Platform Builder
Basics

The goal for Windows CE isto be ableto run in avariety of devices and appliances. If you stop
and think for amoment, you will realize that the world of consumer electronicsis hometo an
array of devicesthat have wildly fluctuating hardware architectures. It would be hazardous to
make assumptions about the processor, processor speed, available RAM, and storage medium on
any given device. Can atiny handheld digital telephone make room for a Pentium processor?
Doesit make sensefor arefrigerator to have ahard disk? What's an operating system to do?

Microsoft has attempted to resolve these i ssues by making Windows CE a component-based
operating system. A few of the basic OS functions are mandatory and must be supported by any
hardware device that intends to use Windows CE. Everything elseis up for grabs; you can add it
to your operating system, or you can leaveit out.

What exactly are these components? A component isaparticular functionality that can be
integrated into or left out of Windows CE. Components are available in the form of drivers, static
or dynamic libraries, and executables. Windows CE can be built with selected components that
are appropriate to the platform being developed. Thetool that is used to build modified versions
of Windows CE is called Platform Builder. Platform Builder isa set of CDsthat contain utilities,
files, and the components of Windows CE. Components can be platform dependent or platform
independent. An example of a platform-dependent component isthe kernel for an x86 PC. A
component that allows the user to calibrate the touch panel and saves the coordinatesis an exam-
ple of acomponent that is platform independent. |n addition, a component usually has adistinct
resulting build target—either an executable or an object module library.

Let'slook at the concept of amodule. Several components can be linked together to form a
module. A moduleisan executable or library file that performs a set of well-defined operations
and exports awell-defined API. A moduleis divided into components according to areas of
functionality, although such division is historically restricted by how the code was written.
Microsoft has done its best to separate the modulesinto componentsin such away that OEMs
can select only the functionality they need for their platform. On value-priced consumer devices

69

70 Chapter 3 Platform Builder Basics

with multiple form factors, thisisacritical feature. However, not all modules can be broken
down into components.

Exploring Components in Platform Builder

Now that we have an idea of what components are, let’slook at the real situation in the Platform
Builder IDE. If you start Platform Builder and wait for it to open its main window, you will see
all components collected in a Catalog window (Figure 3.1).

Platform Builder Catalog

The Catalog window in Platform Builder lists all the components that are available for inclusion
in your build of the operating system. To create a custom version of Windows CE, also referred
to asabuild, you must create aproject in Platform Builder. Note that Platform Builder terminol-
ogy dictates that acomponent in the Catalog window isreferred to as an implementation.
When the implementation isincluded in a project, it becomes a component. An implementation
is depicted by theicon shown in Figure 3.2. Implementations are grouped together by function-
ality into categories, or types. Types are depicted by the icon shown in Figure 3.3. An example
of atypeisdi spl ay, which groupstogether available display driversin aplatform.

Thetypes can be traversed and viewed just like afolder hierarchy. Theimplementations
contained in the types and folders of the default catalog (see Figure 3.1) opened by Platform

2
ElﬁI Catalog

¥ coreos

-] Drivers

-8 0aL

-] Platformn Manager
& Runtimes

Figure 3.1 Catalog window in Platform Builder

Exploring Components in Platform Builder

Figure 3.2 Implementation icon

Figure 3.3 Type icon

Builder are presented in Table 3.1. You can extend the default catalog view by adding compo-
nents of your own. We'll say more about that later in the chapter.

Table 3.1 Types and Implementations in the Default Catalog

Folder Configuration Type Implementation Description
cor eos A folder that contains sample
configurations of the operating
system.
| ESAMPLE A sample configuration that

includesamost all available
components and adds the I nter-
net Explorer Web browser con-
trol. Full localizationis
supported, and the Input Method
Manager (IMM) isalso included.

MAXAL L A sample configuration that
includesalmost all available
components, including the shell
and Pocket applications.

M NCOMM A sample configuration that
includes aminimal set of compo-
nents and adds serial communi-
cations and networking.

M NGDI A sample configuration that
includesaminimal set of compo-
nents that can support the Graphi-
cal DeviceInterface (GDI). No
window support is provided, but
you can use GDI callsto createa
minimal user interfaceif required.

M NI NPUT A sample configuration that
includesaminimal set of compo-
nentsthat can support user input
viathe keyboard. A display

(continued)

71

72 Chapter 3 Platform Builder Basics

Table 3.1 Continued.

Folder Configuration Type Implementation

Description

M NKERN

M NSHELL

M NWVGER

Drivers

CEPC

di spl ay
Ddi _ct

Ddi 364

Ddi _s3v

Ddi _vga8

kbdns

Kbdnsengus1

driver isincluded, but GDI is not
supported.

A sample configuration that con-
tains the operating system kernel
and a“Hello World!” application
that outputs text to the debug
seria port. Thisisagood first
configuration to use when you're
booting a platform with Win-
dows CE.

A sample configuration that is
very much like MAXAL L without
the Pocket applications.

A sample configuration that
includes components that can
support the window manager.
Full networking support is
included.

A folder that contains platform-
specific device drivers.

A folder that contains device
driversfor the CEPC platform,
which supports the x86 family of
processors.

Display driverstype.

Display driver for Chips & Tech-
nologies CT6555x chip set.

Display driver for the S3 Trio64
chip set.

Display driver for the S3 ViRGE
chip set.

A simple VGA display driver for
eight-bits-per-pixel displays. A
good first choice when testing a
display adapter on a CEPC or
any other platform that supports
aVGA-compatible display.

Keyboard and mouse drivers
type.

Driver for U.S. English key-
boards.

Table 3.1 Continued.

Exploring Components in Platform Builder

Folder Configuration Type

Implementation

Description

nsci rda

ohci

pc_ddk

pcncti a
serial
ser nouse

wavedev

eboot

obo
QAL
CEPC
obo
Pl atform
Manager
Cengrc

Kbdmsj pni,
Kbdnsj pn2

Ddk_bus

Ddk_map

Driversfor Japanese keyboards.

Infrared driver.

Universal Serial Bus (USB) host
controller interface driver.

Hardware Abstraction Library
(HAL).

Implementation of routinesto
abstract bus I/O (input/output).

Implementation of routinesto
abstract memory /0.

PCMCIA driver.
Serial port driver.
Serial mouse driver.

SoundBlaster AWE64 PNP | SA
driver.

Ethernet debugging library and
hel per routines for creating an
Ethernet boot loader.

Devicedriversfor the Hitachi
D9000 (Odo) platform, which
supports multiple processors.

OEM Abstraction Layer type. This
isaplatform-specific layer of code
that is created by the OEM.

OAL for the CEPC.
OAL for the D900O.

A folder that contains Platform
Manager client components.
These components are used to
provide a communication chan-
nel between Platform Builder
and the operating system being
developed on the platform.

Platform Manager client. This
component manages high-level
communication between the
Platform Builder (cengr . exe)
and the operating system running
on the platform.

(continued)

73

74 Chapter 3 Platform Builder Basics

Table 3.1 Continued.

Folder Configuration

Type

Implementation

Description

Transport

pm_ppp
pm_tcpip

pm cesrv

Runti nes

Adoce

VB

vbeng
vbf or ns

controls

VC

MSCEConDl g
MSCEConm
MSCEConmandBar
MSCEFi | e
MSCEG i d
VSCEI mage
MSCEI mageli st
MSCELi st Vi ew
MSCEPi ct ure
MSCETabStrip
MSCETr eeVi ew
MSCEW nSock

Transport component type. A
transport component is the proto-
col to be used between Platform
Builder and the Platform Man-
ager client.

PPP protocol used as transport.

TCP/IP protocol used astrans-
port.

Windows CE services transport.

A folder that containsruntime
environments for Windows CE
application development.

A configuration that contains
ActiveX data objectsfor Win-
dows CE.

A configuration that contains
componentsfor Visual Basic run-
time support.

Visual Basic runtime engine.
Support for forms.

Visual Basic controls.
Common dialog control.
Support for common controls.
Command bar control.
File1/O control.

Grid control.

Image control.

Image list control.

List view control.

Picture control.

Tab control.

Tree view control.

A control that supports the Win-
dows Socket API.

A folder that contains compo-
nentsfor Visual C++ runtime
support.

Creating a New Platform with the Platform Wizard

Table 3.1 Continued.

Folder Configuration Type Implementation Description
nfc Runtime component for
Microsoft Foundation Classes.
atl Runtime component for Active
Template Library.

Now that we have these componentsin a catalog, what can we do with them? Components
are reusabl e objects and can be added to any project. The best way to illustrate the use of the cat-
alog isto create a sample project. Aswe discussed in Chapter 2, the best placeto start isto run
Windows CE on aPC. For our first Windows CE build, we'll create aspecial build of the CEPC
based on MAXALL called Adam. A specia build of Windows CE isreferred to asaplatform.

Creating a New Platform with the Platform Wizard

To create anew platform, select the File | New menu item in the Platform Builder IDE. This
selection invokes the New Platform window of the Platform Wizard (Figure 3.4).

Figure 3.4 Platform Wizard

75

76 Chapter 3 Platform Builder Basics

Platform Wizard gives you just one choice—aWindows CE (WCE) platform. When you
type in aplatform name, the wizard automatically constructs the location folder for the platform.
Thislocation isunder the subdirectory PUBLI Cinthe Pl at f or mBui | der folder. In theory you
cannot modify thislocation. However, as we plumb the depths of the build processin Chapter
10, you will seethat there is nothing magical about thisfolder location; it can easily be changed,
although there may be no compelling reason to do so. The Processor slist box contains choices
for processor types supported by the Platform Wizard. In Figure 3.4, the only available choiceis
Win32 for Windows CE on an x86 processor. Additional processor types are added to thiswin-
dow if you select the processor choiceswhen you install Platform Builder on your workstation.

Clicking on OK in the New Platfor m window activates the wizard by opening thefirst of
two dialog boxes. Thisfirst dialog box gives you an opportunity to select a board support pack-
agefor the platform being created (Figure 3.5). A board support package (BSP) isaset of
basic, hardware-dependent components that have been created for a particular platform. These
components support a particular processor type and hardware configuration. Platform Builder
includes two preconfigured BSPs. The CEPC BSP is the package for an x86 PC. The Odo BSPis
for the Hitachi D000 platform. We will select CEPC (see Figure 3.5) because this BSP runs on
an x86 PC.

We could have made two other choices. The option My BSP alows you to create your own
BSP. Thisoption is useful when you are working with aboard that is not supported by Windows

WCE Platform - Step 1 of 2 2|

ESelect the Board Support Package
_tou want o use in this plathorm:

000

My BSP
Mo BSF

P
e WWINCEZ] 25platfarm’

BSP Subdiectary:
|IZEF'I'

% < Back stz I Einigki Cancel

Figure 3.5 Selecting a BSP for your project

Creating a New Platform with the Platform Wizard

CE out of the box. After you create your own BSP, the board support list box in this dialog will
list your BSP by name.

Selecting No BSP allows you to create a platform without a board support package. In this
case, you haveto create a BSP and add it to your platform later, which you do using the My BSP
choicejust described. We will cover this aspect in detail later in the chapter.

Note that the wizard automatically fillsin the path of the BSP. BSPs are generally found
under the PLATFCRMsubdirectory of Platform Builder.

The second and final dialog box allowsyou to select the type of platform you are creating
(Figure 3.6). In essence, you are selecting one of the sample configurations that comein Plat-
form Builder and that were listed under the cor eos type described in Table 3.1. You can modify
this choicein finer detail after the platform has been created. However, selecting the best option
here will minimize the effort you spend later in fine-tuning the componentsin your platform.
The default choiceis MAXALL . Clicking on the Finish button brings up one final dialog box,
which informs you of the choices you have made so far. When you have confirmed your choices,
Platform Builder proceeds to build the new platform.

WCE Platom —Step2al2 __ WE
Wihat kind of platfarm weuld you like to cieate?
© Minimal 08 (Minksm]
Includes Care Operating System and File
System components.

o) }Mg:-:imum il [H-‘I axall}

Inchudes all nore rrluball_'.r exclusive Operafing
E_Iasta'rr companents

|‘.'" Emtam

Thgu p.ﬂafh:rm wizard hﬂlraelgn:;t the sample
Dperating System canfiguration that most
closely matches the component set selected.

" Select from available sample configurations:

[MmrERN - 2

]} <« Back. fe Finizh Cancel

Figure 3.6 Selecting a platform for your project

77

78 Chapter 3 Platform Builder Basics

Building and Executing the Platform

OnceAdam is created, Platform Builder shows the componentsincluded in the project in its
Wor kspace window (Figure 3.7). The Wor kspace window has two tabs: Components and
Parameter s. The component view shows that several essential components have been included
in Adam for us by the Project Wizard. Of particular interest isthe component called MAXALL .

Recall that we selected Maxi mumGCS (MAXALL) by default asthe kind of platform we wanted
to create. MAXALL has several subfolders, each of which corresponds to amodule (see Table 3.2).
Recall that amoduleis aset of components that have a common basis of functionality. By
including amodule, you can pull in al or selected components of related functionality into your
project. The modulesincluded in Adam areinherited from MAXALL .

Building Adam will build all the components and modulesthat are part of the platform.
Select Build | Build Platform . . . from the menu to build the platform. The Platform Builder
IDE shows the results of the build in the Output window under the Build tab. You will noticea
series of messages that correspond to important sequences undertaken by the CE build process.
Since we will dissect these sequences in Chapter 10, let’slook at them just briefly for now.

Thefirst message you seeis Building Platform header files. . . . The process of building
platform header filesis also called building the system. This phase is responsible for building
the Windows CE components and modules that have been included in your platform. During this
process, header files specific to your platform are generated. When creating code for your plat-
form, you must include these header files because they will contain only information that isrele-
vant to components that are part of your platform. These header files preclude the possibility that

Ao

{ADAM components |
CEPC

ddi =364
Ebioot
kbdmzengusz]
MaAL LS
ohci

pc_ddk
pomcia

zerial
waveday

[Componen.. | gh Parameter...

Figure 3.7 The new project’s Wor kspace window

Creating Applications for Your Platform

Table 3.2 Modules Inherited from MAXALL

Module Description Examples

CE_MODULES Operating system components fil esys (thefilesystem),
GWES, t cpst k (TCP/IP), and
soon

| E_MODULES Internet Explorer components wi ni net (theWinlnet API)

WCEAPPS_MODULES Windows CE application components msgst or e (the message store),
of fi ce (Pocket Office applica-
tions)

WCESHELL_MODULES Windows CE shell components ct ! pnl (control panel),
expl or er ,webvi ew(an HTML
Web control)

a platform-specific module will compile and link but fail at runtime because of afailureto locate
the component. What follows is a series of messages emitted by Cebuild and its helper utilities.

The next step in the build process is accompanied by the message Building. . . . Thismes-
sage marks the process of compiling and linking source code from the BSP and platform-
specific drivers, libraries, and applications. The verbiage that follows this message comes from
the build process asit attempts to build the libraries, drivers, and applications in the platform.

The message Copying Platform header files.. . . isdisplayed to indicate the phase in which
all the binaries and configuration files generated by the previous stages of the build are copied
into afolder, which acts as arepository for the final phase. Thefinal phasetakesall thefiles
copied into the repository and creates the image of the Windows CE operating system. This
image will conform to the specificationslaid out by your platform. It includes the components
you specified and will support the processor and board you selected viathe wizard. Thisfinal
phaseis preceded by the message Creating kernel image. . . . On completion of a successful
build, you should see the message Adam— 0 error(s), 0 warning(s). We are now ready to create
an application!

Creating Applications for Your Platform

A famous software developer once said, “With every platform must come applications.” OK, we
made that up. However, the fact is obvious: After you're done devel oping the OAL, drivers, and
related libraries for your platform, you will have to turn your attention to delivering applications
on your platform that your customers can use to accomplish tasks. Let’s start by creating an
application called Welcome for our platform Adam.

We create an application using a process similar to the one we use to create anew platform.
Select File | New from the menu, which eventually launches Project Wizard (Figure 3.8). From
that screen, follow the steps we've already outlined for creating anew platform.

79

80 Chapter 3 Platform Builder Basics

Fles | Patoms Proects | Woikipaces | Oihes Docunants |

a |'i'||tE A b ahion Facgmct pame

:‘-.-.-‘:E Comacde Sppbeation |'-\."el:l:r"-l.'|

| %] WCE Dymamic-Link Lieay y

| WCE Statc Librar Logation:

%] WCE Tuarupoit Layssi [WWINCE 21 2\Pubbicddemitel |

&

Figure 3.8 Project Wizard

Windows CE Project Wizard

Since aplatform already existsin your current workspace, Platform Builder automatically adds
aProjectstab to theinitial New dialog box (Figure 3.8). The Projectstab allows you to select
the type of application you would like to create. You can choose to create a Windows CE exe-
cutable, a console executable (no windowing support), aWindows CE dynamic link library
(DLL), astatic library, or atransport layer (whichisaDLL with special entry points). For our
sample Welcome application, we will choose to create a Windows CE executable. Note that
when you type in the name of the application you're creating, the L ocation field is updated to
point to a subdirectory under the platform directory for Adam.

Clicking on OK launches the Windows CE (WCE) Application Wizard. This simple wizard
displaysasingle dialog box (Figure 3.9). It allows you to select atemplate for your application.
The choice An empty project simply allows you to insert a project into your workspace that
doesn’t contain any files. This option is useful when you have an existing application that you
would like to integrate into your platform. In this case you would then insert the files of the
existing application into the empty project created by the wizard.

The second option, A simpleWindows CE application, creates a project with files that
compile into an application that hasawi nmai n entry point. Windows applications are started at
wi nnai n. However, the wizard-created wi nnai n does nothing except return immediately. This
option allows you to insert code into the entry point and start building your application.

Creating Applications for Your Platform 81

'WCE Application - Step 1 of 1

Figure 3.9 Selecting the type of application to create

Finally, the option A typical “HelloWorld!” application creates a complete application
that displays “Hello World!” in adialog box. We' Il choose this option so that we have acom-
plete sample application to run on our platform.

When you click on the Finish button, the wizard shows you asingle dialog box displaying
the type of application it will generate. The application Welcome is then inserted into your proj-
ect workspace.

Applications are awaysinserted in Platform Builder’s project workspace. Platform Builder
now hastwo views: aplatform view, which contains Adam, and a project view, which contains
Welcome. The platform view contains aview of the platform under development. The project view
displays applications being devel oped for the platform. You can toggle between the project view
and the platform view from the Platform Builder toolbar using the buttons shown in Figure 3.10.
These buttons are mutually exclusive. When oneis depressed the other is not, and vice versa; you
can view only either your platform or your project at any given time. This separation is provided to
facilitate the development of both platform software and applications for that platform.

— -

Figure 3.10 Switching between platform and project views

82 Chapter 3 Platform Builder Basics

Building the Application

To build wel core. exe, you must select the menu item Build | Build Welcome.exe. Platform
Builder first attemptsto build the platform. If the platform builds successfully, then Platform
Builder buildswel cone. exe. You can make this selection a so by pressing the F7 key. Before
attempting to build wel cone. exe, the build process checksto seeif all the platform header files
have been generated since the last time the project was modified. Recall that the platform build
process has generated header files on the basis of the selected configuration. These header files
areto be used by any applications or driversthat must run on the platform. This dependency is
built into the project file generated for wel core. exe.

Another dependency added explicitly to the IDE when the project is generated isfor the
platform build. The platform build for Adam will now attempt to build wel cone. exe after the
platform build completes successfully. You can check this new dependency by selecting
Platform | Dependencies... .

Successfully building wel cone. exe, however, does not automatically includeit in the oper-
ating system image that will be uploaded to the target platform. The steps required to do so must
be performed manually. Alternatively, you can set up Platform Builder to perform these for you
automatically. We will take the | atter approach.

Testing the Application during Rapid Development

While still devel oping the application, we will make use of an interesting CESH festure to
shorten our development and debugging cycle. CESH transfers an image from the workstation to
the target and then continues to monitor the kernel on the target using an undocumented API. If
the kernel attemptsto load a module that does not exist in the operating system image, it asks
CESH for acopy of the module. If CESH finds the module in its working directory, it uploads a
copy of the module to the target platform, where the kernel copiesit into RAM. This process
causes the modul e to be executed on the target platform. Once the module is done executing, it is
unloaded from RAM and its copy is discarded.

Thisfeature allows usto create an application and simply copy it into the release directory
without including it in the operating system image. Thus, when we modify the application, we
simply copy anew version to the rel ease directory and execute the application on the target plat-
form. On execution, the kernel asks CESH to load the module because it isunableto locateit in
the image. CESH obliges by sending the kernel afresh copy of the module. Once the application
isterminated, we can repeat the entire cycle with anew copy of the module.

If we chose to include the application in the operating system image, we would haveto cre-
ate anew copy of theimage for every change in the application. The new copy would then have
to be uploaded to the target. The entire image of the operating system takes considerably longer
than just asingle executable to upload to the target.

After asuccessful build, the build process for the project copiesthe output fileinto the
release directory for the platform. The variable _FLATRELEASEDI R, defined by the Windows CE
build process, contains the value of the release directory. The variable is set up for each plat-
form, and for Adam it is set to\ W NCE212\ PUBLI O ADAM RELDI R X86_DEBUG for the debug
build of the platform.

Once we have our custom build step in place, wel corre. exe will be copied, after every suc-
cessful build, into the rel ease directory. From here, it will initially be uploaded on demand by

Running Windows CE on a CEPC

CESH to thetarget platform. Later, we will integrate it directly into the operating system image.
First, though, we need to figure out how to upload the operating system to the target platform
and runit there.

Running Windows CE on a CEPC

Running Windows CE is not as straightforward as creating a new platform and project. Thistask
requires two separate operations. The final build of Windows CE, also referred to asthe image,
must be uploaded to the target platform first. Next, the kernel debugger built into the Platform
Builder IDE must connect with the debug kernel on the target. There are several waysto upload
an image and debug it. For starters, we will focus on uploading viathe parallel port and debug-
ging over the serial port. These methods are supported on all versions of Windows CE, including
those that use the early version of Platform Builder called the Embedded Development Kit
(EDK).

How does one upload the image to that target platform?You’'ll need a bidirectional
enhanced parallel port (EPP) on both sides of the equation: the workstation and the platform. It
isagood ideato make sure that the parallel port isin EPP mode by checking the settingsin the
system BIOS. The parallel port cableitself must be tweaked abit. First you' |l need amale DB25
connector at both ends. Next, the cableitself must be wired as shown in Table 3.3. You can order
such acable from avariety of vendors, but it’s not difficult to make one yourself. Start with a
regular parallel port cable and add an expansion box with the appropriate pins soldered to meet
the requirementsin Table 3.3. If you don’t have an EPP-compatible port on the workstation or
the CEPC target, you can buy aplug-in I SA card that supports an EPP-compatible port. The
EPP-compatible port isjumper configurable on these cards. Be sure to avoid conflicts with your
regular parallel port in the workstation or CEPC.

The serial connection used to debug the kernel isfortunately quite straightforward, simply
requiring aseria cable. Once both connections have been set up, you are ready to upload.

Anupload is carried out via the Windows CE Debug Shell Tool (CESH). CESH is capable
of uploading imagesto the target via several transports, including serial and Ethernet. For the
exercise we are conducting, we have already decided to use CESH’s parallel port capabilities.

To use CESH to upload the image, we must first start acommand prompt. Platform Builder
provides a convenient way to create acommand prompt and change directory to the release
directory for the platform under devel opment with afew simple mouse clicks. From the Build
menu, select Open Build Release Directory. This selection will launch acommand prompt in
the release directory of the platform. The release directory of a platform refersto the repository
for thefinal phase, \ WNCE212\ PUBLI Q' ADAM RELDI R X86_DEBUG. This directory containsthe
final Windows CE image to be uploaded to the target. Theimageis called nk. bi n and must be
sent to the target in its entirety. Thisis accomplished by the following command:

Cesh -p CEPC Nk. bin

Table 3.3 CESH Parallel Port Cable Pin Connections

Pin 12345678 910 11 121314 1516 17 18 19 20 21 22 23 24 25

Pin 102 3 456 78 91 14 1617 11 — 12 13 18 19 20 21 22 23 24 25

83

84 Chapter 3 Platform Builder Basics

The - p option of CESH indicates the profile that CESH must use. In this case, the profileis
called CEPC. Profilesfor CESH are set up in the registry by the Platform Builder installation
procedure. The CEPC profile urges CESH to use the parallel port with some predefined settings
that configure the parallel port protocol. When using this profile, CESH starts passing nk. bi n,
chunk by chunk, to the parallel port. The parallel port base address and interrupt level are
assumed to be the default values for LPT1 (base address 0x378 and IRQ 7). Should this change
on your workstation, you must edit the CEPC profile directly to reflect the changed parallel port
settings. To change these settings, you must change the registry values shownin Listing 3.1.

Listing 3.1 CESH registry settings
HKEY_LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set \ Ser vi ces\ ppsh\ CEPC:

InterruptlLevel = REG DWORD 7
I nt errupt Mode = REG _DWORD 1
I nterrupt Vector = REG DWORD 7

Por t Addr ess REG DWORD 0x378

On aCEPC, at the other end, atool called Loadcepc communicates with CESH to receive
pieces of the operating system image and then loads and boots the operating system. You must
start by creating a bootable floppy, preferably with MS-DOS 6.22, and put | oadcepc. exe onit.
Thisfloppy disk should be used to boot the CEPC. Loadcepc is available in Platform Builder,
and its source code isin the CEPC platform directory. Once the two utilities start to communi-
cate, aprogress bar indicates the portion of the image that has been transferred successfully
between the workstation and the CEPC (Figure 3.11). After the entire image has been uploaded,
Windows CE will boot on the CEPC.

Kernel Debugging

The Platform Builder IDE has abuilt-in kernel debugger. You can launch this debugger by
selecting the Build | Start Debug | Go menu item or by hitting the F5 key. The kernel debugger
displaysits output in the IDE output window under the Debug tab. You can view the output win-
dow by selecting the View | Output menu item. Then select the Debug tab.

Builez Mar I8 1998 17:134:51

oM NCEZ 1 25 M LI C-A RS RELD] F~XHb6 _Ba ki

F BT RGED s L Ao H B Re LD e A B h _De b
i1

Figure 3.11 Uploading an image using CESH

Running Windows CE on a CEPC

Like downloading, debugging can occur over an Ethernet connection. It can also occur over
the serial port. We'll choose the latter becauseit is easy to set up and use. A ssmple serial cable
(not null modem) will do thetrick. You can improve the debugger throughput by increasing the
speed at which the debugger and target platform communicate over the serial port. On the work-
station, select Build | Debugger | Remote Connection to view the Remote Connection dialog
box. In the Connection list box, you must select Kernel Debugger Port and then click on Set-
tings... (see Figure 3.12).

At the other end, the change in the default speed of the serial connection must be passed on
Loadcepc. Thisisaccomplished with the/ B: 115200 option. In addition, if you are using the S3
display driversthat are bundled with the CEPC, you must instruct Loadcepc to initialize the dis-
play adapter in 640_480 mode. Thisisdone viathe/ D: 2 option. Finally, Loadcepc must be told
to expect the image to come down the parallel port, with the/ P option.

Loadcepc /B: 115200 /D:2 /P

You can request Loadcepc to use the serial port to download the binary image, provided that
you set up CESH to do the same on the workstation. In this case, you specify the/ Qoption. The
COM port to be used by L oadcepc isidentified with an additional option,/C {1 | 2}.

After you initiate the kernel debugger, the first messages in the debug window announce the
handshaking between the debugger and the target:

Kernel debugger waiting to connect on coml at 115200 baud
Host and target systemsresynchronizing . . .

When the debugger is started, you may get the erroneous error message shown in Figure
3.13. You can safely ignore this message. The IDE issimply trying to find an updated copy of

Flowe conbiod
|r Wi | Hadwase
P & ool
|1|) |

™ Srawed W ey

Figure 3.12 Setting the kernel debugger port’s speed

85

86 Chapter 3 Platform Builder Basics

B ADAM ponamste)
=g Crarveory Fabas
B COMMON BB
E| COMMOH.DAT
B COMMON.DE
E| COMMON REG
= f Hasthuars Spsciis Fles
B CoMAIG.ER
E| PLATFORMBIE
B FLATFORM.DAT
% FLATFORM [
=] PLATFORM REG
= _ 4 Projecl Spech: Fles
B| PROJECT.BIB
B PROUECT.DAT
=| PROJECT.DE
= PRLJELT.RERG

TP Companeriview | gh Paiameserisew |

Figure 3.13 Error message when the debugger is started

wel core. exe in thewrong release directory, athrowback from the days of the Embedded
Development Kit (EDK).
Let’'sreview what we've done so far:

1. Created anew platform, Adam, based on the MAXALL configuration

2. Created asimple new application for Adam called wel cone. exe that displaysa
“Hello World!” message in adialog box

3. Connected the workstation and CEPC for downloading over the parallel port and
debugging over the serial port

4. Downloaded the operating system image to CEPC and watched it boot on the
CEPC

After the last step is completed, you should see a Handheld PCHike shell pop up, complete
with aWindows CE task bar. Let's take our configuration for a spin. Select the Start button and
then click on Run... . Inthe Run dialog box, typein “welcome.exe” and then click on OK. The
shell will attempt to execute wel cone. exe, arequest that will be translated in the inner layers of
the kernel into arequest from CESH to load wel cone. exe from the rel ease directory on the
workstation:

Ker nel Loader: Using PPFS to |load file wel cone. exe

Running Windows CE on a CEPC

PPFS stands for Portable Parallel File System, which supports |oading on demand. On the
target platform, you should seewel core. exe running and greeting the world in adialog box.
You can close wel cone. exe by right-clicking onitsicon in the task bar and selecting Close.

You can try out our rapid devel opment technique by stopping the debugger, making a
change to the string displayed by Welcome, and then building the project, restarting the debug-
ger and executing wel cone. exe from the Run dialog box on the target.

Debugging Capabilities of CESH

CESH ismorethan just adownloading utility. It is called the Windows CE Debug Shell Tool for a
reason. After the download is over, CESH gives you acommand prompt. You can type in avariety
of commands at the prompt to get useful information from the kernel running on the target plat-
form. Typing “?’ retrievesalist of all the commands supported by CESH (see Table 3.4).

Table 3.4 Commands Supported by CESH

Command Options Function
br eak Stops the kernel at the current line of execution. This command can
be used to halt the kernel and set a new breakpoint.
dd addr [<si ze>] Displaysthe contents of addr . The optional size argument tellsthe
command how many bytesto display.
df fil ename addr Writes contents of addr to thefile specified by f i | enane.
[<size>] The optional size argument tells the command how many bytesto
display.
dis Tellsthe virtual memory manager to mark all discardable memory
asavailable.
gi proc Listsall the processes running on the target. Processes are created
from executables by the operating system.
thrd Listsall the threads running on the target. A process may have mul-
tiple threads.
mod Listsall the modulesloaded on the target. Modules are DL L s that

areloaded by executables. Device driversare DLLsl|oaded by
devi ce. exe (mostly); as such, they appear under the modules’

listing.
al | Lists processes, threads, and modules. Thisisthe default value for
thegi command.
kp pid Killsthe process with process D pi d.
mi ker nel Displays detailed information on memory used by the kernel.
full Displays memory maps used by all processes and modulesin the
system.
run fil ename Runsthe file specified by f i | enane in batch mode.
S process Starts anew process. This command is useful when you don’t have

auser interface on the target platform that can be used to start a
process. Thes command can also be used for rapid development
because it supportsload on demand via PPFS.

zo Displays and modifies debug zones for aprocess or module. This
command is discussed in more detail in Chapter 9.

87

Chapter 3 Platform Builder Basics

After booting Adam successfully on a CEPC, you can runthegi command from the CESH
command prompt and observe output similar to that shown in Listing 3.2. When executing
wel core. exe, you will noticeit listed asaprocess. Thegi command prints out information that
isused not just for debugging, but also for indexing other commands. For example, the process
or module index, anumber prefixed by either P or M, is passed to the zo command to identify
the entity whose debug zone is being displayed or modified. Debug messages emitted by the ker-
nel are prefixed with the address of the line that originated the message. You can map these
addresses by looking at the pMbdul e field of amodulein the output of gi .

Listing 3.2 shows the processes running on the target platform. The file nk. exe isthe Win-
dows CE kernel process, fi | esys. exe manages the CE file system, the debug shell that com-
municateswith CESH isshel | . exe, devi ce. exe loads and manages all the device driverson
thetarget platform, gwes. exe isresponsiblefor creating and managing windows and messages,
and finally, expl or er . exe isthe Handheld PCHike shell included in our image.

Listing 3.2 Running the gi command in CESH

W ndows CE>g

PROC: Nane hProcess: Cur AKY : dwWMBase: Cur Zone

THRD: State : hCurThrd: hCur Proc: Cur AKY : Cp: Bp: CPU Ti ne
PO0: NK. EXE 00f f ef e2 00000001 02000000 00000100

T Bl ockd 00f f def e 00ffefe2 00000001 3 3 00:00: 00. 000
T Bl ockd 00f fe012 00ffefe2 00000001 7 7 00:00: 00.082
T Bl ockd 00ffe3le O0ffefe2 ffffffff 2 2 00:00:00.005
T Bl ockd 00ffefla 00ffefe2 00000001 1 1 00:00: 00.063

PO1: filesys. exe 00f f daf 6 00000002 04000000 00000000
T Bl ockd 00ffdb16 00ffdaf6 00000003 3 3 00:00:01.491
P02: shell . exe 00f f bd42 00000004 06000000 00000001
T Runi ng cOf fc942 00ffbd42 ffffffff 1 1 00:00: 02. 965
P03: devi ce. exe 00f f b70a 00000008 08000000 00000000
T Sl /Bl k 00eb5366 00ffb70a 00000009 2 2 00:00: 00. 081
T Bl ockd 00ff517e 00ffb70a 00000009 3 3 00:00: 00. 001
T Bl ockd 00ff551a 00ffb70a 00000009 3 3 00:00: 00. 004
T Sl /Bl k 00ff7d56 00ffb70a 00000009 2 2 00:00:00.001
T Sl /Bl k 20ff98ce 00ffb70a 00000009 2 2 00:00: 00.132
T Bl ockd 20ff98ee 00ffb70a 00000009 2 2 00: 00: 00. 000
T Bl ockd 00f fb72a 00ffb70a 00000009 3 3 00:00: 03. 026
P04: gwes. exe 00f d626e 00000010 0a000000 00000040
T Bl ockd 00f 60e02 00fd626e 00000011 3 3 00: 00: 00. 029
T Bl ockd 00f 6200a 00f d626e 00000011 3 3 00: 00: 00. 014
T Bl ockd 00f 6230e 00f d626e 00000011 1 1 00: 00: 00. 000
T Bl ockd 00f 625f2 00f d626e 00000011 1 1 00: 00: 00. 004
T Bl ockd 00f 62a56 00fd626e 00000011 1 1 00:00: 00. 193
T Bl ockd 00f 62b6a 00f d626e 00000011 1 1 00: 00: 00. 046
T Sl /Bl k a0f 74386 00f d626e 00000011 1 1 00: 00: 00. 291
T Sl /Bl k 00f d628e 00f d626e 00000011 3 3 00: 00: 01. 029
PO5: expl orer. exe 00f 60c5a 00000020 0c000000 00000000
T Bl ockd 40ea6c02 00f d626e 00000031 3 3 00:00:01. 769
T Bl ockd 00eb572a 00f d626e 00000031 3 3 00: 00: 04. 446
T Bl ockd 00f 60c7a 00f 60c5a 00000021 3 3 00: 00: 00. 430
MOD: Name pModul e : dwi nUSE : dwwMBase: Cur Zone

MDO: uni nodem dl | 80eb5584 00000008 01160000 0000c000

Integrating New Components into the Image

M)1: TAPI.DLL 80eb5ecO0 00000008 01180000 0000c000
MD2: SHLWAPI . dl | 80f 4e640 00000020 01060000 00000000
MD3: | ECEEXT. dl | 80f 4810 00000020 01090000 00000000
MD4: W NI NET. dl | 80f 4ed40 00000020 00f 70000 0000c000
MD5: i ngdecnp. DLL 80f 4ef 44 00000020 00ed0000 00000000
MD6: webvi ew. dl | 80f 493ec 00000020 00e20000 00000000
MD7: commettrl . dll 80f 49¢28 00000020 01520000 00000000
MD8: CEShel | . DLL 80f 49ef 8 00000020 00ef 0000 00000000
MD9: OLEAUT32. dl | 80f 60358 00000020 01390000 00000000
MLO: ASForm dl | 80f 627¢c8 00000020 00f 50000 00000000
ML1: kbdnouse. dl | 80f 62d78 00000010 00d20000 00000000
ML2: DDI.DLL 80f d6b80 00000010 00d30000 00000003
ML3: Redir.dl|l 80f f 50c0 00000008 01110000 0000c001
ML4: irdastk.dll 80f f 6b78 00000008 011a0000 00008000
ML5: net bi os. dl | 80f f 76ec 00000008 010f 0000 0000c000
ML6: dhcp. dl | 80f f 7840 00000008 01220000 000Offff
ML7: arp.dll 80f f 7a20 00000008 01290000 00000001
ML8: tcpstk.dll 80f f 8250 00000008 011d0000 00000001
ML9: ppp. dl | 80f f 8800 00000008 01340000 00000000
M20: CXPORT. dl | 80f f 89a0 00000008 01330000 0000c000
M21: AFD. D | 80f f 8¢88 00000008 012a0000 00000000
M22: ol e32.dl | 80f f 8f 88 00000028 013d0000 00000000
M23: softkb. DLL 80f f 9320 00000008 01500000 00000000
M24: W NSOCK. dl | 80f f 95a0 00000028 01310000 0000c000
M25: | RCOW DLL 80f f 971c 00000008 01320000 0000c003
M26: irsir.dll 80f f 9e74 00000008 00ce0000 0000c000
M27: NDI S. Dl | 80f f abbc 00000008 01270000 00000000
Me8: nsfilter.dll 80f f a810 00000008 00cb0000 00000000
M29: CEDDK. dl | 80f f aef 0 00000018 00da0000 00000000
MBO: Serial.D I 80f f b020 00000008 00cf 0000 00000000
MB1: tool hel p.dll 80f f bf 68 00000004 015a0000 00000000
MB2: coredl|.dll 80f f e690 0000003f 015e0000 00000000
W ndows CE>

Integrating New Components into the Image

We can use the rapid development scenario described in earlier sections until wefinish al basic
development of wel cone. exe. We made changes to the Wel come application so that it displays a
message greeting on startup. We also added a caption and a system menu so that the window can
be conveniently closed. The text now appropriately welcomes usersto the first Windows CE
platform in this book. Welcome will be started every time Adam boots so that the welcome mes-
sageisthefirst message users see. Let’s see how to add this somewhat concocted example to the
image and automatically start Welcome on startup.

To add wel core. exe to the operating system image, we will need to modify afilein the
parameter view of the platform workspace. Figure 3.14 shows the parameters view window for
Adam. Thefiles displayed in this window are used to specify how the operating system image
will be built.

We'll delveinto the specifics of each file el sawhere throughout the book, so abrief overview
will suffice for now. The parameter view is organized into a set of filesin three different cate-

89

90 Chapter 3 Platform Builder Basics

B ADAM pan smahaers |
=i LCiomiror s
E| CoMMOM.BIR
B COMMON.DAT
E| COMMON.DE
E] COMMON RES
= Hasthusre Specii Fli
E| conFG.ER
Bl PLATFORMABIE
B PLATFORM.DAT
E] FLATFORM DB
E] FLATFORM REG
= —_1 Projecl Specih:: Files
Bl PROJECT.BIB
B PROUECT.DAT
#| PROUJECT.DE
=| PFHUJELT.REG

J s g

Figure 3.14 Parameter view

gories. The option Common Filesrefersto files that are provided by Microsoft to specify how

the operating system must be built with Microsoft-supplied components. You should not modify

these files. Any modifications you make will affect all platforms and projects you create.
Different types of files contain different types of information:

» BIB files contain information about which files, executables, and libraries
should be included in the operating system image.

» DAT files contain adirectory map for the file system on Windows CE.

* DB files contain information on how the Windows CE database should be ini-
tialized.

* REG files contain amap of the system registry on startup.

The option Har dwar e Specific Filesrefersto files that specify configuration and initializa-
tion when you're building the platform.

Files specified by the option Project Specific Files contain additional information in each
of these categories that is specific to the project being created. The word project in this case does
not refer to Welcome, although that’s what we've been telling you all along. Here the term proj-
ect isaconfusing throwback to the old days of the EDK. Under the terminology used then (and
still reflected in the Platform Builder directory and file structure), CEPC is our platform and

Integrating New Components into the Image

Adam isour project. This clarifiesthe role of these categories. Platform-specific filestypically
contain information regarding platform-specific drivers and modules. Project-specific files con-
tain information about platform-independent modules. All the files are used by the set of Win-
dows CE build tools when theimage is being created.

If you have been following along closely, you might have already identified the BIB file as
the one we must modify to integrate wel cone. exe inthefinal operating system image. Thefirst
question, of course, is, To which BIB file should we add wel core. exe? The answer issimple
enough: Since vel cone. exe is platform-independent, it should be added to the BIB file pr oj -
ect . bi b inthe Project Specific Files category.

Listing 3.3 showsthe line that needsto be added to the BIB file to integrate the
executablein theimage. Thisline instructs the appropriate build tool to add thefile
$(_FLATRELEASED R\ vel cone. exe to theimage, whereit will be called wel cone. exe. The
file must be loaded into the NK section of memory in ROM and must be uncompressed (type U).
Sections of memory are set upin thefileconf i g. bi b. We'll say more about thislater in the book.
L eaving the executable uncompressed gives the operating system the option of running the pro-
gram in place in ROM. This avoids the work that the loader would normally do of uncompressing
afilefrom ROM into RAM before executing it. In addition to the time gained because thefile
does not need to be uncompressed, precious RAM is made available for other programs.

Listing 3.3 Adding wel cone. exe to proj ect. bi b

MODULES
Nane Pat h Menory Type
wel cone. exe $(_FLATRELEASEDI R) \ W&l cone. exe NK U

Now that Welcomeis part of the operating system image, it will be transferred to the target
platform by CESH. PPFS will no longer be required to load it on demand because the loader will
find thefileinthe local file system on the target platform.

We still need to make Welcome execute automatically on startup. The kernel looksfor a
special registry entry after starting the file system to look for modules to load during startup.
Since the REG file allows us to specify the contents of the system registry when the target plat-
formisinitialized, we can zero in on the platform-independent registry file proj ect . reg. To
automatically execute Welcome on startup, we must add the following lines to the registry ini-
tialization filepr oj ect . reg:

[HKEY_LOCAL_MACHI NE]J \ | ni t
“Launch80” =" W\l cone. exe”
“ Depends80” =hex: 1E, 00

The Launch80 registry entry tellsthe kernel to launch the program wel corre. exe. The func-
tion performed by the Depends80 line is not immediately obvious. Thisregistry entry lists ahex
number (001E) asits value. To discover the significance of this number, we must take a peek at
the common registry file, common. reg. Thisfile hasitsowni ni t section that isused to specify
programsto launch on startup. An excerpt of thisfileisshownin Listing 3.4.

91

92 Chapter 3 Platform Builder Basics

Listing 3.4 Theinit registry key in common. reg

[HKEY_LOCAL_MACHI NE\i ni t]

; @CESYSGEN | F CE_MODULES_SHELL
"Launchl10"="shel | . exe"

; @CESYSGEN ENDI F

; @CESYSGEN | F CE_MODULES DEVI CE
' Launch20" ="devi ce. exe"

; @CESYSGEN ENDI F

; @CESYSGEN | F CE_MODULES GWES

I F NOGUI !
"Launch30"="gwes. exe"
" Depend30" =hex: 14, 00

ENDI F

; @CESYSGEN ENDI F

The hex number 001E correspondsto 30. The Launch30 registry itemin thelisting isthe
module gwes. exe. Theentries related to gwes. exe instruct the kernel to launch gwes. exe on
startup. The Depends80 line simply tellsthe kernel to wait until gwes. exe has been launched
before launching wel cone. exe, because wel cone. exe uses the windows and message support
made available by gwes. exe. Finally, the number 80 was chosen at random from among num-
bers higher than 30. This number indicates the sequence in which the registry entries must be
processed. We need a number higher than that corresponding to the last entry in the conmon. reg
file.

However, this dependency only synchronizes the launch sequence of different modules. It
does not guarantee that gwes. exe will havefully initialized its services before wel cone. exe is
executed. To make sure that the window manager is available, Welcome must call | sAPI Ready
with itslone argument set to the constant SH WWER.

#i ncl ude “w ndev. h”

While (!1sAPI Ready (SH WWGR))
Sl eep (1000);

Thel sAPI Ready call will return avalue of TRUE if the API specified by the constant is available.
If avalue of FALSE isreturned, the APl isnot yet ready for use and Welcome must wait in aloop
for the API toinitialize before it executes the remainder of its code.

Note the inclusion of the header filewi ndev. h. Thisfile contains the function prototype for
| sAPI Ready . Welcome loops and checks the value returned by this call to seeif the window
manager APl isavailable. If the APl is not available, Welcome sleeps for one second before
checking again.

Now that we are ready with all the changes, we can test out the build by selecting the Plat-
form | Build | Build Platform menu item after switching to the platform view. To confirm that
wel cone. exe has been included in theimage, sift through the final output of the build process
that lists all the filesincluded in the image. The entry for wel cone. exe, if included in theimage,
should look like Listing 3.5.

Customizing the Build Using Environmental Variables

Note:

To make sure that the compiler can find the file wi ndev. h, you must add the
include path in the CESYSGEN directory of Adam to the list of additional include
directories in which the compiler may find included header files. CESYSGEN is
the directory in which header files generated for the specific platform are
placed. To add this directory to the include path for the compiler, you must
click on the Project | Settings... menu item and then click on the C/C++ tab.
Next, select Preprocessor in the Category: combobox. In the Additional
include directories: edit box, type in “$(_WINCEROOT)\PUBLIC\ADAM\
CESYSGEN\OAK\INC”. This directory path will be passed to the compiler with
the /1 flag, which instructs the compiler to search the specified directory for
the include path after looking in the standard include paths.

Listing 3.5 Output from the build process

MODULES Secti on
Modul e Section Start Length psize vsi ze Filler

wel cone. exe .text 80a6f 000h 8192 5632 5508 032_rva=1000h
wel cone. exe .rdata 80a71000h 4096 512 289 032_rva=3000h
wel cone. exe .idata 80a72000h 4096 1024 565 032_rva=5000h
wel cone. exe .rsrc 80a73000h 4096 2560 2254 032_rva=6000h

wel cone. exe .data 8024f f dbh 0 0 2584 FI LLER

wel cone. exe E32 8052b55ch 100 FI LLER
wel cone. exe (32 8052b5c0h 120 FI LLER

The next time you download the new image and boot the CEPC, Welcome should pop up as
it did before on startup, welcoming the user to our new platform, Adam.

Customizing the Build Using Environment Variables

Once a Platform has been defined, you can useit to produce builds of the operating system that
vary dlightly in flavor without having to change the underlying definition of the platform. For
example, you could choose to build Adam with adifferent display driver (either an S3ViRGE or
a Chips & Technologies CT65555) or choose to omit support for audio atogether. Such
modifications to a platform are made dynamically through environment variables.

You can set environment variablesin Platform Builder by selecting the Platform | Settings...
menu item and then clicking on the Environment tab. Mosgt, although not al, of the environment
variables carry the prefix IMG. This prefix is short for image, which refersto the binary image of
the operating system. IMG variables modify the way in which theimageisbuilt. The variables
availablein the Environment tab arelisted in Table 3.5. To take effect, these variables must be
defined. You can set up the definition by simply setting the variableto 1. Most variableswork ina
negative fashion. When set, they have the effect of not including a component or module. These
variables have theword NO in their names and can be particularly confusing to use.

93

94

Chapter 3 Platform Builder Basics

Table 3.5 Environment Variables Used by Platform Builder

Environment

Variable Usage Description
FBBPP Sets the number of bitsper pixel on ~ When FBBPP is set, the display driversin the
the display supported by the CEPC platform display drivers (S3 ViRGE,
platform. Thisvalueisusualy setto S3Trio64, CT65555x, and so on) compile
FB16BPP to indicate adisplay themselvesfor apixel depth of 16;
of 16 bits per pixel. otherwise the default depth of 8 bits per pixel
isused.
| ME Selects the type of Input Method Thevalue of | ME is checked for the
Manager (IME) bundled with the configuration file conmon. bi b, and
platform. If the value of thisvariable depending on its value, corresponding
isPI MVE, the Pocket IME version modules are added to theimage.
is added to the image. Pocket IME
does not contain auser interface.
If thevalue of thisvariableis
TESTTI ME, support that allowsyou
to create your own IME is added to
theimage. The default value
is1 ME98, which adds an IME with
auser interface that mimicsthe
full-blown Win32 API IME.
| MGACMSANMPLES Adds the sample codec driver The value of | MGACMSAMPLES is checked
(cegsm dl |') and the sample in the project-specific configuration file
filter driver (msfilter.dl 1) proj ect . bi b. If the valueisdefined, the
to theimage. corresponding sample drivers are added to
theimage. However, the only project in Plat-
form Builder 2.12 that supports this behavior
istheM NSHELL project. Changing thisvalue
in our sample platform Adam will have no
effect becauseit is derived from MAXALL.
| MGBI GFLASH Configurestheimageto utilizea | MGBI GFLASHisusedinconfi g. bi b asa
larger area of flash memory conditional to lay out theimage to use the
(an additional 8MB of flashis additional 8MB. This conditional is used
assumed). only for the Odo platform. Hence, it doesn’t
affect Adam because Adam is derived from
the CEPC platform.
| MGCOWVR ConfiguresCOM2 ontheplatform | MeCOWR isusedinpl at f orm r eg,
at Ox3E8. which initializes the system registry with
platform-specific information.
| MGCOVB ConfiguresCOM3 ontheplatform | MeCOMB isusedinpl at f orm reg,
at Ox 2E8. which initializes the system registry with
platform-specific information.
| MGCOMVDEMOS Adds two sample communication | MGCOMVDEMOS is used in comon. bi b,

programs—pi ng. exe and
i pconfi g. exe—totheimage.

which specifiesthe CE system filesincluded
in the operating system image.

Table 3.5 Continued.

Customizing the Build Using Environmental Variables

Environment

Variable Usage Description

| MGCTLPNL_G Unknown

| MGDUB Leaves additional spacein the | MaDUB isused inconfi g. bi b to make
image layout to include the CE space for the DUB filein theimage layout. It
dial-up boot loader (DUB). The isused only intheconfi g. bi b filefor the
DUB isacomponent that canbe Odo platform; hence, it doesn’t affect Adam
used to upgrade the operating because Adam is derived from CEPC.
system image.

| MGEBOOT Adds support for Ethernet | MGEBOOT isusedinconf i g. bi b to make
debugging by bundling the space for Ethernet debugger modules. Itis
Ethernet boot |oader in the used only intheconfi g. bi b filefor the
image. Odo platform.

| MGFLASH Laysout theimagein flash | MGFLASHisusedinconf i g. bi b to make

I M3 CONPCSI TI ONS

I MGMOREAPPS

| MGVORERAM

I MGMOREROM

I MGMOREROML 6

I MGNOBROWSER

memory as opposed to RAM.

Allows explicit positioning of
icons on the desktop as opposed
to automatic positioning set by
the shell.

Allows additional applicationsto
be added to the image.

Lays out theimage to simulate
less areafor ROM and release
it for useasRAM area.

Lays out theimage to simulate
lessareafor R<K>AM <K>and
releaseit for use as ROM area.

Used just like | MGVOREROV,
but when total memory inthe
system is assumed to be 16MB.

Excludes Internet browser
componentsin the operating
system. Since Windows CE Help
uses browser components, also
disables Help. We are now in NO
territory, so note that not defining
this variable causes components

space for Ethernet debugger modules. Itis
used only intheconfi g. bi b filefor the
Odo platform.

Not used.

Not used.

| MGMORERAMIis used inconfi g. bi b to
alocate more space to the RAM section. Use
this setting if your imageisrelatively small
(lessthan 6MB). The total memory assumed
inthe systemis 32MB.

| MGMOREROMIisused inconfi g. bi b to
alocate more space to the ROM section. Set
thisvariableif your imageislarge (more than
6MB but lessthan 20MB). The total memory
assumed in the system is 32MB.

| MGNOBROWSER isused (1) in

weceshel | . bi b to add the Pocket Internet
Explorer filesi expl or e. exe,

webvi ew. dI | ,andi ngdecnp. dl | ;

(2) inwceshel | . r eg to specify browser
proxy, start and search pages, and file
associations; and (3) inwceapps. bi b to

(continued)

95

96

Chapter 3 Platform Builder Basics

Table 3.5 Continued.

Environment

Variable Usage Description
to be added. The same goes for ensure that browser components are bundled
the NO variables that follow. before Help is added.

I MGNOCEDDK Excludesthe CEDDK libraryin 1 MGNOCEDDK isused (1) in conmon. bi b
theimage. The CEDDK library toincludeceddk. dl | intheimage, and
provides a processor-independent (2) inpl at f or m bi b for the CEPC
interface to the kernel, memory, platformto include thefile pc_ddk. dI |
and /O to device drivers. and renameit asceddk. dl | . Thelatter

directive overrides the former when the
imageisbeing built.

| MGNOCOWM Excludes all communications I MGNOCOMMIis used in conmon. bi b to
componentsin the image. include communication-specific components

intheimage.

| MGNOCONN Excludes the components I MGNOCONNisused (1) in common. bi b to

repl | og. exe and include the components, and (2) in
r api srv. exe, which conmon. reg, whereitisusedtoset upa
communicate with Windows registry entry that specifiesthe version of the
CE Services, which provide modules. You must successfully negotiate
connectivity to aserver (referred this version number when you're
to as a desktop). An example of communicating with a desktop.
such an application isActiveSync.
I MGNOCONSOLE Excludes the console support I MGNOCONSOLE isused in common. bi b
component consol e. dl | and to include the components.
the console command language
processor cid. exe intheimage.
| MGNOCTLPNL Excludesthe control panel and all I MGNOCTLPNL isusedinwceshel | . bi b
applicable control panel applets to include the components. Itisused in
intheimage. wceshel | . r eg to set up registry entries that
describe the control panel color scheme and
specify default settings for the various con-
trol panel applets.
| MGNODEBUGGER Builds an image with akernel | MGNODEBUGGER is used in conmron. bi b
debugger. Kernel debugging to include either the kernel with debugging
enablesthe kernel on the target (nk. exe) or the kernel without debugging
to communicate with the (nknodbg. exe) intheimage.
kernel-debugging tool in
Platform Builder. Extensive traces
are aso displayed by the kernel
debugger.

| MGNODRI VERS Excludes certain common drivers I MGNODRI VERS isused in common. bi b

from theimage.

to include the parallel port and printer
drivers(prnport.di|l,prnerr.dll,
pcl . dl 1), PCcard ATA and IDE driver
(at adi sk. dI 1), PC card static RAM

Customizing the Build Using Environmental Variables

Table 3.5 Continued.

Environment
Variable

Usage

Description

| MGNCETHER

I MGNCFI LES

| MGNOFLTDDK
| MGNOHELP

I MGNOI DE
I MGNO E

Includes Ethernet support in the
image.

Excludes certain files depending
on context.

See | MGNOCEDDK.

ExcludesWindows CE Help in the
operating system.

Not used.

Excludes Pocket Internet Explorer
and support components.

(SRAM) driver (sr andi sk. dI |), PCcard
linear flash driver (t ruef fs. dl |), dual
serial driver (dual i o. dI I') and waveform
audio driver (waveapi . dI).

| MGNCETHER is used in conmon. bi b to
include Address Resolution Protocol driver
(arp. dl1),NDISdriver (ndis. dl),
NE2000-compatible card driver

(ne2000. di I), Proxim RangeLAN PC card
driver (proxi m dl I), Xircom PC card driver
(xi rcce2. dl 1), and Dynamic Host
Configuration Protocol driver (dhcp. dl |).

I MGNOFI LESisused (1) inwceshel | . bi b
to include desktop shortcuts (LNK files)

and help files for shell components that

have been included in theimage, (2) in

proj ect . bi b for the project MAXALL to
include WAV filesfor system sounds, and (3)
inwceapps. bi b to include the shortcuts and
help filesfor applications that have been
included in theimage.

| MGNOHELP isused (1) inwceshel | . bi b

to include help components (part of the
shell), (2) inwceshel | . reg toincludereg-
istry entriesthat set up help file associations
with the appropriate modules, (3) in
wceapps. bi b to include help for compo-
nentsincluded in theimage, and (4) in
wceapps. r eg toinclude registry entriesina
manner similar towceshel | . reg.

I MGNOI Eisusedini e. bi b to exclude
localization support for Internet Explorer

(m ang. dl1),ieceext.dll,shlwapi.dll,
Winlnet APl (wi ni net . dl 1), URL and
Moniker support (ur | mon. dI |), HTML
support (nsht m . dI |), HTML frames sup-
port (shdocvw. dl I), limited XML support
(mexm . dl 1), and mvef x. dl | .

(continued)

97

98

Chapter 3 Platform Builder Basics

Table 3.5 Continued.

Environment

Variable Usage Description
| MGNQJAVA Excludes Java support from the I MGNQJAVA isused in common. bi b to
operating system. exclude the Javamodulescej vm dl |,
jview dll,ce_awt.dll,ce_local.dll,
ce_math.dll,ce_irda.dll,ce_zip.dlI,
ce_net.dll,jcls.dll,and
verifier.dll.
| MGNQISCRI PT Excludes JavaScript support from I MGNQISCRI PT isused (1) in
the operating system. common. bi b to excludej script.dlI,and
(2) inconmon. r eg to set up OLE IDsfor the
JScript component in the system registry.
| MGNOLOC Not used. Localization support is
not optional .
| MGNOVAI L Excludes Pocket Mail, Internet | MGNOMAI L isused (1) inwceapps. bi b
Message Access Protocol (IMAP), toexcludepnwi | . exe, i map4. dl |,
and Simple Mail Transport Protocol sntp. dl |, nsgstore.dl |,
(SMTP) support. tnefutil.dll,milutil.dll,
| abledit.dll,uicomdll,and
pi nprint.dll;and(2) inwceapps.reg
to set up registry entriesfor Pocket Mail.
| MGNOVLANG Excludeslocalization support from | MGNOMLANGisusedini e. bi b to
Pocket Internet Explorer. excludem ang. di | .
| MGNOVBHTML ExcludesHTML support from the | MGNOVBHTML isusedini e. bi b to
operating system. excludemsht ml . dl | .
| MGNONETUI Excludesthe network user interface | MGNONETUI isused in common. bi b to
from the operating system. The excludenet ui . dl | .
network user interface allows
manipulation of the configuration
properties of the network viathe
Communication control panel
applet.
| MGNOOLE32 Disables OLE support in the | MGNOOLE32 isused in cormon. bi b to
operating system. exclude the OLE support components
ol e32.dl | andol eaut 32.dl 1.
| MGNOPCMCI A Disables PC card support in the | MGNOPCMCI Aisused in conmon. r eg to

operating system. Thisentry doesn’'t
exclude PC card support in the
operating system. It includes it but
disablesit at runtime. To exclude PC
card support, you must exclude the
filepcnti a. dI | from theimage
(See CDO_NOPCMCI A).

exclude registry entriesfor all supported PC
cards.

Customizing the Build Using Environmental Variables

Table 3.5 Continued.

Environment

Variable Usage Description
| MGNOPWORD Excludes Pocket Word from the | MGNOPWORD is used (1) inwceapps. bi b
operating system. toexcludeoffice.dl | ,pwd_res.dl I,
pwwi ff.dll,andpword. exe;and (2)in
wceapps. r eg to set up registry entriesthat
define OLE IDs and file associations for
Pocket Word.
| MGNOREDI R Excludes network redirector support | MGNOREDI Risused in conmon. bi b to
from the operating system. exclude the redirector components
redir.dl | andnetbios.dllI.
| MGNOSECURI TY Excludes security componentsfrom | MGNOSECURI TY isused in conmon. bi b
the operating system. to exclude the digital signature and data
certificates (r sabase. dI |) and the corre-
sponding 128-bit version (r saenh. dl |).
| MGNOSERVERS Excludes all serversfromthe | MGNOSERVERS isused innmsmy. bi b
operating system. If you planto ship to exclude Microsoft Message Queue
two different versions of your OS componentsnmenygd. dl |, netregd. dl |,
build (alaNT workstation and ngoa. dl | , mengadm exe, and
server), you can usethisvariableto nsngrt. dl | .
switch between the versions.
| MGNOSHDOCVW ExcludesHTML frames support I MGNOSHDOCVWis used ini e. bi b to
from Pocket Internet Explorer. excludeshdocvw. dlI | .
| MGNOSHEL L ExcludestheWindows CE shell and | MGNOSHELL isused (1) inwceshel | . bi b
related components, shortcuts, and to exclude the task manager (t askman. exe),
help files from the operating system. asf or m dl I , the CE shell support
Excluding shell components component (ceshel | . dI 1), and
automatically excludesthebrowser the explorer shell (expl or er. exe); (2) in
and CE Help. wceshel | . reg to create registry entries
that automatically launch the task manager
and explorer shell on startup; (3) in
wceapps. bi b to exclude browser and help
filesif set; and (4) inwceapps. reg inthe
sameway asinwceshel | . reg.
| MGNOTXTSHEL L Excludesthe CE shell from the | MGNOTXTSHELL isused in conmon. bi b
operating system. The CE shell to exclude the CE shell components
communicates with adesignated cesh.dll andt ool hel p.dl I .
desktop for debugging and
synchronization services.
| MGNOURL MON Excludes URL and Moniker support | MGNOURLMONisusedini e. bi b to
from the browser. excludeur | mon. dl | .
| MGNOW NI NET ExcludesWinlnet API support from | MGNOA' NI NET isusedini e. bi b to

the operating system.

excludewi ni net . dl | .

(continued)

29

100

Chapter 3 Platform Builder Basics

Table 3.5 Continued.

Environment

Variable Usage Description
| MGNSCFI R Includes the National Security | MGNSCFI Risusedinpl at f orm bi b
Council Fast Infrared driver. for the CEPC platform to include
nscirda. dl | (if not set, theregular IrDA
driverirsir.dl | isincluded), and (2) in
pl at f or m r eg to set up registry entriesfor
the appropriate IrDA driver included in the
operating system.
| MGPROFI LER Builds a profile-enabled kernel in I MGPROFI LERisused (1) in common. bi b
the operating system. to include the profile-enabled kernel
nkpr of . exe intheimage, and (2) in
confi g. bi b for the CEPC and Odo plat-
form to instruct the OS build tool that
profiling has been enabled in the kernel
(PROFI LE=ON).
| MGSTRI CTLOC Not used.
I MGTI NY Builds aspecial bare-bonesversion | MGTI NY isused in conmon. bi b,
of the operating system. wceshel | . bi b, wceapps. bi b,
wceapps. bi b, andthepl at f orm bi b
filesfor the CEPC and Odo platforms.
| MGTI NYFSRAM Uses a (relatively) tiny percent of I MGTI NYFSRAMisused inconfi g. bi b to
RAM for thefile system. By default, set another variable, FSRAMPERCENT, to
CE usesthe RAM for file system the hex value of 80. This number instructs
storage. CE to use only 50 percent of the first IMB of
RAM for thefile system.
| MGUSB Adds USB support to the operating | MGUSBisused inpl at f or m bi b for the
system. CEPC platform to include the USB support
components Open Host Controller Interface
driver (ohci . dI |), USB driver (usbd. dl |),
and USB mouse driver (usbnouse. di |).
| MGUSEPROXY Enables the use of aproxy server | MGUSEPROXY isused inwceshel | . reg
for HTTP. to add lines to the system registry that instruct
the browser to use a proxy server caled itg-
proxy for HTTP access on port 80. Edit these
settings to configure your own proxy server
by nameif you turn on this variable.
I NI TNOCOWM Disablesthe NDIS and auxiliary I NI TNOCOWIis used in common. r eg to

function driver (AFD) protocol
manager at runtime.

disabletheregistry settings for the NDIS and
AFD components. Note that this setting does
not removendi s. dl | andafd. dl | from
theimage. It allows the componentsto be
part of the image but simply disables them at
runtime.

Customizing the Build Using Environmental Variables

Table 3.5 Continued.

Environment

Variable Usage Description
SCHEDLOG Includes the scheduler log functions Scheduler log functions areimplemented in
in the operating system. schedl og. dI | and are used as hel per func-

tions when thread and process|logging are
being implemented in the kernel. SCHEDLOG
isused inthe Sour ces filefor the kernel
modulesin CEPC and Odo platformsto link
the kernel with schedl og. i b. Inthe

Sour ces filefor the Hardware Abstraction
Layer (HAL), thisvariableis used to pass- D
SCHEDLOGto the compiler. Thisflagisused
to conditionally add aHAL IOCTL (/O con-
trol) code that enables scheduler logging.

TESTSI P Includes the Software Input Panel TESTSI Pisused (1) inconmon. bi b to
(SIP) control panel appletinthe include the SIP control panel applet
operating system. Theappletisused (nsi m dl 1), and (2) incommon. r eg to
to configure the SIP, akeyboard specify default valuesfor SIP configuration

implemented in software for devices (manipulated by msi m dl |).
that do not have akeyboard (e.g., the

Palm-size PC).
W NCEPROFI LE Builds aversion of the kernel that W NCEPROFI LE isused inthe HAL
supports profiling. Sour ces filefor the CEPC platform to pass

the - D PROFI LE flag to the compiler. This
flagisnot really used by the HAL, sincea
kernel with profile information is always
built (nkpr of . exe). However, you can use
conditional compiling around the constant
PROFI LE to add any profile-specific code to
theHAL.

Environment variables al so find use in customization of the base platform chosen to build
anew platform. For example, we chose MAXALL to build Adam. Now we can modify the
MAXALL configuration for usein Adam by changing the value of these environment variables
appropriately.

These variables can a so be put to good use during devel opment and debugging. It may not
be necessary for every developer on the project to include all components of the operating sys-
tem. A devel oper working on writing a PC card driver for abar code scanner may not need to
include any of the Pocket applications like Explorer and Mail, the serial port driver, or commu-
nication components. Such choices can help reduce the size of the operating system image being
built, which isinstrumental in shorter download timesto the hardware platform, resulting in a
more rapid development cycle.

Of course, when the driver isfinally ready, the developer must test it with the full build of
the operating system that is expected to run on the hardware platform.

101

102 Chapter 3 Platform Builder Basics

Extending the Platform Builder Catalog

The Platform Builder catalog isn’t for components that ship with Windows CE. Components can
be added to the catal og so that they become available as standard components for a given plat-
form. When you're adding a component, the principal pieces of information you must supply are
its name, amethod to build the component, the group to which this component belongs (this
could be anew group or an existing one in the catalog), and aunique ID. A multitude of other
information, which we will discuss shortly, must also be supplied.

Let’s start by introducing the unique ID. This D must be unique across any component ever
created for Windows CE. A globally unique identifier (GUID), also referred to as a universally
unique identifier (UUID), isa128-bit value that uniquely identifies a component. You can gener-
ate a unique number on demand by using the Microsoft utility gui dgen. exe. You can then use
this number to identify a component that must be added to the catalog. If a GUID is not sup-
plied, Platform Builder generates one for the component when adding it to the catalog. However,
providing a GUID for each component is recommended because it must be supplied when
maodifications are made to the component in the catal og.

Guidgen will generate anew GUID and allow you to copy it to Clipboard so that you can
pasteit into any other application. One of four formats can be selected. For aformat suitable for
our purposes, select Registry For mat. Then click on the Copy button. Now the GUID can be
pasted in viathe editor being used to create the component that will be added to the catal og.

Components to be imported into a catalog must be specified by a special syntax and placed
in afilewith a.cec extension. Files with the .cec extension are called component files.

Component Files in Depth

Component files have aformat for laying out information about a component. The best way to
start isby example. Recall that we built an application called wel core. exe for our project
Adam. This simple welcome application can beincluded as a standard component in the catal og.
A CEC file must be used to describe this component before it can be imported into the catal og.

CECInfo Block

Every component file starts with the CEQ nf o block (Listing 3.6), a structure that contains infor-
mation about the component file itself. Note that any text following the characters“//” up to the
end of thelineis considered to be acomment.

Listing 3.6 Sample component file header

CECInfo (
Name(New. cec)
CECVer si on (3.00)
/1 GUD() — left blank
Vendor ("Wndows CE Unlimited")
Description ("A sanple Cec file")

Extending the Platform Builder Catalog

Thefields of the CEQ nf o block are specified asfollows:

Nane isan optional field that identifies the name of the component file.

CECVer si on isamandatory field that can have avalue of either 2.12 or 3.00.
It identifies the version of Windows CE for which the component file was
written.

QU Disan optional field containing a number that uniquely identifies the
component file. If it isleft blank, a GUID will automatically be generated for
the component filewhen it is used to import the component.

Vendor isan optional field identifying the vendor that is distributing this
component as part of the catal og.

Descri pti on isan optional field that describes the component file.

ComponentType Block
The component itself is described by a Conponent Type block. Consider the sample shown in
Listing 3.7, which describes wel cone. exe asacomponent.

Listing 3.7 Sample component file

Conponent Type (
Name(Wl cone)
GUI D({232FBCF4- 72DD- 4208- AA0F- 686A42FFE8B3})
Description("Wl cone application")
Group("\Standard Applications")
I npl enent at i ons(
| npl enent at i on(

Name(Wl cone)
GUI D({2A8D35B5- F6BC- 485c- 867B- 8352826D27CF})
Description("Wl cone application")
Vendor ("W ndows CE Book")
Dat e(05/ 05/ 2000)
Bui | dMet hods(
Bui | dMet hod(
Step(buildrel)
GUI D({ A3CED1C5- 617E- 4065- A784- 8551FA00A249})
CPU(x86)
InputFiles()
QutputFiles()
Action("#COPY("$(_PRQIECTROOT\ Wl cone\ Obj \ Wl cone. exe",

$(_FLATRELEASEDIR)")))

"))

Setting('#CHM "Wel cone.chnl)')
Setting('#CHM "Wl cone.chi")')
Setting(' # NPUT("I ncl ude Wl cone”, | NCLUDE WELCOME, 1, O,

103

104 Chapter 3 Platform Builder Basics

Thefields of the Conponent Type block are specified asfollows:

» Nane specifies the name of the component. The name of the component in
Listing 3.7 isWelcome.

* QU Disan optional field containing a number that uniquely identifiesthe
component. In this case we have assigned a GUID to the component so that
we can specify it later to modify this component.

 Descri ptionisanoptional field that describes this component. It isdis-
played when the properties for acomponent are viewed in Platform Builder.

* G oup isanoptiond field that refersto the organization hierarchy displayedin
the catalog. If you specify \Standard Applicationsin the sample, this component
will be added to anew group in the catalog at theroot level called Standard
Applications. Welcome will be added as a component to this group. You can add
acomponent to an existing component simply by specifying its name. Group
namesin agroup hierarchy can be separated by abacksash (\). If no other
option is specified, the component is added directly to the root of the catal og.

* Vendor identifiesthe vendor of the component. The value of thisfield isdis-
played when the properties for the component are viewed (right-click on the
component in the catalog and select Properties from the pop-up menu).

Implementation Block
Each Conponent Type block must have an embedded | npl enent at i ons block (seeListing 3.7).
Thel npl enent at i ons block can consist of one or more | npl enent at i on blocks that describe
how the component has been implemented.

Thefields of thel npl enent at i on block are specified asfollows:

* Nane isamandatory field that identifiesthe I npl enent at i on block in other
I npl ement at i on blocks.,

* QU Dcontainsthe uniqueidentifier for thel npl ement at i on block. Thisfield
isoptional, but if specified, it must be unique for each block. An implementa-
tion may bereferred to by name or by GUID. If thisfield isleft blank, Plat-
form Builder automatically generates and applies a GUID to this block.

* Descriptionisanoptional field that describesthe implementation.

* Vendor isan optional field that identifies the vendor of the implementation
and is optional.

e Chi | dren isan optional field that lists any children of an implementation.
Thisfield can be used to specify any dependent implementations. A child
implementation must be described earlier in the component file. Implementa-
tions may beidentified by name or GUID in thisfield.

« Dat e isan optional field that specifies the date of implementation in
MM/DD/YY format. This date can be set to the date the component was built
or to the date it wasincluded in the catal og.

Extending the Platform Builder Catalog

BuildM ethods Block
The Bui | dMet hods block, along with the Nane field, isrequired in the | npl enent at i on block.
The Bui | dMet hods block isfollowed by one or more Bui | dMet hod blocks, each of which
specifiesamethod for building the component (see Listing 3.7).
Thefields of the Bui | dMvet hod block are specified asfollows:

* Step and Act i on are mandatory fields that form the heart of the

Bui | dMet hod block. Together these fields specify how this particular
implementation of the component will be built. The following list givesthe
different keywords that can be specified in these fields. For a more thorough
treatment of how each of these keywords operates, refer to Chapter 10. The
command specified inthe Act i on field depends on the keyword specified in
the St ep field (see Table 3.6).

The Act i on field can contain the commands specified in thelist that fol-

lows. In each case the entire command must be enclosed in quotation marks
for it to be executed—that is, Act i on (" <conmand>") .

Table 3.6 Build Actions

#OOPY(" SrcPath", "Target Dir") copiesafilewith afully qualified path
nameinto the target directory. Use this command to copy files during the
system generation or build-release phases. For example, this command can
be used to copy acomponent to the final target directory from which the
operating system image is constructed.
#ENV("Vari abl e", "Val ue") setsan environment variable to a specific
value. For amore detailed explanation of how environment variables can
affect abuild, refer to the section titled Customizing the Build Using Envi-
ronment Variables earlier in this chapter and to Chapter 10.

St ep Keyword Phase of Build

Act i on Command

CESYSGEN

BSP

BUI LDREL

MAKEI MG

System generation phase. The Microsoft modules and third-
party vendor components that make up the Windows CE
system are combined to create a core operating system.
Components supplied by the system integrator are added to
thisbuild to create the final image.

Core build phase. During this phase of the build process, each
component that is part of the Windows CE imageisbuilt
individually.

Build-release phase. In this phase, all the output filesare

collected in apredetermined |ocation in a mass copy operation.

Make-image phase. The final operating system image is built
from the collected files.

#COPY

#ENV
#BUI LD
#CUSTOM

#COPY
#CUSTOM

#ENV

105

106 Chapter 3 Platform Builder Basics

#BU LD(Dirs | Sources, "Directory") tellsthebuild processto build
either aDi r s fileor aSour ces fileto be found in the directory specified in
D rectory. D rs and Sour ces files specify commands for building one or
more components. A more thorough treatment of these files can be found
in Chapter 11.

#BU LD(MAK, "Di rectory", "Makefil e") isan aternative flavor of the
BUI LD command that can be used to build acomponent with a custom
makefile. A custom makefile would be used in lieu of asourcesfilefor bet-
ter control of the build process. This command can a so be helpful in port-
ing components to Windows CE, where you can use afully tested makefile
instead of converting it into a sourcesfile. For aquick primer on how
makefiles work, refer to Appendix B.

#COUSTOM " Wor ki ngDi rect ory", " Qust onConmand”) can be used to exe-
cute acommand specified by Qust onConmand. This command is executed
from the directory specified by Wr ki ngDi r ect ory. It can be used to exe-
cute scripts like batch files that perform tasks that either cannot be per-
formed by a makefile or would be extremely tedious to port to a makefile.
Again, legacy components that are built by scripts can be accommodated
by this command.

* QU Dcontainsthe uniqueidentifier for thel npl ement at i on block. Thisfield
isoptional, but if specified, it must be unique for each block. An implementa-
tion may be referred to by name or by GUID. If thefield isleft blank or not
specified, Platform Builder automatically generates and appliesa GUID to
this block.

e CPUisamandatory field that indicatesif the implementation is CPU specific.
Current CPU valuesthat can be specified in thisfield are SH3, SH4, SA1100,
ARM720, ARM720T, R3912, R4102, R4111.16, R4111.32, R4300, PPC403,
PPC821, and x86 for Windows CE 3.0. Thislist, supported by Microsoft, may
grow in the future as more processors are supported by Windows CE. Proces-
sors may also be dropped from thislist. The value of the CPU field must be
enclosed in quotation marks. The value def aul t indicates that the implemen-
tation isfor the default list of processorsfor the operating system. The default
list isthelist supported by Microsoft.

* Setting isanoptional field that supports three different operations:

1. #I NPUT("Sysgen setting", Environment Variable, 1| O,

I ni tial Val ue, BspVal ue) . Each Bui | dvet hod block is allowed to spec-
ify a setting during the system generation phase, referred to as Gesysgen
or Sysgen. In the Platform Builder IDE, you can select or deselect Sysgen
by selecting Build and then Settings, and finally clicking on the Sysgen
tab in the Platform Settings dialog box.
Each setting sets an environment variable. The#1 NPUT operation

allows such a setting to be made visible in the Sysgen tab of the Platform
Settings dialog box. The string Sysgen setting is displayed in the tab. The

Extending the Platform Builder Catalog

environment variable specified by Envi r onnent Vari abl e IS either set
or unset depending on itsvalue: either 1 or 0. If thevalueis 1, then the
environment variable will be set to TRUE when the setting is selected. A
value of 0 specifiesthat the variable be set to FALSE when the setting is
selected. Finaly, I ni ti al Val ue specifiestheinitia value of the environ-
ment variable and hence the default selection of the setting in the tab.
BspVal ue isastring that is set to the name or GUID of the board support
package that allows this setting.

2. #QUTPUT(Qut put) allowsthe selection of a particular module in the
image. Qut put isusually an environment variable that isread by the
cesysgen. bat file during the system generation phase (we'll give more
detailsin Chapter 10).

3. #CHM " Hel pO Hel pl ndexFi | ") associatesan HTML help file (.chm
extension) or ahelp index file (.chi extension) with the component. When
an SDK is exported, the component’s help files specified by this operation
are automatically included in the SDK by Platform Builder.

* Input Fi | es isan optional field that is used to specify alist of files, separated
by spaces, required to perform the build for this component.

* Qutput Fi | es isan optional field that is used to specify alist of files, sepa-
rated by spaces, output by the build.

Adding a Component to the Catalog

One global catalog isused by Platform Builder to store components and can be reused across
projects. To add a component to the catal og, you must create the component. Component files
have a.cec extension. To import the component, select M anage Platform Builder Compo-
nents... in the File menu. The resulting dialog box lists all the components that have already
been imported (Figure 3.15). Click on Import New... and browse for the component file that has
been created for the new component.

Asan example, save Listing 3.6 to afile called new cec and import it into the catalog. Wel-
comewill show up as amember of the catalog under the folder St andar d Appl i cat i ons. After
Welcome has been added to the catalog (Figure 3.16), it isavailable for inclusion in al new plat-
forms.

The dialog box to manage platform builder componentsis afront end to the pbcec. exe util-
ity that comes with Platform Builder. Pbcec imports componentsinto the catalog. To import a
component, we call Pbcec with the component file name asits argument. For example, to import
the Wel come component into the CEPC catal og via the command line, we would have invoked
Pbcec in the following way:

Pbcec New. cec

107

108 Chapter 3 Platform Builder Basics

Manage Platform Buillder Components

| cepo.cec Micrazaft ‘CEPL companents -
configs.cec Microzaft Core0S components:

ariraz.cec 300 Microzoft DAL components

mfcatl cec 300 Microsaft MFC and ATL components:
odocec 2l Microzaft 000 components }

platrnar. cec: _ Microzaft Flatform Manager components
whit.cec 00 Microsaft WBCE Companients

ddthk30,cec : Micrasaft Driver Development Test Kit Comp...
‘new.cec ‘windows CE Book A sample Cec file

=B A Catalog
Wy CEPC
” coreos
.. Dirivers
-] Platform Manager
-1 Runtimes
=429 Standard Applicatior:

i h Welcome

Figure 3.16 The catalog after Welcome has been added

Calling Pbcec withthe/1i st argument lists the componentsin the catalog. A sample run
yielded the following output:

M crosoft (R) Platform Builder 3.00 Catalog Utility
Copyright (C) Mcrosoft Corp 2000. Al rights reserved.
CEC File Descri ption

cepc. cec CEPC conponent s

Creating a New Board Support Package

configs. cec Cor eCS conponents

extras. cec OAL conponents

nfcatl.cec M-C and ATL conponents

odo. cec Odo conponents

pl at ngr. cec Pl at f or m Manager conponents

vbrt. cec VBCE Conponent s

ddt k30. cec Driver Devel opnent Test Kit Conponents
new. cec A sanple Cec file

There are currently 9 cec files in the catal og.

When called with the/r option, Pbcec removes from the catal og the component that is
specified in thefile passed in as the Pbcec argument. The/ ¢l ean option does exactly what it
says. It clears out all components from the catalog.

Creating a New Board Support Package

Extending the catal og allows components to be used across platforms that use the same board
support package. System integrators may want to create anew BSP for anew processor or for a
significantly new platform for an existing processor. The key to creating anew BSPisto createa
new BSP file. The BSPfile contains alist of instructions for how to build the platform and which
OEM components are required for the platform. Users of the BSP can then build the platform in
the manner that is prescribed in the BSP. In other words, a BSP file contains directions for the
build process, whereas component files define the components to be built.

Before a BSP can be created, all of its components must be imported into the catalog. Let's
say we are creating a BSP called Appliances. Appliances will support the x86 CPU and will pro-
vide componentstypically used by kitchen appliances, such as coffee makers, refrigerators, and
so on. We'll keep the Appliances BSP simple for illustration purposes.

Thefirst stepistoimport al of the Appliances components. We take the CEPC component
fileand modify it for Appliances. Then weimport it into the catal og. Before we do that, we
adjust Appliances so that it has no display, no keyboard support, and no USB or infrared support
because these are not needed for the type of BSP we are creating. All GUIDs in thefile being
copied must be created again viagui dgen. exe because Platform Builder expectsall of these
new components to be exported into the catal og. Listing 3.8 shows the component file for Appli-
ances after cepc. cec was copied and modified.

Listing 3.8 Component file for Appliances

/'l appliances.cec - Appliances conponents

CECInfo (
Name(Appl i ances)
GUI D({ DLE6OFE9- 4370- 4deb- B111- 781D7CBAEA73})
CECVer si on(3. 00)
Vendor (“M crosoft”)
Descri pti on(“Appliances conponents”)

109

110 Chapter 3 Platform Builder Basics

/1 type "OAL" and 2 inplenmentations
/1 Appliances
Conponent Type (
Name(OAL)
GUI D({B3509B99- F1E4- 11d2- 85F6- 004005365450})
Descri ption("OEM Adaptation Layer")
I npl emrent ati ons(

| npl enent at i on(
Narme(Appl i ances)
GUI D({ EOA5CDOC- 9D7D- 4c4c- BAE7- 17A6CACB3E3B})
Description("Appliances OAL")

Bui | dMvet hods(
Bui | dMvet hod(
Step(BSP)
GUI D({188258EE- AE2C- 4013- 8514- 1D6EA325027C})
CPU("x86")
Action('#BU LD(DI RS, "$(_W NCEROOT)\ pl atform cepc\kernel")")
Action('#BU LD(DI RS, "$(_W NCEROOT)\pl atform cepc\gwe")"')

)

/1 child type "ddk_bus" and inpl enmentation
Conponent Type (
Nanme(ddk_bus)
GUl D({4BB97298- 47AC- 43ef - BD2D- 9E5BI9FC3D1CA})
Description("ddk_bus")
| npl ement ati ons(
| npl enent at i on(
Narme(ddk_bus)
Description("ddk_bus")
GUl D({ C87FA2D3- 8D13- 49e4- 91BD- A94C74DA6GEE6})

Bui | dMet hods(
Bui | dMet hod(
Step(BSP)
GUI D({84A08ED9- 87A1- 466a- A268- FODEA522D2C1})
CPU("x86")
Qut put Fi | es(ddk_bus. LIB)
Action(' #BU LD{ SOURCES,
"$(_W NCEROOT) \ pl at f or Ml Appl i ances\ Dri ver s\ CEDDK\ DDK_BUS")"')
)
)

Creating a New Board Support Package

/1l child type "ddk_map" and i npl enentati on
Conponent Type (
Name(ddk_map)
GUI D({8886E23C- 797C- 4b19- AB71- 843AA949B866})
Description("ddk_map")
I npl enent at i ons(
I npl enment ati on(
Name(ddk_map)
Description("ddk_nmap")
GUI D({02A46E4A- 1CDB- 4504- B99C- 470C27157015})

Bui | dMet hods(
Bui | dMet hod(
Step(BSP)
GUI D({FO7C875B- 1D69- 4cf 0- A54B- D7486886627B})
CPU("x86")
Qut put Fil es(ddk_map. LIB)
Action(' #BU LD(SOURCES,
" $(_W NCEROOT) \ pl at f or ml Appl i ances\ Dri ver s\ CEDDK\ DDK_NMAP") "')
)
)

/Il type "ceddk" and inpl enentation
Conponent Type (
Name(ceddk)
GUI D({8630294D- 6B62- 4422- 9B72- 2B2D29629AE5})
Description("ceddk")
Group("\Drivers\Appliances")
I npl enent at i ons(
I npl ement ati on(
Name(ceddk)
Description("ceddk")
GUI D({ BBD69EB7- AA85- 440b- ADCC- 8C8D1D8C34C0})
Chi | dren(ddk_bus ddk_nap)

Bui | dMet hods(

Bui | diet hod(
Step(BSP)
GUI D({D6907409- E7DB- 4d98- 8841- 58AD8A25B75F})
CPU("x86")
Qut put Fi | es(pc_ddk. DLL)
Action(' #BU LD(SOURCES,

"$(_W NCEROOT) \ pl at f or m Appl i ances\ Dri vers\ CEDDK\DLL")")
)

Bui | dMet hod(
St ep(makei ng)
GUI D({C792A2F8- 0419- 49aa- 8B1E- CEB62BA274F8})
CPU("x86")

111

112 Chapter 3 Platform Builder Basics

Action(' #ENV(1 MGNOCEDDK, "")')

/[l type "serial" and 2 inplenentations
/1 “serial", and "NewSeri al NDD"
Conponent Type (
Nane(serial)
GUI D ({6401DC3D- E93A- 4bf b- B58F- 6818A0500E64})
Description("serial")
Group("\Drivers\Appliances")
| npl ement at i ons(
| npl emrent at i on(
Nanme(serial)
Description("serial")
GUI D ({81AA1070- 3B88- 4680- ADID- E132F6773584})

Bui | dMet hods(
Bui | dMet hod(
Step(BSP)
GUI D({ 4DABBET7F- 365B- 4f 51- B905- EE82FA242D14})
CPU("x86")
QutputFil es(serial.DLL)
Action('#ENV(ODO NOSERI AL, "")')
Action(' #BU LD{ SOURCES,
" $(_W NCEROOT) \ pl at f or Ml Appl i ances\ Dri ver s\ SERI AL. PDD")"')

)
Bui | dMet hod(
Step(makeing)
GUI D({8D6179A9- 0BD4- 4387- A664- 5A8C5D946714})
CPU("x86")
Action('#ENV(ODO NOSERI AL, "")')
Action('#ENV(NEW SERI AL_MDD, "") ')
)

)

| npl ement at i on(
Nanme(NewSeri al MDD)
Description("New Serial MD')
GQUID ({52B0OF538- 8E24- 4a07- BDE5- 76A7259608BF})

Bui | diet hods(
Bui | dMet hod(
Step(BSP)
GUI D({2F65E925- A228- 4875- 841A- A1BA56E2B23A})
CPU("x86")
QutputFiles(comcard.dl |l conl6550.dl1)
Action(' #ENV(ODO NOSERI AL, "")')

Creating a New Board Support Package 113

Action(' #BUl LD({ SOURCES,
"$(_W NCEROOT) \ pl at f or m Appl i ances\ Dri ver s\ COM CARD") "')
Action(' #BU LD(SOURCES,
" $(_W NCEROQOT) \ pl at f or mi Appl i ances\ Dri ver s\ COML6550") ")
)

Bui | dMet hod(
St ep(nmakei ng)
GUI D({6CA564F3- 178D 47ff - 9D6B- D81378F1FC40})
CPU("x86")
Action(' #ENV(ODO NOSERI AL, "")')
Action('#ENV(NEW SERIAL_MDD, 1)')

/1l type "wavedev" and inpl enentation
Conponent Type (
Name(wavedev)
GUI D ({EO0B38875- FF8F- 4685- 99D4- 9A591368609D})
Description("wavedev")
G oup("\Drivers\Appliances")
| npl enent at i ons(
I npl enent at i on(
Name(wavedev)
Description("wavedev")
GUI D ({OF132F1D- 4AB8- 4c57- 853D- 68935FDEDLDF})

Bui | dMet hods(

Bui | dMet hod(
Step(BSP)
GQUI D({ AOE49B67- 614C- 47bf - 80D0- 48C7E25C664B})
CPU("x86")
Qut put Fi | es(wavedev. DLL)
Action('#ENV(ODO NOAUDI O, "")')
Action(' #BU LD(SOURCES,

" $(_W NCEROQOT) \ pl at f or M Appl i ances\ Dri ver s\ WAVEDEV") "')
)

Bui | dMet hod(
St ep(nmakei ng)
GUI D({ 6DE00180- AOBD- 4e74- 87E7- 4BD50AF5E158})
CPU("x86")
Action('#ENV(ODO NOAUDI O, "")')

114 Chapter 3 Platform Builder Basics

/1 type "EBOOT" and inplenentation
Conponent Type (
Nanme(EBOOT)
GUI D({ FO2E3B9F- CD10- 44a5- BED5- 1EAE187A2AE6})
Description("Appliances Eboot.bin")
Group("\Drivers\Appliances")
| mpl enent ati ons(
| mpl enment at i on(
Nane(Eboot)
Description("Appliances Eboot.bin")
GUI D({086BA8F9- 0788- 4900- A48C- 2D27F8AA8397})

Bui | diet hods(
Bui | dMet hod(
Step(BSP)
GUI D({Cl450E38- C813- 426f - BB98- 6FDF40EC2216})
CPU("x86")
Action(' #BUl LD(SOURCES,
" $(_W NCEROOT) \ pl at f or M Appl i ances\ EBOOT")")
)
)

When the component file shown in Listing 3.8 isimported into the catal og, the catalog
shows the addition of an OAL component, Appliances, and the driversthat are part of the Appli-
ances BSP (Figure 3.17).

ek

= ﬁ 1| Catalony
+ H COiBE
=1-=H Drivers
—14 Apphanoss
i3 h =2

I Al
wvRdey
E book

- CEPC
m By DOTE 20
=8 | Qi
E ApphanG
CEPC
#1-_1 Plstiorm M anagsr
1 Aurdine:
| Stanckend Apphcalong

Figure 3.17 The catalog with imported Appliances components

Creating a New Board Support Package

Once the components for the BSP have been imported into the catal og, we need to create a
new BSP. Platform Builder allows you to create a project with a placeholder for aBSP. To finish
creating the BSP, you must expand the placehol der—a painstaking process that must be carried
out by hand.

To create aplaceholder for aBSP, click onthe File | New... menu option in Platform
Builder. Chooseto create aWCE platform from the Platfor mstab and type in the name of a
sample platform when the WCE Platform Wizard launchesitsfirst dialog box. For example, to
create aBSP for a category called Appliances, typein “Brewster.” Brewster isasample coffee
maker that uses Windows CE. We will take amore intimate tour of Brewster later onin this
book. For now, it makes a guest appearance for illustration purposes.

In the second dialog box (step 2) of thewizard, select My BSP. This option indicates to
Platform Builder that you are trying to create a new board support package. Type in the name of
the BSP subdirectory. In our example we chose the name Appliances (Figure 3.18).

You must create this directory before you can execute step 2. Platform Builder will not cre-
ateit for you. Accepting the defaults in the ensuing wizard dialogs will lead to the creation of
Brewster. Figure 3.19 shows the Project window after Brewster is created and loaded in Plat-
form Builder.

Orly the Board Support Packages [BSF:
that suppart the selected CPU: are included.

Selact the BSP you want to use i thiz
platfarim;

CEFC
Mp BEP
Mo BSF

Pathe
L WWINCES0D plattorm

BSP Subdirectary:
l.ﬁ.ppliances

< Back Ni&_ﬁt,}%_l Firich Cancel

Figure 3.18 Creating a new BSP

115

116 Chapter 3 Platform Builder Basics

.-dﬂ

- B8 BREWS TER componcnts
E Al
KINEERN
= _EL'_HIII:“:_LE‘.-
w1 eomd
1| ldesps
B helo
B e
| shel
1 1ochsn

" BB Componeriviem [b Paransterviow |

Figure 3.19 The Brewster platform used to create a new BSP

Note that A ppliances shows up as an implementation in the project window. Right-clicking
onit and selecting Propertieswill reveal that Platform Builder recognizesit asaBSP. However,
thereisnothing in the BSP yet. The directory created earlier is empty. The only trace that you
haveanew BSPisafilecalled appl i ances. bsp created in the Platform Builder IDE
directory. For Windows CE 3.0, this directory is\ W NCE300\ W NDOAB CE PLATFCRM
BU LDER 3. 00\ CEPB\ BI N\ I DE. Thisfile represents an empty BSP, and you must modify it
by hand to compl ete the board support package. The appl i ances. bsp fileis presented in List-
ing 3.9.

Creating a New Board Support Package
Listing 3.9 Appl i ances. bsp
/1 *** Appliances ***
/1 NOTE: You will need to create an appliances.cec file

// and inport it into the catalog. Wen you have done that,
/1 you can delete the two #ADD USER OAL | i nes bel ow.

/'l *** d obal conponents (for all the configs) ***

#ADD_USER OAL_BUI LD_METHOD (' #BUI LD(dirs, "$(_W NCEROOT)\ pl atf or m
Appl i ances") ")

#ADD_USER_QAL_COVPONENT (" {2367C526- 2821- 4CEF- 94A2- 7286D5152E6F} ",
" Appl i ances")

/] *** CoreCS-specific conponents ***
#l F (" CORECS", "M NKERN")

#ENDI F
#| F (" CORECS', " MAXALL")
#ENDI F

#| F (" CORECS', "M NCOWM')
#ENDI F

#| F (" CORECS', "M NGDI ")
#ENDI F

#| F (" CORECS', "M NI NPUT")
#ENDI F

#| F (" CORECS', "M NSHELL")
#ENDI F

F (' CORECS', "M NWWGR')
#ENDI F

#| F (" CORECS', " | ESAMPLE")
#ENDI F

The BSPfile contains placehol ders for adding CoreOS-specific components. CoreOSrefers
to a configuration that represents a specific type of build of the operating system. Familiar
configurations like M NKERN, MAXALL, and M NOOwhave already been added to thisfile. The
directives required to build your custom platform should be inserted in thisfile asthe final step
to creating aboard support package.

BSP File Directives

Before we add directivesto thefile, let’slook at the types of directivesthat can be added to a
BSPfile. BSPfiledirectives all start with the pound sign (#). Text that follows*“//” is considered
to be comment to the end of theline.

* #ADD COMPONENT _BY_GU D TO RQOOT (“gui d”) . Thisdirective is used to add
acomponent implementation to the BSP. The component isidentified by its
GUID. Recall that right-clicking on a component and selecting Properties
from the pop-up menu will reveal its GUID. To add the serial port driver to
the BSP, you would add the following line within a CoreOS conditional:

117

118 Chapter 3 Platform Builder Basics

#ADD_COMPONENT_BY_GUI D_TO _ROOT (“{35E70441- EEA9- 11D2- A092-
0060085C1833} ")

e #ADD FOLDER TO RQOOT (" Fol der ") . You can organize the components by
creating folders under theroot. Thisdirective is used to create afolder.

» #ADD COVPONENT BY QU D TO FOLDER (" gui d", " Fol der") . You can add a
component to a specific folder using this directive.

« #ADD FOLDER TO FCLDER (" SubFol der ", " Fol der ") . You can create deeper
hierarchies by creating subfolderswith this directive.

« #ADD TYPE _BY_QGU D _TO RQOT (" gui d") . You can add acomponent type to
theroot viathis directive.

» #ADD TYPE BY_GU D TO FOLDER("gui d","Fol der") . Using this directive,
you can also add a component type under afolder, just as you would acom-
ponent.

e #ADD ENV_VAR("Vari abl e","Val ue") . You can define an environment vari-
able and set it to a specific value using this directive. Environment variables
are like settings for the platform. They are used to communicate val ues
between different utilities that build the operating system (Chapter 10 shows
exactly how thisworks).

Note the two directivesin appl i ances. bsp (seeListing 3.9). These lines are added by Plat-
form Builder to an empty BSP file to support the creation of anew BSP. After you have popu-
|ated the BSP file with components using the directives discussed, you must delete these lines.
Thelines provide aplaceholder for the empty BSP and specify how to build the BSP.

Notice also from the same listing that the BSP files support conditional directives. Condi-
tionals are used in the sample listing to specify which CoreOSisbeing built.

Finishing the New BSP: Appliances

After the required directives have been added to the BSPfile (Listing 3.10), all of the physical
implementation of al the componentsthat are part of this new BSP must be copied under the
newly created BSP directory. This means copying source code, libraries, and so on. The CEPC
and Odo directories are examples of what a BSP directory should look like.

Listing 3.10 Modified appl i ances. bsp

[l *** Appliances ***

// NOTE: You will need to create an appliances.cec file

// and inport it into the catalog. Wen you have done that,
/1 you can delete the two #ADD USER QAL |ines bel ow.

/[l *** dobal conponents (for all the configs) ***

Creating a New Board Support Package 119

// #ADD_USER OAL_BUI LD _METHOD (' #BUI LD(dirs, "$(_W NCEROOT)\ pl at f or m
Appl i ances") ")

/| #ADD_USER_QAL_COWPONENT ("{2367C526-2821- 4CEF- 94A2- 7286D5152E6F} ",
" Appl i ances")

/'l Appliances
#ADD_COMPONENT_BY_GUI D_TO_ROOT ("{B3509B99- F1E4- 11D2- 85F6- 004005365450} ")

/1 EBOOT. BI N
#ADD_COVPONENT _BY_GUI D_TO ROOT ("{B4569ABC- F1E4- 11D2- 85F6- 123405365450} ")

/l *** Core(OS-specific conponents ***

[1 - **% MAXALL ***

#1 F (" CORECS", " MAXALL")
/1 pc_ddk
#ADD_COVPONENT_BY_GUI D_TO ROOT ("{B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

/1 ddi_flat
#ADD_COMPONENT_BY_GUI D_TO ROOT (" { E2B049C8- F7DC- 45d3- 8204-
OAAS4FBADACC}")

/1l wavedev
#ADD_COMPONENT_BY_GUI D_TO ROOT (" {35E7043C- EEA9- 11D2- A092-
0060085C1833}")

/1 serial
#ADD_COVPONENT_BY_GUI D_TO ROOT ("{35E70441- EEA9- 11D2- A092-
0060085C1833}")

#ENDI F

/1l *** M NKERN ***

F (" CORECS", "M NKERN")
/1 pc_ddk
#ADD_COMPONENT_BY_GUI D_TO ROOT (" {B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

#ENDI F

/[l *** | ESAMPLE ***

#l F (" CORECS", "| ESAMPLE")
/1 pc_ddk
#ADD_COVPONENT _BY_GUI D_TO ROOT ("{B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

/1 ddi_flat
#ADD_COMPONENT_BY_GUI D_TO ROOT (" { E2B049C8- F7DC- 45d3- 8204-
0AA54FB4DACC}")

/1 serial
#ADD_COMPONENT_BY_GUI D_TO ROOT (" {35E70441- EEA9- 11D2- A092-
0060085C1833}")

120 Chapter 3 Platform Builder Basics

#ENDI F

[1 *** M NSHELL ***

F (" CORECS", "M NSHELL")
/1 pc_ddk
#ADD_COMPONENT _BY_GUI D_TO ROOT (" {B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

/1 ddi_flat
#ADD_COMPCNENT_BY_GUI D_TO ROOT (" { E2B049C8- F7DC- 45d3- 8204-
0AA54FBADACCH")

/1 serial
#ADD_COVPONENT_BY_GUI D TO ROOT ("{35E70441- EEA9- 11D2- A092-
0060085C1833} ")

/'l wavedev
#ADD_COMPONENT _BY_GUI D_TO ROOT ("{35E7043C- EEA9- 11D2- A092-
0060085C1833} ")

#ENDI F

[*** M NWGR ***

#l F (" CORECS', "M NWWGR")
/1 pc_ddk
#ADD_COVPONENT_BY_GUI D_TO ROOT ("{B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

/1 ddi_flat
#ADD_COMPONENT _BY_GUI D_TO ROOT ("{ E2B049C8- F7DC- 45d3- 8204-
0AA54FBADACCH")

/1 wavedev
#ADD_COVPONENT_BY_GUI D_TO ROOT (" {35E7043C- EEA9- 11D2- A092-
0060085C1833}")

/1 serial
#ADD_COVPONENT_BY_GUI D TO ROOT ("{35E70441- EEA9- 11D2- A092-
0060085C1833} ")

#ENDI F

[1 *** MNGDI ***
#F (“CORECS’, "M NGDI ")

Creating a New Board Support Package 121

/1 pc_ddk
#ADD_COVPONENT_BY_GUI D_TO ROOT ("{B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

/1 ddi_flat
#ADD_COVPONENT_BY_GUI D_TO ROOT ("{ E2B049C8- F7DC- 45d3- 8204-
0AA54FB4DACC}")

/Il wavedev
#ADD_COVPONENT_BY_GUI D_TO ROOT ("{35E7043C- EEA9- 11D2- A092-
0060085C1833}")

#ENDI F

[1 - *** M NCOWM ***

F (" CORECS", "M NCOW')
/1 pc_ddk
#ADD_COMPONENT_BY_GUI D_TO ROOT (" {B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

/Il seria
#ADD_COVPONENT _BY_GUI D_TO ROOT ("{35E70441- EEA9- 11D2- A092-
0060085C1833}")

#ENDI F

1] *** M N NPUT ***

F (" CORECS', "M NI NPUT")
/1 pc_ddk
#ADD_COMPONENT_BY_GUI D_TO ROOT (" {B3509B75- F1E4- 11D2- 85F6-
004005365450} ")

#ENDI F

/1 end of appliances.bsp file

We are now done creating a new BSP. The next time the WCE Platform Wizard is run,
Appliances will appear as achoicein the Select BSP list box (Figure 3.20). Platform Builder
filters the BSPs you can choose on the basis of the CPU you have chosen in the preceding dialog
box. Since the Appliances BSPisvalid only for x86, this CPU must be checked.

122 Chapter 3 Platform Builder Basics

'\WCE Platform - Step 1 of 2 '

I Sppliances

Figure 3.20 The new BSP added to an existing list

Summary

The Windows CE Platform Builder is used to customize Windows CE and tailor the operating
system to aparticular hardware platform. Platform Builder comeswith an IDE in the style of
Visual C++ that provides wizards to help create aplatform. A project can a so be created that
contains applications and platform-independent modules that will execute on the platform.

In this chapter we looked at how environment variables can be used to further customize a
build for aparticular platform. The Platform Builder can be extended, and a compl etely new
board support package can be created. In Chapter 10 we will take acloser look at the fascinating
process used by Platform Builder to build the Windows CE operating system.

