
69

3
Platform Builder
Basics

The goal for Windows CE is to be able to run in a variety of devices and appliances. If you stop
and think for a moment, you will realize that the world of consumer electronics is home to an
array of devices that have wildly fluctuating hardware architectures. It would be hazardous to
make assumptions about the processor, processor speed, available RAM, and storage medium on
any given device. Can a tiny handheld digital telephone make room for a Pentium processor?
Does it make sense for a refrigerator to have a hard disk? What’s an operating system to do?

Microsoft has attempted to resolve these issues by making Windows CE a component-based
operating system. A few of the basic OS functions are mandatory and must be supported by any
hardware device that intends to use Windows CE. Everything else is up for grabs; you can add it
to your operating system, or you can leave it out.

What exactly are these components? A component is a particular functionality that can be
integrated into or left out of Windows CE. Components are available in the form of drivers, static
or dynamic libraries, and executables. Windows CE can be built with selected components that
are appropriate to the platform being developed. The tool that is used to build modified versions
of Windows CE is called Platform Builder. Platform Builder is a set of CDs that contain utilities,
files, and the components of Windows CE. Components can be platform dependent or platform
independent. An example of a platform-dependent component is the kernel for an x86 PC. A
component that allows the user to calibrate the touch panel and saves the coordinates is an exam-
ple of a component that is platform independent. In addition, a component usually has a distinct
resulting build target—either an executable or an object module library.

Let’s look at the concept of a module. Several components can be linked together to form a
module. A module is an executable or library file that performs a set of well-defined operations
and exports a well-defined API. A module is divided into components according to areas of
functionality, although such division is historically restricted by how the code was written.
Microsoft has done its best to separate the modules into components in such a way that OEMs
can select only the functionality they need for their platform. On value-priced consumer devices

with multiple form factors, this is a critical feature. However, not all modules can be broken
down into components.

Exploring Components in Platform Builder

Now that we have an idea of what components are, let’s look at the real situation in the Platform
Builder IDE. If you start Platform Builder and wait for it to open its main window, you will see
all components collected in a Catalog window (Figure 3.1).

Platform Builder Catalog

The Catalog window in Platform Builder lists all the components that are available for inclusion
in your build of the operating system. To create a custom version of Windows CE, also referred
to as a build, you must create a project in Platform Builder. Note that Platform Builder terminol-
ogy dictates that a component in the Catalog window is referred to as an implementation.
When the implementation is included in a project, it becomes a component. An implementation
is depicted by the icon shown in Figure 3.2. Implementations are grouped together by function-
ality into categories, or types. Types are depicted by the icon shown in Figure 3.3. An example
of a type is display, which groups together available display drivers in a platform.

The types can be traversed and viewed just like a folder hierarchy. The implementations
contained in the types and folders of the default catalog (see Figure 3.1) opened by Platform

70 Chapter 3 Platform Builder Basics

Figure 3.1 Catalog window in Platform Builder

Builder are presented in Table 3.1. You can extend the default catalog view by adding compo-
nents of your own. We’ll say more about that later in the chapter.

Table 3.1 Types and Implementations in the Default Catalog

Folder Configuration Type Implementation Description

coreos A folder that contains sample
configurations of the operating
system.

IESAMPLE A sample configuration that
includes almost all available
components and adds the Inter-
net Explorer Web browser con-
trol. Full localization is
supported, and the Input Method
Manager (IMM) is also included.

MAXALL A sample configuration that
includes almost all available
components, including the shell
and Pocket applications.

MINCOMM A sample configuration that
includes a minimal set of compo-
nents and adds serial communi-
cations and networking.

MINGDI A sample configuration that
includes a minimal set of compo-
nents that can support the Graphi-
cal Device Interface (GDI). No
window support is provided, but
you can use GDI calls to create a
minimal user interface if required.

MININPUT A sample configuration that
includes a minimal set of compo-
nents that can support user input
via the keyboard. A display

Exploring Components in Platform Builder 71

Figure 3.2 Implementation icon

Figure 3.3 Type icon

(continued)

Table 3.1 Continued.

Folder Configuration Type Implementation Description

driver is included, but GDI is not
supported.

MINKERN A sample configuration that con-
tains the operating system kernel
and a “Hello World!” application
that outputs text to the debug
serial port. This is a good first
configuration to use when you’re
booting a platform with Win-
dows CE.

MINSHELL A sample configuration that is
very much like MAXALL without
the Pocket applications.

MINWMGR A sample configuration that
includes components that can
support the window manager.
Full networking support is
included.

Drivers A folder that contains platform-
specific device drivers.

CEPC A folder that contains device
drivers for the CEPC platform,
which supports the x86 family of
processors.

display Display drivers type.

Ddi_ct Display driver for Chips & Tech-
nologies CT6555x chip set.

Ddi_364 Display driver for the S3 Trio64
chip set.

Ddi_s3v Display driver for the S3 ViRGE
chip set.

Ddi_vga8 A simple VGA display driver for
eight-bits-per-pixel displays. A
good first choice when testing a
display adapter on a CEPC or
any other platform that supports
a VGA-compatible display.

kbdms Keyboard and mouse drivers
type.

Kbdmsengus1 Driver for U.S. English key-
boards.

72 Chapter 3 Platform Builder Basics

Table 3.1 Continued.

Folder Configuration Type Implementation Description

Kbdmsjpn1, Drivers for Japanese keyboards.
Kbdmsjpn2

nscirda Infrared driver.

ohci Universal Serial Bus (USB) host
controller interface driver.

pc_ddk Hardware Abstraction Library
(HAL).

Ddk_bus Implementation of routines to
abstract bus I/O (input/output).

Ddk_map Implementation of routines to
abstract memory I/O.

pcmcia PCMCIA driver.

serial Serial port driver.

sermouse Serial mouse driver.

wavedev SoundBlaster AWE64 PNP ISA
driver.

eboot Ethernet debugging library and
helper routines for creating an
Ethernet boot loader.

ODO Device drivers for the Hitachi
D9000 (Odo) platform, which
supports multiple processors.

OAL OEM Abstraction Layer type. This
is a platform-specific layer of code
that is created by the OEM.

CEPC OAL for the CEPC.

ODO OAL for the D9000.

Platform A folder that contains Platform
Manager Manager client components.

These components are used to
provide a communication chan-
nel between Platform Builder
and the operating system being
developed on the platform.

Cemgrc Platform Manager client. This
component manages high-level
communication between the
Platform Builder (cemgr.exe)
and the operating system running
on the platform.

Exploring Components in Platform Builder 73

(continued)

Table 3.1 Continued.

Folder Configuration Type Implementation Description

Transport Transport component type. A
transport component is the proto-
col to be used between Platform
Builder and the Platform Man-
ager client.

pm_ppp PPP protocol used as transport.

pm_tcpip TCP/IP protocol used as trans-
port.

pm_cesrv Windows CE services transport.

Runtimes A folder that contains runtime
environments for Windows CE
application development.

Adoce A configuration that contains
ActiveX data objects for Win-
dows CE.

VB A configuration that contains
components for Visual Basic run-
time support.

vbeng Visual Basic runtime engine.

vbforms Support for forms.

controls Visual Basic controls.

MSCEComDlg Common dialog control.

MSCEComm Support for common controls.

MSCECommandBar Command bar control.

MSCEFile File I/O control.

MSCEGrid Grid control.

MSCEImage Image control.

MSCEImageList Image list control.

MSCEListView List view control.

MSCEPicture Picture control.

MSCETabStrip Tab control.

MSCETreeView Tree view control.

MSCEWinSock A control that supports the Win-
dows Socket API.

VC A folder that contains compo-
nents for Visual C++ runtime
support.

74 Chapter 3 Platform Builder Basics

Table 3.1 Continued.

Folder Configuration Type Implementation Description

mfc Runtime component for
Microsoft Foundation Classes.

atl Runtime component for Active
Template Library.

Now that we have these components in a catalog, what can we do with them? Components
are reusable objects and can be added to any project. The best way to illustrate the use of the cat-
alog is to create a sample project. As we discussed in Chapter 2, the best place to start is to run
Windows CE on a PC. For our first Windows CE build, we’ll create a special build of the CEPC
based on MAXALL called Adam. A special build of Windows CE is referred to as a platform.

Creating a New Platform with the Platform Wizard

To create a new platform, select the File | New menu item in the Platform Builder IDE. This
selection invokes the New Platform window of the Platform Wizard (Figure 3.4).

Creating a New Platform with the Platform Wizard 75

Figure 3.4 Platform Wizard

Platform Wizard gives you just one choice—a Windows CE (WCE) platform. When you
type in a platform name, the wizard automatically constructs the location folder for the platform.
This location is under the subdirectory PUBLIC in the Platform Builder folder. In theory you
cannot modify this location. However, as we plumb the depths of the build process in Chapter
10, you will see that there is nothing magical about this folder location; it can easily be changed,
although there may be no compelling reason to do so. The Processors list box contains choices
for processor types supported by the Platform Wizard. In Figure 3.4, the only available choice is
Win32 for Windows CE on an x86 processor. Additional processor types are added to this win-
dow if you select the processor choices when you install Platform Builder on your workstation.

Clicking on OK in the New Platform window activates the wizard by opening the first of
two dialog boxes. This first dialog box gives you an opportunity to select a board support pack-
age for the platform being created (Figure 3.5). A board support package (BSP) is a set of
basic, hardware-dependent components that have been created for a particular platform. These
components support a particular processor type and hardware configuration. Platform Builder
includes two preconfigured BSPs. The CEPC BSP is the package for an x86 PC. The Odo BSP is
for the Hitachi D9000 platform. We will select CEPC (see Figure 3.5) because this BSP runs on
an x86 PC.

We could have made two other choices. The option My BSP allows you to create your own
BSP. This option is useful when you are working with a board that is not supported by Windows

76 Chapter 3 Platform Builder Basics

Figure 3.5 Selecting a BSP for your project

CE out of the box. After you create your own BSP, the board support list box in this dialog will
list your BSP by name.

Selecting No BSP allows you to create a platform without a board support package. In this
case, you have to create a BSP and add it to your platform later, which you do using the My BSP
choice just described. We will cover this aspect in detail later in the chapter.

Note that the wizard automatically fills in the path of the BSP. BSPs are generally found
under the PLATFORM subdirectory of Platform Builder.

The second and final dialog box allows you to select the type of platform you are creating
(Figure 3.6). In essence, you are selecting one of the sample configurations that come in Plat-
form Builder and that were listed under the coreos type described in Table 3.1. You can modify
this choice in finer detail after the platform has been created. However, selecting the best option
here will minimize the effort you spend later in fine-tuning the components in your platform.
The default choice is MAXALL. Clicking on the Finish button brings up one final dialog box,
which informs you of the choices you have made so far. When you have confirmed your choices,
Platform Builder proceeds to build the new platform.

Creating a New Platform with the Platform Wizard 77

Figure 3.6 Selecting a platform for your project

Building and Executing the Platform

Once Adam is created, Platform Builder shows the components included in the project in its
Workspace window (Figure 3.7). The Workspace window has two tabs: Components and
Parameters. The component view shows that several essential components have been included
in Adam for us by the Project Wizard. Of particular interest is the component called MAXALL.

Recall that we selected Maximum OS (MAXALL) by default as the kind of platform we wanted
to create. MAXALL has several subfolders, each of which corresponds to a module (see Table 3.2).
Recall that a module is a set of components that have a common basis of functionality. By
including a module, you can pull in all or selected components of related functionality into your
project. The modules included in Adam are inherited from MAXALL.

Building Adam will build all the components and modules that are part of the platform.
Select Build | Build Platform . . . from the menu to build the platform. The Platform Builder
IDE shows the results of the build in the Output window under the Build tab. You will notice a
series of messages that correspond to important sequences undertaken by the CE build process.
Since we will dissect these sequences in Chapter 10, let’s look at them just briefly for now.

The first message you see is Building Platform header files. . . . The process of building
platform header files is also called building the system. This phase is responsible for building
the Windows CE components and modules that have been included in your platform. During this
process, header files specific to your platform are generated. When creating code for your plat-
form, you must include these header files because they will contain only information that is rele-
vant to components that are part of your platform. These header files preclude the possibility that

78 Chapter 3 Platform Builder Basics

Figure 3.7 The new project’s Workspace window

a platform-specific module will compile and link but fail at runtime because of a failure to locate
the component. What follows is a series of messages emitted by Cebuild and its helper utilities.

The next step in the build process is accompanied by the message Building. . . . This mes-
sage marks the process of compiling and linking source code from the BSP and platform-
specific drivers, libraries, and applications. The verbiage that follows this message comes from
the build process as it attempts to build the libraries, drivers, and applications in the platform.

The message Copying Platform header files . . . is displayed to indicate the phase in which
all the binaries and configuration files generated by the previous stages of the build are copied
into a folder, which acts as a repository for the final phase. The final phase takes all the files
copied into the repository and creates the image of the Windows CE operating system. This
image will conform to the specifications laid out by your platform. It includes the components
you specified and will support the processor and board you selected via the wizard. This final
phase is preceded by the message Creating kernel image. . . . On completion of a successful
build, you should see the message Adam – 0 error(s), 0 warning(s). We are now ready to create
an application!

Creating Applications for Your Platform

A famous software developer once said, “With every platform must come applications.” OK, we
made that up. However, the fact is obvious: After you’re done developing the OAL, drivers, and
related libraries for your platform, you will have to turn your attention to delivering applications
on your platform that your customers can use to accomplish tasks. Let’s start by creating an
application called Welcome for our platform Adam.

We create an application using a process similar to the one we use to create a new platform.
Select File | New from the menu, which eventually launches Project Wizard (Figure 3.8). From
that screen, follow the steps we’ve already outlined for creating a new platform.

Creating Applications for Your Platform 79

Table 3.2 Modules Inherited from MAXALL

Module Description Examples

CE_MODULES Operating system components filesys (the file system),
GWES, tcpstk (TCP/IP), and
so on

IE_MODULES Internet Explorer components wininet (the WinInet API)

WCEAPPS_MODULES Windows CE application components msgstore (the message store),
office (Pocket Office applica-
tions)

WCESHELL_MODULES Windows CE shell components ctlpnl (control panel),
explorer, webview (an HTML
Web control)

Windows CE Project Wizard

Since a platform already exists in your current workspace, Platform Builder automatically adds
a Projects tab to the initial New dialog box (Figure 3.8). The Projects tab allows you to select
the type of application you would like to create. You can choose to create a Windows CE exe-
cutable, a console executable (no windowing support), a Windows CE dynamic link library
(DLL), a static library, or a transport layer (which is a DLL with special entry points). For our
sample Welcome application, we will choose to create a Windows CE executable. Note that
when you type in the name of the application you’re creating, the Location field is updated to
point to a subdirectory under the platform directory for Adam.

Clicking on OK launches the Windows CE (WCE) Application Wizard. This simple wizard
displays a single dialog box (Figure 3.9). It allows you to select a template for your application.
The choice An empty project simply allows you to insert a project into your workspace that
doesn’t contain any files. This option is useful when you have an existing application that you
would like to integrate into your platform. In this case you would then insert the files of the
existing application into the empty project created by the wizard.

The second option, A simple Windows CE application, creates a project with files that
compile into an application that has a winmain entry point. Windows applications are started at
winmain. However, the wizard-created winmain does nothing except return immediately. This
option allows you to insert code into the entry point and start building your application.

80 Chapter 3 Platform Builder Basics

Figure 3.8 Project Wizard

Finally, the option A typical “Hello World!” application creates a complete application
that displays “Hello World!” in a dialog box. We’ll choose this option so that we have a com-
plete sample application to run on our platform.

When you click on the Finish button, the wizard shows you a single dialog box displaying
the type of application it will generate. The application Welcome is then inserted into your proj-
ect workspace.

Applications are always inserted in Platform Builder’s project workspace. Platform Builder
now has two views: a platform view, which contains Adam, and a project view, which contains
Welcome. The platform view contains a view of the platform under development. The project view
displays applications being developed for the platform. You can toggle between the project view
and the platform view from the Platform Builder toolbar using the buttons shown in Figure 3.10.
These buttons are mutually exclusive. When one is depressed the other is not, and vice versa; you
can view only either your platform or your project at any given time. This separation is provided to
facilitate the development of both platform software and applications for that platform.

Creating Applications for Your Platform 81

Figure 3.9 Selecting the type of application to create

Figure 3.10 Switching between platform and project views

Building the Application

To build welcome.exe, you must select the menu item Build | Build Welcome.exe. Platform
Builder first attempts to build the platform. If the platform builds successfully, then Platform
Builder builds welcome.exe. You can make this selection also by pressing the F7 key. Before
attempting to build welcome.exe, the build process checks to see if all the platform header files
have been generated since the last time the project was modified. Recall that the platform build
process has generated header files on the basis of the selected configuration. These header files
are to be used by any applications or drivers that must run on the platform. This dependency is
built into the project file generated for welcome.exe.

Another dependency added explicitly to the IDE when the project is generated is for the
platform build. The platform build for Adam will now attempt to build welcome.exe after the
platform build completes successfully. You can check this new dependency by selecting
Platform | Dependencies... .

Successfully building welcome.exe, however, does not automatically include it in the oper-
ating system image that will be uploaded to the target platform. The steps required to do so must
be performed manually. Alternatively, you can set up Platform Builder to perform these for you
automatically. We will take the latter approach.

Testing the Application during Rapid Development

While still developing the application, we will make use of an interesting CESH feature to
shorten our development and debugging cycle. CESH transfers an image from the workstation to
the target and then continues to monitor the kernel on the target using an undocumented API. If
the kernel attempts to load a module that does not exist in the operating system image, it asks
CESH for a copy of the module. If CESH finds the module in its working directory, it uploads a
copy of the module to the target platform, where the kernel copies it into RAM. This process
causes the module to be executed on the target platform. Once the module is done executing, it is
unloaded from RAM and its copy is discarded.

This feature allows us to create an application and simply copy it into the release directory
without including it in the operating system image. Thus, when we modify the application, we
simply copy a new version to the release directory and execute the application on the target plat-
form. On execution, the kernel asks CESH to load the module because it is unable to locate it in
the image. CESH obliges by sending the kernel a fresh copy of the module. Once the application
is terminated, we can repeat the entire cycle with a new copy of the module.

If we chose to include the application in the operating system image, we would have to cre-
ate a new copy of the image for every change in the application. The new copy would then have
to be uploaded to the target. The entire image of the operating system takes considerably longer
than just a single executable to upload to the target.

After a successful build, the build process for the project copies the output file into the
release directory for the platform. The variable _FLATRELEASEDIR, defined by the Windows CE
build process, contains the value of the release directory. The variable is set up for each plat-
form, and for Adam it is set to \WINCE212\PUBLIC\ADAM\RELDIR\X86_DEBUG for the debug
build of the platform.

Once we have our custom build step in place, welcome.exe will be copied, after every suc-
cessful build, into the release directory. From here, it will initially be uploaded on demand by

82 Chapter 3 Platform Builder Basics

CESH to the target platform. Later, we will integrate it directly into the operating system image.
First, though, we need to figure out how to upload the operating system to the target platform
and run it there.

Running Windows CE on a CEPC

Running Windows CE is not as straightforward as creating a new platform and project. This task
requires two separate operations. The final build of Windows CE, also referred to as the image,
must be uploaded to the target platform first. Next, the kernel debugger built into the Platform
Builder IDE must connect with the debug kernel on the target. There are several ways to upload
an image and debug it. For starters, we will focus on uploading via the parallel port and debug-
ging over the serial port. These methods are supported on all versions of Windows CE, including
those that use the early version of Platform Builder called the Embedded Development Kit
(EDK).

How does one upload the image to that target platform? You’ll need a bidirectional
enhanced parallel port (EPP) on both sides of the equation: the workstation and the platform. It
is a good idea to make sure that the parallel port is in EPP mode by checking the settings in the
system BIOS. The parallel port cable itself must be tweaked a bit. First you’ll need a male DB25
connector at both ends. Next, the cable itself must be wired as shown in Table 3.3. You can order
such a cable from a variety of vendors, but it’s not difficult to make one yourself. Start with a
regular parallel port cable and add an expansion box with the appropriate pins soldered to meet
the requirements in Table 3.3. If you don’t have an EPP-compatible port on the workstation or
the CEPC target, you can buy a plug-in ISA card that supports an EPP-compatible port. The
EPP-compatible port is jumper configurable on these cards. Be sure to avoid conflicts with your
regular parallel port in the workstation or CEPC.

The serial connection used to debug the kernel is fortunately quite straightforward, simply
requiring a serial cable. Once both connections have been set up, you are ready to upload.

An upload is carried out via the Windows CE Debug Shell Tool (CESH). CESH is capable
of uploading images to the target via several transports, including serial and Ethernet. For the
exercise we are conducting, we have already decided to use CESH’s parallel port capabilities.

To use CESH to upload the image, we must first start a command prompt. Platform Builder
provides a convenient way to create a command prompt and change directory to the release
directory for the platform under development with a few simple mouse clicks. From the Build
menu, select Open Build Release Directory. This selection will launch a command prompt in
the release directory of the platform. The release directory of a platform refers to the repository
for the final phase, \WINCE212\PUBLIC\ADAM\RELDIR\X86_DEBUG. This directory contains the
final Windows CE image to be uploaded to the target. The image is called nk.bin and must be
sent to the target in its entirety. This is accomplished by the following command:

Cesh -p CEPC Nk.bin

Running Windows CE on a CEPC 83

Table 3.3 CESH Parallel Port Cable Pin Connections

Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Pin 10 2 3 4 5 6 7 8 9 1 14 16 17 11 — 12 13 18 19 20 21 22 23 24 25

84 Chapter 3 Platform Builder Basics

The -p option of CESH indicates the profile that CESH must use. In this case, the profile is
called CEPC. Profiles for CESH are set up in the registry by the Platform Builder installation
procedure. The CEPC profile urges CESH to use the parallel port with some predefined settings
that configure the parallel port protocol. When using this profile, CESH starts passing nk.bin,
chunk by chunk, to the parallel port. The parallel port base address and interrupt level are
assumed to be the default values for LPT1 (base address 0x378 and IRQ 7). Should this change
on your workstation, you must edit the CEPC profile directly to reflect the changed parallel port
settings. To change these settings, you must change the registry values shown in Listing 3.1.

Listing 3.1 CESH registry settings

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ppsh\CEPC:
InterruptLevel = REG_DWORD 7
InterruptMode = REG_DWORD 1
InterruptVector = REG_DWORD 7
PortAddress = REG_DWORD 0x378

On a CEPC, at the other end, a tool called Loadcepc communicates with CESH to receive
pieces of the operating system image and then loads and boots the operating system. You must
start by creating a bootable floppy, preferably with MS-DOS 6.22, and put loadcepc.exe on it.
This floppy disk should be used to boot the CEPC. Loadcepc is available in Platform Builder,
and its source code is in the CEPC platform directory. Once the two utilities start to communi-
cate, a progress bar indicates the portion of the image that has been transferred successfully
between the workstation and the CEPC (Figure 3.11). After the entire image has been uploaded,
Windows CE will boot on the CEPC.

Kernel Debugging

The Platform Builder IDE has a built-in kernel debugger. You can launch this debugger by
selecting the Build | Start Debug | Go menu item or by hitting the F5 key. The kernel debugger
displays its output in the IDE output window under the Debug tab. You can view the output win-
dow by selecting the View | Output menu item. Then select the Debug tab.

Figure 3.11 Uploading an image using CESH

Like downloading, debugging can occur over an Ethernet connection. It can also occur over
the serial port. We’ll choose the latter because it is easy to set up and use. A simple serial cable
(not null modem) will do the trick. You can improve the debugger throughput by increasing the
speed at which the debugger and target platform communicate over the serial port. On the work-
station, select Build | Debugger | Remote Connection to view the Remote Connection dialog
box. In the Connection list box, you must select Kernel Debugger Port and then click on Set-
tings... (see Figure 3.12).

At the other end, the change in the default speed of the serial connection must be passed on
Loadcepc. This is accomplished with the /B:115200 option. In addition, if you are using the S3
display drivers that are bundled with the CEPC, you must instruct Loadcepc to initialize the dis-
play adapter in 640_480 mode. This is done via the /D:2 option. Finally, Loadcepc must be told
to expect the image to come down the parallel port, with the /P option.

Loadcepc /B:115200 /D:2 /P

You can request Loadcepc to use the serial port to download the binary image, provided that
you set up CESH to do the same on the workstation. In this case, you specify the /Q option. The
COM port to be used by Loadcepc is identified with an additional option, /C:{1 | 2}.

After you initiate the kernel debugger, the first messages in the debug window announce the
handshaking between the debugger and the target:

Kernel debugger waiting to connect on com1 at 115200 baud
Host and target systems resynchronizing . . .

When the debugger is started, you may get the erroneous error message shown in Figure
3.13. You can safely ignore this message. The IDE is simply trying to find an updated copy of

Running Windows CE on a CEPC 85

Figure 3.12 Setting the kernel debugger port’s speed

welcome.exe in the wrong release directory, a throwback from the days of the Embedded
Development Kit (EDK).

Let’s review what we’ve done so far:

1. Created a new platform, Adam, based on the MAXALL configuration

2. Created a simple new application for Adam called welcome.exe that displays a
“Hello World!” message in a dialog box

3. Connected the workstation and CEPC for downloading over the parallel port and
debugging over the serial port

4. Downloaded the operating system image to CEPC and watched it boot on the
CEPC

After the last step is completed, you should see a Handheld PC–like shell pop up, complete
with a Windows CE task bar. Let’s take our configuration for a spin. Select the Start button and
then click on Run... . In the Run dialog box, type in “welcome.exe” and then click on OK. The
shell will attempt to execute welcome.exe, a request that will be translated in the inner layers of
the kernel into a request from CESH to load welcome.exe from the release directory on the
workstation:

KernelLoader: Using PPFS to load file welcome.exe

86 Chapter 3 Platform Builder Basics

Figure 3.13 Error message when the debugger is started

PPFS stands for Portable Parallel File System, which supports loading on demand. On the
target platform, you should see welcome.exe running and greeting the world in a dialog box.
You can close welcome.exe by right-clicking on its icon in the task bar and selecting Close.

You can try out our rapid development technique by stopping the debugger, making a
change to the string displayed by Welcome, and then building the project, restarting the debug-
ger and executing welcome.exe from the Run dialog box on the target.

Debugging Capabilities of CESH

CESH is more than just a downloading utility. It is called the Windows CE Debug Shell Tool for a
reason. After the download is over, CESH gives you a command prompt. You can type in a variety
of commands at the prompt to get useful information from the kernel running on the target plat-
form. Typing “?” retrieves a list of all the commands supported by CESH (see Table 3.4).

Running Windows CE on a CEPC 87

Table 3.4 Commands Supported by CESH

Command Options Function

break Stops the kernel at the current line of execution. This command can
be used to halt the kernel and set a new breakpoint.

dd addr [<size>] Displays the contents of addr. The optional size argument tells the
command how many bytes to display.

df filename addr Writes contents of addr to the file specified by filename.
[<size>] The optional size argument tells the command how many bytes to

display.

dis Tells the virtual memory manager to mark all discardable memory
as available.

gi proc Lists all the processes running on the target. Processes are created
from executables by the operating system.

thrd Lists all the threads running on the target. A process may have mul-
tiple threads.

mod Lists all the modules loaded on the target. Modules are DLLs that
are loaded by executables. Device drivers are DLLs loaded by
device.exe (mostly); as such, they appear under the modules’
listing.

all Lists processes, threads, and modules. This is the default value for
the gi command.

kp pid Kills the process with process ID pid.

mi kernel Displays detailed information on memory used by the kernel.

full Displays memory maps used by all processes and modules in the
system.

run filename Runs the file specified by filename in batch mode.

S process Starts a new process. This command is useful when you don’t have
a user interface on the target platform that can be used to start a
process. The s command can also be used for rapid development
because it supports load on demand via PPFS.

zo Displays and modifies debug zones for a process or module. This
command is discussed in more detail in Chapter 9.

88 Chapter 3 Platform Builder Basics

After booting Adam successfully on a CEPC, you can run the gi command from the CESH
command prompt and observe output similar to that shown in Listing 3.2. When executing
welcome.exe, you will notice it listed as a process. The gi command prints out information that
is used not just for debugging, but also for indexing other commands. For example, the process
or module index, a number prefixed by either P or M, is passed to the zo command to identify
the entity whose debug zone is being displayed or modified. Debug messages emitted by the ker-
nel are prefixed with the address of the line that originated the message. You can map these
addresses by looking at the pModule field of a module in the output of gi.

Listing 3.2 shows the processes running on the target platform. The file nk.exe is the Win-
dows CE kernel process, filesys.exe manages the CE file system, the debug shell that com-
municates with CESH is shell.exe, device.exe loads and manages all the device drivers on
the target platform, gwes.exe is responsible for creating and managing windows and messages,
and finally, explorer.exe is the Handheld PC–like shell included in our image.

Listing 3.2 Running the gi command in CESH

Windows CE>gi
PROC: Name hProcess: CurAKY :dwVMBase:CurZone
THRD: State :hCurThrd:hCurProc: CurAKY :Cp:Bp:CPU Time
P00: NK.EXE 00ffefe2 00000001 02000000 00000100
T Blockd 00ffdefe 00ffefe2 00000001 3 3 00:00:00.000
T Blockd 00ffe012 00ffefe2 00000001 7 7 00:00:00.082
T Blockd 00ffe31e 00ffefe2 ffffffff 2 2 00:00:00.005
T Blockd 00ffef1a 00ffefe2 00000001 1 1 00:00:00.063
P01: filesys.exe 00ffdaf6 00000002 04000000 00000000
T Blockd 00ffdb16 00ffdaf6 00000003 3 3 00:00:01.491
P02: shell.exe 00ffbd42 00000004 06000000 00000001
T Runing c0ffc942 00ffbd42 ffffffff 1 1 00:00:02.965
P03: device.exe 00ffb70a 00000008 08000000 00000000
T Sl/Blk 00eb5366 00ffb70a 00000009 2 2 00:00:00.081
T Blockd 00ff517e 00ffb70a 00000009 3 3 00:00:00.001
T Blockd 00ff551a 00ffb70a 00000009 3 3 00:00:00.004
T Sl/Blk 00ff7d56 00ffb70a 00000009 2 2 00:00:00.001
T Sl/Blk 20ff98ce 00ffb70a 00000009 2 2 00:00:00.132
T Blockd 20ff98ee 00ffb70a 00000009 2 2 00:00:00.000
T Blockd 00ffb72a 00ffb70a 00000009 3 3 00:00:03.026
P04: gwes.exe 00fd626e 00000010 0a000000 00000040
T Blockd 00f60e02 00fd626e 00000011 3 3 00:00:00.029
T Blockd 00f6200a 00fd626e 00000011 3 3 00:00:00.014
T Blockd 00f6230e 00fd626e 00000011 1 1 00:00:00.000
T Blockd 00f625f2 00fd626e 00000011 1 1 00:00:00.004
T Blockd 00f62a56 00fd626e 00000011 1 1 00:00:00.193
T Blockd 00f62b6a 00fd626e 00000011 1 1 00:00:00.046
T Sl/Blk a0f74386 00fd626e 00000011 1 1 00:00:00.291
T Sl/Blk 00fd628e 00fd626e 00000011 3 3 00:00:01.029
P05: explorer.exe 00f60c5a 00000020 0c000000 00000000
T Blockd 40ea6c02 00fd626e 00000031 3 3 00:00:01.769
T Blockd 00eb572a 00fd626e 00000031 3 3 00:00:04.446
T Blockd 00f60c7a 00f60c5a 00000021 3 3 00:00:00.430
MOD: Name pModule :dwInUSE :dwVMBase:CurZone
M00: unimodem.dll 80eb5584 00000008 01160000 0000c000

M01: TAPI.DLL 80eb5ec0 00000008 01180000 0000c000
M02: SHLWAPI.dll 80f4e640 00000020 01060000 00000000
M03: IECEEXT.dll 80f4e810 00000020 01090000 00000000
M04: WININET.dll 80f4ed40 00000020 00f70000 0000c000
M05: imgdecmp.DLL 80f4ef44 00000020 00ed0000 00000000
M06: webview.dll 80f493ec 00000020 00e20000 00000000
M07: commctrl.dll 80f49c28 00000020 01520000 00000000
M08: CEShell.DLL 80f49ef8 00000020 00ef0000 00000000
M09: OLEAUT32.dll 80f60358 00000020 01390000 00000000
M10: ASForm.dll 80f627c8 00000020 00f50000 00000000
M11: kbdmouse.dll 80f62d78 00000010 00d20000 00000000
M12: DDI.DLL 80fd6b80 00000010 00d30000 00000003
M13: Redir.dll 80ff50c0 00000008 01110000 0000c001
M14: irdastk.dll 80ff6b78 00000008 011a0000 00008000
M15: netbios.dll 80ff76ec 00000008 010f0000 0000c000
M16: dhcp.dll 80ff7840 00000008 01220000 0000ffff
M17: arp.dll 80ff7a20 00000008 01290000 00000001
M18: tcpstk.dll 80ff8250 00000008 011d0000 00000001
M19: ppp.dll 80ff8800 00000008 01340000 00000000
M20: CXPORT.dll 80ff89a0 00000008 01330000 0000c000
M21: AFD.Dll 80ff8c88 00000008 012a0000 00000000
M22: ole32.dll 80ff8f88 00000028 013d0000 00000000
M23: softkb.DLL 80ff9320 00000008 01500000 00000000
M24: WINSOCK.dll 80ff95a0 00000028 01310000 0000c000
M25: IRCOMM.DLL 80ff971c 00000008 01320000 0000c003
M26: irsir.dll 80ff9e74 00000008 00ce0000 0000c000
M27: NDIS.Dll 80ffa6bc 00000008 01270000 00000000
M28: msfilter.dll 80ffa810 00000008 00cb0000 00000000
M29: CEDDK.dll 80ffaef0 00000018 00da0000 00000000
M30: Serial.Dll 80ffb020 00000008 00cf0000 00000000
M31: toolhelp.dll 80ffbf68 00000004 015a0000 00000000
M32: coredll.dll 80ffe690 0000003f 015e0000 00000000

Windows CE>

Integrating New Components into the Image

We can use the rapid development scenario described in earlier sections until we finish all basic
development of welcome.exe. We made changes to the Welcome application so that it displays a
message greeting on startup. We also added a caption and a system menu so that the window can
be conveniently closed. The text now appropriately welcomes users to the first Windows CE
platform in this book. Welcome will be started every time Adam boots so that the welcome mes-
sage is the first message users see. Let’s see how to add this somewhat concocted example to the
image and automatically start Welcome on startup.

To add welcome.exe to the operating system image, we will need to modify a file in the
parameter view of the platform workspace. Figure 3.14 shows the parameters view window for
Adam. The files displayed in this window are used to specify how the operating system image
will be built.

We’ll delve into the specifics of each file elsewhere throughout the book, so a brief overview
will suffice for now. The parameter view is organized into a set of files in three different cate-

Integrating New Components into the Image 89

gories. The option Common Files refers to files that are provided by Microsoft to specify how
the operating system must be built with Microsoft-supplied components. You should not modify
these files. Any modifications you make will affect all platforms and projects you create.

Different types of files contain different types of information:

• BIB files contain information about which files, executables, and libraries
should be included in the operating system image.

• DAT files contain a directory map for the file system on Windows CE.

• DB files contain information on how the Windows CE database should be ini-
tialized.

• REG files contain a map of the system registry on startup.

The option Hardware Specific Files refers to files that specify configuration and initializa-
tion when you’re building the platform.

Files specified by the option Project Specific Files contain additional information in each
of these categories that is specific to the project being created. The word project in this case does
not refer to Welcome, although that’s what we’ve been telling you all along. Here the term proj-
ect is a confusing throwback to the old days of the EDK. Under the terminology used then (and
still reflected in the Platform Builder directory and file structure), CEPC is our platform and

90 Chapter 3 Platform Builder Basics

Figure 3.14 Parameter view

Adam is our project. This clarifies the role of these categories. Platform-specific files typically
contain information regarding platform-specific drivers and modules. Project-specific files con-
tain information about platform-independent modules. All the files are used by the set of Win-
dows CE build tools when the image is being created.

If you have been following along closely, you might have already identified the BIB file as
the one we must modify to integrate welcome.exe in the final operating system image. The first
question, of course, is, To which BIB file should we add welcome.exe? The answer is simple
enough: Since welcome.exe is platform-independent, it should be added to the BIB file proj-
ect.bib in the Project Specific Files category.

Listing 3.3 shows the line that needs to be added to the BIB file to integrate the
executable in the image. This line instructs the appropriate build tool to add the file
$(_FLATRELEASEDIR)\welcome.exe to the image, where it will be called welcome.exe. The
file must be loaded into the NK section of memory in ROM and must be uncompressed (type U).
Sections of memory are set up in the file config.bib. We’ll say more about this later in the book.
Leaving the executable uncompressed gives the operating system the option of running the pro-
gram in place in ROM. This avoids the work that the loader would normally do of uncompressing
a file from ROM into RAM before executing it. In addition to the time gained because the file
does not need to be uncompressed, precious RAM is made available for other programs.

Listing 3.3 Adding welcome.exe to project.bib

MODULES
; Name Path Memory Type
; -------------- --- -----------

welcome.exe $(_FLATRELEASEDIR)\Welcome.exe NK U

Now that Welcome is part of the operating system image, it will be transferred to the target
platform by CESH. PPFS will no longer be required to load it on demand because the loader will
find the file in the local file system on the target platform.

We still need to make Welcome execute automatically on startup. The kernel looks for a
special registry entry after starting the file system to look for modules to load during startup.
Since the REG file allows us to specify the contents of the system registry when the target plat-
form is initialized, we can zero in on the platform-independent registry file project.reg. To
automatically execute Welcome on startup, we must add the following lines to the registry ini-
tialization file project.reg:

[HKEY_LOCAL_MACHINE]\Init
“Launch80”=”Welcome.exe”
“Depends80”=hex:1E,00

The Launch80 registry entry tells the kernel to launch the program welcome.exe. The func-
tion performed by the Depends80 line is not immediately obvious. This registry entry lists a hex
number (001E) as its value. To discover the significance of this number, we must take a peek at
the common registry file, common.reg. This file has its own init section that is used to specify
programs to launch on startup. An excerpt of this file is shown in Listing 3.4.

Integrating New Components into the Image 91

Listing 3.4 The init registry key in common.reg

[HKEY_LOCAL_MACHINE\init]
; @CESYSGEN IF CE_MODULES_SHELL

"Launch10"="shell.exe"
; @CESYSGEN ENDIF
; @CESYSGEN IF CE_MODULES_DEVICE

'Launch20"="device.exe"
; @CESYSGEN ENDIF
; @CESYSGEN IF CE_MODULES_GWES
IF NOGUI !

"Launch30"="gwes.exe"
"Depend30"=hex:14,00

ENDIF
; @CESYSGEN ENDIF

The hex number 001E corresponds to 30. The Launch30 registry item in the listing is the
module gwes.exe. The entries related to gwes.exe instruct the kernel to launch gwes.exe on
startup. The Depends80 line simply tells the kernel to wait until gwes.exe has been launched
before launching welcome.exe, because welcome.exe uses the windows and message support
made available by gwes.exe. Finally, the number 80 was chosen at random from among num-
bers higher than 30. This number indicates the sequence in which the registry entries must be
processed. We need a number higher than that corresponding to the last entry in the common.reg
file.

However, this dependency only synchronizes the launch sequence of different modules. It
does not guarantee that gwes.exe will have fully initialized its services before welcome.exe is
executed. To make sure that the window manager is available, Welcome must call IsAPIReady
with its lone argument set to the constant SH_WMGR.

…
#include “windev.h”
…
While (!IsAPIReady (SH_WMGR))

Sleep (1000);

The IsAPIReady call will return a value of TRUE if the API specified by the constant is available.
If a value of FALSE is returned, the API is not yet ready for use and Welcome must wait in a loop
for the API to initialize before it executes the remainder of its code.

Note the inclusion of the header file windev.h. This file contains the function prototype for
IsAPIReady. Welcome loops and checks the value returned by this call to see if the window
manager API is available. If the API is not available, Welcome sleeps for one second before
checking again.

Now that we are ready with all the changes, we can test out the build by selecting the Plat-
form | Build | Build Platform menu item after switching to the platform view. To confirm that
welcome.exe has been included in the image, sift through the final output of the build process
that lists all the files included in the image. The entry for welcome.exe, if included in the image,
should look like Listing 3.5.

92 Chapter 3 Platform Builder Basics

Listing 3.5 Output from the build process

MODULES Section
Module Section Start Length psize vsize Filler
------------ -------- --------- ------- ------- ------- ------
…
welcome.exe .text 80a6f000h 8192 5632 5508 o32_rva=1000h
welcome.exe .rdata 80a71000h 4096 512 289 o32_rva=3000h
welcome.exe .idata 80a72000h 4096 1024 565 o32_rva=5000h
welcome.exe .rsrc 80a73000h 4096 2560 2254 o32_rva=6000h
…
welcome.exe .data 8024ffdbh 0 0 2584 FILLER
…
welcome.exe E32 8052b55ch 100 FILLER
welcome.exe O32 8052b5c0h 120 FILLER

The next time you download the new image and boot the CEPC, Welcome should pop up as
it did before on startup, welcoming the user to our new platform, Adam.

Customizing the Build Using Environment Variables

Once a Platform has been defined, you can use it to produce builds of the operating system that
vary slightly in flavor without having to change the underlying definition of the platform. For
example, you could choose to build Adam with a different display driver (either an S3 ViRGE or
a Chips & Technologies CT65555) or choose to omit support for audio altogether. Such
modifications to a platform are made dynamically through environment variables.

You can set environment variables in Platform Builder by selecting the Platform | Settings...
menu item and then clicking on the Environment tab. Most, although not all, of the environment
variables carry the prefix IMG. This prefix is short for image, which refers to the binary image of
the operating system. IMG variables modify the way in which the image is built. The variables
available in the Environment tab are listed in Table 3.5. To take effect, these variables must be
defined. You can set up the definition by simply setting the variable to 1. Most variables work in a
negative fashion. When set, they have the effect of not including a component or module. These
variables have the word NO in their names and can be particularly confusing to use.

Customizing the Build Using Environmental Variables 93

Note:
To make sure that the compiler can find the file windev.h, you must add the
include path in the CESYSGEN directory of Adam to the list of additional include
directories in which the compiler may find included header files. CESYSGEN is
the directory in which header files generated for the specific platform are
placed. To add this directory to the include path for the compiler, you must
click on the Project | Settings... menu item and then click on the C/C++ tab.
Next, select Preprocessor in the Category: combobox. In the Additional
include directories: edit box, type in “$(_WINCEROOT)\PUBLIC\ADAM\
CESYSGEN\OAK\INC”. This directory path will be passed to the compiler with
the /I flag, which instructs the compiler to search the specified directory for
the include path after looking in the standard include paths.

Z

Table 3.5 Environment Variables Used by Platform Builder

Environment
Variable Usage Description

FBBPP Sets the number of bits per pixel on When FBBPP is set, the display drivers in the
the display supported by the CEPC platform display drivers (S3 ViRGE,
platform. This value is usually set to S3 Trio64, CT65555x, and so on) compile
FB16BPP to indicate a display themselves for a pixel depth of 16;
of 16 bits per pixel. otherwise the default depth of 8 bits per pixel

is used.

IME Selects the type of Input Method The value of IME is checked for the
Manager (IME) bundled with the configuration file common.bib, and
platform. If the value of this variable depending on its value, corresponding
is PIME, the Pocket IME version modules are added to the image.
is added to the image. Pocket IME
does not contain a user interface.
If the value of this variable is
TESTTIME, support that allows you
to create your own IME is added to
the image. The default value
is IME98, which adds an IME with
a user interface that mimics the
full-blown Win32 API IME.

IMGACMSAMPLES Adds the sample codec driver The value of IMGACMSAMPLES is checked
(cegsm.dll) and the sample in the project-specific configuration file
filter driver (msfilter.dll) project.bib. If the value is defined, the
to the image. corresponding sample drivers are added to

the image. However, the only project in Plat-
form Builder 2.12 that supports this behavior
is the MINSHELL project. Changing this value
in our sample platform Adam will have no
effect because it is derived from MAXALL.

IMGBIGFLASH Configures the image to utilize a IMGBIGFLASH is used in config.bib as a
larger area of flash memory conditional to lay out the image to use the
(an additional 8MB of flash is additional 8MB. This conditional is used
assumed). only for the Odo platform. Hence, it doesn’t

affect Adam because Adam is derived from
the CEPC platform.

IMGCOM2 Configures COM2 on the platform IMGCOM2 is used in platform.reg,
at 0x3E8. which initializes the system registry with

platform-specific information.

IMGCOM3 Configures COM3 on the platform IMGCOM3 is used in platform.reg,
at 0x2E8. which initializes the system registry with

platform-specific information.

IMGCOMMDEMOS Adds two sample communication IMGCOMMDEMOS is used in common.bib,
programs—ping.exe and which specifies the CE system files included
ipconfig.exe—to the image. in the operating system image.

94 Chapter 3 Platform Builder Basics

Table 3.5 Continued.

Environment
Variable Usage Description

IMGCTLPNL_G Unknown

IMGDUB Leaves additional space in the IMGDUB is used in config.bib to make
image layout to include the CE space for the DUB file in the image layout. It
dial-up boot loader (DUB). The is used only in the config.bib file for the
DUB is a component that can be Odo platform; hence, it doesn’t affect Adam
used to upgrade the operating because Adam is derived from CEPC.
system image.

IMGEBOOT Adds support for Ethernet IMGEBOOT is used in config.bib to make
debugging by bundling the space for Ethernet debugger modules. It is
Ethernet boot loader in the used only in the config.bib file for the
image. Odo platform.

IMGFLASH Lays out the image in flash IMGFLASH is used in config.bib to make
memory as opposed to RAM. space for Ethernet debugger modules. It is

used only in the config.bib file for the
Odo platform.

IMGICONPOSITIONS Allows explicit positioning of Not used.
icons on the desktop as opposed
to automatic positioning set by
the shell.

IMGMOREAPPS Allows additional applications to Not used.
be added to the image.

IMGMORERAM Lays out the image to simulate IMGMORERAM is used in config.bib to
less area for ROM and release allocate more space to the RAM section. Use
it for use as RAM area. this setting if your image is relatively small

(less than 6MB). The total memory assumed
in the system is 32MB.

IMGMOREROM Lays out the image to simulate IMGMOREROM is used in config.bib to
less area for R<K>AM <K>and allocate more space to the ROM section. Set
release it for use as ROM area. this variable if your image is large (more than

6MB but less than 20MB). The total memory
assumed in the system is 32MB.

IMGMOREROM16 Used just like IMGMOREROM,
but when total memory in the
system is assumed to be 16MB.

IMGNOBROWSER Excludes Internet browser IMGNOBROWSER is used (1) in
components in the operating wceshell.bib to add the Pocket Internet
system. Since Windows CE Help Explorer files iexplore.exe,
uses browser components, also webview.dll, and imgdecmp.dll;
disables Help. We are now in NO (2) in wceshell.reg to specify browser
territory, so note that not defining proxy, start and search pages, and file
this variable causes components associations; and (3) in wceapps.bib to

Customizing the Build Using Environmental Variables 95

(continued)

Table 3.5 Continued.

Environment
Variable Usage Description

to be added. The same goes for ensure that browser components are bundled
the NO variables that follow. before Help is added.

IMGNOCEDDK Excludes the CE DDK library in IMGNOCEDDK is used (1) in common.bib
the image. The CE DDK library to include ceddk.dll in the image, and
provides a processor-independent (2) in platform.bib for the CEPC
interface to the kernel, memory, platform to include the file pc_ddk.dll
and I/O to device drivers. and rename it as ceddk.dll. The latter

directive overrides the former when the
image is being built.

IMGNOCOMM Excludes all communications IMGNOCOMM is used in common.bib to
components in the image. include communication-specific components

in the image.

IMGNOCONN Excludes the components IMGNOCONN is used (1) in common.bib to
repllog.exe and include the components, and (2) in
rapisrv.exe, which common.reg, where it is used to set up a
communicate with Windows registry entry that specifies the version of the
CE Services, which provide modules. You must successfully negotiate
connectivity to a server (referred this version number when you’re
to as a desktop). An example of communicating with a desktop.
such an application is ActiveSync.

IMGNOCONSOLE Excludes the console support IMGNOCONSOLE is used in common.bib
component console.dll and to include the components.
the console command language
processor cmd.exe in the image.

IMGNOCTLPNL Excludes the control panel and all IMGNOCTLPNL is used in wceshell.bib
applicable control panel applets to include the components. It is used in
in the image. wceshell.reg to set up registry entries that

describe the control panel color scheme and
specify default settings for the various con-
trol panel applets.

IMGNODEBUGGER Builds an image with a kernel IMGNODEBUGGER is used in common.bib
debugger. Kernel debugging to include either the kernel with debugging
enables the kernel on the target (nk.exe) or the kernel without debugging
to communicate with the (nknodbg.exe) in the image.
kernel-debugging tool in
Platform Builder. Extensive traces
are also displayed by the kernel
debugger.

IMGNODRIVERS Excludes certain common drivers IMGNODRIVERS is used in common.bib
from the image. to include the parallel port and printer

drivers (prnport.dll, prnerr.dll,
pcl.dll), PC card ATA and IDE driver
(atadisk.dll), PC card static RAM

96 Chapter 3 Platform Builder Basics

Table 3.5 Continued.

Environment
Variable Usage Description

(SRAM) driver (sramdisk.dll), PC card
linear flash driver (trueffs.dll), dual
serial driver (dualio.dll) and waveform
audio driver (waveapi.dll).

IMGNOETHER Includes Ethernet support in the IMGNOETHER is used in common.bib to
image. include Address Resolution Protocol driver

(arp.dll), NDIS driver (ndis.dll),
NE2000-compatible card driver
(ne2000.dll), Proxim RangeLAN PC card
driver (proxim.dll), Xircom PC card driver
(xircce2.dll), and Dynamic Host
Configuration Protocol driver (dhcp.dll).

IMGNOFILES Excludes certain files depending IMGNOFILES is used (1) in wceshell.bib
on context. to include desktop shortcuts (LNK files)

and help files for shell components that
have been included in the image, (2) in
project.bib for the project MAXALL to
include WAV files for system sounds, and (3)
in wceapps.bib to include the shortcuts and
help files for applications that have been
included in the image.

IMGNOFLTDDK See IMGNOCEDDK.

IMGNOHELP Excludes Windows CE Help in the IMGNOHELP is used (1) in wceshell.bib
operating system. to include help components (part of the

shell), (2) in wceshell.reg to include reg-
istry entries that set up help file associations
with the appropriate modules, (3) in
wceapps.bib to include help for compo-
nents included in the image, and (4) in
wceapps.reg to include registry entries in a
manner similar to wceshell.reg.

IMGNOIDE Not used.

IMGNOIE Excludes Pocket Internet Explorer IMGNOIE is used in ie.bib to exclude
and support components. localization support for Internet Explorer

(mlang.dll), ieceext.dll, shlwapi.dll,
WinInet API (wininet.dll), URL and
Moniker support (urlmon.dll), HTML
support (mshtml.dll), HTML frames sup-
port (shdocvw.dll), limited XML support
(msxml.dll), and mmefx.dll.

Customizing the Build Using Environmental Variables 97

(continued)

Table 3.5 Continued.

Environment
Variable Usage Description

IMGNOJAVA Excludes Java support from the IMGNOJAVA is used in common.bib to
operating system. exclude the Java modules cejvm.dll,

jview.dll, ce_awt.dll, ce_local.dll,
ce_math.dll, ce_irda.dll, ce_zip.dll,
ce_net.dll, jcls.dll, and
verifier.dll.

IMGNOJSCRIPT Excludes JavaScript support from IMGNOJSCRIPT is used (1) in
the operating system. common.bib to exclude jscript.dll, and

(2) in common.reg to set up OLE IDs for the
JScript component in the system registry.

IMGNOLOC Not used. Localization support is
not optional.

IMGNOMAIL Excludes Pocket Mail, Internet IMGNOMAIL is used (1) in wceapps.bib
Message Access Protocol (IMAP), to exclude pmail.exe, imap4.dll,
and Simple Mail Transport Protocol smtp.dll, msgstore.dll,
(SMTP) support. tnefutil.dll, mailutil.dll,

labledit.dll, uicom.dll, and
pimprint.dll; and (2) in wceapps.reg
to set up registry entries for Pocket Mail.

IMGNOMLANG Excludes localization support from IMGNOMLANG is used in ie.bib to
Pocket Internet Explorer. exclude mlang.dll.

IMGNOMSHTML Excludes HTML support from the IMGNOMSHTML is used in ie.bib to
operating system. exclude mshtml.dll.

IMGNONETUI Excludes the network user interface IMGNONETUI is used in common.bib to
from the operating system. The exclude netui.dll.
network user interface allows
manipulation of the configuration
properties of the network via the
Communication control panel
applet.

IMGNOOLE32 Disables OLE support in the IMGNOOLE32 is used in common.bib to
operating system. exclude the OLE support components

ole32.dll and oleaut32.dll.

IMGNOPCMCIA Disables PC card support in the IMGNOPCMCIA is used in common.reg to
operating system. This entry doesn’t exclude registry entries for all supported PC
exclude PC card support in the cards.
operating system. It includes it but
disables it at runtime. To exclude PC
card support, you must exclude the
file pcmcia.dll from the image
(see ODO_NOPCMCIA).

98 Chapter 3 Platform Builder Basics

Table 3.5 Continued.

Environment
Variable Usage Description

IMGNOPWORD Excludes Pocket Word from the IMGNOPWORD is used (1) in wceapps.bib
operating system. to exclude office.dll, pwd_res.dll,

pwwiff.dll, and pword.exe; and (2) in
wceapps.reg to set up registry entries that
define OLE IDs and file associations for
Pocket Word.

IMGNOREDIR Excludes network redirector support IMGNOREDIR is used in common.bib to
from the operating system. exclude the redirector components

redir.dll and netbios.dll.

IMGNOSECURITY Excludes security components from IMGNOSECURITY is used in common.bib
the operating system. to exclude the digital signature and data

certificates (rsabase.dll) and the corre-
sponding 128-bit version (rsaenh.dll).

IMGNOSERVERS Excludes all servers from the IMGNOSERVERS is used in msmq.bib
operating system. If you plan to ship to exclude Microsoft Message Queue
two different versions of your OS components msmqd.dll, netregd.dll,
build (à la NT workstation and mqoa.dll, msmqadm.exe, and
server), you can use this variable to msmqrt.dll.
switch between the versions.

IMGNOSHDOCVW Excludes HTML frames support IMGNOSHDOCVW is used in ie.bib to
from Pocket Internet Explorer. exclude shdocvw.dll.

IMGNOSHELL Excludes the Windows CE shell and IMGNOSHELL is used (1) in wceshell.bib
related components, shortcuts, and to exclude the task manager (taskman.exe),
help files from the operating system. asform.dll, the CE shell support
Excluding shell components component (ceshell.dll), and
automatically excludes the browser the explorer shell (explorer.exe); (2) in
and CE Help. wceshell.reg to create registry entries

that automatically launch the task manager
and explorer shell on startup; (3) in
wceapps.bib to exclude browser and help
files if set; and (4) in wceapps.reg in the
same way as in wceshell.reg.

IMGNOTXTSHELL Excludes the CE shell from the IMGNOTXTSHELL is used in common.bib
operating system. The CE shell to exclude the CE shell components
communicates with a designated cesh.dll and toolhelp.dll.
desktop for debugging and
synchronization services.

IMGNOURLMON Excludes URL and Moniker support IMGNOURLMON is used in ie.bib to
from the browser. exclude urlmon.dll.

IMGNOWININET Excludes WinInet API support from IMGNOWININET is used in ie.bib to
the operating system. exclude wininet.dll.

Customizing the Build Using Environmental Variables 99

(continued)

Table 3.5 Continued.

Environment
Variable Usage Description

IMGNSCFIR Includes the National Security IMGNSCFIR is used in platform.bib
Council Fast Infrared driver. for the CEPC platform to include

nscirda.dll (if not set, the regular IrDA
driver irsir.dll is included), and (2) in
platform.reg to set up registry entries for
the appropriate IrDA driver included in the
operating system.

IMGPROFILER Builds a profile-enabled kernel in IMGPROFILER is used (1) in common.bib
the operating system. to include the profile-enabled kernel

nkprof.exe in the image, and (2) in
config.bib for the CEPC and Odo plat-
form to instruct the OS build tool that
profiling has been enabled in the kernel
(PROFILE=ON).

IMGSTRICTLOC Not used.

IMGTINY Builds a special bare-bones version IMGTINY is used in common.bib,
of the operating system. wceshell.bib, wceapps.bib,

wceapps.bib, and the platform.bib
files for the CEPC and Odo platforms.

IMGTINYFSRAM Uses a (relatively) tiny percent of IMGTINYFSRAM is used in config.bib to
RAM for the file system. By default, set another variable, FSRAMPERCENT, to
CE uses the RAM for file system the hex value of 80. This number instructs
storage. CE to use only 50 percent of the first 1MB of

RAM for the file system.

IMGUSB Adds USB support to the operating IMGUSB is used in platform.bib for the
system. CEPC platform to include the USB support

components Open Host Controller Interface
driver (ohci.dll), USB driver (usbd.dll),
and USB mouse driver (usbmouse.dll).

IMGUSEPROXY Enables the use of a proxy server IMGUSEPROXY is used in wceshell.reg
for HTTP. to add lines to the system registry that instruct

the browser to use a proxy server called itg-
proxy for HTTP access on port 80. Edit these
settings to configure your own proxy server
by name if you turn on this variable.

INITNOCOMM Disables the NDIS and auxiliary INITNOCOMM is used in common.reg to
function driver (AFD) protocol disable the registry settings for the NDIS and
manager at runtime. AFD components. Note that this setting does

not remove ndis.dll and afd.dll from
the image. It allows the components to be
part of the image but simply disables them at
runtime.

100 Chapter 3 Platform Builder Basics

Table 3.5 Continued.

Environment
Variable Usage Description

SCHEDLOG Includes the scheduler log functions Scheduler log functions are implemented in
in the operating system. schedlog.dll and are used as helper func-

tions when thread and process logging are
being implemented in the kernel. SCHEDLOG
is used in the Sources file for the kernel
modules in CEPC and Odo platforms to link
the kernel with schedlog.lib. In the
Sources file for the Hardware Abstraction
Layer (HAL), this variable is used to pass -D
SCHEDLOG to the compiler. This flag is used
to conditionally add a HAL IOCTL (I/O con-
trol) code that enables scheduler logging.

TESTSIP Includes the Software Input Panel TESTSIP is used (1) in common.bib to
(SIP) control panel applet in the include the SIP control panel applet
operating system. The applet is used (msim.dll), and (2) in common.reg to
to configure the SIP, a keyboard specify default values for SIP configuration
implemented in software for devices (manipulated by msim.dll).
that do not have a keyboard (e.g., the
Palm-size PC).

WINCEPROFILE Builds a version of the kernel that WINCEPROFILE is used in the HAL
supports profiling. Sources file for the CEPC platform to pass

the -D PROFILE flag to the compiler. This
flag is not really used by the HAL, since a
kernel with profile information is always
built (nkprof.exe). However, you can use
conditional compiling around the constant
PROFILE to add any profile-specific code to
the HAL.

Environment variables also find use in customization of the base platform chosen to build
a new platform. For example, we chose MAXALL to build Adam. Now we can modify the
MAXALL configuration for use in Adam by changing the value of these environment variables
appropriately.

These variables can also be put to good use during development and debugging. It may not
be necessary for every developer on the project to include all components of the operating sys-
tem. A developer working on writing a PC card driver for a bar code scanner may not need to
include any of the Pocket applications like Explorer and Mail, the serial port driver, or commu-
nication components. Such choices can help reduce the size of the operating system image being
built, which is instrumental in shorter download times to the hardware platform, resulting in a
more rapid development cycle.

Of course, when the driver is finally ready, the developer must test it with the full build of
the operating system that is expected to run on the hardware platform.

Customizing the Build Using Environmental Variables 101

Extending the Platform Builder Catalog

The Platform Builder catalog isn’t for components that ship with Windows CE. Components can
be added to the catalog so that they become available as standard components for a given plat-
form. When you’re adding a component, the principal pieces of information you must supply are
its name, a method to build the component, the group to which this component belongs (this
could be a new group or an existing one in the catalog), and a unique ID. A multitude of other
information, which we will discuss shortly, must also be supplied.

Let’s start by introducing the unique ID. This ID must be unique across any component ever
created for Windows CE. A globally unique identifier (GUID), also referred to as a universally
unique identifier (UUID), is a 128-bit value that uniquely identifies a component. You can gener-
ate a unique number on demand by using the Microsoft utility guidgen.exe. You can then use
this number to identify a component that must be added to the catalog. If a GUID is not sup-
plied, Platform Builder generates one for the component when adding it to the catalog. However,
providing a GUID for each component is recommended because it must be supplied when
modifications are made to the component in the catalog.

Guidgen will generate a new GUID and allow you to copy it to Clipboard so that you can
paste it into any other application. One of four formats can be selected. For a format suitable for
our purposes, select Registry Format. Then click on the Copy button. Now the GUID can be
pasted in via the editor being used to create the component that will be added to the catalog.

Components to be imported into a catalog must be specified by a special syntax and placed
in a file with a .cec extension. Files with the .cec extension are called component files.

Component Files in Depth

Component files have a format for laying out information about a component. The best way to
start is by example. Recall that we built an application called welcome.exe for our project
Adam. This simple welcome application can be included as a standard component in the catalog.
A CEC file must be used to describe this component before it can be imported into the catalog.

CECInfo Block
Every component file starts with the CECInfo block (Listing 3.6), a structure that contains infor-
mation about the component file itself. Note that any text following the characters “//” up to the
end of the line is considered to be a comment.

Listing 3.6 Sample component file header

CECInfo (
Name(New.cec)
CECVersion (3.00)
// GUID() – left blank
Vendor ("Windows CE Unlimited")
Description ("A sample Cec file")

)

102 Chapter 3 Platform Builder Basics

The fields of the CECInfo block are specified as follows:

• Name is an optional field that identifies the name of the component file.

• CECVersion is a mandatory field that can have a value of either 2.12 or 3.00.
It identifies the version of Windows CE for which the component file was
written.

• GUID is an optional field containing a number that uniquely identifies the
component file. If it is left blank, a GUID will automatically be generated for
the component file when it is used to import the component.

• Vendor is an optional field identifying the vendor that is distributing this
component as part of the catalog.

• Description is an optional field that describes the component file.

ComponentType Block
The component itself is described by a ComponentType block. Consider the sample shown in
Listing 3.7, which describes welcome.exe as a component.

Listing 3.7 Sample component file

ComponentType (
Name(Welcome)
GUID({232FBCF4-72DD-4208-A40F-686A42FFE8B3})
Description("Welcome application")
Group("\Standard Applications")
Implementations(

Implementation(
Name(Welcome)
GUID({2A8D35B5-F6BC-485c-867B-8352826D27CF})
Description("Welcome application")
Vendor("Windows CE Book")
Date(05/05/2000)
BuildMethods(

BuildMethod(
Step(buildrel)
GUID({A3CED1C5-617E-4065-A784-8551FA00A249})
CPU(x86)
InputFiles()
OutputFiles()
Action("#COPY("$(_PROJECTROOT\Welcome\Obj\Welcome.exe",

$(_FLATRELEASEDIR)")))
Setting('#CHM("Welcome.chm")')
Setting('#CHM("Welcome.chi")')
Setting('#INPUT("Include Welcome", INCLUDE_WELCOME, 1, 0,

"")')
)

)
)

)
)

Extending the Platform Builder Catalog 103

The fields of the ComponentType block are specified as follows:

• Name specifies the name of the component. The name of the component in
Listing 3.7 is Welcome.

• GUID is an optional field containing a number that uniquely identifies the
component. In this case we have assigned a GUID to the component so that
we can specify it later to modify this component.

• Description is an optional field that describes this component. It is dis-
played when the properties for a component are viewed in Platform Builder.

• Group is an optional field that refers to the organization hierarchy displayed in
the catalog. If you specify \Standard Applications in the sample, this component
will be added to a new group in the catalog at the root level called Standard
Applications. Welcome will be added as a component to this group. You can add
a component to an existing component simply by specifying its name. Group
names in a group hierarchy can be separated by a backslash (\). If no other
option is specified, the component is added directly to the root of the catalog.

• Vendor identifies the vendor of the component. The value of this field is dis-
played when the properties for the component are viewed (right-click on the
component in the catalog and select Properties from the pop-up menu).

Implementation Block
Each ComponentType block must have an embedded Implementations block (see Listing 3.7).
The Implementations block can consist of one or more Implementation blocks that describe
how the component has been implemented.

The fields of the Implementation block are specified as follows:

• Name is a mandatory field that identifies the Implementation block in other
Implementation blocks.

• GUID contains the unique identifier for the Implementation block. This field
is optional, but if specified, it must be unique for each block. An implementa-
tion may be referred to by name or by GUID. If this field is left blank, Plat-
form Builder automatically generates and applies a GUID to this block.

• Description is an optional field that describes the implementation.

• Vendor is an optional field that identifies the vendor of the implementation
and is optional.

• Children is an optional field that lists any children of an implementation.
This field can be used to specify any dependent implementations. A child
implementation must be described earlier in the component file. Implementa-
tions may be identified by name or GUID in this field.

• Date is an optional field that specifies the date of implementation in
MM/DD/YY format. This date can be set to the date the component was built
or to the date it was included in the catalog.

104 Chapter 3 Platform Builder Basics

BuildMethods Block
The BuildMethods block, along with the Name field, is required in the Implementation block.
The BuildMethods block is followed by one or more BuildMethod blocks, each of which
specifies a method for building the component (see Listing 3.7).

The fields of the BuildMethod block are specified as follows:

• Step and Action are mandatory fields that form the heart of the
BuildMethod block. Together these fields specify how this particular
implementation of the component will be built. The following list gives the
different keywords that can be specified in these fields. For a more thorough
treatment of how each of these keywords operates, refer to Chapter 10. The
command specified in the Action field depends on the keyword specified in
the Step field (see Table 3.6).

The Action field can contain the commands specified in the list that fol-
lows. In each case the entire command must be enclosed in quotation marks
for it to be executed—that is, Action ("<command>").

� #COPY("SrcPath", "TargetDir") copies a file with a fully qualified path
name into the target directory. Use this command to copy files during the
system generation or build-release phases. For example, this command can
be used to copy a component to the final target directory from which the
operating system image is constructed.
� #ENV("Variable", "Value") sets an environment variable to a specific

value. For a more detailed explanation of how environment variables can
affect a build, refer to the section titled Customizing the Build Using Envi-
ronment Variables earlier in this chapter and to Chapter 10.

Extending the Platform Builder Catalog 105

Table 3.6 Build Actions

Step Keyword Phase of Build Action Command

CESYSGEN System generation phase. The Microsoft modules and third-
party vendor components that make up the Windows CE
system are combined to create a core operating system.
Components supplied by the system integrator are added to
this build to create the final image. #COPY

BSP Core build phase. During this phase of the build process, each
component that is part of the Windows CE image is built
individually. #ENV

#BUILD

#CUSTOM

BUILDREL Build-release phase. In this phase, all the output files are
collected in a predetermined location in a mass copy operation. #COPY

#CUSTOM

MAKEIMG Make-image phase. The final operating system image is built
from the collected files. #ENV

� #BUILD(Dirs | Sources, "Directory") tells the build process to build
either a Dirs file or a Sources file to be found in the directory specified in
Directory. Dirs and Sources files specify commands for building one or
more components. A more thorough treatment of these files can be found
in Chapter 11.
� #BUILD(MAK, "Directory", "Makefile") is an alternative flavor of the
BUILD command that can be used to build a component with a custom
makefile. A custom makefile would be used in lieu of a sources file for bet-
ter control of the build process. This command can also be helpful in port-
ing components to Windows CE, where you can use a fully tested makefile
instead of converting it into a sources file. For a quick primer on how
makefiles work, refer to Appendix B.
� #CUSTOM("WorkingDirectory", "CustomCommand") can be used to exe-

cute a command specified by CustomCommand. This command is executed
from the directory specified by WorkingDirectory. It can be used to exe-
cute scripts like batch files that perform tasks that either cannot be per-
formed by a makefile or would be extremely tedious to port to a makefile.
Again, legacy components that are built by scripts can be accommodated
by this command.

• GUID contains the unique identifier for the Implementation block. This field
is optional, but if specified, it must be unique for each block. An implementa-
tion may be referred to by name or by GUID. If the field is left blank or not
specified, Platform Builder automatically generates and applies a GUID to
this block.

• CPU is a mandatory field that indicates if the implementation is CPU specific.
Current CPU values that can be specified in this field are SH3, SH4, SA1100,
ARM720, ARM720T, R3912, R4102, R4111.16, R4111.32, R4300, PPC403,
PPC821, and x86 for Windows CE 3.0. This list, supported by Microsoft, may
grow in the future as more processors are supported by Windows CE. Proces-
sors may also be dropped from this list. The value of the CPU field must be
enclosed in quotation marks. The value default indicates that the implemen-
tation is for the default list of processors for the operating system. The default
list is the list supported by Microsoft.

• Setting is an optional field that supports three different operations:

1. #INPUT("Sysgen setting", EnvironmentVariable, 1 | 0,
InitialValue, BspValue). Each BuildMethod block is allowed to spec-
ify a setting during the system generation phase, referred to as Cesysgen
or Sysgen. In the Platform Builder IDE, you can select or deselect Sysgen
by selecting Build and then Settings, and finally clicking on the Sysgen
tab in the Platform Settings dialog box.

Each setting sets an environment variable. The #INPUT operation
allows such a setting to be made visible in the Sysgen tab of the Platform
Settings dialog box. The string Sysgen setting is displayed in the tab. The

106 Chapter 3 Platform Builder Basics

environment variable specified by EnvironmentVariable is either set
or unset depending on its value: either 1 or 0. If the value is 1, then the
environment variable will be set to TRUE when the setting is selected. A
value of 0 specifies that the variable be set to FALSE when the setting is
selected. Finally, InitialValue specifies the initial value of the environ-
ment variable and hence the default selection of the setting in the tab.
BspValue is a string that is set to the name or GUID of the board support
package that allows this setting.

2. #OUTPUT(Output) allows the selection of a particular module in the
image. Output is usually an environment variable that is read by the
cesysgen.bat file during the system generation phase (we’ll give more
details in Chapter 10).

3. #CHM("HelpOrHelpIndexFile") associates an HTML help file (.chm
extension) or a help index file (.chi extension) with the component. When
an SDK is exported, the component’s help files specified by this operation
are automatically included in the SDK by Platform Builder.

• InputFiles is an optional field that is used to specify a list of files, separated
by spaces, required to perform the build for this component.

• OutputFiles is an optional field that is used to specify a list of files, sepa-
rated by spaces, output by the build.

Adding a Component to the Catalog

One global catalog is used by Platform Builder to store components and can be reused across
projects. To add a component to the catalog, you must create the component. Component files
have a .cec extension. To import the component, select Manage Platform Builder Compo-
nents... in the File menu. The resulting dialog box lists all the components that have already
been imported (Figure 3.15). Click on Import New... and browse for the component file that has
been created for the new component.

As an example, save Listing 3.6 to a file called new.cec and import it into the catalog. Wel-
come will show up as a member of the catalog under the folder Standard Applications. After
Welcome has been added to the catalog (Figure 3.16), it is available for inclusion in all new plat-
forms.

The dialog box to manage platform builder components is a front end to the pbcec.exe util-
ity that comes with Platform Builder. Pbcec imports components into the catalog. To import a
component, we call Pbcec with the component file name as its argument. For example, to import
the Welcome component into the CEPC catalog via the command line, we would have invoked
Pbcec in the following way:

Pbcec New.cec

Extending the Platform Builder Catalog 107

Calling Pbcec with the /list argument lists the components in the catalog. A sample run
yielded the following output:

Microsoft (R) Platform Builder 3.00 Catalog Utility
Copyright (C) Microsoft Corp 2000. All rights reserved.
CEC File Description
======== ===========
cepc.cec CEPC components

108 Chapter 3 Platform Builder Basics

Figure 3.15 Adding Welcome to the catalog

Figure 3.16 The catalog after Welcome has been added

configs.cec CoreOS components
extras.cec OAL components
mfcatl.cec MFC and ATL components
odo.cec Odo components
platmgr.cec Platform Manager components
vbrt.cec VBCE Components
ddtk30.cec Driver Development Test Kit Components
new.cec A sample Cec file
There are currently 9 cec files in the catalog.

When called with the /r option, Pbcec removes from the catalog the component that is
specified in the file passed in as the Pbcec argument. The /clean option does exactly what it
says: It clears out all components from the catalog.

Creating a New Board Support Package

Extending the catalog allows components to be used across platforms that use the same board
support package. System integrators may want to create a new BSP for a new processor or for a
significantly new platform for an existing processor. The key to creating a new BSP is to create a
new BSP file. The BSP file contains a list of instructions for how to build the platform and which
OEM components are required for the platform. Users of the BSP can then build the platform in
the manner that is prescribed in the BSP. In other words, a BSP file contains directions for the
build process, whereas component files define the components to be built.

Before a BSP can be created, all of its components must be imported into the catalog. Let’s
say we are creating a BSP called Appliances. Appliances will support the x86 CPU and will pro-
vide components typically used by kitchen appliances, such as coffee makers, refrigerators, and
so on. We’ll keep the Appliances BSP simple for illustration purposes.

The first step is to import all of the Appliances components. We take the CEPC component
file and modify it for Appliances. Then we import it into the catalog. Before we do that, we
adjust Appliances so that it has no display, no keyboard support, and no USB or infrared support
because these are not needed for the type of BSP we are creating. All GUIDs in the file being
copied must be created again via guidgen.exe because Platform Builder expects all of these
new components to be exported into the catalog. Listing 3.8 shows the component file for Appli-
ances after cepc.cec was copied and modified.

Listing 3.8 Component file for Appliances

// appliances.cec - Appliances components

CECInfo (
Name(Appliances)
GUID({D1E60FE9-4370-4deb-B111-781D7CBAEA73})
CECVersion(3.00)
Vendor(“Microsoft”)
Description(“Appliances components”)

)

Creating a New Board Support Package 109

// type "OAL" and 2 implementations
// Appliances
ComponentType (

Name(OAL)
GUID({B3509B99-F1E4-11d2-85F6-004005365450})
Description("OEM Adaptation Layer")
Implementations(

Implementation(
Name(Appliances)
GUID({E0A5CD0C-9D7D-4c4c-B4E7-17A6CACB3E3B})
Description("Appliances OAL")

BuildMethods(
BuildMethod(

Step(BSP)
GUID({188258EE-AE2C-4013-8514-1D6EA325027C})
CPU("x86")
Action('#BUILD(DIRS, "$(_WINCEROOT)\platform\cepc\kernel")')
Action('#BUILD(DIRS, "$(_WINCEROOT)\platform\cepc\gwe")')

)
)

)
)

)

// child type "ddk_bus" and implementation
ComponentType (

Name(ddk_bus)
GUID({4BB97298-47AC-43ef-BD2D-9E5B9FC3D1CA})
Description("ddk_bus")
Implementations(

Implementation(
Name(ddk_bus)
Description("ddk_bus")
GUID({C87FA2D3-8D13-49e4-91BD-A94C74DA6EE6})

BuildMethods(
BuildMethod(

Step(BSP)
GUID({84A08ED9-87A1-466a-A268-F9DEA522D2C1})
CPU("x86")
OutputFiles(ddk_bus.LIB)
Action('#BUILD(SOURCES,

"$(_WINCEROOT)\platform\Appliances\Drivers\CEDDK\DDK_BUS")')
)

)
)

)
)

110 Chapter 3 Platform Builder Basics

// child type "ddk_map" and implementation
ComponentType (

Name(ddk_map)
GUID({8886E23C-797C-4b19-A871-843AA949B866})
Description("ddk_map")
Implementations(

Implementation(
Name(ddk_map)
Description("ddk_map")
GUID({02A46E4A-1CDB-4504-B99C-470C27157015})

BuildMethods(
BuildMethod(

Step(BSP)
GUID({F07C875B-1D69-4cf0-A54B-D7486886627B})
CPU("x86")
OutputFiles(ddk_map.LIB)
Action('#BUILD(SOURCES,

"$(_WINCEROOT)\platform\Appliances\Drivers\CEDDK\DDK_MAP")')
)

)
)

)
)

// type "ceddk" and implementation
ComponentType (

Name(ceddk)
GUID({8630294D-6B62-4422-9B72-2B2D29629AE5})
Description("ceddk")
Group("\Drivers\Appliances")
Implementations(

Implementation(
Name(ceddk)
Description("ceddk")
GUID({BBD69EB7-AA85-440b-ADCC-8C8D1D8C34C0})
Children(ddk_bus ddk_map)

BuildMethods(
BuildMethod(

Step(BSP)
GUID({D6907409-E7DB-4d98-8841-58AD8A25B75F})
CPU("x86")
OutputFiles(pc_ddk.DLL)
Action('#BUILD(SOURCES,

"$(_WINCEROOT)\platform\Appliances\Drivers\CEDDK\DLL")')
)

BuildMethod(
Step(makeimg)
GUID({C792A2F8-0419-49aa-8B1E-CEB62BA274F8})
CPU("x86")

Creating a New Board Support Package 111

Action('#ENV(IMGNOCEDDK, "")')
)

)
)

)
)

// type "serial" and 2 implementations
// "serial", and "NewSerialMDD"
ComponentType (

Name(serial)
GUID ({6401DC3D-E93A-4bfb-B58F-6818A0500E64})
Description("serial")
Group("\Drivers\Appliances")
Implementations(

Implementation(
Name(serial)
Description("serial")
GUID ({81AA1070-3B88-4680-AD9D-E132F6773584})

BuildMethods(
BuildMethod(

Step(BSP)
GUID({4DAB8E7F-365B-4f51-B905-EE82FA242D14})
CPU("x86")
OutputFiles(serial.DLL)
Action('#ENV(ODO_NOSERIAL, "")')
Action('#BUILD(SOURCES,

"$(_WINCEROOT)\platform\Appliances\Drivers\SERIAL.PDD")')
)

BuildMethod(
Step(makeimg)
GUID({8D6179A9-0BD4-4387-A664-5A8C5D946714})
CPU("x86")
Action('#ENV(ODO_NOSERIAL, "")')
Action('#ENV(NEW_SERIAL_MDD, "") ')

)
)

)

Implementation(
Name(NewSerialMDD)
Description("New Serial MDD")
GUID ({52B0F538-8E24-4a07-BDE5-76A7259608BF})

BuildMethods(
BuildMethod(

Step(BSP)
GUID({2F65E925-A228-4875-841A-A1B456E2B23A})
CPU("x86")
OutputFiles(com_card.dll com16550.dll)

Action('#ENV(ODO_NOSERIAL, "")')

112 Chapter 3 Platform Builder Basics

Action('#BUILD(SOURCES,
"$(_WINCEROOT)\platform\Appliances\Drivers\COM_CARD")')

Action('#BUILD(SOURCES,
"$(_WINCEROOT)\platform\Appliances\Drivers\COM16550")')

)

BuildMethod(
Step(makeimg)
GUID({6CA564F3-178D-47ff-9D6B-D81378F1FC40})
CPU("x86")
Action('#ENV(ODO_NOSERIAL, "")')
Action('#ENV(NEW_SERIAL_MDD, 1)')

)
)

)
)

)

// type "wavedev" and implementation
ComponentType (

Name(wavedev)
GUID ({E0B38875-FF8F-4685-99D4-9A591368609D})
Description("wavedev")
Group("\Drivers\Appliances")
Implementations(

Implementation(
Name(wavedev)
Description("wavedev")
GUID ({0F132F1D-4AB8-4c57-853D-68935FDED1DF})

BuildMethods(
BuildMethod(

Step(BSP)
GUID({A0E49B67-614C-47bf-80D0-48C7E25C664B})
CPU("x86")
OutputFiles(wavedev.DLL)
Action('#ENV(ODO_NOAUDIO, "")')
Action('#BUILD(SOURCES,

"$(_WINCEROOT)\platform\Appliances\Drivers\WAVEDEV")')
)

BuildMethod(
Step(makeimg)
GUID({6DE00180-A0BD-4e74-87E7-4BD50AF5E158})
CPU("x86")
Action('#ENV(ODO_NOAUDIO, "")')

)
)

)
)

)

Creating a New Board Support Package 113

// type "EBOOT" and implementation
ComponentType (

Name(EBOOT)
GUID({F02E3B9F-CD10-44a5-BED5-1EAE187A2AE6})
Description("Appliances Eboot.bin")
Group("\Drivers\Appliances")
Implementations(

Implementation(
Name(Eboot)
Description("Appliances Eboot.bin")
GUID({086BA8F9-0788-4900-A48C-2D27F8AA8397})

BuildMethods(
BuildMethod(

Step(BSP)
GUID({C1450E38-C813-426f-BB98-6FDF40EC2216})
CPU("x86")
Action('#BUILD(SOURCES,

"$(_WINCEROOT)\platform\Appliances\EBOOT")')
)

)
)

)
)

When the component file shown in Listing 3.8 is imported into the catalog, the catalog
shows the addition of an OAL component, Appliances, and the drivers that are part of the Appli-
ances BSP (Figure 3.17).

114 Chapter 3 Platform Builder Basics

Figure 3.17 The catalog with imported Appliances components

Once the components for the BSP have been imported into the catalog, we need to create a
new BSP. Platform Builder allows you to create a project with a placeholder for a BSP. To finish
creating the BSP, you must expand the placeholder—a painstaking process that must be carried
out by hand.

To create a placeholder for a BSP, click on the File | New... menu option in Platform
Builder. Choose to create a WCE platform from the Platforms tab and type in the name of a
sample platform when the WCE Platform Wizard launches its first dialog box. For example, to
create a BSP for a category called Appliances, type in “Brewster.” Brewster is a sample coffee
maker that uses Windows CE. We will take a more intimate tour of Brewster later on in this
book. For now, it makes a guest appearance for illustration purposes.

In the second dialog box (step 2) of the wizard, select My BSP. This option indicates to
Platform Builder that you are trying to create a new board support package. Type in the name of
the BSP subdirectory. In our example we chose the name Appliances (Figure 3.18).

You must create this directory before you can execute step 2. Platform Builder will not cre-
ate it for you. Accepting the defaults in the ensuing wizard dialogs will lead to the creation of
Brewster. Figure 3.19 shows the Project window after Brewster is created and loaded in Plat-
form Builder.

Creating a New Board Support Package 115

Figure 3.18 Creating a new BSP

Note that Appliances shows up as an implementation in the project window. Right-clicking
on it and selecting Properties will reveal that Platform Builder recognizes it as a BSP. However,
there is nothing in the BSP yet. The directory created earlier is empty. The only trace that you
have a new BSP is a file called appliances.bsp created in the Platform Builder IDE
directory. For Windows CE 3.0, this directory is \WINCE300\WINDOWS CE PLATFORM
BUILDER\3.00\CEPB\BIN\IDE. This file represents an empty BSP, and you must modify it
by hand to complete the board support package. The appliances.bsp file is presented in List-
ing 3.9.

116 Chapter 3 Platform Builder Basics

Figure 3.19 The Brewster platform used to create a new BSP

Listing 3.9 Appliances.bsp

// *** Appliances ***

// NOTE: You will need to create an appliances.cec file
// and import it into the catalog. When you have done that,
// you can delete the two #ADD_USER_OAL lines below.

// *** Global components (for all the configs) ***

#ADD_USER_OAL_BUILD_METHOD ('#BUILD(dirs, "$(_WINCEROOT)\platform\
Appliances")')

#ADD_USER_OAL_COMPONENT ("{2367C526-2821-4CEF-94A2-7286D5152E6F}",
"Appliances")

// *** CoreOS-specific components ***
#IF ("COREOS","MINKERN")
#ENDIF
#IF ("COREOS","MAXALL")
#ENDIF
#IF ("COREOS","MINCOMM")
#ENDIF
#IF ("COREOS","MINGDI")
#ENDIF
#IF ("COREOS","MININPUT")
#ENDIF
#IF ("COREOS","MINSHELL")
#ENDIF
#IF ('COREOS","MINWMGR")
#ENDIF
#IF ("COREOS","IESAMPLE")
#ENDIF

The BSP file contains placeholders for adding CoreOS-specific components. CoreOS refers
to a configuration that represents a specific type of build of the operating system. Familiar
configurations like MINKERN, MAXALL, and MINCOMM have already been added to this file. The
directives required to build your custom platform should be inserted in this file as the final step
to creating a board support package.

BSP File Directives

Before we add directives to the file, let’s look at the types of directives that can be added to a
BSP file. BSP file directives all start with the pound sign (#). Text that follows “//” is considered
to be comment to the end of the line.

• #ADD_COMPONENT_BY_GUID_TO_ROOT (“guid”). This directive is used to add
a component implementation to the BSP. The component is identified by its
GUID. Recall that right-clicking on a component and selecting Properties
from the pop-up menu will reveal its GUID. To add the serial port driver to
the BSP, you would add the following line within a CoreOS conditional:

Creating a New Board Support Package 117

#ADD_COMPONENT_BY_GUID_TO_ROOT (“{35E70441-EEA9-11D2-A092-
0060085C1833}”)

• #ADD_FOLDER_TO_ROOT ("Folder"). You can organize the components by
creating folders under the root. This directive is used to create a folder.

• #ADD_COMPONENT_BY_GUID_TO_FOLDER ("guid", "Folder"). You can add a
component to a specific folder using this directive.

• #ADD_FOLDER_TO_FOLDER ("SubFolder", "Folder"). You can create deeper
hierarchies by creating subfolders with this directive.

• #ADD_TYPE_BY_GUID_TO_ROOT ("guid"). You can add a component type to
the root via this directive.

• #ADD_TYPE_BY_GUID_TO_FOLDER ("guid","Folder"). Using this directive,
you can also add a component type under a folder, just as you would a com-
ponent.

• #ADD_ENV_VAR ("Variable","Value"). You can define an environment vari-
able and set it to a specific value using this directive. Environment variables
are like settings for the platform. They are used to communicate values
between different utilities that build the operating system (Chapter 10 shows
exactly how this works).

Note the two directives in appliances.bsp (see Listing 3.9). These lines are added by Plat-
form Builder to an empty BSP file to support the creation of a new BSP. After you have popu-
lated the BSP file with components using the directives discussed, you must delete these lines.
The lines provide a placeholder for the empty BSP and specify how to build the BSP.

Notice also from the same listing that the BSP files support conditional directives. Condi-
tionals are used in the sample listing to specify which CoreOS is being built.

Finishing the New BSP: Appliances

After the required directives have been added to the BSP file (Listing 3.10), all of the physical
implementation of all the components that are part of this new BSP must be copied under the
newly created BSP directory. This means copying source code, libraries, and so on. The CEPC
and Odo directories are examples of what a BSP directory should look like.

Listing 3.10 Modified appliances.bsp

// *** Appliances ***

// NOTE: You will need to create an appliances.cec file
// and import it into the catalog. When you have done that,
// you can delete the two #ADD_USER_OAL lines below.

// *** Global components (for all the configs) ***

118 Chapter 3 Platform Builder Basics

// #ADD_USER_OAL_BUILD_METHOD ('#BUILD(dirs, "$(_WINCEROOT)\platform\
Appliances")')

// #ADD_USER_OAL_COMPONENT ("{2367C526-2821-4CEF-94A2-7286D5152E6F}",
"Appliances")

// Appliances

#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B99-F1E4-11D2-85F6-004005365450}")

// EBOOT.BIN
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B4569ABC-F1E4-11D2-85F6-123405365450}")

// *** CoreOS-specific components ***

// *** MAXALL ***
#IF ("COREOS","MAXALL")

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

// ddi_flat
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{E2B049C8-F7DC-45d3-8204-
0AA54FB4D4CC}")

// wavedev
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E7043C-EEA9-11D2-A092-
0060085C1833}")

// serial
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E70441-EEA9-11D2-A092-
0060085C1833}")

#ENDIF

// *** MINKERN ***
#IF ("COREOS","MINKERN")

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

#ENDIF

// *** IESAMPLE ***
#IF ("COREOS","IESAMPLE")

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

// ddi_flat
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{E2B049C8-F7DC-45d3-8204-
0AA54FB4D4CC}")

// serial
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E70441-EEA9-11D2-A092-
0060085C1833}")

Creating a New Board Support Package 119

#ENDIF

// *** MINSHELL ***
#IF ("COREOS","MINSHELL")

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

// ddi_flat
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{E2B049C8-F7DC-45d3-8204-
0AA54FB4D4CC}")

// serial
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E70441-EEA9-11D2-A092-
0060085C1833}")

// wavedev
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E7043C-EEA9-11D2-A092-
0060085C1833}")

#ENDIF

// *** MINWMGR ***
#IF ("COREOS","MINWMGR")

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

// ddi_flat
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{E2B049C8-F7DC-45d3-8204-
0AA54FB4D4CC}")

// wavedev
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E7043C-EEA9-11D2-A092-
0060085C1833}")

// serial
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E70441-EEA9-11D2-A092-
0060085C1833}")

#ENDIF

// *** MINGDI ***
#IF (“COREOS”,"MINGDI")

120 Chapter 3 Platform Builder Basics

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

// ddi_flat
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{E2B049C8-F7DC-45d3-8204-
0AA54FB4D4CC}")

// wavedev
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E7043C-EEA9-11D2-A092-
0060085C1833}")

#ENDIF

// *** MINCOMM ***
#IF ("COREOS","MINCOMM")

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

// serial
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{35E70441-EEA9-11D2-A092-
0060085C1833}")

#ENDIF

// *** MININPUT ***
#IF ("COREOS","MININPUT")

// pc_ddk
#ADD_COMPONENT_BY_GUID_TO_ROOT ("{B3509B75-F1E4-11D2-85F6-
004005365450}")

#ENDIF

// end of appliances.bsp file

We are now done creating a new BSP. The next time the WCE Platform Wizard is run,
Appliances will appear as a choice in the Select BSP list box (Figure 3.20). Platform Builder
filters the BSPs you can choose on the basis of the CPU you have chosen in the preceding dialog
box. Since the Appliances BSP is valid only for x86, this CPU must be checked.

Creating a New Board Support Package 121

Summary

The Windows CE Platform Builder is used to customize Windows CE and tailor the operating
system to a particular hardware platform. Platform Builder comes with an IDE in the style of
Visual C++ that provides wizards to help create a platform. A project can also be created that
contains applications and platform-independent modules that will execute on the platform.

In this chapter we looked at how environment variables can be used to further customize a
build for a particular platform. The Platform Builder can be extended, and a completely new
board support package can be created. In Chapter 10 we will take a closer look at the fascinating
process used by Platform Builder to build the Windows CE operating system.

122 Chapter 3 Platform Builder Basics

Figure 3.20 The new BSP added to an existing list

