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Priority Queues and Heapsort

M ANY APPLICATIONS REQUIRE that we process records with
keys in order, but not necessarily in full sorted order and not

necessarily all at once. Often, we collect a set of records, then process
the one with the largest key, then perhaps collect more records, then
process the one with the current largest key, and so forth. An appropri-
ate data structure in such an environment supports the operations of
inserting a new element and deleting the largest element. Such a data
structure is called a priority queue. Using priority queues is similar
to using queues (remove the oldest) and stacks (remove the newest),
but implementing them efficiently is more challenging. The priority
queue is the most important example of the generalized queue ADT
that we discussed in Section 4.7. In fact, the priority queue is a proper
generalization of the stack and the queue, because we can implement
these data structures with priority queues, using appropriate priority
assignments (see Exercises 9.3 and 9.4).

Definition 9.1 A priority queue is a data structure of items with keys
which supports two basic operations: insert a new item, and remove
the item with the largest key.

Applications of priority queues include simulation systems, where the
keys might correspond to event times, to be processed in chronologi-
cal order; job scheduling in computer systems, where the keys might
correspond to priorities indicating which users are to be served first;
and numerical computations, where the keys might be computational
errors, indicating that the largest should be dealt with first.
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We can use any priority queue as the basis for a sorting algorithm
by inserting all the records, then successively removing the largest to
get the records in reverse order. Later on in this book, we shall see
how to use priority queues as building blocks for more advanced algo-
rithms. In Part 5, we shall see how priority queues are an appropriate
abstraction for helping us understand the relationships among several
fundamental graph-searching algorithms; and in Part 6, we shall de-
velop a file-compression algorithm using routines from this chapter.
These are but a few examples of the important role played by the
priority queue as a basic tool in algorithm design.

In practice, priority queues are more complex than the simple
definition just given, because there are several other operations that
we may need to perform to maintain them under all the conditions
that might arise when we are using them. Indeed, one of the main
reasons that many priority-queue implementations are so useful is their
flexibility in allowing client application programs to perform a variety
of different operations on sets of records with keys. We want to build
and maintain a data structure containing records with numerical keys
(priorities) that supports some of the following operations:
• Construct a priority queue from N given items.
• Insert a new item.
• Remove the maximum item.
• Change the priority of an arbitrary specified item.
• Remove an arbitrary specified item.
• Join two priority queues into one large one.

If records can have duplicate keys, we take “maximum” to mean “any
record with the largest key value.” As with many data structures, we
also need to add a standard test if empty operation and perhaps a copy
(clone) operation to this set.

There is overlap among these operations, and it is sometimes con-
venient to define other, similar operations. For example, certain clients
may need frequently to find the maximum item in the priority queue,
without necessarily removing it. Or, we might have an operation to
replace the maximum item with a new item. We could implement
operations such as these using our two basic operations as building
blocks: Find the maximum could be remove the maximum followed
by insert, and replace the maximum could be either insert followed by
remove the maximum or remove the maximum followed by insert. We
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Program 9.1 Basic priority-queue ADT

This interface defines operations for the simplest type of priority queue:
initialize, test if empty, add a new item, remove the largest item. Elemen-
tary implementations of these methods using arrays and linked lists can
require linear time in the worst case, but we shall see implementations
in this chapter where all operations are guaranteed to run in time at
most proportional to the logarithm of the number of items in the queue.
The constructor’s parameter specifies the maximum number of items
expected in the queue and may be ignored by some implementations.

class PQ // ADT interface

{ // implementations and private members hidden

PQ(int)

boolean empty()

void insert(ITEM)

ITEM getmax()

};

normally get more efficient code, however, by implementing such op-
erations directly, provided that they are needed and precisely specified.
Precise specification is not always as straightforward as it might seem.
For example, the two options just given for replace the maximum are
quite different: the former always makes the priority queue grow tem-
porarily by one item, and the latter always puts the new item on the
queue. Similarly, the change priority operation could be implemented
as a remove followed by an insert, and construct could be implemented
with repeated uses of insert.

For some applications, it might be slightly more convenient to
switch around to work with the minimum, rather than with the maxi-
mum. We stick primarily with priority queues that are oriented toward
accessing the maximum key. When we do need the other kind, we shall
refer to it (a priority queue that allows us to remove the minimum item)
as a minimum-oriented priority queue.

The priority queue is a prototypical abstract data type (ADT) (see
Chapter 4): It represents a well-defined set of operations on data, and
it provides a convenient abstraction that allows us to separate appli-
cations programs (clients) from various implementations that we will
consider in this chapter. The interface given in Program 9.1 defines the
most basic priority-queue operations; we shall consider a more com-
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plete interface in Section 9.5. Strictly speaking, different subsets of
the various operations that we might want to include lead to different
abstract data structures, but the priority queue is essentially character-
ized by the remove-the-maximum and insert operations, so we shall
focus on them.

Different implementations of priority queues afford different per-
formance characteristics for the various operations to be performed,
and different applications need efficient performance for different sets
of operations. Indeed, performance differences are, in principle, the
only differences that can arise in the abstract-data-type concept. This
situation leads to cost tradeoffs. In this chapter, we consider a vari-
ety of ways of approaching these cost tradeoffs, nearly reaching the
ideal of being able to perform the remove the maximum operation in
logarithmic time and all the other operations in constant time.

First, in Section 9.1, we illustrate this point by discussing a few
elementary data structures for implementing priority queues. Next,
in Sections 9.2 through 9.4, we concentrate on a classical data struc-
ture called the heap, which allows efficient implementations of all the
operations but join. In Section 9.4, we also look at an important
sorting algorithm that follows naturally from these implementations.
In Sections 9.5 and 9.6, we look in more detail at some of the prob-
lems involved in developing complete priority-queue ADTs. Finally,
in Section 9.7, we examine a more advanced data structure, called the
binomial queue, that we use to implement all the operations (including
join) in worst-case logarithmic time.

During our study of all these various data structures, we shall
bear in mind both the basic tradeoffs dictated by linked versus sequen-
tial memory allocation (as introduced in Chapter 3) and the problems
involved with making packages usable by applications programs. In
particular, some of the advanced algorithms that appear later in this
book are client programs that make use of priority queues.

Exercises

.9.1 A letter means insert and an asterisk means remove the maximum in
the sequence

P R I O * R * * I * T * Y * * * Q U E * * * U * E.

Give the sequence of values returned by the remove the maximum operations.

.9.2 Add to the conventions of Exercise 9.1 a plus sign to mean join and
parentheses to delimit the priority queue created by the operations within
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them. Give the contents of the priority queue after the sequence

( ( ( P R I O *) + ( R * I T * Y * ) ) * * * ) + ( Q U E * * * U * E ).

◦9.3 Explain how to use a priority queue ADT to implement a stack ADT.

◦9.4 Explain how to use a priority queue ADT to implement a queue ADT.

9.1 Elementary Implementations

The basic data structures that we discussed in Chapter 3 provide us
with numerous options for implementing priority queues. Program 9.2
is an implementation that uses an unordered array as the underlying
data structure. The find the maximum operation is implemented by
scanning the array to find the maximum, then exchanging the maxi-
mum item with the last item and decrementing the queue size. Fig-
ure 9.1 shows the contents of the array for a sample sequence of
operations. This basic implementation corresponds to similar im-
plementations that we saw in Chapter 4 for stacks and queues (see
Programs 4.7 and 4.17) and is useful for small queues. The significant
difference has to do with performance. For stacks and queues, we
were able to develop implementations of all the operations that take
constant time; for priority queues, it is easy to find implementations
where either the insert or the remove the maximum operations takes
constant time, but finding an implementation where both operations
will be fast is a more difficult task, and it is the subject of this chapter.

We can use unordered or ordered sequences, implemented as
linked lists or as arrays. The basic tradeoff between leaving the items
unordered and keeping them in order is that maintaining an ordered
sequence allows for constant-time remove the maximum and find the
maximum but might mean going through the whole list for insert,
whereas an unordered sequence allows a constant-time insert but might
mean going through the whole sequence for remove the maximum and
find the maximum. The unordered sequence is the prototypical lazy
approach to this problem, where we defer doing work until necessary
(to find the maximum); the ordered sequence is the prototypical eager
approach to the problem, where we do as much work as we can
up front (keep the list sorted on insertion) to make later operations
efficient. We can use an array or linked-list representation in either
case, with the basic tradeoff that the (doubly) linked list allows a
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B    B
E    B E
*  E  B
S    B S
T    B S T
I    B S T I
*  T  B S I
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*  S  B N I F I
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U    B N I F I O U
*  U  B N I F I O
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*  T  B N I F I O
*  O  B N I F I
*  N  B I I F
*  I  B F I
*  I  B F
*  F  B
*  B  

Figure 9.1
Priority-queue example (un-

ordered array representa-
tion)

This sequence shows the result of
the sequence of operations in the
left column (top to bottom), where
a letter denotes insert and an aster-
isk denotes remove the maximum.
Each line displays the operation,
the letter removed for the remove-
the-maximum operations, and the
contents of the array after the oper-
ation.

Program 9.2 Array implementation of a priority queue

This implementation, which may be compared with the array imple-
mentations for stacks and queues that we considered in Chapter 4 (see
Programs 4.7 and 4.17), keeps the items in an unordered array. Items
are added to and removed from the end of the array, as in a stack.

class PQ
{

static boolean less(ITEM v, ITEM w)

{ return v.less(w); }

static void exch(ITEM[] a, int i, int j)

{ ITEM t = a[i]; a[i] = a[j]; a[j] = t; }

private ITEM[] pq;

private int N;

PQ(int maxN)

{ pq = new ITEM[maxN]; N = 0; }

boolean empty()

{ return N == 0; }

void insert(ITEM item)

{ pq[N++] = item; }

ITEM getmax()
{ int max = 0;

for (int j = 1; j < N; j++)

if (less(pq[max], pq[j])) max = j;

exch(pq, max, N-1);

return pq[--N];

}

};

constant-time remove (and, in the unordered case, join), but requires
more space for the links.

The worst-case costs of the various operations (within a constant
factor) on a priority queue of size N for various implementations are
summarized in Table 9.1.

Developing a full implementation requires paying careful atten-
tion to the interface—particularly to how client programs access nodes
for the remove and change priority operations, and how they access
priority queues themselves as data types for the join operation. These



P R I O R I T Y Q U E U E S A N D H E A P S O R T §9.1 379

Table 9.1 Worst-case costs of priority-queue operations

Implementations of the priority queue ADT have widely varying perfor-
mance characteristics, as indicated in this table of the worst-case time
(within a constant factor for large N) for various methods. Elementary
methods (first four lines) require constant time for some operations and
linear time for others; more advanced methods guarantee logarithmic-
or constant-time performance for most or all operations.

remove find change
insert maximum remove maximum priority join

ordered array N 1 N 1 N N

ordered list N 1 1 1 N N

unordered array 1 N 1 N 1 N

unordered list 1 N 1 N 1 1

heap lgN lgN lgN 1 lgN N

binomial queue lgN lgN lgN lgN lgN lgN

best in theory 1 lgN lgN 1 1 1

issues are discussed in Sections 9.4 and 9.7, where two full implemen-
tations are given: one using doubly linked unordered lists, and another
using binomial queues.

The running time of a client program using priority queues de-
pends not just on the keys but also on the mix of the various operations.
It is wise to keep in mind the simple implementations because they
often can outperform more complicated methods in many practical
situations. For example, the unordered-list implementation might be
appropriate in an application where only a few remove the maximum
operations are performed, as opposed to a huge number of insertions,
whereas an ordered list would be appropriate if a huge number of find
the maximum operations are involved, or if the items inserted tend to
be larger than those already in the priority queue.

Exercises

.9.5 Criticize the following idea: To implement find the maximum in con-
stant time, why not keep track of the maximum value inserted so far, then
return that value for find the maximum?
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.9.6 Give the contents of the array after the execution of the sequence of
operations depicted in Figure 9.1.

9.7 Provide an implementation for the basic priority-queue interface that
uses an ordered array for the underlying data structure.

9.8 Provide an implementation for the basic priority-queue interface that
uses an unordered linked list for the underlying data structure. Hint: See
Programs 4.8 and 4.16.

9.9 Provide an implementation for the basic priority-queue interface that
uses an ordered linked list for the underlying data structure. Hint: See Pro-
gram 3.11.

◦9.10 Consider a lazy implementation where the list is ordered only when a
remove the maximum or a find the maximum operation is performed. Inser-
tions since the previous sort are kept on a separate list, then are sorted and
merged in when necessary. Discuss advantages of such an implementation
over the elementary implementations based on unordered and ordered lists.

• 9.11 Write a performance driver client program that uses insert to fill a
priority queue, then uses getmax to remove half the keys, then uses insert
to fill it up again, then uses getmax to remove all the keys, doing so multiple
times on random sequences of keys of various lengths ranging from small to
large; measures the time taken for each run; and prints out or plots the average
running times.

• 9.12 Write a performance driver client program that uses insert to fill a
priority queue, then does as many getmax and insert operations as it can do
in 1 second, doing so multiple times on random sequences of keys of various
lengths ranging from small to large; and prints out or plots the average number
of getmax operations it was able to do.

9.13 Use your client program from Exercise 9.12 to compare the unordered-
array implementation in Program 9.2 with your unordered-list implementa-
tion from Exercise 9.8.

9.14 Use your client program from Exercise 9.12 to compare your ordered-
array and ordered-list implementations from Exercises 9.7 and 9.9.

• 9.15 Write an exercise driver client program that uses the methods in our
priority-queue interface Program 9.1 on difficult or pathological cases that
might turn up in practical applications. Simple examples include keys that are
already in order, keys in reverse order, all keys the same, and sequences of keys
having only two distinct values.

9.16 (This exercise is 24 exercises in disguise.) Justify the worst-case bounds
for the four elementary implementations that are given in Table 9.1, by ref-
erence to the implementation in Program 9.2 and your implementations from
Exercises 9.7 through 9.9 for insert and remove the maximum; and by infor-
mally describing the methods for the other operations. For remove, change
priority, and join, assume that you have a handle that gives you direct access
to the referent.
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Figure 9.2
Array representation of a

heap-ordered complete
binary tree

1 2 3 4 5 6 7 8 9 10 11 12
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Considering the element in posi-
tion bi/2c in an array to be the
parent of the element in position
i, for 2 ≤ i ≤ N (or, equiva-
lently, considering the ith element
to be the parent of the 2ith ele-
ment and the (2i + 1)st element),
corresponds to a convenient rep-
resentation of the elements as a
tree. This correspondence is equiv-
alent to numbering the nodes in a
complete binary tree (with nodes
on the bottom as far left as possi-
ble) in level order. A tree is heap-
ordered if the key in any given
node is greater than or equal to
the keys of that node’s children. A
heap is an array representation of a
complete heap-ordered binary tree.
The ith element in a heap is larger
than or equal to both the 2ith and
the (2i+ 1)st elements.

9.2 Heap Data Structure

The main topic of this chapter is a simple data structure called the
heap that can efficiently support the basic priority-queue operations.
In a heap, the records are stored in an array such that each key is
guaranteed to be larger than the keys at two other specific positions.
In turn, each of those keys must be larger than two more keys, and so
forth. This ordering is easy to see if we view the keys as being in a
binary tree structure with edges from each key to the two keys known
to be smaller.

Definition 9.2 A tree is heap-ordered if the key in each node is
larger than or equal to the keys in all of that node’s children (if any).
Equivalently, the key in each node of a heap-ordered tree is smaller
than or equal to the key in that node’s parent (if any).

Property 9.1 No node in a heap-ordered tree has a key larger than
the key at the root.

We could impose the heap-ordering restriction on any tree. It is partic-
ularly convenient, however, to use a complete binary tree. Recall from
Chapter 3 that we can draw such a structure by placing the root node
and then proceeding down the page and from left to right, connect-
ing two nodes beneath each node on the previous level until N nodes
have been placed. We can represent complete binary trees sequentially
within an array by simply putting the root at position 1, its children at
positions 2 and 3, the nodes at the next level in positions 4, 5, 6 and
7, and so on, as illustrated in Figure 9.2.

Definition 9.3 A heap is a set of nodes with keys arranged in a
complete heap-ordered binary tree, represented as an array.

We could use a linked representation for heap-ordered trees, but com-
plete trees provide us with the opportunity to use a compact array
representation where we can easily get from a node to its parent and
children without needing to maintain explicit links. The parent of
the node in position i is in position bi/2c, and, conversely, the two
children of the node in position i are in positions 2i and 2i+ 1. This
arrangement makes traversal of such a tree even easier than if the tree
were implemented with a linked representation, because, in a linked
representation, we would need to have three links associated with each
key to allow travel up and down the tree (each element would have
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one pointer to its parent and one to each child). Complete binary trees
represented as arrays are rigid structures, but they have just enough
flexibility to allow us to implement efficient priority-queue algorithms.

We shall see in Section 9.3 that we can use heaps to implement
all the priority-queue operations (except join) such that they require
logarithmic time in the worst case. The implementations all operate
along some path inside the heap (moving from parent to child toward
the bottom or from child to parent toward the top, but not switching
directions). As we discussed in Chapter 3, all paths in a complete tree
ofN nodes have about lgN nodes on them: there are aboutN/2 nodes
on the bottom, N/4 nodes with children on the bottom, N/8 nodes
with grandchildren on the bottom, and so forth. Each generation has
about one-half as many nodes as the next, and there are at most lgN
generations.

We can also use explicit linked representations of tree structures
to develop efficient implementations of the priority-queue operations.
Examples include triply linked heap-ordered complete trees (see Sec-
tion 9.5), tournaments (see Program 5.19), and binomial queues (see
Section 9.7). As with simple stacks and queues, one important reason
to consider linked representations is that they free us from having to
know the maximum queue size ahead of time, as is required with an
array representation. In certain situations, we also can make use of
the flexibility provided by linked structures to develop efficient algo-
rithms. Readers who are inexperienced with using explicit tree struc-
tures are encouraged to read Chapter 12 to learn basic methods for the
even more important symbol-table ADT implementation before tack-
ling the linked tree representations discussed in the exercises in this
chapter and in Section 9.7. However, careful consideration of linked
structures can be reserved for a second reading, because our primary
topic in this chapter is the heap (linkless array representation of the
heap-ordered complete tree).

Exercises
.9.17 Is an array that is sorted in descending order a heap?

◦9.18 The largest element in a heap must appear in position 1, and the second
largest element must be in position 2 or position 3. Give the list of positions in
a heap of size 15 where the kth largest element (i) can appear, and (ii) cannot
appear, for k = 2, 3, 4 (assuming the values to be distinct).

• 9.19 Answer Exercise 9.18 for general k, as a function of N , the heap size.
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• 9.20 Answer Exercises 9.18 and 9.19 for the kth smallest element.

9.3 Algorithms on Heaps

The priority-queue algorithms on heaps all work by first making a
simple modification that could violate the heap condition, then trav-
eling through the heap, modifying the heap as required to ensure that
the heap condition is satisfied everywhere. This process is sometimes
called heapifying, or just fixing the heap. There are two cases. When
the priority of some node is increased (or a new node is added at the
bottom of a heap), we have to travel up the heap to restore the heap
condition. When the priority of some node is decreased (for example,
if we replace the node at the root with a new node), we have to travel
down the heap to restore the heap condition. First, we consider how
to implement these two basic methods; then, we see how to use them
to implement the various priority-queue operations.

If the heap property is violated because a node’s key becomes
larger than that node’s parent’s key, then we can make progress toward
fixing the violation by exchanging the node with its parent. After the
exchange, the node is larger than both its children (one is the old
parent, and the other is smaller than the old parent because it was a
child of that node) but may still be larger than its parent. We can fix
that violation in the same way, and so forth, moving up the heap until
we reach a node with a larger key, or the root. An example of this
process is shown in Figure 9.3. The code is straightforward, based
on the notion that the parent of the node at position k in a heap is
at position k/2. Program 9.3 is an implementation of a method that
restores a possible violation due to increased priority at a given node
in a heap by moving up the heap.

If the heap property is violated because a node’s key becomes
smaller than one or both of that node’s childrens’ keys, then we can
make progress toward fixing the violation by exchanging the node with
the larger of its two children. This switch may cause a violation at
the child; we fix that violation in the same way, and so forth, moving
down the heap until we reach a node with both children smaller, or
the bottom. An example of this process is shown in Figure 9.4. The
code again follows directly from the fact that the children of the node
at position k in a heap are at positions 2k and 2k+1. Program 9.4 is an
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Figure 9.3
Bottom-up heapify (swim)
The tree depicted on the top is
heap-ordered except for the node
T on the bottom level. If we ex-
change T with its parent, the tree
is heap-ordered, except possibly
that T may be larger than its new
parent. Continuing to exchange T
with its parent until we encounter
the root or a node on the path
from T to the root that is larger
than T, we can establish the heap
condition for the whole tree. We
can use this procedure as the basis
for the insert operation on heaps in
order to reestablish the heap con-
dition after adding a new element
to a heap (at the rightmost position
on the bottom level, starting a new
level if necessary).

Program 9.3 Bottom-up heapify

To restore the heap condition when an item’s priority is increased, we
move up the heap, exchanging the item at position k with its parent (at
position k/2) if necessary, continuing as long as the item at position k/2
is less than the node at position k or until we reach the top of the heap.
The methods less and exch compare and exchange (respectively) the
items at the heap indices specified by their parameters (see Program 9.5
for implementations).

private void swim(int k)

{

while (k > 1 && less(k/2, k))

{ exch(k, k/2); k = k/2; }

}

implementation of a method that restores a possible violation due to
increased priority at a given node in a heap by moving down the heap.
This method needs to know the size of the heap (N) in order to be able
to test when it has reached the bottom.

These two operations are independent of the way that the tree
structure is represented, as long as we can access the parent (for the
bottom-up method) and the children (for the top-down method) of any
node. For the bottom-up method, we move up the tree, exchanging
the key in the given node with the key in its parent until we reach
the root or a parent with a larger (or equal) key. For the top-down
method, we move down the tree, exchanging the key in the given
node with the largest key among that node’s children, moving down
to that child, and continuing down the tree until we reach the bottom
or a point where no child has a larger key. Generalized in this way,
these operations apply not just to complete binary trees but also to
any tree structure. Advanced priority-queue algorithms usually use
more general tree structures but rely on these same basic operations to
maintain access to the largest key in the structure, at the top.

If we imagine the heap to represent a corporate hierarchy, with
each of the children of a node representing subordinates (and the par-
ent representing the immediate superior), then these operations have
amusing interpretations. The bottom-up method corresponds to a
promising new manager arriving on the scene, being promoted up
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Figure 9.4
Top-down heapify (sink)
The tree depicted on the top is
heap-ordered, except at the root. If
we exchange the O with the larger
of its two children (X), the tree is
heap-ordered, except at the sub-
tree rooted at O. Continuing to ex-
change O with the larger of its two
children until we reach the bottom
of the heap or a point where O is
larger than both its children, we
can establish the heap condition
for the whole tree. We can use this
procedure as the basis for the re-
move the maximum operation on
heaps in order to reestablish the
heap condition after replacing the
key at the root with the rightmost
key on the bottom level.

Program 9.4 Top-down heapify

To restore the heap condition when a node’s priority is decreased, we
move down the heap, exchanging the node at position k with the larger
of that node’s two children if necessary and stopping when the node at
k is not smaller than either child or the bottom is reached. Note that if
N is even and k is N/2, then the node at k has only one child—this case
must be treated properly!

The inner loop in this program has two distinct exits: one for the
case that the bottom of the heap is hit, and another for the case that the
heap condition is satisfied somewhere in the interior of the heap. It is a
prototypical example of the need for the break construct.

private void sink(int k, int N)

{

while (2*k <= N)

{ int j = 2*k;

if (j < N && less(j, j+1)) j++;

if (!less(k, j)) break;

exch(k, j); k = j;

}

}

the chain of command (by exchanging jobs with any lower-qualified
boss) until the new person encounters a higher-qualified boss. Mixing
methaphors, we also think about the new arrival having to swim to
the surface. The top-down method is analogous to the situation when
the president of the company is replaced by someone less qualified.
If the president’s most powerful subordinate is stronger than the new
person, they exchange jobs, and we move down the chain of com-
mand, demoting the new person and promoting others until the level
of competence of the new person is reached, where there is no higher-
qualified subordinate (this idealized scenario is rarely seen in the real
world). Again mixing metaphors, we also think about the new person
having to sink to the bottom.

These two basic operations allow efficient implementation of the
basic priority-queue ADT, as given in Program 9.5. With the priority
queue represented as a heap-ordered array, using the insert operation
amounts to adding the new element at the end and moving that element
up through the heap to restore the heap condition; the remove the
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Figure 9.5
Top-down heap construction
This sequence depicts the insertion
of the keys A S O R T I N G into
an initially empty heap. New items
are added to the heap at the bot-
tom, moving from left to right on
the bottom level. Each insertion
affects only the nodes on the path
between the insertion point and
the root, so the cost is proportional
to the logarithm of the size of the
heap in the worst case.

Program 9.5 Heap-based priority queue

To implement insert, we increment N, add the new element at the end,
then use swim to restore the heap condition. For getmax we take the
value to be returned from pq[1], then decrement the size of the heap by
moving pq[N] to pq[1] and using sink to restore the heap condition.
The first position in the array, pq[0], is not used.

class PQ

{
private boolean less(int i, int j)

{ return pq[i].less(pq[j]); }

private void exch(int i, int j)

{ ITEM t = pq[i]; pq[i] = pq[j]; pq[j] = t; }

private void swim(int k)

// Program 9.3

private void sink(int k, int N)

// Program 9.4

private ITEM[] pq;

private int N;

PQ(int maxN)

{ pq = new ITEM[maxN+1]; N = 0; }

boolean empty()

{ return N == 0; }
void insert(ITEM v)

{ pq[++N] = v; swim(N); }

ITEM getmax()

{ exch(1, N); sink(1, N-1); return pq[N--]; }

};

maximum operation amounts to taking the largest value off the top,
then putting in the item from the end of the heap at the top and moving
it down through the array to restore the heap condition.

Property 9.2 The insert and remove the maximum operations for
the priority queue abstract data type can be implemented with heap-
ordered trees such that insert requires no more than lgN comparisons
and remove the maximum no more than 2 lgN comparisons, when
performed on an N -item queue.
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Figure 9.6
Top-down heap construction

(continued)
This sequence depicts insertion of
the keys E X A M P L E into the
heap started in Figure 9.5. The to-
tal cost of constructing a heap of
size N is less than

lg 1 + lg 2 + . . .+ lgN,
which is less than N lgN .

Both operations involve moving along a path between the root and the
bottom of the heap, and no path in a heap of sizeN includes more than
lgN elements (see, for example, Property 5.8 and Exercise 5.77). The
remove the maximum operation requires two comparisons for each
node: one to find the child with the larger key, the other to decide
whether that child needs to be promoted.

Figures 9.5 and 9.6 show an example in which we construct a
heap by inserting items one by one into an initially empty heap. In the
array representation that we have been using for the heap, this process
corresponds to heap ordering the array by moving sequentially through
the array, considering the size of the heap to grow by 1 each time that
we move to a new item, and using swim to restore the heap order. The
process takes time proportional to N logN in the worst case (if each
new item is the largest seen so far, it travels all the way up the heap),
but it turns out to take only linear time on the average (a random new
item tends to travel up only a few levels). In Section 9.4 we shall see a
way to construct a heap (to heap order an array) in linear worst-case
time.

The basic swim and sink operations in Programs 9.3 and 9.4
also allow direct implementation for the change priority and remove
operations. To change the priority of an item somewhere in the mid-
dle of the heap, we use swim to move up the heap if the priority is
increased, and sink to go down the heap if the priority is decreased.
Full implementations of such operations, which refer to specific data
items, make sense only if a handle is maintained for each item to that
item’s place in the data structure. In order to do so, we need to de-
fine an ADT for that purpose. We shall consider such an ADT and
corresponding implementations in detail in Sections 9.5 through 9.7.

Property 9.3 The change priority, remove, and replace the max-
imum operations for the priority queue abstract data type can be
implemented with heap-ordered trees such that no more than 2 lgN
comparisons are required for any operation on an N -item queue.

Since they require handles to items, we defer considering implementa-
tions that support these operations to Section 9.6 (see Program 9.12
and Figure 9.14). They all involve moving along one path in the heap,
perhaps all the way from top to bottom or from bottom to top in the
worst case.



388 §9.3 C H A P T E R N I N E

N
M I

G L E A
A E

O
M N

G L I A
A E E

P
M O

G L I N
A E E A

R
M P

G L O N
A E E A I

S
R P

G L O N
A E E A I M

T
S P

G R O N
A E E A I M L

X
T P

G S O N
A E R A I M L E

Figure 9.7
Sorting from a heap
After replacing the largest element
in the heap by the rightmost ele-
ment on the bottom level, we can
restore the heap order by sifting
down along a path from the root to
the bottom.

Program 9.6 Sorting with a priority queue

This class uses our priority-queue ADT to implement the standard Sort
class that was introduced in Program 6.3.

To sort a subarray a[l], . . . , a[r], we construct a priority queue
with enough capacity to hold all of its items, use insert to put all the
items on the priority queue, and then use getmax to remove them, in
decreasing order. This sorting algorithm runs in time proportional to
N lgN but uses extra space proportional to the number of items to be
sorted (for the priority queue).

class Sort

{

static void sort(ITEM[] a, int l, int r)

{ PQsort(a, l, r); }

static void PQsort(ITEM[] a, int l, int r)

{ int k;

PQ pq = new PQ(r-l+1);

for (k = l; k <= r; k++)

pq.insert(a[k]);

for (k = r; k >= l; k--)

a[k] = pq.getmax();

}

}

Note carefully that the join operation is not included on this
list. Combining two priority queues efficiently seems to require a
much more sophisticated data structure. We shall consider such a data
structure in detail in Section 9.7. Otherwise, the simple heap-based
method given here suffices for a broad variety of applications. It uses
minimal extra space and is guaranteed to run efficiently except in the
presence of frequent and large join operations.

As we have mentioned, we can use any priority queue to develop
a sorting method, as shown in Program 9.6. We insert all the keys
to be sorted into the priority queue, then repeatedly use remove the
maximum to remove them all in decreasing order. Using a priority
queue represented as an unordered list in this way corresponds to
doing a selection sort; using an ordered list corresponds to doing an
insertion sort.
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Figure 9.8
Sorting from a heap

(continued)
This sequence depicts removal of
the rest of the keys from the heap
in Figure 9.7. Even if every ele-
ment goes all the way back to the
bottom, the total cost of the sorting
phase is less than

lgN + . . .+ lg 2 + lg 1,
which is less than N logN .

Figures 9.5 and 9.6 give an example of the first phase (the con-
struction process) when a heap-based priority-queue implementation
is used; Figures 9.7 and 9.8 show the second phase (which we refer
to as the sortdown process) for the heap-based implementation. For
practical purposes, this method is comparatively inelegant, because it
unnecessarily makes an extra copy of the items to be sorted (in the
priority queue). Also, using N successive insertions is not the most
efficient way to build a heap from N given elements. Next, we address
these two points and derive the classical heapsort algorithm.

Exercises

.9.21 Give the heap that results when the keys E A S Y Q U E S T I O N are
inserted into an initially empty heap.

.9.22 Using the conventions of Exercise 9.1, give the sequence of heaps pro-
duced when the operations

P R I O * R * * I * T * Y * * * Q U E * * * U * E

are performed on an initially empty heap.

9.23 Because the exch primitive is used in the heapify operations, the items
are loaded and stored twice as often as necessary. Give more efficient imple-
mentations that avoid this problem, à la insertion sort.

9.24 Why do we not use a sentinel to avoid the j<N test in sink?

◦9.25 Add the replace the maximum operation to the heap-based priority-
queue implementation of Program 9.5. Be sure to consider the case when the
value to be added is larger than all values in the queue. Note: Use of pq[0]
leads to an elegant solution.

9.26 What is the minimum number of keys that must be moved during a
remove the maximum operation in a heap? Give a heap of size 15 for which
the minimum is achieved.

9.27 What is the minimum number of keys that must be moved during three
successive remove the maximum operations in a heap? Give a heap of size 15
for which the minimum is achieved.

9.4 Heapsort

We can adapt the basic idea in Program 9.6 to sort an array without
needing any extra space, by maintaining the heap within the array to
be sorted. That is, focusing on the task of sorting, we abandon the
notion of hiding the representation of the priority queue, and rather
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Figure 9.9
Bottom-up heap construction
Working from right to left and bot-
tom to top, we construct a heap
by ensuring that the subtree below
the current node is heap ordered.
The total cost is linear in the worst
case, because most nodes are near
the bottom.

than being constrained by the interface to the priority-queue ADT, we
use swim and sink directly.

Using Program 9.5 directly in Program 9.6 corresponds to pro-
ceeding from left to right through the array, using swim to ensure that
the elements to the left of the scanning pointer make up a heap-ordered
complete tree. Then, during the sortdown process, we put the largest
element into the place vacated as the heap shrinks. That is, the sort-
down process is like selection sort, but it uses a more efficient way to
find the largest element in the unsorted part of the array.

Rather than constructing the heap via successive insertions as
shown in Figures 9.5 and 9.6, it is more efficient to build the heap by
going backward through it, making little subheaps from the bottom
up, as shown in Figure 9.9. That is, we view every position in the array
as the root of a small subheap and take advantage of the fact that sink
works as well for such subheaps as it does for the big heap. If the two
children of a node are heaps, then calling sink on that node makes
the subtree rooted there a heap. By working backward through the
heap, calling sink on each node, we can establish the heap property
inductively. The scan starts halfway back through the array because
we can skip the subheaps of size 1.

A full implementation is given in Program 9.7, the classical heap-
sort algorithm. Although the loops in this program seem to do different
tasks (the first constructs the heap, and the second destroys the heap
for the sortdown), they are both built around the swim method, which
restores order in a tree that is heap-ordered except possibly at the
root, using the array representation of a complete tree. Figure 9.10
illustrates the contents of the array for the example corresponding to
Figures 9.7 through 9.9.

Property 9.4 Bottom-up heap construction takes linear time.

This fact follows from the observation that most of the heaps processed
are small. For example, to build a heap of 127 elements, we process
32 heaps of size 3, 16 heaps of size 7, 8 heaps of size 15, 4 heaps of
size 31, 2 heaps of size 63, and 1 heap of size 127, so 32 ·1 + 16 ·2 + 8 ·
3 + 4 · 4 + 2 · 5 + 1 · 6 = 120 promotions (twice as many comparisons)
are required in the worst case. For N = 2n − 1, an upper bound on
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Figure 9.10
Heapsort example
Heapsort is an efficient selection-
based algorithm. First, we build a
heap from the bottom up, in-place.
The top eight lines in this figure
correspond to Figure 9.9. Next, we
repeatedly remove the largest ele-
ment in the heap. The unshaded
parts of the bottom lines corre-
spond to Figures 9.7 and 9.8; the
shaded parts contain the growing
sorted file.

Program 9.7 Heapsort

This code sorts a[1], . . . , a[N], using the sink method of Program 9.4
(with exch and less implementations that exchange and compare, re-
spectively, the items in a specified by their parameters). The for loop
constructs the heap; then, the while loop exchanges the largest element
(a[1]) with a[N] and repairs the heap, continuing until the heap is
empty. This implementation depends on the first element of the array
being at index 1 so that it can treat the array as representing a com-
plete tree and compute implicit indices (see Figure 9.2); it is not difficult
to shift indices to implement our standard interface to sort a subarray
a[l], . . . , a[r] (see Exercise 9.30).

for (int k = N/2; k >= 1; k--)

sink(k, N);

while (N > 1)

{ exch(1, N); sink(1, --N); }

the number of promotions is∑
1≤k<n

k2n−k−1 = 2n − n− 1 < N.

A similar proof holds when N + 1 is not a power of 2.

This property is not of particular importance for heapsort, be-
cause its time is still dominated by the N logN time for the sortdown,
but it is important for other priority-queue applications, where a linear-
time construct operation can lead to a linear-time algorithm. As noted
in Figure 9.6, constructing a heap with N successive insert operations
requires a total of N logN steps in the worst case (even though the
total turns out to be linear on the average for random files).

Property 9.5 Heapsort uses fewer than 2N lgN comparisons to sort
N elements.

The slightly higher bound 3N lgN follows immediately from Prop-
erty 9.2. The bound given here follows from a more careful count
based on Property 9.4.

Property 9.5 and the in-place property are the two primary rea-
sons that heapsort is of practical interest: It is guaranteed to sort N
elements in place in time proportional to N logN , no matter what the
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input. There is no worst-case input that makes heapsort run signifi-
cantly slower (unlike quicksort), and heapsort does not use any extra
space (unlike mergesort). This guaranteed worst-case performance
does come at a price: for example, the algorithm’s inner loop (cost
per comparison) has more basic operations than quicksort’s, and it
uses more comparisons than quicksort for random files, so heapsort is
likely to be slower than quicksort for typical or random files.

Heaps are also useful for solving the selection problem of finding
the k largest of N items (see Chapter 7), particularly if k is small. We
simply stop the heapsort algorithm after k items have been taken from
the top of the heap.

Property 9.6 Heap-based selection allows the kth largest of N items
to be found in time proportional to N when k is small or close to N ,
and in time proportional to N logN otherwise.

One option is to build a heap, using fewer than 2N comparisons (by
Property 9.4), then to remove the k largest elements, using 2k lgN
or fewer comparisons (by Property 9.2), for a total of 2N + 2k lgN .
Another method is to build a minimum-oriented heap of size k, then
to perform k replace the minimum (insert followed by remove the
minimum) operations with the remaining elements for a total of at
most 2k+ 2(N − k) lg k comparisons (see Exercise 9.36). This method
uses space proportional to k, so is attractive for finding the k largest
of N elements when k is small and N is large (or is not known in
advance). For random keys and other typical situations, the lg k upper
bound for heap operations in the second method is likely to be O

(
1
)

when k is small relative to N (see Exercise 9.37).

Various ways to improve heapsort further have been investigated.
One idea, developed by Floyd, is to note that an element reinserted into
the heap during the sortdown process usually goes all the way to the
bottom. Thus, we can save time by avoiding the check for whether the
element has reached its position, simply promoting the larger of the
two children until the bottom is reached, then moving back up the heap
to the proper position. This idea cuts the number of comparisons by a
factor of 2 asymptotically—close to the lgN ! ≈ N lgN−N/ ln 2 that is
the absolute minimum number of comparisons needed by any sorting
algorithm (see Part 8). The method requires extra bookkeeping, and
it is useful in practice only when the cost of comparisons is relatively
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Figure 9.11
Dynamic characteristics of

heapsort
The construction process (left)
seems to unsort the file, putting
large elements near the beginning.
Then, the sortdown process (right)
works like selection sort, keeping a
heap at the beginning and building
up the sorted array at the end of
the file.

high (for example, when we are sorting records with strings or other
types of long keys).

Another idea is to build heaps based on an array representation
of complete heap-ordered ternary trees, with a node at position k larger
than or equal to nodes at positions 3k − 1, 3k, and 3k+ 1 and smaller
than or equal to nodes at position b(k + 1)/3c, for positions between
1 and N in an array of N elements. There is a tradeoff between
the lower cost from the reduced tree height and the higher cost of
finding the largest of the three children at each node. This tradeoff is
dependent on details of the implementation (see Exercise 9.31) and on
the expected relative frequency of insert, remove the maximum, and
change priority operations.

Figure 9.11 shows heapsort in operation on a randomly ordered
file. At first, the process seems to do anything but sort, because large
elements are moving to the beginning of the file as the heap is being
constructed. But then the method looks more like a mirror image of
selection sort, as expected. Figure 9.12 shows that different types of
input files can yield heaps with peculiar characteristics, but they look
more like random heaps as the sort progresses.

Naturally, we are interested in how to choose among heapsort,
quicksort, and mergesort for a particular application. The choice be-
tween heapsort and mergesort essentially reduces to a choice between a
sort that is not stable (see Exercise 9.28) and one that uses extra mem-
ory; the choice between heapsort and quicksort reduces to a choice
between average-case speed and worst-case speed. Having dealt ex-
tensively with improving the inner loops of quicksort and mergesort,
we leave this activity for heapsort as exercises in this chapter. Making
heapsort faster than quicksort is typically not in the cards—as indicated
by the empirical studies in Table 9.2—but people interested in fast sorts
on their machines will find the exercise instructive. As usual, various
specific properties of machines and programming environments can
play an important role. For example, quicksort and mergesort have a
locality property that gives them a further advantage on certain ma-
chines. When comparisons are extremely expensive, Floyd’s version is
the method of choice, as it is nearly optimal in terms of time and space
costs in such situations.

Exercises
9.28 Show that heapsort is not stable.
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Figure 9.12
Dynamic characteristics of

heapsort on various
types of files

The running time for heapsort is
not particularly sensitive to the
input. No matter what the input
values are, the largest element is
always found in less than lgN
steps. These diagrams show files
that are random, Gaussian, nearly
ordered, nearly reverse-ordered,
and randomly ordered with 10 dis-
tinct key values (at the top, left to
right). The second diagrams from
the top show the heap constructed
by the bottom-up algorithm, and
the remaining diagrams show the
sortdown process for each file. The
heaps somewhat mirror the initial
file at the beginning, but all be-
come more like the heaps for a
random file as the process contin-
ues.
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Table 9.2 Empirical study of heapsort algorithms

The relative timings for various sorts on files of random integers in the
left part of the table confirm our expectations from the lengths of the
inner loops that heapsort is slower than quicksort but competitive with
mergesort. The timings for the first N words of Moby Dick in the right
part of the table show that Floyd’s method is an effective improvement
to heapsort when comparisons are expensive.

32-bit integer keys string keys

N Q M PQ H F Q H F

12500 22 21 53 23 24 106 141 109

25000 20 32 75 34 34 220 291 249

50000 42 70 156 71 67 518 756 663

100000 95 152 347 156 147 1141 1797 1584

200000 194 330 732 352 328

400000 427 708 1690 818 768

800000 913 1524 3626 1955 1851

Key:
Q Quicksort with cutoff for small files
M Mergesort with cutoff for small files
PQ Priority-queue–based heapsort (Program 9.6)
H Heapsort, standard implementation (Program 9.7)
F Heapsort with Floyd’s improvement

• 9.29 Empirically determine the percentage of time heapsort spends in the
construction phase for N = 103, 104, 105, and 106.

9.30 Write a heapsort-based implementation of our standard sort method,
which sorts the subarray a[l], . . . , a[r].

• 9.31 Implement a version of heapsort based on complete heap-ordered
ternary trees, as described in the text. Compare the number of compar-
isons used by your program empirically with the standard implementation,
for N = 103, 104, 105, and 106.

• 9.32 Continuing Exercise 9.31, determine empirically whether or not Floyd’s
method is effective for ternary heaps.

◦9.33 Considering the cost of comparisons only, and assuming that it takes t
comparisons to find the largest of t elements, find the value of t that minimizes
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the coefficient of N logN in the comparison count when a t-ary heap is used
in heapsort. First, assume a straightforward generalization of Program 9.7;
then, assume that Floyd’s method can save one comparison in the inner loop.

◦9.34 For N = 32, give an arrangement of keys that makes heapsort use as
many comparisons as possible.

•• 9.35 For N = 32, give an arrangement of keys that makes heapsort use as
few comparisons as possible.

9.36 Prove that building a priority queue of size k then doing N − k replace
the minimum (insert followed by remove the minimum) operations leaves the
k largest of the N elements in the heap.

9.37 Implement both of the versions of heapsort-based selection referred to
in the discussion of Property 9.6, using the method described in Exercise 9.25.
Compare the number of comparisons they use empirically with the quicksort-
based method from Chapter 7, for N = 106 and k = 10, 100, 1000, 104, 105,
and 106.

• 9.38 Implement a version of heapsort based on the idea of representing the
heap-ordered tree in preorder rather than in level order. Empirically compare
the number of comparisons used by this version with the number used by the
standard implementation, for randomly ordered keys with N = 103, 104, 105,
and 106.

9.5 Priority-Queue ADT

For most applications of priority queues, we want to arrange to have
the priority-queue method, instead of returning values for remove the
maximum, tell us which of the records has the largest key, and to
work in a similar fashion for the other operations. That is, we assign
priorities and use priority queues for only the purpose of accessing
other information in an appropriate order. This arrangement is akin
to use of the indirect-sort or the pointer-sort concepts described in
Chapter 6. In particular, this approach is required for operations such
as change priority or remove to make sense. We examine an imple-
mentation of this idea in detail here, both because we shall be using
priority queues in this way later in the book and because this situation
is prototypical of the problems we face when we design interfaces and
implementations for ADTs.

When we want to remove an item from a priority queue, how
do we specify which item? When we want to maintain multiple pri-
ority queues, how do we organize the implementations so that we can
manipulate priority queues in the same way that we manipulate other
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Program 9.8 Full priority-queue ADT

This interface for a priority-queue ADT allows client programs to delete
items and to change priorities (using object handles provided by the
implementation) and to merge priority queues together.

class PQfull // ADT interface

{ // implementations and private members hidden

boolean empty()

Object insert(ITEM)

ITEM getmax()

void change(Object, ITEM)

void remove(Object)

void join(PQfull)

};

types of data? Questions such as these are the topic of Chapter 4. Pro-
gram 9.8 gives a general interface for priority queues along the lines
that we discussed in Section 4.9. It supports a situation where a client
has keys and associated information and, while primarily interested in
the operation of accessing the information associated with the highest
key, may have numerous other data-processing operations to perform
on the objects, as we discussed at the beginning of this chapter. All
operations refer to a particular priority queue through a handle (a
pointer to an object whose class is not specified). The insert operation
returns a handle for each object added to the priority queue by the
client program. In this arrangement, client programs are responsible
for keeping track of handles, which they may later use to specify which
objects are to be affected by remove and change priority operations,
and which priority queues are to be affected by all of the operations.

This arrangement places restrictions on both the client and the
implementation. The client is not given a way to access information
through handles except through this interface. It has the responsibility
to use the handles properly: for example, there is no good way for an
implementation to check for an illegal action such as a client using a
handle to an item that is already removed. For its part, the implemen-
tation cannot move around information freely, because clients have
handles that they may use later. This point will become clearer when
we examine details of implementations. As usual, whatever level of
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detail we choose in our implementations, an abstract interface such as
Program 9.8 is a useful starting point for making tradeoffs between
the needs of applications and the needs of implementations.

Implementations of the basic priority-queue operations, using an
unordered doubly linked-list representation, are given in Programs 9.9
and 9.10. Most of the code is based on elementary linked list oper-
ations from Section 3.3, but the implementation of the client handle
abstraction is noteworthy in the present context: the insert method
returns an Object, which the client can only take to mean “a reference
to an object of some unspecified class” since Node, the actual type of the
object, is private. So the client can do little else with the reference but
keep it in some data structure associated with the item that it provided
as a parameter to insert. But if the client needs to change priority the
item’s key or to remove the item from the priority queue, this object is
precisely what the implementation needs to be able to accomplish the
task: the appropriate methods can cast the type to Node and make the
necessary modifications. It is easy to develop other, similarly straight-
forward, implementations using other elementary representations (see,
for example, Exercise 9.40).

As we discussed in Section 9.1, the implementation given in Pro-
grams 9.9 and 9.10 is suitable for applications where the priority queue
is small and remove the maximum or find the maximum operations
are infrequent; otherwise, heap-based implementations are preferable.
Implementing swim and sink for heap-ordered trees with explicit links
while maintaining the integrity of the handles is a challenge that we
leave for exercises, because we shall be considering two alternative
approaches in detail in Sections 9.6 and 9.7.

A full ADT such as Program 9.8 has many virtues, but it is some-
times advantageous to consider other arrangements, with different
restrictions on the client programs and on implementations. In Sec-
tion 9.6 we consider an example where the client program keeps the
responsibility for maintaining the records and keys, and the priority-
queue routines refer to them indirectly.

Slight changes in the interface also might be appropriate. For
example, we might want a method that returns the value of the highest
priority key in the queue, rather than just a way to reference that key
and its associated information. Also, the issues that we considered
in Sections 4.9 and 4.10 associated with memory management and
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Program 9.9 Unordered doubly linked list priority queue

This implementation includes the construct, test if empty, and insert
methods from the interface of Program 9.8 (see Program 9.10 for imple-
mentations of the other four methods). It maintains a simple unordered
list, with head and tail nodes. We specify the class Node to be a doubly
linked list node (with an item and two links). The private data fields are
just the list’s head and tail links.

class PQfull

{
private static class Node

{ ITEM key; Node prev, next;

Node(ITEM v)

{ key = v; prev = null; next = null; }

}

private Node head, tail;

PQfull()

{

head = new Node(null);

tail = new Node(null);

head.prev = tail; head.next = tail;

tail.prev = head; tail.next = head;

}

boolean empty()
{ return head.next.next == head; }

Object insert(ITEM v)

{ Node t = new Node(v);

t.next = head.next; t.next.prev = t;

t.prev = head; head.next = t;

return t;

}

ITEM getmax()

// See Program 9.10

void change(Object x, ITEM v)

// See Program 9.10

void remove(Object x)

// See Program 9.10

void join(PQfull p)
// See Program 9.10

}
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copy semantics come into play. We are not considering the copy
operation and have chosen just one out of several possibilities for join
(see Exercises 9.44 and 9.45).

It is easy to add such procedures to the interface in Program 9.8,
but it is much more challenging to develop an implementation where
logarithmic performance for all operations is guaranteed. In applica-
tions where the priority queue does not grow to be large, or where the
mix of insert and remove the maximum operations has some special
properties, a fully flexible interface might be desirable. But in applica-
tions where the queue will grow to be large, and where a tenfold or a
hundredfold increase in performance might be noticed or appreciated,
it might be worthwhile to restrict to the set of operations where effi-
cient performance is assured. A great deal of research has gone into the
design of priority-queue algorithms for different mixes of operations;
the binomial queue described in Section 9.7 is an important example.

Exercises

9.39 Which priority-queue implementation would you use to find the 100
smallest of a set of 106 random numbers? Justify your answer.

9.40 Provide implementations similar to Programs 9.9 and 9.10 that use
ordered doubly linked lists. Note: Because the client has handles into the data
structure, your programs can change only links (rather than keys) in nodes.

9.41 Provide implementations for insert and remove the maximum (the
priority-queue interface in Program 9.1) using complete heap-ordered trees
represented with explicit nodes and links. Note: Because the client has no
handles into the data structure, you can take advantage of the fact that it is
easier to exchange information fields in nodes than to exchange the nodes
themselves.

• 9.42 Provide implementations for insert, remove the maximum, change pri-
ority, and remove (the priority-queue interface in Program 9.8) using heap-
ordered trees with explicit links. Note: Because the client has handles into
the data structure, this exercise is more difficult than Exercise 9.41, not just
because the nodes have to be triply linked, but also because your programs
can change only links (rather than keys) in nodes.

9.43 Add a (brute-force) implementation of the join operation to your im-
plementation from Exercise 9.42.

◦9.44 Suppose that we add a clone method to Program 9.8 (and specify that
every implementation implements Cloneable). Add an implementation of
clone to Programs 9.9 and 9.10, and write a driver program that tests your
interface and implementation.
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Program 9.10 Doubly linked list priority queue (continued)

These method implementations complete the priority queue implemen-
tation of Program 9.9. The remove the maximum operation requires
scanning through the whole list, but the overhead of maintaining doubly
linked lists is justified by the fact that the change priority, remove, and
join operations all are implemented in constant time, using only elemen-
tary operations on the lists (see Chapter 3 for more details on doubly
linked lists).

The change and remove methods take an Object reference as a
parameter, which must reference an object of (private) type Node—a
client can only get such a reference from insert.

We might make this class Cloneable and implement a clone
method that makes a copy of the whole list (see Section 4.9), but client
object handles would be invalid for the copy. The join implementation
appropriates the list nodes from the parameter to be included in the
result, but it does not make copies of them, so client handles remain
valid.

ITEM getmax()

{ ITEM max; Node x = head.next;

for (Node t = x; t.next != head; t = t.next)

if (Sort.less(x.key, t.key)) x = t;

max = x.key;

remove(x);

return max;

}

void change(Object x, ITEM v)

{ ((Node) x).key = v; }

void remove(Object x)

{ Node t = (Node) x;

t.next.prev = t.prev;
t.prev.next = t.next;

}

void join(PQfull p)

{

tail.prev.next = p.head.next;

p.head.next.prev = tail.prev;

head.prev = p.tail;

p.tail.next = head;

tail = p.tail;

}
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• 9.45 Change the interface and implementation for the join operation in Pro-
grams 9.9 and 9.10 such that it returns a PQfull (the result of joining the
parameters).

9.46 Provide a priority-queue interface and implementation that supports
construct and remove the maximum, using tournaments (see Section 5.7).
Program 5.19 will provide you with the basis for construct.

• 9.47 Add insert to your solution to Exercise 9.46.

9.6 Priority Queues for Client Arrays

Suppose that the records to be processed in a priority queue are in an
existing array. In this case, it makes sense to have the priority-queue
routines refer to items through the array index. Moreover, we can use
the array index as a handle to implement all the priority-queue oper-
ations. An interface along these lines is illustrated in Program 9.11.
Figure 9.13 shows how this approach might apply for a small example.
Without copying or making special modifications of records, we can
keep a priority queue containing a subset of the records.

Using indices into an existing array is a natural arrangement, but
it leads to implementations with an orientation opposite to that of
Program 9.8. Now it is the client program that cannot move around
information freely, because the priority-queue routine is maintaining
indices into data maintained by the client. For its part, the priority
queue implementation must not use indices without first being given
them by the client.

To develop an implementation, we use precisely the same ap-
proach as we did for index sorting in Section 6.8. We manipulate
indices and define less such that comparisons reference the client’s
array. There are added complications here, because the priority-queue
routine must keep track of the objects so that it can find them when the
client program refers to them by the handle (array index). To this end,
we add a second index array to keep track of the position of the keys in
the priority queue. To localize the maintenance of this array, we move
data only with the exch operation and define exch appropriately.

Program 9.12 is a heap-based implementation of this approach
that differs only slightly from Program 9.5 but is well worth studying
because it is so useful in practice. We refer to the data structure built
by this program as an index heap. We shall use this program as a
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Figure 9.13
Index heap data structures

k qp[k] pq[k] data[k]

0 Wilson 63
1 5 3 Johnson 86
2 2 2 Jones 87
3 1 4 Smith 90
4 3 9 Washington 84
5 1 Thompson 65
6 Brown 82
7 Jackson 61
8 White 76
9 4 Adams 86
10 Black 71

By manipulating indices, rather
than the records themselves, we
can build a priority queue on a
subset of the records in an array.
Here, a heap of size 5 in the array
pq contains the indices to those
students with the top five grades.
Thus, data[pq[1]].name con-
tains Smith, the name of the stu-
dent with the highest grade, and
so forth. An inverse array qp al-
lows the priority-queue routines to
treat the array indices as handles.
For example, if we need to change
Smith’s grade to 85, we change
the entry in data[3].grade, then
call PQchange(3). The priority-
queue implementation accesses
the record at pq[qp[3]] (or
pq[1], because qp[3]=1) and the
new key at data[pq[1]].name
(or data[3].name, because
pq[1]=3).

Program 9.11 Priority-queue ADT interface for index items

Instead of building a data structure from the items themselves, this
interface provides for building a priority queue using indices into a
client array. The constructor takes a reference to an array as a param-
eter, and the insert, remove the maximum, change priority, and remove
methods all use indices into that array and compare array entries with
ITEM’s less method. For example, the client program might define
less so that less(i, j) is the result of comparing data[i].grade and
data[j].grade.

class PQi // ADT interface

{ // implementations and private members hidden
PQi(Array)

boolean empty()

void insert(int)

int getmax()

void change(int)

void remove(int)

};

building block for other algorithms in Parts 5 through 7. As usual,
we do no error checking, and we assume (for example) that indices
are always in the proper range and that the user does not try to insert
anything on a full queue or to remove anything from an empty one.
Adding code for such checks is straightforward.

We can use the same approach for any priority queue that uses an
array representation (for example, see Exercises 9.50 and 9.51). The
main disadvantage of using indirection in this way is the extra space
used. The size of the index arrays has to be the size of the data array,
when the maximum size of the priority queue could be much less.

Other approaches to building a priority queue on top of existing
data in an array are either to have the client program make records
consisting of a key with its array index as associated information or
to use a class for index keys with its own less method. Then, if
the implementation uses a linked-allocation representation such as the
one in Programs 9.9 and 9.10 or Exercise 9.42, then the space used
by the priority queue would be proportional to the maximum number
of elements on the queue at any one time. Such approaches would
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Program 9.12 Index-heap–based priority queue

This implementation of Program 9.11 maintains pq as an array of in-
dices into a client array.

We keep the heap position corresponding to index value k
in qp[k], which allows us to implement change priority (see Fig-
ure 9.14) and remove (see Exercise 9.49). We maintain the invariant
pq[qp[k]]=qp[pq[k]]=k for all k in the heap (see Figure 9.13). The
methods less and exch are the key to the implementation—they allow
us to use the same sink and swim code as for standard heaps.

class PQi

{

private boolean less(int i, int j)

{ return a[pq[i]].less(pq[j]); }

private void exch(int i, int j)

{ int t = pq[i]; pq[i] = pq[j]; pq[j] = t;

qp[pq[i]] = i; qp[pq[j]] = j;
}

private void swim(int k)

// Program 9.3

private void sink(int k, int N)

// Program 9.4

private ITEM[] a;

private int[] pq, qp;

private int N;

PQi(ITEM[] items)

{ a = items; N = 0;

pq = new int[a.length+1];

qp = new int[a.length+1];

}

boolean empty()
{ return N == 0; }

void insert(int v)

{ pq[++N] = v; qp[v] = N; swim(N); }

int getmax()

{ exch(1, N); sink(1, N-1); return pq[N--]; }

void change(int k)

{ swim(qp[k]); sink(qp[k], N); }

};
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Figure 9.14
Changing of the priority of

a node in a heap
The top diagram depicts a heap
that is heap-ordered, except possi-
bly at one given node. If the node
is larger than its parent, then it
must move up, just as depicted
in Figure 9.3. This situation is il-
lustrated in the middle diagram,
with Y moving up the tree (in gen-
eral, it might stop before hitting
the root). If the node is smaller
than the larger of its two children,
then it must move down, just as
depicted in Figure 9.4. This situ-
ation is illustrated in the bottom
diagram, with B moving down the
tree (in general, it might stop be-
fore hitting the bottom). We can
use this procedure in two ways:
as the basis for the change prior-
ity operation on heaps in order to
reestablish the heap condition after
changing the key in a node, or as
the basis for the remove operation
on heaps in order to reestablish the
heap condition after replacing the
key in a node with the rightmost
key on the bottom level.

be preferred over Program 9.12 if space must be conserved and if the
priority queue involves only a small fraction of the data array.

Contrasting this approach to providing a complete priority-queue
implementation to the approach in Section 9.5 exposes essential dif-
ferences in ADT design. In the first case (Programs 9.9 and 9.10, for
example), it is the responsibility of the priority-queue implementation
to allocate and deallocate the memory for the keys, to change key
values, and so forth. The ADT supplies the client with handles to
items, and the client accesses items only through calls to the priority-
queue routines, using the handles as parameters. In the second case
(Program 9.12, for example), the client is responsible for the keys
and records, and the priority-queue routines access this information
only through handles provided by the user (array indices, in the case
of Program 9.12). Both uses require cooperation between client and
implementation.

Note that, in this book, we are normally interested in coop-
eration beyond that encouraged by programming language support
mechanisms. In particular, we want the performance characteristics of
the implementation to match the dynamic mix of operations required
by the client. One way to ensure that match is to seek implementations
with provable worst-case performance bounds, but we can solve many
problems more easily by matching their performance requirements
with simpler implementations.

Exercises

9.48 Suppose that an array is filled with the keys E A S Y Q U E S T I O N.
Give the contents of the pq and qp arrays after these keys are inserted into an
initially empty heap using Program 9.12.

◦9.49 Add a remove operation to Program 9.12.

9.50 Implement the priority-queue ADT for index items (see Program 9.11)
using an ordered-array representation for the priority queue.

9.51 Implement the priority-queue ADT for index items (see Program 9.11)
using an unordered-array representation for the priority queue.

◦9.52 Given an array a of N elements, consider a complete binary tree of 2N
elements (represented as an array pq) containing indices from the array with the
following properties: (i) for i from 0 to N-1, we have pq[N+i]=i; and (ii) for
i from 1 to N-1, we have pq[i]=pq[2*i] if a[pq[2*i]]>a[pq[2*i+1]], and
we have pq[i]=pq[2*i+1] otherwise. Such a structure is called an index heap
tournament because it combines the features of index heaps and tournaments
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(see Program 5.19). Give the index heap tournament corresponding to the
keys E A S Y Q U E S T I O N.

◦9.53 Implement the priority-queue ADT for index items (see Program 9.11)
using an index heap tournament (see Exercise 9.46).

9.7 Binomial Queues

None of the implementations that we have considered admit implemen-
tations of join, remove the maximum, and insert that are all efficient
in the worst case. Unordered linked lists have fast join and insert, but
slow remove the maximum; ordered linked lists have fast remove the
maximum, but slow join and insert; heaps have fast insert and remove
the maximum, but slow join; and so forth. (See Table 9.1.) In applica-
tions where frequent or large join operations play an important role,
we need to consider more advanced data structures.

In this context, we mean by “efficient” that the operations should
use no more than logarithmic time in the worst case. This restriction
would seem to rule out array representations, because we can join
two large arrays apparently only by moving all the elements in at
least one of them. The unordered doubly linked-list representation of
Program 9.9 does the join in constant time but requires that we walk
through the whole list for remove the maximum. Use of a doubly
linked ordered list (see Exercise 9.40) gives a constant-time remove the
maximum but requires linear time to merge lists for join.

Numerous data structures have been developed that can support
efficient implementations of all the priority-queue operations. Most
of them are based on direct linked representation of heap-ordered
trees. Two links are needed for moving down the tree (either to both
children in a binary tree or to the first child and next sibling in a
binary tree representation of a general tree), and one link to the parent
is needed for moving up the tree. Developing implementations of
the heap-ordering operations that work for any (heap-ordered) tree
shape with explicit nodes and links or other representation is generally
straightforward. The difficulty lies in dynamic operations such as
insert, remove, and join, which require us to modify the tree structure.
Different data structures are based on different strategies for modifying
the tree structure while still maintaining balance in the tree. The
algorithms use trees that are both more flexible than are complete
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Figure 9.15
A binomial queue of size 13
A binomial queue of size N is a
list of left-heap-ordered power-of-
2 heaps, one for each bit in the
binary representation of N . Thus,
a binomial queue of size 13 =
11012 consists of an 8-heap, a 4-
heap, and a 1-heap. Shown here
are the left-heap-ordered power-
of-2 heap representation (top) and
the heap-ordered binomial-tree
representation (bottom) of the same
binomial queue.

trees and keep the trees sufficiently balanced to ensure a logarithmic
time bound.

The overhead of maintaining a triply linked structure—ensuring
that a particular implementation correctly maintains three pointers in
all circumstances—can be burdensome (see Exercise 9.41). Moreover,
in many practical situations, it is difficult to demonstrate that effi-
cient implementations of all the operations are required, so we might
pause before taking on such an implementation. On the other hand, it
is also difficult to demonstrate that efficient implementations are not
required, and the investment to guarantee that all the priority-queue
operations will be fast may be justified. Regardless of such consid-
erations, the next step from heaps to a data structure that allows for
efficient implementation of join, insert, and remove the maximum is
fascinating and worthy of study in its own right.

Even with a linked representation for the trees, the heap condition
and the condition that the heap-ordered binary tree be complete are
too strong to allow efficient implementation of the join operation.
Given two heap-ordered trees, how do we merge them together into
just one tree? For example, if one of the trees has 1023 nodes and
the other has 255 nodes, how can we merge them into a tree with
1278 nodes, without touching more than 10 or 20 nodes? It seems
impossible to merge heap-ordered trees in general if the trees are to
be heap ordered and complete, but various advanced data structures
have been devised that weaken the heap-order and balance conditions
to get the flexibility that we need to devise an efficient join. Next,
we consider an ingenious solution to this problem, called the binomial
queue, that was developed by Vuillemin in 1978.

To begin, we note that the join operation is trivial for one partic-
ular type of tree with a relaxed heap-ordering restriction.

Definition 9.4 A binary tree comprising nodes with keys is said to
be left-heap-ordered if the key in each node is larger than or equal to
all the keys in that node’s left subtree (if any).

Definition 9.5 A power-of-2 heap is a left-heap-ordered tree consist-
ing of a root node with an empty right subtree and a complete left
subtree. The tree corresponding to a power-of-2 heap by the left-child,
right-sibling correspondence is called a binomial tree.
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Figure 9.16
Joining of two equal-sized

power-of-2 heaps.
We join two power-of-two heaps
(top) by putting the larger of the
roots at the root, with that root’s
(left) subtree as the right subtree
of the other original root. If the
operands have 2n nodes, the result
has 2n+1 nodes. If the operands
are left-heap-ordered, then so is
the result, with the largest key
at the root. The heap-ordered
binomial-tree representation of the
same operation is shown below the
line.

Program 9.13 Joining of two equal-sized power-of-2 heaps

We need to change only a few links to combine two equal-sized power-
of-2 heaps into one power-of-2 heap that is twice that size. This method,
which we define as a private method in the implementation, is one key
to the efficiency of the binomial queue algorithm.

static Node pair(Node p, Node q)

{

if (p.item.less(q.item))

{ p.r = q.l; q.l = p; return q; }

else { q.r = p.l; p.l = q; return p; }

}

Binomial trees and power-of-2 heaps are equivalent. We work
with both representations because binomial trees are slightly easier
to visualize, whereas the simple representation of power-of-2 heaps
leads to simpler implementations. In particular, we depend upon the
following facts, which are direct consequences of the definitions:
• The number of nodes in a power-of-2 heap is a power of 2.
• No node has a key larger than the key at the root.
• Binomial trees are heap-ordered.

The trivial operation upon which binomial-queue algorithms are
based is that of joining two power-of-2 heaps that have an equal num-
ber of nodes. The result is a heap with twice as many nodes which is
easy to create, as illustrated in Figure 9.16. The root node with the
larger key becomes the root of the result (with the other original root
as the result root’s left child), with its left subtree becoming the right
subtree of the other root node. Given a linked representation for the
trees, the join is a constant-time operation: We simply adjust two links
at the top. An implementation is given in Program 9.13. This basic
operation is at the heart of Vuillemin’s general solution to the problem
of implementing priority queues with no slow operations.

Definition 9.6 A binomial queue is a set of power-of-2 heaps, no
two of the same size. The structure of a binomial queue is determined
by that queue’s number of nodes, by correspondence with the binary
representation of integers.
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A binomial queue of N elements has one power-of-2 heap for
each 1 bit in the binary representation of N . For example, a binomial
queue of 13 nodes comprises an 8-heap, a 4-heap, and a 1-heap, as
illustrated in Figure 9.15. There are at most lgN power-of-2 heaps in
a binomial queue of size N , all of height no greater than lgN .

In accordance with Definitions 9.5 and 9.6, we represent power-
of-2 heaps (and handles to items) as links to nodes containing keys and
two links (like the explicit tree representation of tournaments in Fig-
ure 5.10); and we represent binomial queues as arrays of power-of-2
heaps, by including the following private members in our implemen-
tation of Program 9.8:

private static class Node

{ ITEM item; Node l, r;

Node(ITEM v)

{ item = v; l = null; r = null; }

}

private Node[] bq;

The arrays are not large and the trees are not high; and this rep-
resentation is sufficiently flexible to allow implementation of all the
priority-queue operations in less than lgN steps, as we shall now see.

Each link in the array bq is a link to a power-of-2 heap: bq[i] is
either null or a link to a 2i-heap. As the queue grows and shrinks, the
length of the array increases and decreases, but much less frequently:
for example, the array length increases by 1 only after the queue size
doubles. It will be convenient to always have the last link null, so we
begin with an array of size 1, a null link:

PQfull()

{ bq = new Node[1]; bq[0] = null; }

thus adopting the convention that a queue is empty if and only if the
array is of length 1.

Now, let us consider the insert operation. The process of insert-
ing a new item into a binomial queue mirrors precisely the process
of incrementing a binary number. To increment a binary number, we
move from right to left, changing 1s to 0s because of the carry associ-
ated with 1 + 1 = 102, until finding the rightmost 0, which we change
to 1. In the analogous way, to add a new item to a binomial queue, we
move from right to left, merging heaps corresponding to 1 bits with a
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Figure 9.17
Insertion of a new element

into a binomial queue
Adding an element to a binomial
queue of 7 nodes is analogous
to performing the binary addition
1112 + 1 = 10002, with carries at
each bit. The result is the binomial
queue at the bottom, with an 8-
heap and null 4-, 2-, and 1-heaps.

Program 9.14 Insertion into a binomial queue

To insert a node into a binomial queue, we first make the node into a 1-
heap, identify it as a carry 1-heap, and then iterate the following process
starting at i = 0. If the binomial queue has no 2i-heap, we put the carry
2i-heap into the queue. If the binomial queue has a 2i-heap, we combine
that with the new one (using the pair method from Program 9.13) to
make a 2i+1-heap, increment i, and iterate until finding an empty heap
position in the binomial queue. When we carry in to the null link at the
end of the array, we call grow to increase the size of the array by 1 and
put a null link in the new position (see text).

Object insert(ITEM v)

{ Node t = new Node(v), c = t;

for (int i = 0; i < bq.length+1; i++)
{

if (c == null) break;

if (i == bq.length-1) bq = grow(bq);

if (bq[i] == null) { bq[i] = c; break; }

c = pair(c, bq[i]); bq[i] = null;

}

return t;

}

carry heap, until finding the rightmost empty position to put the carry
heap.

Specifically, to insert a new item into a binomial queue, we make
the new item into a 1-heap. Then, ifN is even (rightmost bit 0), we just
put this 1-heap in the empty rightmost position of the binomial queue.
If N is odd (rightmost bit 1), we join the 1-heap corresponding to the
new item with the 1-heap in the rightmost position of the binomial
queue to make a carry 2-heap. If the position corresponding to 2 in
the binomial queue is empty, we put the carry heap there; otherwise,
we merge the carry 2-heap with the 2-heap from the binomial queue to
make a carry 4-heap, and so forth, continuing until we get to an empty
position in the binomial queue. This process is depicted in Figure 9.17;
Program 9.14 is an implementation.

When we add an element to a binomial queue with 2k − 1 items
to make one with 2k items, we carry into the null link at the end of
the array, replacing it with a binomial tree of size 2k (the rest of the
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Figure 9.18
Removal of the maximum in a

power-of-2 heap
Taking away the root gives a forest
of power-of-2 heaps, all left-heap
ordered, with roots from the right
spine of the tree. This operation
leads to a way to remove the max-
imum element from a binomial
queue: Take away the root of the
power-of-2 heap that contains the
largest element, then use the join
operation to merge the resulting
binomial queue with remaining
power-of-2 heaps in the original
binomial queue.

Program 9.15 Removal of the maximum in a binomial queue

We first scan the root nodes to find the maximum and remove the
power-of-2 heap containing the maximum from the binomial queue.
We then remove the root node containing the maximum from its power-
of-2 heap and temporarily build a binomial queue that contains the
remaining constituent parts of the power-of-2 heap. Finally, we use
the join operation to merge this binomial queue back into the original
binomial queue.

ITEM getmax()

{ int i, max; ITEM v = null;

for (i = 0, max = -1; i < bq.length; i++)

if (bq[i] != null)

if ((max == -1) || v.less(bq[i].item))

{ max = i; v = bq[max].item; }

Node[] temp = new Node[max+1]; temp[max] = null;

Node x = bq[max].l; bq[max] = null;

for (i = max-1; i >= 0; i--)
{ temp[i] = x; x = x.r; temp[i].r = null; }

bq = BQjoin(bq, temp);

return v;

}

links are all null). To adhere to our convention in this case, we need
to add a null link at the end, which necessitates increasing the size of
the array by 1. The method grow that Program 9.14 invokes for this
task is simple to implement (see Exercise 9.62).

Other binomial-queue operations are also best understood by
analogy with binary arithmetic. As we shall see, implementing join
corresponds to implementing addition for binary numbers.

For the moment, assume that we have an (efficient) method for
join that is organized to merge the priority-queue reference in its second
operand with the priority-queue reference in its first operand (leaving
the result in the first operand). Using this method, we could implement
the insert operation with a call to the join method where one of the
operands is a binomial queue of size 1 (see Exercise 9.66).

We can also implement the remove the maximum operation with
one call to join. To find the maximum item in a binomial queue, we
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Figure 9.19
Joining of two binomial

queues (no carry)
When two binomial queues to be
joined do not have any power-
of-2 heaps of the same size, the
join operation is a simple merge.
Doing this operation is analo-
gous to adding two binary num-
bers without ever encountering
1 + 1 (no carry). Here, a bino-
mial queue of 10 nodes is merged
with one of 5 nodes to make one
of 15 nodes, corresponding to
10102 + 01012 = 11112 .

scan the queue’s power-of-2 heaps. Each of these heaps is left-heap-
ordered, so it has its maximum element at the root. The largest of the
items in the roots is the largest element in the binomial queue. Because
there are no more than lgN heaps in the binomial queue, the total
time to find the maximum element is less than lgN .

To perform the remove the maximum operation, we note that
removing the root of a left-ordered 2k-heap leaves k left-ordered power-
of-2 heaps—a 2k−1-heap, a 2k−2-heap, and so forth—which we can
easily restructure into a binomial queue of size 2k − 1, as illustrated
in Figure 9.18. Then, we can use the join operation to combine this
binomial queue with the rest of the original queue in order to complete
the remove the maximum operation. This implementation is given in
Program 9.15.

How do we join two binomial queues? First, we note that the
operation is trivial if they do not contain two power-of-2 heaps of the
same size, as illustrated in Figure 9.19: we simply merge the heaps
from the two binomial queues to make one binomial queue. A queue
of size 10 (consisting of an 8-heap and a 2-heap) and a queue of
size 5 (consisting of a 4-heap and a 1-heap) simply merge together to
make a queue of size 15 (consisting of an 8-heap, a 4-heap, a 2-heap,
and a 1-heap). The more general case follows by direct analogy with
performing addition on two binary numbers, complete with carry, as
illustrated in Figure 9.20.

For example, when we add a queue of size 7 (consisting of a
4-heap, a 2-heap, and a 1-heap) to a queue of size 3 (consisting of
a 2-heap and a 1-heap), we get a queue of size 10 (consisting of an
8-heap and a 2-heap); to do the addition, we need to merge the 1-
heaps and carry a 2-heap, then merge the 2-heaps and carry a 4-heap,
then merge the 4-heaps to get an 8-heap result, in a manner precisely
analogous to the binary addition 0112 + 1112 = 10102. The example
of Figure 9.19 is simpler than Figure 9.20 because it is analogous to
10102 + 01012 = 11112, with no carry.

This direct analogy with binary arithmetic carries through to give
us a natural implementation for the join operation (see Program 9.16).
For each bit, there are eight cases to consider, based on all the pos-
sible different values for the 3 bits involved (carry and 2 bits in the
operands). The code is more complicated than that for plain addition,
because we are dealing with distinguishable heaps, rather than with
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Figure 9.20
Joining of two binomial

queues
Adding a binomial queue of 3
nodes to one of 7 nodes gives one
of 10 nodes through a process
that mimics the binary addition
0112 + 1112 = 10102 . Adding N to
E gives an empty 1-heap in the re-
sult with a carry 2-heap containing
N and E. Then, adding the three
2-heaps leaves a 2-heap in the re-
sult with a carry 4-heap containing
T N E I. This 4-heap is added to
the other 4-heap, producing the bi-
nomial queue at the bottom. Few
nodes are touched in the process.

indistinguishable bits, but each case is straightforward. For example,
if all 3 bits are 1, we need to leave a heap in the result binomial queue
and to join the other two heaps for the carry into the next position.
Indeed, this operation brings us full cycle on abstract data types: we
(barely) resist the temptation to cast Program 9.16 as a purely abstract
binary addition procedure, with the binomial-queue implementation
nothing more than a client program using the more complicated bit
addition procedure in Program 9.13.

We do a join operation after reducing the size of the binomial
queue by 1. If the next-to-last link in the result is null, then we can
shrink the size of the array by 1, since the last link in the result will be
null. The method shrink that Program 9.16 invokes for this task is
simple to implement (see Exercise 9.62).

Property 9.7 All the operations for the priority-queue ADT can be
implemented with binomial queues such that O(lgN) steps are re-
quired for any operations performed on an N -item queue.

These performance bounds are the goal of the design of the data struc-
ture. They are direct consequences of the fact that the implementations
all have only one or two loops that iterate through the roots of the
trees in the binomial queue.

Another option, which leads to a slightly simpler implementa-
tion, is to keep the number of trees in the queue constant (see Exer-
cise 9.64) so that the running time of all the methods is proportional
to this number (the logarithm of the maximum size of the binomial
queue).

Property 9.8 Construction of a binomial queue with N insert oper-
ations on an initially empty queue requires O(N) comparisons in the
worst case.

For one-half the insertions (when the queue size is even and there is
no 1-heap), no comparisons are required; for one-half the remaining
insertions (when there is no 2-heap), only 1 comparison is required;
when there is no 4-heap, only 2 comparisons are required; and so
forth. Thus, the total number of comparisons is less than 0 ·N/2 + 1 ·
N/4 + 2 ·N/8 + . . . < N .

Binomial queues provide guaranteed fast performance, but data
structures have been designed with even better theoretical performance
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Program 9.16 Joining (merging) of two binomial queues

This code mimics the operation of adding two binary numbers. Pro-
ceeding from right to left with an initial carry bit of 0, we treat the
eight possible cases (all possible values of the operands and carry bits)
in a straightforward manner. For example, case 3 corresponds to the
operand bits being both 1 and the carry 0. Then, the result is 0, but the
carry is 1 (the result of adding the operand bits).

We exchange the references if necessary to make a reference the
queue with the larger array representation, and we increase or decrease
the size of a’s array for the result, if warranted. If there is a carry into
the last (null) link in case 4, it invokes grow; if the next-to-last link is
null after the operation is complete, it invokes shrink.

Like pair, this method is a private method in the implementation,
which is called by getmax and join. The implementation of the ADT
method join(PQfull p) is the invocation BQjoin(bq, p.bq).

static int bit(Node x)
{ return x == null ? 0 : 1; }

static int bits(Node C, Node B, Node A)

{ return 4*bit(C) + 2*bit(B) + 1*bit(A); }

static Node[] BQjoin(Node[] a, Node[] b)

{ Node c = null;

if (a.length < b.length)

{ Node[] t = a; a = b; b = t; }

for (int i = 0; i < b.length; i++)

switch(bits(c, b[i], a[i]))

{

case 2: a[i] = b[i]; break;

case 3: c = pair(a[i], b[i]);

a[i] = null; break;

case 4: if (i == a.length-1) a = grow(a);
a[i] = c; c = null; break;

case 5: c = pair(c, a[i]);

a[i] = null; break;

case 6:

case 7: c = pair(c, b[i]); break;

}

if (a[a.length-1] == null) a = shrink(a);

return a;

}
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characteristics, providing guaranteed constant-time performance for
certain operations. This problem is an interesting and active area of
data-structure design. On the other hand, the practical utility of many
of these esoteric structures is dubious. Before delving into complex
data-structure solutions, we need to be certain that performance bot-
tlenecks exist that we can relieve only by reducing the running time of
some priority-queue operation. Indeed, for practical applications, we
should prefer a trivial structure for debugging and for small queues;
then, we should use heaps to speed up the operations unless fast join
operations are required; finally, we should use binomial queues to
guarantee logarithmic performance for all operations. All things con-
sidered, however, a priority-queue package based on binomial queues
is a valuable addition to a software library.

Exercises
.9.54 Draw a binomial queue of size 29, using the binomial-tree representa-

tion.

• 9.55 Write a program to draw the binomial-tree representation of a binomial
queue, given the size N (just nodes connected by edges, no keys).

9.56 Give the binomial queue that results when the keys E A S Y Q U E S T I
O N are inserted into an initially empty binomial queue.

9.57 Give the binomial queue that results when the keys E A S Y are inserted
into an initially empty binomial queue, and give the binomial queue that results
when the keys Q U E S T I O N are inserted into an initially empty binomial
queue. Then give the result of remove the maximum for each queue. Finally,
give the result when the join operation is performed on the resulting queues.

9.58 Using the conventions of Exercise 9.1, give the sequence of binomial
queues produced when the operations

P R I O * R * * I * T * Y * * * Q U E * * * U * E

are performed on an initially empty binomial queue.

9.59 Using the conventions of Exercise 9.2, give the sequence of binomial
queues produced when the operations

( ( ( P R I O *) + ( R * I T * Y * ) ) * * * ) + ( Q U E * * * U * E )

are performed on an initially empty binomial queue.

9.60 Prove that a binomial tree with 2n nodes has
(
n
i

)
nodes at level i for

0 ≤ i ≤ n. (This fact is the origin of the name binomial tree.)

.9.61 Give an implementation for empty() that is appropriate for the
binomial-queue implementation given in the text.
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9.62 Implement the grow and shrink methods that increase by one and
decrease by one, respectively, the size of a Node array leaving a null link in the
last array position (shrink should throw an exception if that is not the case).

9.63 Change the binomial-queue implementation in the text to represent the
queues with Java Vector objects instead of arrays.

◦9.64 Develop a binomial-queue implementation that uses a fixed-size array
of representation so that grow and shrink are not needed, but the operations
all take time proportional to the array size.

◦9.65 Modify your solution such that Property 9.7 holds, by maintaining a
sentinel pointer to mark the point where the loops should terminate.

• 9.66 Implement insert for binomial queues by just using the join operation
explicitly.

•• 9.67 Implement change priority and remove for binomial queues. Note: You
will need to add a third link, which points up the tree, to the nodes.

• 9.68 Add an implementation of clone to the binomial-queue implementa-
tions (Programs 9.13 through 9.16) in the text, and test your implementation
with your driver program from Exercise 9.44.

• 9.69 Empirically compare binomial queues against heaps as the basis for
sorting, as in Program 9.6, for randomly ordered keys with N = 1000, 104,
105, and 106.

• 9.70 Develop an in-place sorting method like heapsort, but based on bino-
mial queues. Hint: See Exercise 9.38.


