
Errata List for Exceptional C++
Sutter, H. Exceptional C++ (Addison-Wesley, 2000) — ISBN 0-201-61562-2

Updated 2000.12.12

This errata list is maintained by the author. To suggest changes or corrections not already in this list,
please submit them by email to hsutter@peerdirect.com with a subject line containing the words “XC++ Errata.”

Severity Category # Entries

Format
(change to page layout or text formatting
only)

3

Typo
(correction of simple typographical errors,
cut-and-paste errors, and dyslexic
mistakes)

28

Enhancement
(addition of new or clarifying material)

22

Correction
(change made to correct a substantive
error that could mislead a reader; does not
include typos and occasional dyslexia)

13

The individual errata entries are listed in page number order. For each one, I have included the page number
(including “xref” cross-references to related entries for other pages), the severity (summarized above), the
person who first reported the erratum and when, the earliest printing incorporating the correction, and a
description of the erratum and its correction.

Errata for Exceptional C++

Updated 2000.12.12 page 2

 First Reported

Page Severity Date By
Corrected
Printing # Description

xii Enhancement 2000.04.14 Michel Michaud
micm19@mail2.cstjean.qc .ca

— This book includes many guidelines, and in them I use the terms “always,”
“prefer,” “consider,” “avoid,” and “never” with specific meanings. Those
meanings were clearly explained in the coding standards appendix, but
that appendix was held over to the next book and I never duplicated the
explanations in the existing book.

Immediately before the subhead “How We Got Here: GotW and
PeerDirect,” add the following new paragraph:

This book includes many guidelines, In which the following words usually
carry a specific meaning:

· always = This is absolutely necessary. Never fail to do this.

· prefer = This is usually the right way. Do it another way only when a
situation specifically warrants it.

· consider = This may or may not apply, but it's something to think about.

· avoid = This is usually not the best way, and might even be dangerous.
Look for alternatives, and do it this way only when a situation specifically
warrants it.

· never = This is extremely bad. Don't even think about it. Career limiting
move.

9 Enhancement 2000.10.31 David X. Calloway
dxc@xprt.net

— Change:
There are two ways to resolve this: Define insertion (operator<<())
and extraction (operator>>()) for ci_strings yourself, or tack on
“.c_str()” to use operator<<(const char*):

To:
There are two ways to resolve this: Define operator<<() and
operator>>() for ci_strings yourself, or tack on “.c_str()” to
use operator<<(const char*) if your application’s strings don’t
have embedded nulls:

15 Enhancement 2000.08.13 Howard Hinnant
hinnant@metrowerks.com

— In Item 5, the discussion of fixed_vector’s templated assignment
operator shows how to make it satisfy the strong exception-safety
guarantee. Unfortunately, because this discussion comes before the
discussion of the various exception safety guarantees it might be taken to
imply that fixed_vector isn’t exception-safe at all, which isn’t true — it
does provide the basic guarantee. This is an artifact of the Items being
reordered into sections: Item 5 (GotW #16) was originally written after
Items 8 to 17 (GotW #8), and now the context needs to be pointed at
better. Here’s a quick ‘fix.’

In the final paragraph, change:
Alas, it does. Did you notice that the templated assignment operator is not
strongly exception-safe? Recall that it was defined as:

To:
Perhaps. Later in this book we’ll distinguish between various exception safety
guarantees (see Items 8 to 11, and page 38). Like the compiler-generated copy
assignment operator, our templated assignment operator provides the basic
guarantee, which can be perfectly fine. Just for a moment, though, let’s explore
what happens if we do want it to provide the strong guarantee, to make it
strongly exception-safe. Recall that the templated assignment operator was
defined as:

15 Correction 2000.08.12 Burkhard Kloss
bkloss@novalis2.demon.co.uk

— The example code using std::copy() tries to copy a range of six
objects into a target that’s only large enough to hold four objects. We
should only copy four objects.

Change:
copy(v.begin(), v.end(), w.begin());

To:
copy(v.begin(), v.begin()+4, w.begin());

Errata for Exceptional C++

Updated 2000.12.12 page 3

 First Reported

Page Severity Date By
Corrected
Printing # Description

16-7 Correction 1999.12.28 Tim Butler
tim@indra.com

2 The strongly exception-safe version now requires an explicitly written copy
constructor and copy assignment operator, implemented like the templated
versions. Add these functions.

 2000.02.21 Klaus Ahrens
ahrens@informatik.hu-berlin.de

2 Also, the non-default constructor is missing a memory allocation.

 2000.08.13 Howard Hinnant
hinnant@metrowerks.com

— Also, the original fix in printing #2 had another bug — a memory leak if an
exception occurs during the copy() — for which the simplest refix here is
to wrap the copy() in a try/catch.

Change:
template<typename O, size_t osize>
fixed_vector(const fixed_vector<O,osize>& other)
{
 copy(other.begin(),
 other.begin()+min(size,osize),
 begin());
}

To:
template<typename O, size_t osize>
fixed_vector(const fixed_vector<O,osize>& other)
 : v_(new T[size])
 { try {copy(other.begin(), other.begin()+min(size,osize), begin());}
 catch(...) { delete[] v_; throw; } }
fixed_vector(const fixed_vector<T,size>& other)
 : v_(new T[size])
 { try {copy(other.begin(), other.begin()+min(size,osize), begin());}
 catch(...) { delete[] v_; throw; } }

And change:
template<typename O, size_t osize>
fixed_vector<T,size>&
operator=(const fixed_vector<O,osize>& other)
{
 fixed_vector<T,size> temp(other); // does all the work
 Swap(temp); // this can’t throw
 return *this;
}

To:
template<typename O, size_t osize>
fixed_vector<T,size>& operator=(const fixed_vector<O,osize>& other) {
 fixed_vector<T,size> temp(other); // does all the work
 Swap(temp); return *this; // this can’t throw
}
fixed_vector<T,size>& operator=(const fixed_vector<T,size>& other) {
 fixed_vector<T,size> temp(other); // does all the work
 Swap(temp); return *this; // this can’t throw
}

21 Enhancement 2000.10.01 Thomas Petillon
petillon@topic.fr

— In the mid-page code example, the illustrated approach is of course only
correct if the list is passed by reference. To make this clearer:

Change:
const string&
FindAddr(/* ... */)

To:
const string&
FindAddr(/* pass emps and name by reference */)

And change:
if(/* found */)

To:
if(i->name == name)

31 Correction 2000.08.13 Howard Hinnant
hinnant@metrowerks.com

— At the end of the paragraph numbered “2.” change:
…must be unchanged.

To:
…must be destructible.

32,33 Typo 2000.07.23 hps — Somehow the first presented version of Stack has a member function
called Size() instead of Count(). For consistency with the later
versions, not to mention Cargill’s original article, it should be Count().

Errata for Exceptional C++

Updated 2000.12.12 page 4

 First Reported

Page Severity Date By
Corrected
Printing # Description

In one place on page 32 and four places on page 33, change:
Size

To:
Count

37 Enhancement 2000.01.25 Marc Briand
mbriand@mfi.com

2 In the Common Mistake box, the wording should make it clearer that I’m
criticizing code that cannot be made exception-safe because of the
underlying design, not just code that happens to be incidentally exception-
unsafe and only needs a local fix.

 Correction 2000.08.24 Andrew Koenig
ark@research.att.com

Bill Wade
wrwade@swbell.net

— Also, as Andy Koenig pointed out to me, it is possible to write a copy
assignment operator that is written in a such way that it must check for
self-assignment and yet is strongly exception-safe (or better). Consider a
copy assignment operator that is written in such a way that it must test for
self-assignment to work properly, yet uses only nonthrowing operations
such as builtin/pointer operations — clearly it meets not just the strong
guarantee, but even the nothrow guarantee! (Andy’s example was of a
class that implements an intrusive linked list, where assignment consists of
removing the object from its current list and adding it to the other object’s
list; the obvious implementation requires a self-assignment check, yet uses
only nonthrowing pointer operations.)

In the Guideline, change:
“Exception-unsafe” and “poor design” go hand in hand. If a piece of code
cannot be made exception-safe, that almost always is a signal of its poor
design. Example 1: A function with two different responsibilities is difficult to
make exception-safe. Example 2: A copy assignment operator that has to check
for self-assignment cannot be exception-safe.

To:
“Exception-unsafe” and “poor design” go hand in hand. If a piece of code
isn’t exception-safe, that’s generally okay and can simply be fixed. But if a
piece of code cannot be made exception-safe because of its underlying design ,
that almost always is a signal of its poor design. Example 1: A function with
two different responsibilities is difficult to make exception-safe. Example 2: A
copy assignment operator that is written in such a way that it must check for
self-assignment is probably not strongly exception-safe either.

In the next paragraph, change:
… cannot be exception-safe.

To:
… is probably not strongly exception-safe.

38 Enhancement 2000.02.10 Dave Abrahams
abrahams@mediaone.net

— URL moved, http://www.metabyte.com/~fbp/stl/eh_contract.html is now
http://www.stlport.org/doc/exception_saf ety.html

42 Correction 2000.08.13 Howard Hinnant
hinnant@metrowerks.com

— The box implies that the helper functions construct() and destroy()
are standard, when they aren’t.

In the first paragraph, change:
…use three helper functions that are directly drawn (or derived in spirit) from
the standard library:

To:
…use three helper functions, one of which (swap()) also appears in the
standard library:

Delete the final paragraph:
To find out more about these standard functions, take a few minutes to
examine how they’re written in the standard library implementation you’re
using. It’s a worthwhile and enlightening exercise.

42,
55,
56

Enhancement 2000.03.25 hps — This didn’t make a difference in any example in the book, but it’s a little
odd: The two-parameter destroy(FwdIter,FwdIter) version is
templatized to take any generic iterator, and yet it calls the one-parameter
destroy(T*) by passing it one of the iterators… which requires that
FwdIter must be a plain old pointer! This needlessly loses some of the
generality of templatizing on FwdIter. A simple change lets FwdIter be

Errata for Exceptional C++

Updated 2000.12.12 page 5

 First Reported

Page Severity Date By
Corrected
Printing # Description

generality of templatizing on FwdIter. A simple change lets FwdIter be
pretty much any iterator type, not just a pointer: In
destroy(FwdIter,FwdIter), change the call destroy(first) to
destroy(&*first). This will work in all cases, unless T provides an
operator&() that does not return a pointer which should occur rarely if
ever.

On pages 42, 55, and 56, in three places change the two-parameter
version of destroy() as above.

Change:
destroy(first);

To:
destroy(&*first);

See also GotW #68 at www.peerdirect.com/resources.

43 Typo 1999.12.23 Steve Vinoski
vinoski@iona.com

2 In paragraph 2, change:
StampImpl<T>

To:
StackImpl<T>

46,
58

Typo 2000.05.24 Sam Lindley
sam@redsnapper.net

— In the Guideline, I say “initialization is resource acquisition” instead of
“resource acquisition is initialization.”

Change:
“initialization is resource acquisition”

To:
“resource acquisition is initialization”

48 Enhancement 2000.06.16 Stan Brown
brahms@mindspring.com

— To make it more obvious that other is passed by value and hence
already a temporary object, change other to temp and add more
explanation.

Change:
If you’re one of those folks who like terse code, you can write the
operator=() canonical form more compactly as:
 Stack& operator=(Stack other)
 {
 Swap(other);
 return *this;
 }

To:
If you’re one of those folks who like terse code, you can write the
operator=() canonical form more compactly using pass-by-value to create
the temporary:
 Stack& operator=(Stack temp)
 {
 Swap(temp);
 return *this;
 }

49 Enhancement 2000.02.21 hps — In the paragraph following the bullets, it talks about ‘if we allowed iterators,’
but note that we do allow taking a reference into the container (via Top())
which is much the same thing.

Change:
If we were supporting iterators into this container, for instance, they would
never be invalidated (by a possible internal grow operation) if the insertion is
not completely successful.

To:
Any references returned from Top(), or iterators if we later chose to provide
them, would never be invalidated (by a possible internal grow operation) if the
insertion is not completely successful.

Errata for Exceptional C++

Updated 2000.12.12 page 6

 First Reported

Page Severity Date By
Corrected
Printing # Description

57,
58

Format 2000.07.24 hps — In the two Guidelines, the word “overloaded” should not be in code font.

64 Typo 1999.12.13 Jon Kalb
kalb@libertysoft.com

2 In paragraph 2, “addtion” should be “addition.”

70 Typo 2000.01.06 Douglas Gilbert
dgilbert@724.com

2 In the last line, “Item 19” should be “Item 39.”

72 Correction 2000.01.16 Eric Nagler
epn@eric-nagler.com

2 In the second Guideline box, compound assignment operators need not be
members.

 2000.01.24 hps 2 Also, these rules should be revised based on Scott Meyers’ article “How
Non-Member Functions Improve Encapsulation” (C/C++ Users Journal,
18(2), February 2000) and Exceptional C++’s own arguments about
nonmember functions in Items 31-34.

 2000.08.24 hps — The initial fix was slightly wrong (a typo: it said “member” where it meant
“nonmember”). I also forgot about the requirement that operators new,
new[], delete, and delete[] be static members. What is shown below
should now be correct.

Change:
– Unary operators are members.
– = () [] and -> must be members.
– The assignment operators (+= –= /= *= and so forth) must be members.
– All other binary operators are nonmembers.

To:
The standard requires that operators = () [] and -> must be members,
and class-specific operators new, new[], delete, and delete[] must be
static members. For all other functions:

if the function is operator>> or operator<< for stream I/O,
or if it needs type conversions on its leftmost argument,
or if it can be implemented using the class’s public interface alone,

make it a nonmember (and friend if needed in the first two cases)
if it needs to behave virtually,

add a virtual member function to provide the virtual behavior,
and implement it in terms of that

else
make it a member.

82,
90

Enhancement 2000.09.07 Thomas Petillon
petillon@topic.fr

— For consistency, once on page 82 and twice on page 90, “aggregation”
should be “containment.”

84,
86

Enhancement 2000.08.30 Thomas Petillon
petillon@topic.fr

— (For more details see the comment for pages 153-154.) In most of the
book I demonstrate the Pimpl idiom using struct for both the declaration
and the definition of the Pimpl class. On pages 84 and 86 I don’t, so for
consistency, once each in the first line of page 84 and in the middle of
page 86:

Change:
class GenericTableAlgorithmImpl* pimpl_; // MYOB

To:
struct GenericTableAlgorithmImpl* pimpl_; // MYOB

84,
87

Typo 2000.01.12 Steve Vinoski
vinoski@iona.com

2 In the example code comment “override Filter() and ProcessRow() do
implement a specific operation,” “do” should be “to.”

92,
95

Enhancement 2000.02.10 M. Thomas Groszko
tom.groszko@ait-mmii.com

— URL moved, www.oma.com is now www.objectmentor.com.

100 Typo 2000.09.07 Thomas Petillon
petillon@topic.fr

— The first line “using namespace std;” is redundant and shouldn’t be there.

Remove the first line:
using namespace std;

103 Typo 1999.12.27 Kjell Swedin
kjells@wrq.com

2 In the last line, “Lokos96” should be “Lakos 96.”

Errata for Exceptional C++

Updated 2000.12.12 page 7

 First Reported

Page Severity Date By
Corrected
Printing # Description

106 Enhancement 2000.09.07 Thomas Petillon
petillon@topic.fr

— The sense should be understood, but to be consistent with page 102, in
the second paragraph of Item 28:

Change:
…so that existing code that uses X is unaffected.

To:
…so that existing code that uses X is unaffected beyond requiring a simple
recompilation.

107 Enhancement 2000.02.10 M. Thomas Groszko
tom.groszko@ait-mmii.com

— URL moved, www.oma.com is now www.objectmentor.com.

107 Typo 2000.01.12 Steve Vinoski
vinoski@iona.com

2 In the first Solution paragraph, I refer to a future Item that is actually earlier
in the book.

Change:
I’ll save the whole lecture for a later Item, but my bottom line is simply that…

To:
See Item 24 for the whole exhausting lecture; the bottom line is simply that…

108 Correction 2000.04.30 Brian Danilko
bdanilko@formalsolutions.com.au

— A forward declaration is still needed for class B, because B is still
mentioned in some function declarations.

In the first paragraph, delete the text:
and in order to get rid of the b.h header entirely,

In the code, before the line “class C;” insert a new line:
class B;

110 Typo 2000.09.01 Tetsuroh Asahata
asahata@jp.ibm.com

— In the second paragraph, “at at time” should be “at a time.”

110 Typo 2000.10.06 hps — In Option 1, change:
(rather than #include the class’s actual declaration,

To:
(rather than #include the class’s actual definition,

110 Enhancement 2000.12.05 John McGuinness
John_McGuinness
@Mastercard.com

— In Option 2, change:
Option 2 (Score: 10 / 10): Put all private members into XImpl.

To:
Option 2 (Score: 10 / 10): Put all nonvirtual private members into XImpl.

Change the following paragraph:
There are some caveats, the first of which is the reason for my “almost” above.

To:
There are some caveats.

In the following bullet, change the paragraph:
Making a virtual function private is usually not a good idea, anyway. The point
of a virtual function is to allow a derived class to redefine it, and a common
redefinition technique is to call the base class’s version (not possible, if it’s
private) for most of the functionality.

To:
Virtual functions should normally be private, except that they have to be
protected if a derived class’s version needs to call the base class’s version (for
example, for a virtual DoWrite() persistence function).

113 Typo 2000.03.21 Klaus Ahrens
ahrens@informatik.hu-berlin.de

— In the paragraph following the output 1 and 8, “X2” should be “X.”

Change:
…inside each X2 object…

To:
…inside each X object…

Errata for Exceptional C++

Updated 2000.12.12 page 8

 First Reported

Page Severity Date By
Corrected
Printing # Description

118 Typo 2000.09.07 Thomas Petillon
petillon@topic.fr

— Footnote 10 should not exist. Delete it.

124 Typo 2000.01.12 Steve Vinoski
vinoski@iona.com

2 In the third-to-last line, “an” should be “and.”

127 Enhancement 2000.09.07 hps — At the top of the page, I present two options. Technically there’s one more
option: A using declaration for std::operator<<().

Change:
…have to write either “std::operator<<(std::cout, hello);”
which is exceedingly ugly, or “using namespace std;” which dumps all
the names in std into the current namespace and thus eliminates much of the
advantage of having namespaces in the first place.

To:
…have to write either “std::operator<<(std::cout, hello);”
which is exceedingly ugly, or “using std::operator<<;” which is
annoying and quickly becomes tedious if there are many operators, or “using
namespace std;” which dumps all the names in std into the current
namespace and thus eliminates much of the advantage of having namespaces in
the first place.

127 Typo 2000.08.12 hps — In the footnote, “article” should be “Item.”

Change:
…later in this article.

To:
…later in this Item.

132 Typo 2000.01.12 Steve Vinoski
vinoski@iona.com

2 In the paragraph starting “Finally,” change:
…is a member function of a:

To:
…is a member function of A:

133 Typo 2000.10.01 Thomas Petillon
petillon@topic.fr

— At the bottom of the page, change:
// Example 1: Will this compile?

To:
// Example 2: Will this compile?

141 Enhancement 1999.12.08 hps 2 Needs to stress more strongly that “heap” and “free store” are commonly
used terms, not words from the standard.

At the end of the final sentence, add:
; in particular, “heap” and “free store” are common and convenient shorthands
for distinguishing between two kinds of dynamically allocated memory

149 Typo 1999.12.08 hps 2 In the code example, change:
new (shared) T; // if T::T() throws, memory is leaked

To:
new (shared) Y; // if Y::Y() throws, memory is leaked

151,
157-8

Correction 2000.01.11 Douglas Gilbert
dgilbert@724.com

2 At the top of page 151, toward the end of the code example, add
“/*...*/” after “private:”.

At the bottom of page 157, add “/*...*/” after “private:”.

At the top of page 158, add the following new paragraph:
Possible issue: One of the /*...*/ areas (whether public, protected,
or private) had better include at least declaratio ns for copy construction and
copy assignment.

153,
154

Enhancement 2000.08.23 Thomas Petillon
petillon@topic.fr

— It’s perfectly legal and standards -conforming to forward-declare a class
as a struct and vice versa. In most of the book I’ve tended to avoid
doing that, though. Why? Only because some compilers are buggy and
still don’t get this right — e.g., by name-mangling a class and a struct
differently, which will cause the linker to fail to match them up. Such

Errata for Exceptional C++

Updated 2000.12.12 page 9

 First Reported

Page Severity Date By
Corrected
Printing # Description

differently, which will cause the linker to fail to match them up. Such
compiler bugs really are bugs and are wrong, but they’re common enough
that we might as well avoid the issue by not relying on this standard
feature. Sigh.

Specifically, in most of the book I demonstrate the Pimpl idiom using
struct for both the declaration and the definition of the Pimpl class. On
pages 153 and 154 I don’t, so for consistency, once each in Example 4(a)
and 4(b):

Change:
class C::CImpl { /* ... */ };

To:
struct C::CImpl { /* ... */ };

154 Enhancement 1999.12.08 hps 2 In the first paragraph following Example 4(b), after the first sentence add:
Better still, it means C::C() has to do less work to detect and recover from
constructor failures because pimpl_ is always automatically cleaned up.

158 Enhancement 1999.12.08 hps — ADD NEW MATERIAL: Before “The const auto_ptr Idiom” add the new
section “auto_ptr and Exception Safety,” included later in this errata
document.

160 Typo 2000.05.14 hps — In the second guideline, the word “to” is missing.

Change:
It’s all right use a …

To:
It’s all right to use a …

160 Correction 2000.08.24 Andrew Koenig
ark@research.att.com

— (See the discussion for the corresponding erratum for page 37.)

In the second paragraph, change:
If T::operator=() is exception-safe, it doesn’t need to test for self-
assignment. Period. Because we should always write exception-safe code, we
should never perform the self-assignment test, right?

To:
If T::operator=() is written using the create-a-temporary-and-swap idiom
(see page 47), it will be both strongly exception-safe and not have to test for
self-assignment. Period. Because we should normally prefer to write copy
assignment this way, we shouldn’t need to perform the self-assignment test,
right?

In the following Guideline, change:
… an exception-safe copy assignment operator is automatically safe for self-
assignment.

To:
… an copy assignment operator that uses the create-a-temporary-and-swap
idiom is automatically both strongly exception-safe and safe for self-
assignment.

161 Enhancement 2000.06.22 hps — In the footnote, at the end of the final paragraph (“Yikes…”), append:
Similarly, the following code is also not valid C++, in that it’s semantically
legal (a conforming compiler must accept it) but has undefined behavior (a
conforming compiler may legitimately emit code that will reformat your hard
drive). If the code were valid, it would also make the test meaningful:
 T t = t; // invalid, but it would make the test meaningful

164 Typo 2000.09.15 Thomas Petillon
petillon@topic.fr

— In the last paragraph, change:
Here, the slicing issue is that t.f() replaces…

To:
Here, the slicing issue is that t.DestroyAndReconstruct() replaces…

168 Typo 2000.05.24 Sam Lindley
sam@redsnapper.net

— In the last line, I say “initialization is resource acquisition” instead of
“resource acquisition is initialization.”

Errata for Exceptional C++

Updated 2000.12.12 page 10

 First Reported

Page Severity Date By
Corrected
Printing # Description

Change:
“initializat ion is resource acquisition”

To:
“resource acquisition is initialization”

169 Correction 2000.08.24 Andrew Koenig
ark@research.att.com

Bill Wade
wrwade@swbell.net

— (See the discussion for the corresponding erratum for page 37.)

At the bottom of the page, change:
Any copy assignment that must check for self-assignment is not exception-safe.

To:
Any copy assignment that is written in such a way that it must check for self-
assignment is probably not strongly exception-safe.

In the following Guideline, change:
… an exception-safe copy assignment operator is automatically safe for self-
assignment.

To:
… an copy assignment operator that uses the create-a-temporary-and-swap
idiom is automatically both strongly exception-safe and safe for self-
assignment.

172 Enhancement 2000.08.12 hps — C++ Report no longer exists, so remove it.

174 Correction 2000.12.12 Mark Handy
mhandy@neonsoft.com

— After the code example “T t(u);”, change:
This is direct initialization. The variable t is initialized directly from the value
of u by calling T::T(u).

To:
Assuming u is not the name of a type, this is direct initialization . The variable
t is initialized directly from the value of u by calling T::T(u). (If u is a type
name, this is a declaration even if there is also a variable named u in scope; see
above.)

176 Typo 2000.01.18 Douglas Gilbert
dgilbert@724.com

2 In the code example at the bottom of the page, in the comment “not the
same as f(int&),” “f(int&)” should be “g(int&).”

176 Enhancement 2000.08.21 Robert Dick
dickrp@EE.Princeton.EDU

— In the Guideline, change:
Avoid declaring const pass-by-value function parameters.

To:
Avoid const pass-by-value parameters in function declarations. Still make
the parameter const in the same function’s definition if it won’t be modified.

179 Typo 1999.11.26 hps 2 Vestigial plural.

Change:
(If, in looking for the “bonus” part, you said something about these two
functions being uncompilable—sorry, they’re quite legal C++. You were
probably thinking of putting the const to the left of the & or *, which would
have made the function body illegal.)

To:
(If, in looking for the “bonus” part, you said something about this function
being uncompilable—sorry, it’s quite legal C++. You were probably thinking
of putting the const to the left of the *, which would have made the function
body illegal.)

180-2 Format 1999.12.29 hps 2 Move page 182 to page 180 (so that 180/181 become 181/182) to put the
box closer to the text it accompanies.

181-3 Format 1999.12.29 hps — Restore the originally intended vertical whitespace to the Item 44 question
code to make it more readable.

185 Correction 1999.12.28 Chris Uzdavinis
chris@atdesk.com

2 The commentary for pa3 code line doesn’t take into account possible
friendship.

Change:
Error: Because b1 IS-NOT-AN A (because B is not publicly derived from A;

Errata for Exceptional C++

Updated 2000.12.12 page 11

 First Reported

Page Severity Date By
Corrected
Printing # Description

Error: Because b1 IS-NOT-AN A (because B is not publicly derived from A;
its derivation is private), this is illegal.

To:
Probable error: Because b1 IS-NOT-AN A (because B is not publicly derived
from A; its derivation is private), this is illegal unless g() is a friend of B.

188 Typo 2000.08.13 Philip Brabbin
pabrabbin@hotmail.com

— In Option 2, the #define directive is backwards.

Change:
#define int bool

To:
#define bool int

195 Typo 2000.08.12 hps — In the last line, change:
…but it run correctly.

To:
…but it will run correctly.

196 Typo 2000.01.01 George Reilly
george@reilly.org

2 At the bottom of the page, the Resize() function contains a spurious
memset() call that is incorrect and was not in the original question.

Delete:
memset(buffer_, ' ', newSize);

197 Typo 2000.10.01 Thomas Petillon
petillon@topic.fr

— In the expansion of the return statement, change:
", y = ") ,

To:
", used = ") ,

201 Enhancement 2000.08.12 hps — C++ Report no longer exists, so remove it.

203 Typo 2000.07.17 hps — Nathan’s last name is Myers, not Meyers. In the Meyers97 reference,
change “Meyers” to “Myers” in both places.

Index Enhancement 2000.07.01 Scott Meyers
smeyers@aristeia.com

— REPLACE INDEX: A more thorough index is included later in this errata
document. It replaces the index originally included in the first two printings.

Errata for Exceptional C++

Updated 2000.12.12 page 12

auto_ptr and Exception Safety

Finally, auto_ptr is sometimes essential to writing exception-safe code. Consider the following function:

 // Exception-safe?
 //
 String f()
 {
 String result;
 result = “some value”;
 cout << “some output”;
 return result;
 }

This function has two visible side effects: It emits some output, and it returns a String. A detailed examination
of exception safety is beyond the scope of this Item,1 but the goal we want to achieve is the strong exception-
safety guarantee, which boils down to ensuring that the function acts atomically—even if there are exceptions,
either all side effects happen or none of them do.

Although the above code comes pretty close to achieving the strong exception-safety guarantee, there’s still one
minor quibble, as illustrated by the following client code:

 String theName;
 theName = f();

The String copy constructor is invoked because the result is returned by value, and the copy assignment
operator is invoked to copy the result into theName. If either copy fails, then f() has completed all of its work
and all of its side effects (good), but the result has been irretrievably lost (oops).

Can we do better, and perhaps avoid the problem by avoiding the copy? For example, we could let the function
take a non-const String reference parameter and place the return value in that:

 // Better?
 //
 void f(String& result)
 {
 cout << “some output”;
 result = “some value”;
 }

This may look better, but it isn’t, because the assignment to result might still fail which leaves us with one
side effect complete and the other incomplete. Bottom line, this attempt doesn't really buy us much.

One way to solve the problem is to return a pointer to a dynamically allocated String, but the best solution is
to go a step farther and return the pointer in an auto_ptr:

 // Correct (finally!)
 //
 auto_ptr<String> f()
 {
 auto_ptr<String> result = new String;

 *result = “some value”;
 cout << “some output”;

1 See Items 8 to 19.

Errata for Exceptional C++

Updated 2000.12.12 page 13

 return result;
 // rely on transfer of
 // ownership; this can’t throw
 }

This does the trick, since we have effectively hidden all of the work to construct the second side effect (the
return value) while ensuring that it can be safely returned to the caller using only nonthrowing operations after
the first side effect has completed (the printing of the message). We know that, once the cout is complete, the
returned value will make it successfully into the hands of the caller, and be correctly cleaned up in all cases: If
the caller accepts the returned value, the act of accepting a copy of the auto_ptr causes the caller to take
ownership; and if the caller does not accept the returned value, say by ignoring the return value, the allocated
String will be automatically cleaned up as the temporary auto_ptr holding it is destroyed. The price for this
extra safety? As often happens when implementing strong exception safety, the strong safety comes at the
(usually minor) cost of some efficiency—here, the extra dynamic memory allocation. But, when it comes to
trading off efficiency for correctness, we usually ought to prefer the latter!

Make a habit of using smart pointers like auto_ptr in your daily work. auto_ptr neatly solves common
problems and will make your code safer and more robust, especially when it comes to preventing resource leaks
and ensuring strong exception safety. Because it’s standard, it’s portable across libraries and platforms, and so it
will be right there with you wherever you take your code.

Errata for Exceptional C++

Updated 2000.12.12 page 14

Updated Index

This updated index applies to all printings of Exceptional C++, and is the index included in the book from the
third printing onward.

#define,

see: macros
#include,

see: Pimpl idiom
#pragma, 113

A
AAssert, 192
Abrahams, Dave, 25, 38, 59
abstract class,

see: class, abstract
abstraction, 97-98
accumulate, 136-137

example use, 134
Adler, Darin, 136
aggregation,

see: containment
AInvariant, 193
AINVARIANT_GUARD, 193-194
Alexandrescu, Andrei, xiii
algorithms,
auto_ptr and, 156-157
standard library,

see: algorithms by name (e.g.,
copy)

alignment, 113, 117-118
allocation,

see: memory and resource
management

allocator, 59
ambiguity,

see: function overloading; name
lookup

Annotated C++ Reference Manual
(ARM),
alluded to, 187

Array, 193-194
arrays,

misuse of, 148
polymorphism and, 147
prefer vector or deque instead, 147-

148
assert, 195

example use, 30, 192-194
assign, 14-15
assignment

avoiding by constructing in place, 53
copy assignment, 9-17

not a template, 11-13
copy construction interaction, 165-172
iterator ranges and, 14-15
self-assignment,

exception safety and, 32, 37, 47,

160, 169-171
need to check for, 32, 37, 159-161,

169-171
swap and, 47, 170-171
templated, 11-17
to self,

see: assignment, self-assignment
Austern, Matt, 25, 59
auto, 174
auto_ptr, 150-158

see also: sources; sinks
algorithms and, 156-157
const auto_ptr idiom, 158
containers and, 156-157
example use, 66
members, 153-154, 157-158
ownership, 154-155, 157
passing, 154-157
Pimpl idiom and, 153-154
returning can improve exception safety,

66-67
usefulness of, 151-153
wrapping pointer data members, 153-154,

157-158

B
back_inserter,

example use, 1-2
bad_alloc, 145-150, 197
bad_cast, 186
base class,

see: class, base
basic_ostream, 101-102

example use, 9
basic_string, 5

see also: string(s)
c_str vs. implicit conversion to char*,

162-163
BasicProtocol, 80-82
bool, 187-190
Bridge pattern,

see: design patterns, Bridge

C
C,

object-oriented programming in, 124-125
C With Classes, 181-182
C++ Report, 25
caching precomputed values, 18
calloc, 143

relationship with new, 143
Cargill, Tom, 25-26, 30, 32
case-insensitive comparison

see: string(s), case-insensitive comparison

casts,
see also: const_cast,
dynamic_cast,
reinterpret_cast, static_cast
C vs. C++ casts, 183
void* and, 184

cat, abuse of, 38
catch,

see: exception safety
Chang, Juana,

PeerDirect Dessert Society and, v
char_traits, 5

see also: string(s), comparison
Cheers, Mark, v
ci_char_traits, 4-9
ci_string, 4-9
cin,

example use, 1-2
Clamage, Steve, xiii
class(es),

see also: name hiding
abstract, 90
base, 77
design considerations and guidelines,

69-98
empty base,

see also: empty base class
optimization

interface of,
see: Interface Principle

member vs. nonmember functions,
125
see also: Interface Principle

namespaces and, 136-140
one class, one responsibility,

see: cohesion
Pimpl idiom and,

see: Pimpl idiom
private members, hiding,

see: Pimpl idiom
virtual base,

see: inheritance, virtual
code paths,

see: control flow
code reuse,

see: reuse
cohesion, 67, 85, 94

see also: coupling
Colvin, Greg, 25, 59, 150
communications protocol example, 80-

82
comp.lang.c++.moderated newsgroup,

ix-xii, 25
comparison, case-insensitive

see: string(s), case-insensitive

Errata for Exceptional C++

Updated 2000.12.12 page 15

comparison
compilation dependencies, 87

see also: Pimpl idiom
compilation firewalls,

see: Pimpl idiom
complex, 79

example use, 76
Complex, 69-75
composition,

see: containment
conditions,

short -circuit evaluation and,
see: control flow

const, 175-181
see also: mutable
auto_ptr idiom, 158
cast,

see: const_cast
correctness, 175-181
iterator,

see: iterator(s), const_iterator
member functions, 177-181
return value, 72-73

const correctness,
see: const, correctness

const_cast, 176-187
undefined behavior and, 179
to work around absence of mutable,

178
to work around const-incorrect third-

party interfaces, 181-182
const_iterator,

see: iterator(s), const_iterator
construct, 41-42

used, 46, 48, 51
constructor,

see also: initialization
conversion by, 19, 70

see also: conversions, implicit
copy constructor, 9-17, 53-54

copy assignment interaction, 165-
172

elision by compiler, 190-191
not a template, 11-13

default, 15, 27-28, 53-54
exceptions and, 28, 58, 62
explicit, 19, 70, 162-163
failure of, 28
initialization list, 196
iterator ranges and, 14-15
templated, 11-17

containers,
see also: list; vector; etc.
auto_ptr and, 16-157
destructible, 38, 59
homogeneous, 13

containment,
generic, 94-95
inheritance vs., 82, 89-96, 107-108

control flow, 60-68
exceptions and,

see: exceptions, control flow and
short -circuit evaluation and, 61-62

conversions,
implicit, 19, 70, 162-163, 189
exceptions and, 62
explicit, 19, 70

Coplien, Jim, 109
copy,

example use, 1-2, 11-12, 30, 193
exception safety and, 15-17, 197

copy assignment,
see: assignment, copy assignment

copy construction,
see: constructor, copy constructor

coupling, 88, 92
see also: cohesion; Pimpl idiom

D
declaration,

definition vs., 85
forward, 85, 100-102

decoupling,
see: coupling; Pimpl idiom

default constructor
see: constructor, default

deallocate, 59
default parameters, 70, 78

example use, 75
#define,

see: macros
definition vs. declaration,

see: declaration, definition vs.
delegation,

see: containment
delete, 27, 29, 144-150

array delete[], 29, 57-58
example use, 31
placement, 148-149
relationship with free, 142-143
should never throw, 29, 57-58
virtual destructor and,

see: virtual destructor
dependencies,

see: coupling; Pimpl idiom; Interface
Principle

deque,
arrays vs., 147-148
exception guarantees and, 59-60

design patterns, 84-85
Bridge pattern, 84

Pimpl idiom vs., 84
Singleton, alluded to, 115
Strategy, 87
Template Method pattern, 84

public virtual functions vs., 84
destroy, 41-42, 55-56

used, 49, 52
destroy-and-reconstruct idiom, 163-172

exception safety and, 168
destructor, 29

operator delete and, 147

should never throw, 28-29, 55-58
virtual,

see: virtual destructor
Dewhurst, Steve, xiii
dynamic type,

see: type, dynamic
dynamic_cast, 181-187

inheritance and, 185-186
dynamically allocated memory,

see: memory and resource
management

E
Effective C++,

see: not this book
see also: this book

Einstein, Albert, 107
Employee, 17-23
empty base class optimization, 91
encapsulation, 97-98
end(), dereferencing,

see: iterators, dereferencing end()
enum, 188
EvaluateSalaryAndReturnName, 60-

68
evaluation order of function arguments,

197
exception handling, 97-98
exception neutral, 26,
exception safety, 25-68

affects class design, 17, 26, 35
assignment and, 15-17, 31
casting and, 186
destroy-and-reconstruct idiom and,

164, 168
dynamically allocated resources can

improve, 66-67
encapsulation and, 40
guarantees, 26, 38

basic guarantee, 38, 59
nothrow guarantee, 16, 38, 59

destructors and, 29, 55-58
swap and, 44, 47, 59

strong guarantee, 16, 38, 59
iterator invalidation and, 38
multiple side effects and, 64-68
not always necessary, 67
performance overhead and, 67

history of, 25
object lifetime and, 163-165
overhead and, 60
placement new and delete and, 148-

150
return by value and, 34-37, 66-68
side effects and, 34-37, 64-68
standard library and, 26, 59-60
swap and, 16, 43-44, 59, 170-171
throw() specification, 53
try/catch and, 39, 50

exception specifications, 54
Exceptional C++,

Errata for Exceptional C++

Updated 2000.12.12 page 16

see: this book
see also: not this book

exceptions,
control flow and, 61-63
multiple, 56

execution flow,
see: control flow

explicit, 19
extractor, using, 2

F
false,

see: bool
Fast Pimpl idiom, 111-118

see also: Pimpl idiom
FastArenaObject, 115-118
find, 23
find_if, 23
FindAddr, 17-23
firewall, compilation,

see: Pimpl idiom
FixedAllocator, 115-118
fixed_vector, 9-17
flow of execution,

see: control flow
Ford Escort, 151
forward declaration,

see: declaration, forward
forwarding function, 190-192
free,

relationship with delete, 142-143
free store, 142
French,

gratuitous use of, 90, 102
friend, friendship, 88, 123
Fulcher, Margot,

Superwoman and, v
function arguments,

evaluation order of, 197-199
function overloading, 120

see also: name lookup
functors,

alluded to, 23

G
garbage collection,

alluded to, 98
Generic Liskov Substitution Principle, 8
generic containment/delegation, 94-95
generic programming, 1-17, 88, 97-98

see also: standard library; templates
GenericTableAlgorithm, 83-88
GenericTableAlgorithmImpl, 86
Gibbons, Bill, 150
global data, 142
GLSP,

see: Generic Liskov Substitution
Principle

GotW,
see: Guru of the Week

GTAClient, 86

Guru of the Week (GotW), ix-xii, 25, 150,
158, 201-202

H
handle/body idiom,

see: Pimpl idiom
HAS-A, 107

see: containment
header files,

see: Pimpl idiom
heap, 142
Henney, Kevlin, 10
hiding names,

see: name hiding
Horstmann, Cay, xiii
Hyslop, Jim, xiii, 161

I
implicit conversions

see: conversions, implicit
#include,

see: Pimpl idiom
increment operator

see: operators, ++
infinite loop,

see: loop, infinite
inheritance, 97-98

deep hierarchies of, 81
dynamic_cast and, 185-186
empty base class optimization, 91
from char_traits, 7-8
IS-A,

see: Liskov Substitution Principle
IS-ALMOST-A, 95-96
Liskov Substitution Principle (LSP),

see: Liskov Substitution Principle
not for reuse, 81-82
overuse of, 88-96, 107-108
polymorphism and, 7-8
private, 44, 52-53
protected, 92
public, 80-82, 95-96

see also: Liskov Substitution Principle
static members and, 8
virtual, 91
WORKS-LIKE-A,

see: Liskov Substitution Principle
initialization,

copy initialization, 173-174
default initialization, 173-174
direct initialization, 173-174
of base classes, 196
of global data, 192-199
list,

see: constructor, initialization list
resource acquisition and,

see: resource acquisition is
initialization

static and, 192-199
inline, 20, 191-192
Interface Principle, 122-133

dependencies and, 131-133
iosfwd, 101
iostream, 100-102
IS-A,

see: Liskov Substitution Principle
IS-IMPLEMENTABLE-IN-TERMS-OF,

94-95
IS-IMPLEMENTED-IN-TERMS-OF,

81-82, 89-96
private inheritance vs. containment,

44, 52-53, 89-96
istream_iterator, 1-2
iterator(s), 1-3

algorithms and, 2
assignment and, 14-15
common mistakes, 1-3
const_iterator, 178

example use, 22
construction and, 14-15
dereferencing end(), 2
exceptions and, 59
lifetime,

see: iterator(s), validity
modifying,

why --end() may be illegal, 2-3
ranges, 2-3
validity, 2-3

exception safety and, 38

J
Jagger, Jon, 10
Jones, Morgan,

rituals of EMACS worship and, v

K
Karabegovic, Justin, v
Kehoe, Brendan, xiii
Koenig, Andrew, 120, 162
Koenig name lookup, 119-121, 125-130

L
Lafferty, Debbie, xiii
Lajoie, Josée, xi
Lang, Marina, xiii
layering,

see: containment
less, 161
lifetime,

of iterators,
see: iterator(s), validity

of objects,
see: object(s), lifetime

of references, 21
Lippman, Stan, xi
Liskov, Barbara, 8
Liskov Substitution Principle, 8, 81-82,

95-96, 107-108
IS-ALMOST-A vs., 95-96
protected inheritance and, 92

list, 36
example use, 17-18, 22, 99, 103

Errata for Exceptional C++

Updated 2000.12.12 page 17

Loi, Duk, v
Long, Ian, v
loop, infinite,

see: infinite loop
LSP,

see: Liskov Substitution Principle
Lukov, Violetta, v

M
Machiavelli, Niccolo,

alluded to, 159-161
macros,

evils of, 74, 188
main,

does not return void, 76-77
return and, 77
standard signatures, 77

malloc, 111, 114, 117
relationship with new, 142-143

managing dependencies,
see: coupling, Pimpl idiom

Mancl, Dennis, xiii
map,

pointers and, 161
max_align, 118
member functions,
const, 177-181
nonmember vs., 125

see also: Interface Principle
templated,

see: templates, member functions
memory and resource management, 27,

144-150
avoiding leaks, 27
dynamically allocated resources can

improve exception safety, 66-67
encapsulating for better exception

safety, 40-52
fixed-size allocators, 114

Meyers, Scott, ix, xi, xiii, 25, 29, 147,
171

modules,
alluded to, 97-98

Moo, Barbara, 162
multiparadigm language, 97-98
Murphy, Edward A., Jr.

alluded to, 159-160
mutable, 178-182, 184

workaround using const_cast, 178
Myers Example, 128-130
Myers, Nathan, 8, 91, 128
MyList, 89-96
MySet, MySet1, MySet2, 89-96
MySet3, 94-95

N
name hiding, 77, 133-140

base classes and, 134-135
explicit scope resolution and, 135

name lookup, 119-140
namespaces, 119-140

see also: name hiding; using
class design and, 136-140
indirect interactions between, 121, 130

new, 27-28, 111, 114, 117, 144-150
array new[], 27, 57-58
default constructor and, 41
example use, 27-28, 30
placement, 42

destroy-and-reconstruct idiom, 163-172
exception from, 148-150

relationship with malloc, 142-143
new-style casts,

see: casts, C vs. C++ casts
NewCopy, 30-33
Nguyen, Kim,

tunnels and, v
not this book,

see: Effective C++

O
object(s),

destructible, 38
identity, 159-161
lifetime, 163-172

exception safety and, 163-164, 168
slicing, 164, 167-170
temporary

see: temporary objects
object-oriented programming, 97-98

C and, 124-125
not just about inheritance,

see: inheritance, overuse of
without classes, 124-125

Occam, William of, 87
Occam’s Razor, 87
one class, one responsibility,

see: cohesion
opaque pointer,

see: Pimpl idiom
operator delete, 27-28, 59, 142-150

example use, 41
virtual destructor and, 147

operator new, 27-28, 142-150
example use, 41

operators,
+, 9, 71-73

example use, 133-134, 175
++, 18-20, 73-74
+=, 71
=, 72, 165-172
&, 160, 163, 165
!=, 160
(), 72, 87
[], 72
->, 72
<<, 9, 73, 130-133

example use, 100
exceptions and, 62, 64
virtual Print() and, 130-133

>>, 9
example use, 1-2

assignment,
see: assignment

chaining, 72-73
conversion,

see: conversions
delete,

see: delete; operator delete
member vs. nonmember, 72-73
new,

see: new; operator new
implementing related, 71-72
preincrement,

see: operators, ++
postincrement,

see: operators, ++
ostream, 100-102

example use, 100, 130
Overload magazine, 10
overload resolution, 187-190

see also: function overloading; name
lookup

overriding vs. overloading, 77-79
see also: virtual functions

P
Palmer, Larry,

Against All Odds and, v
pass by reference, 190-191
pass by value,

see also: temporary objects
const and, 176

patterns,
see: design patterns

PeerDirect, v, xi-xiii, 103, 110, 201
Pimpl idiom, 84-85, 99-118

see also: Fast Pimpl idiom
auto_ptr and, 153-154
back pointers and, 111
Bridge pattern vs., 84
overhead, 111-118
performance, 111-118
virtual functions and, 110

pivot,
during sorting, 157

placement delete,
see: delete, placement

placement new,
see: new, placement

pointer,
opaque,

see: Pimpl idiom
Polygon, 175-181
polymorphism, 97-98

see also: Liskov Substitution Principle
arrays and, 147
exception specifications and, 54
virtual destructor and, 8, 77
virtual functions and, 8, 82

Pop Goes the Weasel,
reference to, 34

postincrement operator

Errata for Exceptional C++

Updated 2000.12.12 page 18

see: operators, ++
#pragma, 113
precomputing values, 18, 23
pregnant,

a little bit, 96
preincrement operator

see: operators, ++
private inheritance,

see: inheritance, private
programming, generic

see: generic programming
protected,

members, 53, 82
public inheritance,

see: inheritance, public

Q
queue, 94

R
realloc, 143

relationship with new, 143
recomputing values,

see: precomputing values
Rectangle example, 95
references,

see also: temporary objects, pass-by-
value and
validity, 21

reinterpret_cast, 181-187
example use, 112, 117-118

reserved names, 74
resource acquisition is initialization, 46,

168
resource management,

see: memory and resource
management

return,
by reference, 20-21
by value, 20-21, 34-37

exception safety and, 66-68
main and, 77

reuse,
analyzing reusability, 53-54
benefits of, 22-23
inheritance not for, 81-82, 96
standard library and, 22-23, 70

Rumsby, Steve, 150

S
scope resolution, 135
self-assignment,

see: assignment, self-assignment
Shakespeare, William,

gratuitous quotes from, 163
SharedMemory, 145-150
Shelley, Doug,

boom in global coffee industry and, v
short -circuit evaluation,

see: control flow

sink functions, 154-157
slicing,

see: object(s), slicing
smart pointers,

see: auto_ptr
sort, 157

alluded to, 23
source functions, 154-157
Square example, 95
Stack, 26-54

copy constructor, 30-31, 46, 51
copy assignment operator, 30-32, 47-48,

51
Count, 33, 48, 51
default constructor, 27-28, 45-46, 51
destructor, 29

eliminated, 46
NewCopy and, 30-31
Pop, 34-37, 49, 52

division of responsibilities with Top,
36-37

Push, 33-34, 48-49, 51
requirements on contained type, 39, 53-54
Top, 36-37, 49, 51

stack, 142
stack, 36, 94
StackImpl, 40-44
Swap, 40, 43-44
used, 45-54

standard library,
exception safety and,

see: exception safety, standard library
and

reusing code from, 22-23
static,

operators new and delete should be, 146
return by reference and, 21

static data, 142
static type,

see: type, static
static_cast, 181-187

example use, 41, 192, 195
Strategy pattern,

see: design patterns, Strategy
streams,

see also: operators, >>; ostream
exception safety and, 64-65, 68

strcmp,
see: string, comparison

string,
see: basic_string; string(s)

string(s),
case-insensitive comparison, 4-9
comparison, 4-9

done in object or function, 6-7
c_str vs. implicit conversion to char*,

162-163
Stroustrup, Bjarne, xi, xiii, 162, 181-182
Sumner, Jeff, 103

dazzling code magery and, v
swap, 42, 59

see also: exception-safety, swap and
elegant copy assignment and, 47-48

T
template(s), 97-98

see also: generic programming
member functions, 9-17

see also: assignment, templated;
constructor, templated

requirements on template parameter
types, 39

templated assignment operator, 11-13
templated constructor, 11-13

Template Method pattern,
see: design patterns, Template Method

temporary objects, 17-23, 71
elision by compiler, 190-191
exceptions and, 62-63
modifying, 2-3
of builtin type, 2-3
pass by value and, 18, 71
recomputation and, 18
return -by-value and, 20-21

terminate, 28
this != other test, 159-161

see also: assignment, self-assignment
this book,

see: Exceptional C++
throw,

see: exception safety
toupper,

example use, 5-6
traits, 4-9
true,

see: bool
try,

see: exception safety
type,

dynamic, 79
static, 79

typedef, 187-188
typeid,

example use, 192-194

U
underscores,

see: reserved names
USES-A,

see: containment; HAS-A
using declarations and directives,

example use, 75, 89
forwarding function vs., 92
private and, 78
to avoid name hiding, 135

V
vector,

arrays vs., 147-148
example use, 1-2, 175
exception guarantees and, 59-60

Errata for Exceptional C++

Updated 2000.12.12 page 19

iterator,
can be T*, 2-3
invalidation by insert(), 3
is random-access, 3

virtual base class,
see: inheritance, virtual

virtual destructor, 7-8, 77, 82
example use, 80, 83
operator delete and, 147
slicing and, 167

virtual functions, 7-8, 53, 75-79, 90

avoid public, 84
default parameters and, 78
exception specifications and, 54
Pimpl idiom and, 110

virtual inheritance,
see: inheritance, virtual

void,
main and,

see: main, does not return void
void*,

casts and, 184

W
wchar_t,

alluded to, 187
West, Declan, v
Wilson, Eric,

“in the beginning” and, v
Wizard of Oz, The,

reference to, 194
WORKS-LIKE-A,

see: Liskov Substitution Principle

— end of document —

