlier, it is up to the applications to exchange the data returned
by the SSPI functions. Applications should define an application-level protocol and
message formats for such exchanges.

Exchanging Messages

Having established an authenticated connection, the client and the server can pro-
ceed with exchanging secure messages by signing or encrypting messages, as shown
in Table 11-5. To be able to use message signing and encryption, appropriate flags
should be passed to the InitializeSecurityContext or the AcceptSecurityContext
functions so that the appropriate security context is created during the authentica-
tion step. Both the client and the server can request such services and could end the
connection if the requested services are denied.

Security context attributes specify the capabilities of the security context.
Both sides of the communication can ask for security attributes when using the

S S P I A N D W I N D O W S 2 0 0 0 S E C U R I T Y A R C H I T E C T U R E 299

Step Description

Get a handle to the credentials Use the AcquireCredentialsHandle function to
to use for authentication. get a handle to the server’s credentials.

Authenticate and build the Call the AcceptSecurityContext function as
security context many times as needed to authenticate the connec-

tion and to build the security context. Pass the infor-
mation received from the client to this function every
time you call this function. After each call, send the
output from this function to the client and wait to
receive information from the client if there is a need.
The return value of this function tells you whether
you need to call this function again.

Check the security context. Make sure that the final attributes of the
security context, returned in the final call to
AcceptSecurityContext, are sufficient. If not,
you may want to deny the connection.

Table 11-4 Authentication Steps for the Server

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 299

InitializeSecurityContext and the AcceptSecurityContext functions, by combining
the values specified in Table 11-6. When using attributes, be aware that

• Not all security attributes are available in a security package.

• Some attributes, such as IDENTIFY, can be requested only by a specific side of the
connection.

• Some attributes, such as CONFIDENTIALITY, can be requested by either side of the
communication.

• Some attributes, such as CONNECTION, are honored only when requested by both
sides of the connection.

The most important security attributes supported in Kerberos are listed in Table 11-6.
For a complete list of context attributes, refer to [MICR00].

To make sure that the established context attributes are acceptable, both the
client and the server should check the arguments in the InitializeSecurity
Context and the AcceptSecurityContext functions, which specify the established
attributes. If no context attributes are requested, the security package will use its
default context attributes. In Kerberos, for example, the default security context
allows only client authentication and impersonation. To be able to do mutual
authentication, message signing, or encryption, the related context attribute should
be requested.

The preceding security attributes should be prefixed with ISC_REQ_ and ASC_REQ_
before being used in the InitializeSecurityContext and the AcceptSecurityContext
functions, respectively. For example, to request mutual authentication, the client
should specify ISC_REQ_MUTUAL_AUTH with the InitializeSecurityContext function.
The server can request confidentiality by using ASC_REQ_CONFIDENTIALITY with the

K E R B E R I Z I N G A P P L I C A T I O N S300

Step Description

Sign a message before sending it. Use the MakeSignature function to sign.

Verify a signature on a signed Use the VerifySignature function to verify the
message before accepting it. signature.

Encrypt a message before sending it. Use the EncryptMessage function to encrypt a
message.

Decrypt an encrypted message. Use the DecryptMessage function to decrypt an
encrypted message.

Table 11-5 Message Exchange Steps for Client and Server

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 300

AcceptSecurityContext function. The established context attributes are prefixed by
ISC_RET_ and ASC_RET.

Impersonation and Delegation

Impersonation is an important concept in client/server communication. A server
application may run under a security context that has more privileges than the

S S P I A N D W I N D O W S 2 0 0 0 S E C U R I T Y A R C H I T E C T U R E 301

Attribute Description

IDENTIFY The server can identify but cannot impersonate or delegate the
client. This attribute is not supported by Kerberos and is available
only in the SSPI specification. This attribute can be set only by the
client side.

DELEGATE The server can build a new security context impersonating the
client, and that context will be accepted by other remote servers
as the client’s context. When neither DELEGATE nor IDENTIFY is
used, impersonation is assumed by default. This attribute can be
set only by the client side.

MUTUAL_AUTH The communicating parties must authenticate their identities to
each other. In Kerberos, without MUTUAL_AUTH, the client authenti-
cates to the server; with MUTUAL_AUTH, the server must authen-
ticate to the client. This flag can be set only by the client.

REPLAY_DETECT Security package checks for replayed packets and notifies the
caller if a packet has been replayed. The use of this flag implies
all the conditions specified by the INTEGRITY flag.

SEQUENCE_DETECT Out-of-order packets could be detected through the message sup-
port functions. Use of this flag implies all the conditions specified
by the INTEGRITY flag.

CONFIDENTIALITY Data can be encrypted using the message support functions. Use
this flag if you need to encrypt and to decrypt the data.

INTEGRITY Integrity can be verified, but no sequencing or replay detection
is enabled. Use this flag if you need to sign the data or to verify a
signature.

CONNECTION Connection-oriented context. Provides support for connection-
based distributed applications.

DATAGRAM Connectionless context. Provides support for datagram-based
and DCE-style RPC-based distributed applications. See SSPI
documentation [MICR00] for more information.

Table 11-6 Security Context Attributes in Kerberos

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 301

client requesting the service. Before servicing the request, such a server should make
sure that the client has sufficient access rights for the requested operation.

One approach to client authorization is for the server to keep and to use its own
per client authorization information to determine whether an operation can be per-
formed by the client. This approach is difficult to implement and to manage. The
second approach is to have the operating system determine whether a client is
authorized to perform an operation, using a mechanism called impersonation.

Impersonation is the temporary change of the security context to use the secu-
rity context of another principal. When a server impersonates a client before accessing
a resource, the operating system checks access rights under the new—client—security
context automatically. Moving the task of checking access rights to the operating sys-
tem simplifies server applications quite a bit. There is no need to maintain separate
per client authorization data and write application code to enforce access rights.

In order for a server to impersonate a client in SSPI, the client should specify the
impersonation level that the server is allowed to use when servicing the request.
Windows 2000 has the following four impersonation levels:

• Anonymous—the server is not allowed to find any information on the client’s
security context.

• Identification—the server can only authenticate the client but cannot use the
client’s security context for access checks.

• Impersonation—the server can authenticate the client and use the client’s
security context for local access checks directly. The server can also pass the con-
text to another server on the same machine.

• Delegation—the server can authenticate the client and use the client’s secu-
rity context for local access checks (direct or via other servers). The server can
also pass on the context to a remote server to request service on behalf of the
client.

An SSPI client should use ISC_REQ_IDENTITY to limit the server to do only identi-
fication and should use ISC_REQ_DELEGATE to allow for delegation. A server’s request
for delegation is never honored by the security package, as this attribute is con-
trolled by the client. If neither ISC_REQ_IDENTITY nor ISC_REQ_DELEGATE is used,
impersonation is granted by default.

A server that wants to use delegation should use SECPKG_CRED_BOTH in its call to the
AcquireCredentialsHandle function. To do delegation, the server should impersonate
the client after the authentication and go through the authentication step with the
new server as a client. This is done by calling the InitializeSecurityContext function
under the client’s identity and going through the authentication loop, as explained

K E R B E R I Z I N G A P P L I C A T I O N S302

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 302

earlier. If delegation is allowed in the new connection, the second server can also
impersonate the original client and delegate the credentials exactly as the first server
did. There is no limit to the number of delegations in such a scenario.

For delegation to work, you need to make sure that all of the following conditions
are true:

• Client account can be delegated.

• Service log-on account can delegate.

• Service host computer is trusted for delegation.

To make sure that the client account can be delegated, unselect the Account is sensitive
and cannot be delegated option. To verify that the service log-on account can delegate,
select the Account is trusted for delegation option. Both of these options are available in
the properties of the account object in Active Directory. To make sure that the com-
puter on which the service is running is trusted for delegation, select the Computer is
trusted for delegation option in the properties of the computer object in Active Direc-
tory. Note that the last two settings should be true for all the services and computers
that participate in delegation.

A security package that supports impersonation sets the SECPKG_FLAG_
IMPERSONATION flag in the fCapabilities field of SecPkgInfo. A security package that
supports delegation sets the SECPKG_FLAG_DELEGATION flag in the fCapabilities field
of SecPkgInfo. These capabilities can be obtained by using the package management
functions. Delegation is only supported by the Kerberos package.

Sample Project: Using SSPI to Kerberize Applications
In this SSPI sample project, we will define a few C++ classes to hide complexities of
using SSPI and Kerberos to kerberize applications. As you will see, the classes are
designed to facilitate the authentication and secure messaging in a socket-based
client/server application. In our sample project, we follow the steps we outlined ear-
lier on how to use SSPI. Note that all the code listings show parts of the C++ classes.
While reading the code, keep in mind that error handling is often omitted for brevity.
The complete project can be found on the companion CD-ROM.

Let’s first look at the CKerberos top-level class. The constructor for this class loads
the secur32.dll library, the default security provider, and then gets a pointer to the
security provider function table, finds the Kerberos package, and uses the maximum
token size of the package to initialize buffers used later during the authentication
step. In Kerberos, SSP_NAME and KERB_PACKAGE are defined as secur32.dll and ker-
beros, respectively, and SECURITY_ENTRYPOINT is set to InitSecurityInterface.

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 303

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 303

Listing 11-1 CKerberos Class

//——

// CKerberos - Constructor to load Kerberos package and

// initialize vars

//——

CKerberos::CKerberos()

{

FARPROC pInit;

SECURITY_STATUS ss;

PSecPkgInfo pkgInfo;

m_pInBuf = NULL;

m_pOutBuf = NULL;

m_hLib = NULL;

// Load and initialize the default ssp

//

m_hLib = LoadLibrary (SSP_NAME);

pInit = GetProcAddress (m_hLib, SECURITY_ENTRYPOINT);

m_pFuncTbl = (PSecurityFunctionTable) pInit ();

// Query for Kerberos package

//

ss = m_pFuncTbl->QuerySecurityPackageInfo (KERB_PACKAGE,

&pkgInfo);

if (!SEC_SUCCESS(ss)){

throw CKerberosErr ("Couldn't query the package. Package may not

exist", ss);

}

// Initialize vars

//

m_cbMaxToken = pkgInfo->cbMaxToken;

m_pFuncTbl->FreeContextBuffer (pkgInfo);

K E R B E R I Z I N G A P P L I C A T I O N S304

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 304

m_pInBuf = (PBYTE) malloc (m_cbMaxToken);

m_pOutBuf = (PBYTE) malloc (m_cbMaxToken);

m_pkgName = KERB_PACKAGE;

m_fHaveCtxtHandle = false;

m_fHaveCredHandle = false;

m_reqCtxtAttrs = 0;

}

We derive two classes from CKerberos: CKerberosClient and CKerberosServer.
After loading the default security provider and setting up variables through the
CKerberos constructor, each class’s constructor calls the AcquireCredentialsHandle
function to get a handle to the logged-on user’s credentials. The first argument to this
function is NULL because we want to use the credentials of the current logged-on user.
We have to pass the name of the package we want to use—second argument—and
the usage type to get the correct type of credentials. CKerberosClient uses SEKPKG_
CRED_OUTBOUND for the credential usage, whereas CKerberosServer uses SEKPKG_
CRED_BOTH to be able to do delegation if needed later. NULL is passed for arguments that
are not used by the Kerberos package or that we are not interested in.

Listing 11-2 CKerberosClient Class

//——

// CKerberosClient - Constructor to get credential handles

//——

CKerberosClient::CKerberosClient(LONG ctxtAttrs)

{

SECURITY_STATUS ss;

ss = m_pFuncTbl->AcquireCredentialsHandle (

NULL, // Use current principal

m_pkgName, // Set to "kerberos"

SECPKG_CRED_OUTBOUND,

NULL,

NULL,

NULL,

NULL,

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 305

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 305

&m_hCred, // Handle to the credentials

&m_credLifetime);

if (SEC_E_OK != ss){

throw CKerberosErr ("AcquireCredentialsHandle failed",

ss);

}

m_fHaveCredHandle = true;

m_reqCtxtAttrs = ctxtAttrs;

}

Both constructors of these derived classes take an argument that specifies the
requested context attributes. The caller applications should use the appropriate con-
text attributes flags when using these classes.

Listing 11-3 KerberosServer Class

//——

// CKerberosServer - Constructor to get credential handles

//——

CKerberosServer::CKerberosServer(LONG ctxtAttrs)

{

SECURITY_STATUS ss;

ss = m_pFuncTbl->AcquireCredentialsHandle (

NULL, // Use current user

m_pkgName, // Set to "kerberos"

SECPKG_CRED_BOTH,

NULL,

NULL,

NULL,

NULL,

&m_hCred, // Handle to the credentials

&m_credLifetime

);

K E R B E R I Z I N G A P P L I C A T I O N S306

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 306

if (SEC_E_OK != ss){

throw CKerberosErr ("AcquireCredentialsHandle failed",

ss);

}

m_reqCtxtAttrs = ctxtAttrs;

m_fHaveCredHandle = true;

}

The Authenticate method of each class goes through the process of building
the security token and sending it to the other side until the authentication is com-
pleted or failed. The security token is built by calling InitializeSecurityContext
when in the CKerberosClient::Authenticate method. In the first call to
InitializeSecurityContext, we do not use any input buffer, as there is no informa-
tion received from the server to pass to this function yet. The client keeps calling
this function until the return code specifies that there is no need to do so anymore.
In subsequent calls to the function, we pass the security token we receive from the
server in inSecBuffDesc. The security package uses the content of this buffer to build
the security context and to authenticate the server if needed. The output buffer in
outSecBuffDesc is the security token, under construction, we send to the server so
that it can authenticate the client. By default, in Kerberos, the server authenticates
the client. By requesting mutual authentication, a client is asking Kerberos to
authenticate the server too. It is up to the client to terminate a connection if mutual
authentication never took place, as shown in the following listing.

Listing 11-4 Client-Side Authentication

//——

// Authenticate - Authenticate the connection (client side)

// Target is the SPN of the service or the

// "domain\\username" of the service account

//——

void CKerberosClient::Authenticate(SOCKET s, SEC_CHAR *target)

{

SECURITY_STATUS ss;

SecBufferDesc outSecBufDesc;

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 307

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 307

SecBuffer outSecBuf;

SecBufferDesc inSecBufDesc;

SecBuffer inSecBuf;

BOOL done = false;

DWORD cbIn;

// prepare output buffer

//

outSecBufDesc.ulVersion = 0;

outSecBufDesc.cBuffers = 1;

outSecBufDesc.pBuffers = &outSecBuf;

outSecBuf.cbBuffer = m_cbMaxToken;

outSecBuf.BufferType = SECBUFFER_TOKEN;

outSecBuf.pvBuffer = m_pOutBuf;

while (!done){

ss = m_pFuncTbl->InitializeSecurityContext (

&m_hCred,

m_fHaveCtxtHandle ? &m_hCtxt : NULL,

target,

// context requirements

m_reqCtxtAttrs,

0, // reserved1

SECURITY_NATIVE_DREP,

m_fHaveCtxtHandle ? &inSecBufDesc : NULL,

0,

&m_hCtxt,

&outSecBufDesc,

&m_ctxtAttr,

&m_ctxtLifetime

);

if (!SEC_SUCCESS (ss)){

throw CKerberosErr ("InitializeSecurityContext

failed", ss);

K E R B E R I Z I N G A P P L I C A T I O N S308

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 308

}

m_fHaveCtxtHandle = TRUE;

done = !((SEC_I_CONTINUE_NEEDED == ss) ||

(SEC_I_COMPLETE_AND_CONTINUE == ss));

// Send to the server if we have anything to send

//

if (outSecBuf.cbBuffer){

SendMsg (s, m_pOutBuf, outSecBuf.cbBuffer);

}

if (!done){

RecvMsg (s, m_pInBuf, m_cbMaxToken, &cbIn);

}

// Prepare input buffer for next round

//

inSecBufDesc.ulVersion = 0;

inSecBufDesc.cBuffers = 1;

inSecBufDesc.pBuffers = &inSecBuf;

inSecBuf.cbBuffer = cbIn;

inSecBuf.BufferType = SECBUFFER_TOKEN;

inSecBuf.pvBuffer = m_pInBuf;

// Reset the size on output buffer. We reuse it.

//

outSecBuf.cbBuffer = m_cbMaxToken;

}

}

// Check if we did mutual attribute if requested.

// CheckCtxtAttr throws an exception if the attribute

// is not set

if (m_reqCtxtAttrs & ISC_RET_MUTUAL_AUTH){

CheckCtxtAttr (ISC_RET_MUTUAL_AUTH);

}

}

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 309

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 309

As far as the server part is concerned, after a request is received from the client
for authentication, the server starts the process by setting up the security buffers
and calling the AcceptSecurityContext function. This is very similar to the client’s
Authenticatemethod. Note that both the client and the server Authenticatemethod
take a socket argument as the first argument. The socket connection should be set
up before using these methods by the caller applications. We use blocking sockets for
simplicity.

We have defined an application-level protocol to send and to receive messages
between the client and the server in our SendMsg and RecvMsg functions. In our simple
protocol, which is suitable for TCP connections, we always send the size of the mes-
sage first. See the sample code on the CD-ROM for more information on these func-
tions and others not shown here.

Listing 11-5 Server-Side Authentication

//——

// Authenticate - Authenticate the connection (server side)

//——

void CKerberosServer::Authenticate(SOCKET s)

{

SECURITY_STATUS ss;

SecBufferDesc outSecBufDesc;

SecBuffer outSecBuf;

SecBufferDesc inSecBufDesc;

SecBuffer inSecBuf;

BOOL done = false;

DWORD cbIn;

// Prepare output buffer

//

outSecBufDesc.ulVersion = 0;

outSecBufDesc.cBuffers = 1;

outSecBufDesc.pBuffers = &outSecBuf;

outSecBuf.cbBuffer = m_cbMaxToken;

outSecBuf.BufferType = SECBUFFER_TOKEN;

outSecBuf.pvBuffer = m_pOutBuf;

K E R B E R I Z I N G A P P L I C A T I O N S310

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 310

while (!done){

// Get the security buffer from the client

//

RecvMsg (s, m_pInBuf, m_cbMaxToken, &cbIn);

// prepare input buffer for second round

//

inSecBufDesc.ulVersion = 0;

inSecBufDesc.cBuffers = 1;

inSecBufDesc.pBuffers = &inSecBuf;

inSecBuf.cbBuffer = cbIn;

inSecBuf.BufferType = SECBUFFER_TOKEN;

inSecBuf.pvBuffer = m_pInBuf;

// Reset the size on output buffer. We reuse it.

//

outSecBuf.cbBuffer = m_cbMaxToken;

ss = m_pFuncTbl->AcceptSecurityContext (

&m_hCred,

m_fHaveCtxtHandle ? &m_hCtxt : NULL,

&inSecBufDesc,

m_reqCtxtAttrs,

SECURITY_NATIVE_DREP,

&m_hCtxt,

&outSecBufDesc,

&m_ctxtAttr,

&m_ctxtLifetime

);

if (!SEC_SUCCESS (ss)){

throw CKerberosErr ("AcceptSecurityContext failed",

ss);

}

m_fHaveCtxtHandle = TRUE;

done = !((SEC_I_CONTINUE_NEEDED == ss) ||

(SEC_I_COMPLETE_AND_CONTINUE == ss));

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 311

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 311

// Send to the client if we have anything to send

//

if (outSecBuf.cbBuffer){

SendMsg (s, m_pOutBuf, outSecBuf.cbBuffer);

}

}

}

After establishing a secure connection, the client and the server can start exchang-
ing secure messages. The CKerberos class defines four methods for secure messaging:
SendSignedMsg, RecvSignedMsg, SendEncryptedMsg, and RecvEncryptedMsg. These meth-
ods should be used only if appropriate flags are passed to the constructors; otherwise,
exceptions are raised.

To sign a message, two security buffers need to be allocated: one to keep the mes-
sage and one for the signature itself. The size of the buffer needed to keep the signa-
ture is specified in the SECPKG_ATTR_SIZES structure, which we query by using the
QuerySecurityAttributes function.

Listing 11-6 Sending a Signed Message

//——

// SendSignedMsg - Send a signed message. First send the message

// and then the signature.

//——

void CKerberos::SendSignedMsg (SOCKET s, PBYTE pBuf,

DWORD cbBuf)

{

SECURITY_STATUS ss;

SecPkgContext_Sizes ctxtSizes;

SecBufferDesc secBufDesc;

SecBuffer secBufs[2];

ss = m_pFuncTbl->QueryContextAttributes(

&m_hCtxt,

SECPKG_ATTR_SIZES,

&ctxtSizes);

K E R B E R I Z I N G A P P L I C A T I O N S312

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 312

if (ctxtSizes.cbMaxSignature == 0){

throw CKerberosErr("Message signing not supported");

}

secBufDesc.cBuffers = 2;

secBufDesc.pBuffers = secBufs;

secBufDesc.ulVersion = SECBUFFER_VERSION;

secBufs[0].BufferType = SECBUFFER_DATA;

secBufs[0].cbBuffer = cbBuf;

secBufs[0].pvBuffer = pBuf;

// Build a security buffer for the message signature.

//

secBufs[1].BufferType = SECBUFFER_TOKEN;

secBufs[1].cbBuffer = ctxtSizes.cbMaxSignature;

secBufs[1].pvBuffer = (void *)malloc (

ctxtSizes.cbMaxSignature);

// Sign the message

//

ss = m_pFuncTbl->MakeSignature(

&m_hCtxt,

0, // No quality of service in Kerberos

&secBufDesc,

0); // We don’t use sequence numbers

if (!SEC_SUCCESS(ss)){

throw CKerberosErr ("MakeSignature failed" , ss);

}

// Send the message first

//

SendMsg(s, (BYTE *)secBufs[0].pvBuffer,

secBufs[0].cbBuffer);

.

// Send the signature next. That is our

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 313

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 313

// protocol

SendMsg(s, (BYTE *)secBufs[1].pvBuffer,

secBufs[1].cbBuffer);

free (secBufs[1].pvBuffer);

}

The security buffer that keeps the message has the SECBUFFER_DATA type. The
second buffer, which keeps the signature, is of SECBUFFER_TOKEN type and should have
a size equal to cbMaxSignature. After setting up the buffers, we sign the message.
Our protocol is to send the message size first and then the message itself, in the
same order in which we receive them in the RecvSignedMsg function. Note that no
quality of service is supported by Kerberos.

If you request out-of-sequence packet detection in any of the constructors, you
can pass a sequence number to the MakeSignature call. If you do so, the security
package will keep this information in the signature and will report an error if you
receive an out-of-sequence packet when verifying the signature. The security pack-
age does this by comparing the sequence number in the signature with the one you
provide in the VerfiySignature function. The application is responsible for maintain-
ing the sequence numbers.

To verify the signature, after receiving the signature and the message, we allo-
cate two security buffers and initialize the SECBUFFER_TOKEN with the received signa-
ture. The SECBUFFER_DATA keeps the message. The security buffers are put in the
security buffer description and passed to the VerifySignature function.

Listing 11-7 Receiving a Signed Message

//——

// RecvSignedMsg - Receive a signed message sent by calling

// SendSignedMsg.

//——————————————————————————————-———————————————————————————————

PBYTE CKerberos::RecvSignedMsg (SOCKET s, DWORD *cbBuf)

{

PBYTE pBuf;

PBYTE sigBuf;

DWORD sigBufSize;

SECURITY_STATUS ss;

SecBufferDesc secBufDesc;

K E R B E R I Z I N G A P P L I C A T I O N S314

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 314

SecBuffer secBuf[2];

DWORD cbRead;

ULONG fQOP;

// Receive the message size first

//

RecvBytes(s, (PBYTE) cbBuf, sizeof (*cbBuf), &cbRead);

pBuf = (PBYTE) malloc (*cbBuf);

// Receive the message

//

RecvBytes(s, pBuf, *cbBuf, &cbRead);

// Receive the signature size first

//

RecvBytes(s, (PBYTE) &sigBufSize,

sizeof (sigBufSize),&cbRead);

sigBuf = (PBYTE) malloc (sigBufSize);

// Receive the signature

//

RecvBytes(s, sigBuf, sigBufSize, &cbRead);

// Build the input buffer descriptor

//

secBufDesc.cBuffers = 2;

secBufDesc.pBuffers = secBuf;

secBufDesc.ulVersion = SECBUFFER_VERSION;

// Build the security buffer for message

//

secBuf[0].BufferType = SECBUFFER_DATA;

secBuf[0].cbBuffer = *cbBuf;

secBuf[0].pvBuffer = pBuf;

// Build the security buffer for signature

//

secBuf[1].BufferType = SECBUFFER_TOKEN;

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 315

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 315

secBuf[1].cbBuffer = sigBufSize;

secBuf[1].pvBuffer = sigBuf;

// Verify the signature

//

ss = m_pFuncTbl->VerifySignature(&m_hCtxt,

&secBufDesc,

0, // no sequence number used

&fQOP);

if(SEC_SUCCESS(ss)){

// OK. Return the message

return pBuf;

}

else if(ss == SEC_E_MESSAGE_ALTERED){

throw CKerberosErr("The message was tampered with");

}

else if (ss == SEC_E_OUT_OF_SEQUENCE){

throw CKerberosErr("The message is out of sequence.");

}

else{

throw CKerberosErr("VerifySignature failed with unknown

error");

}

}

To read the message and the signature, we first read the size of the message and
the signature, allocate enough memory, and then read the message and the signa-
ture. We also read the message first and then the signature because that is the order
in which the SendSignedMsg function sends them.

Message encryption and decryption work in a similar way. The difference is in
the way we set up the security buffers. To encrypt a message, we first query the secu-
rity context for the encryption-related size information. We then use this informa-
tion to set up three security buffers: one to keep the trailer, one to keep the message
to be encrypted, and one for the padding. The types of these buffers are SECBUFFER_

K E R B E R I Z I N G A P P L I C A T I O N S316

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 316

TOKEN, SECBUFFER_DATA, and SECBUFFER_PADDING, respectively. The message is
encrypted in place. We then collect all the data and send it to the other side.

Listing 11-8 Sending an Encrypted Message

//——

// SendEncryptedMsg - Encrypt a message and send the encrypted

// message

//——

void CKerberos::SendEncryptedMsg (SOCKET s, PBYTE pBuf,

DWORD cbBuf)

{

SECURITY_STATUS ss;

SecBuffer inSecBuf, outSecBuf;

SecBuffer secBufs[3];

SecBufferDesc secBufDesc;

SecPkgContext_Sizes sizes;

ss = m_pFuncTbl->QueryContextAttributes(

&m_hCtxt,

SECPKG_ATTR_SIZES,

&sizes);

if(SEC_E_OK != ss){

throw CKerberosErr("Error reading SECPKG_ATTR_SIZES",

ss);

}

// Prepare buffers to encrypt the message

//

secBufDesc.cBuffers = 3;

secBufDesc.pBuffers = secBufs;

secBufDesc.ulVersion = SECBUFFER_VERSION;

inSecBuf.pvBuffer = pBuf;

inSecBuf.cbBuffer = cbBuf;

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 317

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 317

secBufs[0].cbBuffer = sizes.cbSecurityTrailer;

secBufs[0].BufferType = SECBUFFER_TOKEN;

secBufs[0].pvBuffer = malloc(sizes.cbSecurityTrailer);

secBufs[1].BufferType = SECBUFFER_DATA;

secBufs[1].cbBuffer = inSecBuf.cbBuffer;

secBufs[1].pvBuffer = malloc(secBufs[1].cbBuffer);

memcpy(secBufs[1].pvBuffer, inSecBuf.pvBuffer,

inSecBuf.cbBuffer);

secBufs[2].BufferType = SECBUFFER_PADDING;

secBufs[2].cbBuffer = sizes.cbBlockSize;

secBufs[2].pvBuffer = malloc(secBufs[2].cbBuffer);

// Encrypt the message

//

ss = m_pFuncTbl->EncryptMessage(&m_hCtxt, 0, &secBufDesc, 0);

if (ss != SEC_E_OK){

throw CKerberosErr(" EncryptMessage failed", ss);

}

// Create the mesage to send

//

outSecBuf.cbBuffer = secBufs[0].cbBuffer +

secBufs[1].cbBuffer + secBufs[2].cbBuffer;

outSecBuf.pvBuffer = malloc(outSecBuf.cbBuffer);

memcpy(outSecBuf.pvBuffer, secBufs[0].pvBuffer,

secBufs[0].cbBuffer);

memcpy((PUCHAR) outSecBuf.pvBuffer + (int)

secBufs[0].cbBuffer, secBufs[1].pvBuffer,

secBufs[1].cbBuffer);

memcpy((PUCHAR) outSecBuf.pvBuffer + secBufs[0].cbBuffer +

secBufs[1].cbBuffer,

K E R B E R I Z I N G A P P L I C A T I O N S318

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 318

secBufs[2].pvBuffer,

secBufs[2].cbBuffer);

free (secBufs[0].pvBuffer);

free (secBufs[1].pvBuffer);

free (secBufs[2].pvBuffer);

// Send everything to the server

//

SendMsg(s, (PBYTE) outSecBuf.pvBuffer, outSecBuf.cbBuffer);

free(outSecBuf.pvBuffer);

}

To decrypt a message, we first receive the encrypted message. Because we don’t
know the size of the message, we first read the size information, allocate enough
memory, and then receive the encrypted message. To do the decryption, we need to set
up two security buffers this time: one to keep the encrypted message and one to hold
the result of the decryption process. The types of these buffers are SECBUFFER_STREAM
and SECBUFFER_DATA, respectively. We then call the decryption function.

Listing 11-9 Receiving an Encrypted Message

//——

// RecvEncryptedMsg - Receive an encrypted message sent by

// SendEncryptedMsg

//——

PBYTE CKerberos::RecvEncryptedMsg (SOCKET s, DWORD *cbBuf)

{

SECURITY_STATUS ss;

SecBuffer secBufs[2];

SecBufferDesc secBufDesc;

PBYTE pBuf;

DWORD cbRead;

ULONG qop;

// Receive the encrypted message size first

//

S A M P L E P R O J E C T : U S I N G S S P I T O K E R B E R I Z E A P P L I C A T I O N S 319

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 319

RecvBytes(s, (PBYTE) cbBuf, sizeof (*cbBuf), &cbRead);

pBuf = (PBYTE) malloc (*cbBuf);

// Recieve the encrypted message

//

RecvBytes(s, pBuf, *cbBuf, &cbRead);

// Build the security buffers for decryption

//

secBufDesc.cBuffers = 2;

secBufDesc.pBuffers = secBufs;

secBufDesc.ulVersion = SECBUFFER_VERSION;

// Keep the encrypted message here

//

secBufs[0].BufferType = SECBUFFER_STREAM;

secBufs[0].pvBuffer = pBuf;

secBufs[0].cbBuffer = *cbBuf;

// Buffer to keep the decrypted message

secBufs[1].BufferType = SECBUFFER_DATA;

secBufs[1].cbBuffer = 0;

secBufs[1].pvBuffer = NULL;

ss = m_pFuncTbl->DecryptMessage(&m_hCtxt,

&secBufDesc,

0, // no sequence number

&qop);

if (ss != SEC_E_OK){

free (pBuf);

throw CKerberosErr("DecryptMessage failed", ss);

}

*cbBuf = secBufs[1].cbBuffer;

return ((PBYTE) (secBufs[1].pvBuffer));

}

The CKerberosServer class has other methods to impersonate the client, to stop
impersonation, to display security context attributes, and so on. Refer to the source

K E R B E R I Z I N G A P P L I C A T I O N S320

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 320

code on the companion CD-ROM for more information and for the example code on
how to use these classes.

Summary
The Security Support Provider Interface (SSPI) is an application programming inter-
face (API) that applications should use to request security services from security ser-
vice providers. In Windows 2000, a security support provider is a dynamic link library
that supports the SSPI specification and that provides one or more security support
packages. Each security support package (SSP) supports one specific security protocol
and implements the SSPI functions according to that security protocol.

Applications can use the services of a security package in various ways. Applica-
tions can use the SSPI functions directly or through higher-level protocols or APIs,
such as RPC, DCOM, WinSock, or WinInet. Nevertheless, one way or another, access
to the security services is always through the SSPI layer.

SSPI defines four interface categories for credential management, context man-
agement, message exchange, and package management. Note that SSPI does not
provide any interfaces for sending and receiving messages.

References
[MICR00] Microsoft Corporation, “The Security Support Provider Interface,” January 2000.

(http://www.microsoft.com/TechNet/win2000/win2ksrv/technote/sspi2k.asp)

R E F E R E N C E S 321

02 pp. 183-352.qxd 2/6/01 10:34 AM Page 321

