
141

C H A P T E R 7
General Programming

THIS chapter is largely devoted to the nuts and bolts of the language. It discusses
the treatment of local variables, the use of libraries, the use of various data types,
and the use of two extralinguistic facilities: reflection and native methods. Finally, it
discusses optimization and naming conventions.

Item 29: Minimize the scope of local variables

This item is similar in nature to Item 12, “Minimize the accessibility of classes and
members.” By minimizing the scope of local variables, you increase the readability
and maintainability of your code and reduce the likelihood of error.

The C programming language mandates that local variables must be declared
at the head of a block, and programmers continue to do this out of habit; it’s a
habit worth breaking. As a reminder, the Java programming language lets you
declare variables anywhere a statement is legal.

The most powerful technique for minimizing the scope of a local variable
is to declare it where it is first used. If a variable is declared before it is used, it is
just clutter—one more thing to distract the reader who is trying to figure out what
the program does. By the time the variable is used, the reader might not remember
the variable’s type or initial value. If the program evolves and the variable is no
longer used, it is easy to forget to remove the declaration if it’s far removed from
the point of first use.

Not only can declaring a local variable prematurely cause its scope to extend
too early, but also too late. The scope of a local variable extends from the point of
its declaration to the end of the enclosing block. If a variable is declared outside of
the block in which it is used, it remains visible after the program exits that block.
If a variable is used accidentally before or after its region of intended use, the con-
sequences can be disastrous.

CHAPTER 7 GENERAL PROGRAMMING142

Nearly every local variable declaration should contain an initializer. If
you don’t yet have enough information to initialize a variable sensibly, you should
postpone the declaration until you do. One exception to this rule concerns try-
catch statements. If a variable is initialized by a method that throws a checked
exception, it must be initialized inside a try block. If the value must be used
outside of the try block, then it must be declared before the try block, where it
cannot yet be “sensibly initialized.” For example, see page 159.

Loops present a special opportunity to minimize the scope of variables. The
for loop allows you to declare loop variables, limiting their scope to the exact
region where they’re needed. (This region consists of the body of the loop as well
as the initialization, test, and update preceding the body.) Therefore prefer for
loops to while loops, assuming the contents of the loop variable(s) aren’t needed
after the loop terminates.

For example, here is the preferred idiom for iterating over a collection:

for (Iterator i = c.iterator(); i.hasNext();) {
 doSomething(i.next());
}

To see why this for loop is preferable to the more obvious while loop, con-
sider the following code fragment, which contains two while loops and one bug:

Iterator i = c.iterator();
while (i.hasNext()) {

doSomething(i.next());
}
 ...

Iterator i2 = c2.iterator();
while (i.hasNext()) { // BUG!

doSomethingElse(i2.next());
}

The second loop contains a cut-and-paste error: It initializes a new loop
variable, i2, but uses the old one, i, which unfortunately is still in scope. The
resulting code compiles without error and runs without throwing an exception, but
it does the wrong thing. Instead of iterating over c2, the second loop terminates
immediately, giving the false impression that c2 is empty. Because the program
errs silently, the error can remain undetected for a long time.

If the analogous cut-and-paste error were made in conjunction with the pre-
ferred for loop idiom, the resulting code wouldn’t even compile. The loop vari-

ITEM 29: MINIMIZE THE SCOPE OF LOCAL VARIABLES 143

able from the first loop would not be in scope at the point where the second loop
occurred:

for (Iterator i = c.iterator(); i.hasNext();) {
 doSomething(i.next());
}
 ...

// Compile-time error - the symbol i cannot be resolved
for (Iterator i2 = c2.iterator(); i.hasNext();) {
 doSomething(i2.next());
}

Moreover, if you use the for loop idiom, it’s much less likely that you’ll make
the cut-and-paste error, as there’s no incentive to use a different variable name in
the two loops. The loops are completely independent, so there’s no harm in reus-
ing the loop variable name. In fact, it’s stylish to do so.

The for loop idiom has one other advantage over the while loop idiom, albeit
a minor one. The for loop idiom is one line shorter, which helps the containing
method fit in a fixed-size editor window, enhancing readability.

Here is another loop idiom for iterating over a list that minimizes the scope of
local variables:

// High-performance idiom for iterating over random access lists
for (int i = 0, n = list.size(); i < n; i++) {

doSomething(list.get(i));
}

This idiom is useful for random access List implementations such as Array-
List and Vector because it is likely to run faster than the “preferred idiom” above
for such lists. The important thing to notice about this idiom is that it has two loop
variables, i and n, both of which have exactly the right scope. The use of the sec-
ond variable is essential to the performance of the idiom. Without it, the loop
would have to call the size method once per iteration, which would negate the
performance advantage of the idiom. Using this idiom is acceptable when you’re
sure the list really does provide random access; otherwise, it displays quadratic
performance.

Similar idioms exist for other looping tasks, for example,

for (int i = 0, n = expensiveComputation(); i < n; i++) {
doSomething(i);

}

CHAPTER 7 GENERAL PROGRAMMING144

Again, this idiom uses two loop variables, and the second variable, n, is used to
avoid the cost of performing redundant computation on every iteration. As a rule,
you should use this idiom if the loop test involves a method invocation and the
method invocation is guaranteed to return the same result on each iteration.

A final technique to minimize the scope of local variables is to keep methods
small and focused. If you combine two activities in the same method, local vari-
ables relevant to one activity may be in the scope of the code performing the other
activity. To prevent this from happening, simply separate the method into two: one
for each activity.

ITEM 30: KNOW AND USE THE LIBRARIES 145

Item 30: Know and use the libraries

Suppose you want to generate random integers between 0 and some upper bound.
Faced with this common task, many programmers would write a little method that
looks something like this:

static Random rnd = new Random();

// Common but flawed!
static int random(int n) {
 return Math.abs(rnd.nextInt()) % n;
}

This method isn’t bad, but it isn’t perfect, either—it has three flaws. The first
flaw is that if n is a small power of two, the sequence of random numbers it gener-
ates will repeat itself after a fairly short period. The second flaw is that if n is not a
power of two, some numbers will, on average, be returned more frequently than
others. If n is large, this flaw can be quite pronounced. This is graphically demon-
strated by the following program, which generates a million random numbers in a
carefully chosen range and then prints out how many of the numbers fell in the
lower half of the range:

public static void main(String[] args) {
 int n = 2 * (Integer.MAX_VALUE / 3);
 int low = 0;
 for (int i = 0; i < 1000000; i++)
 if (random(n) < n/2)
 low++;

 System.out.println(low);
}

If the random method worked properly, the program would print a number
close to half a million, but if you run it, you’ll find that it prints a number close to
666,666. Two thirds of the numbers generated by the random method fall in the
lower half of its range!

The third flaw in the random method is that it can, on rare occasion, fail cata-
strophically, returning a number outside the specified range. This is so because the
method attempts to map the value returned by rnd.nextInt() into a nonnegative
integer with Math.abs. If nextInt() returns Integer.MIN_VALUE, Math.abs will
also return Integer.MIN_VALUE, and the remainder operator (%) will return a neg-

CHAPTER 7 GENERAL PROGRAMMING146

ative number, assuming n is not a power of two. This will almost certainly cause
your program to fail, and the failure may be difficult to reproduce.

To write a version of random that corrects these three flaws, you’d have to
know a fair amount about linear congruential pseudorandom number generators,
number theory, and two’s complement arithmetic. Luckily, you don’t have to do
this—it’s already been done for you. It’s called Random.nextInt(int), and it was
added to the standard library package java.util in release 1.2.

You don’t have to concern yourself with the details of how nextInt(int)
does its job (although you can study the documentation or the source code if
you’re morbidly curious). A senior engineer with a background in algorithms
spent a good deal of time designing, implementing, and testing this method and
then showed it to experts in the field to make sure it was right. Then the library
was beta tested, released, and used extensively by thousands of programmers for
several years. No flaws have yet been found in the method, but if a flaw were to be
discovered, it would get fixed in the next release. By using a standard library,
you take advantage of the knowledge of the experts who wrote it and the
experience of those who used it before you.

A second advantage of using the libraries is that you don’t have to waste your
time writing ad hoc solutions to problems only marginally related to your work. If
you are like most programmers, you’d rather spend your time working on your
application than on the underlying plumbing.

A third advantage of using standard libraries is that their performance tends to
improve over time, with no effort on your part. Because many people use them
and because they’re used in industry-standard benchmarks, the organizations that
supply these libraries have a strong incentive to make them run faster. For
example, the standard multiprecision arithmetic library, java.math, was rewritten
in release 1.3, resulting in dramatic performance improvements.

Libraries also tend to gain new functionality over time. If a library class is
missing some important functionality, the developer community will make this
shortcoming known. The Java platform has always been developed with substan-
tial input from this community. Previously the process was informal; now there is
a formal process in place called the Java Community Process (JCP). Either way,
missing features tend to get added over time.

A final advantage of using the standard libraries is that you place your code in
the mainstream. Such code is more easily readable, maintainable, and reusable by
the multitude of developers.

Given all these advantages, it seems only logical to use library facilities in
preference to ad hoc implementations, yet a significant fraction of programmers

ITEM 30: KNOW AND USE THE LIBRARIES 147

don’t. Why? Perhaps they don’t know that the library facilities exist. Numerous
features are added to the libraries in every major release, and it pays to keep
abreast of these additions. You can peruse the documentation online or read
about the libraries in any number of books [J2SE-APIs, Chan00, Flanagan99,
Chan98]. The libraries are too big to study all the documentation, but every pro-
grammer should be familiar with the contents of java.lang, java.util, and,
to a lesser extent, java.io. Knowledge of other libraries can be acquired on an
as-needed basis.

It is beyond the scope of this item to summarize all the facilities in the librar-
ies, but a few bear special mention. In the 1.2 release, a Collections Framework
was added to the java.util package. It should be part of every programmer’s
basic toolkit. The Collections Framework is a unified architecture for representing
and manipulating collections, allowing them to be manipulated independently of
the details of their representation. It reduces programming effort while increasing
performance. It allows for interoperability among unrelated APIs, reduces effort
in designing and learning new APIs, and fosters software reuse.

The framework is based on six collection interfaces (Collection, Set, List,
Map, SortedList, and SortedMap). It includes implementations of these interfaces
and algorithms to manipulate them. The legacy collection classes, Vector and
Hashtable, were retrofitted to participate in the framework, so you don’t have to
abandon them to take advantage of the framework.

The Collections Framework substantially reduces the amount of code neces-
sary to do many mundane tasks. For example, suppose you have a vector of
strings, and you want to sort it alphabetically. This one-liner does the job:

Collections.sort(v);

If you want to do the same thing ignoring case distinctions, use the following:

Collections.sort(v, String.CASE_INSENSITIVE_ORDER);

Suppose you want to print out all of the elements in an array. Many program-
mers use a for loop, but there’s no need if you use the following idiom:

System.out.println(Arrays.asList(a));

Finally, suppose you want to know all of the keys for which two Hashtable
instances, h1 and h2, contain the same mappings. Before the Collections

CHAPTER 7 GENERAL PROGRAMMING148

Framework was added, this would have required a fair amount of code, but now it
takes three lines:

Map tmp = new HashMap(h1);
tmp.entrySet().retainAll(h2.entrySet());
Set result = tmp.keySet();

The foregoing examples barely scratch the surface of what you can do with
the Collections Framework. If you want to know more, see the documentation on
Sun’s Web site [Collections] or read the tutorial [Bloch99].

A third-party library worthy of note is Doug Lea’s util.concurrent
[Lea01], which provides high-level concurrency utilities to simplify the task of
multithreaded programming.

There are many additions to the libraries in the 1.4 release. Notable additions
include the following:

• java.util.regex—A full-blown Perl-like regular expression facility.

• java.util.prefs—A facility for the persistent storage of user preferences
and program configuration data.

• java.nio—A high-performance I/O facility, including scalable I/O (akin to
the Unix poll call) and memory-mapped I/O (akin to the Unix mmap call).

• java.util.LinkedHashSet, LinkedHashMap, IdentityHashMap—New col-
lection implementations.

Occasionally, a library facility may fail to meet your needs. The more special-
ized your needs, the more likely this is to happen. While your first impulse should
be to use the libraries, if you’ve looked at what they have to offer in some area and
it doesn’t meet your needs, use an alternate implementation. There will always be
holes in the functionality provided by any finite set of libraries. If the functionality
that you need is missing, you may have no choice but to implement it yourself.

To summarize, don’t reinvent the wheel. If you need to do something that
seems reasonably common, there may already be a class in the libraries that does
what you want. If there is, use it; if you don’t know, check. Generally speaking,
library code is likely to be better than code that you’d write yourself and is likely
to improve over time. This is no reflection on your abilities as a programmer;
economies of scale dictate that library code receives far more attention than the
average developer could afford to devote to the same functionality.

ITEM 31: AVOID FLOAT AND DOUBLE IF EXACT ANSWERS ARE REQUIRED 149

Item 31: Avoid float and double if exact answers are required

The float and double types are designed primarily for scientific and engineering
calculations. They perform binary floating-point arithmetic, which was carefully
designed to furnish accurate approximations quickly over a broad range of magni-
tudes. They do not, however, provide exact results and should not be used where
exact results are required. The float and double types are particularly ill-suited
for monetary calculations because it is impossible to represent 0.1 (or any other
negative power of ten) as a float or double exactly.

For example, suppose you have $1.03 in your pocket, and you spend 42¢.
How much money do you have left? Here’s a naive program fragment that
attempts to answer this question:

System.out.println(1.03 - .42);

Unfortunately, it prints out 0.6100000000000001. This is not an isolated case.
Suppose you have a dollar in your pocket, and you buy nine washers priced at ten
cents each. How much change do you get?

System.out.println(1.00 - 9*.10);

According to this program fragment, you get $0.09999999999999995. You
might think that the problem could be solved merely by rounding results prior to
printing, but unfortunately this does not always work. For example, suppose you
have a dollar in your pocket, and you see a shelf with a row of delicious candies
priced at 10¢, 20¢, 30¢, and so forth, up to a dollar. You buy one of each candy,
starting with the one that costs 10¢, until you can’t afford to buy the next candy on
the shelf. How many candies do you buy, and how much change do you get?
Here’s a naive program designed to solve this problem:

// Broken - uses floating point for monetary calculation!
public static void main(String[] args) {

double funds = 1.00;
int itemsBought = 0;
for (double price = .10; funds >= price; price += .10) {

funds -= price;
itemsBought++;

}
System.out.println(itemsBought + " items bought.");
System.out.println("Change: $" + funds);

}

CHAPTER 7 GENERAL PROGRAMMING150

If you run the program, you’ll find that you can afford three pieces of candy,
and you have $0.3999999999999999 left. This is the wrong answer! The right
way to solve this problem is to use BigDecimal, int, or long for monetary
calculations. Here’s a straightforward transformation of the previous program to
use the BigDecimal type in place of double:

public static void main(String[] args) {
final BigDecimal TEN_CENTS = new BigDecimal(".10");

int itemsBought = 0;
BigDecimal funds = new BigDecimal("1.00");
for (BigDecimal price = TEN_CENTS;

funds.compareTo(price) >= 0;
price = price.add(TEN_CENTS)) {

itemsBought++;
funds = funds.subtract(price);

}
System.out.println(itemsBought + " items bought.");
System.out.println("Money left over: $" + funds);

}

If you run the revised program, you’ll find that you can afford four pieces of
candy, with $0.00 left over. This is the correct answer. There are, however, two
disadvantages to using BigDecimal: It’s less convenient than using a primitive
arithmetic type, and its slower. The latter disadvantage is irrelevant if you’re solv-
ing a single short problem, but the former may annoy you.

An alternative to using BigDecimal is to use int or long, depending on the
amounts involved, and to keep track of the decimal point yourself. In this exam-
ple, the obvious approach is to do all computation in pennies instead of dollars.
Here’s a straightforward transformation of the program just shown that takes this
approach:

public static void main(String[] args) {
int itemsBought = 0;
int funds = 100;
for (int price = 10; funds >= price; price += 10) {

itemsBought++;
funds -= price;

}
System.out.println(itemsBought + " items bought.");
System.out.println("Money left over: "+ funds + " cents");

}

ITEM 31: AVOID FLOAT AND DOUBLE IF EXACT ANSWERS ARE REQUIRED 151

In summary, don’t use float or double for any calculations that require an
exact answer. Use BigDecimal if you want the system to keep track of the decimal
point and you don’t mind the inconvenience of not using a primitive type. Using
BigDecimal has the added advantage that it gives you full control over rounding,
letting you select from eight rounding modes whenever an operation that entails
rounding is performed. This comes in handy if you’re performing business
calculations with legally mandated rounding behavior. If performance is of the
essence, if you don’t mind keeping track of the decimal point yourself, and if the
quantities aren’t too big, use int or long. If the quantities don’t exceed nine
decimal digits, you can use int; if they don’t exceed eighteen digits, you can use
long. If the quantities exceed eighteen digits, you must use BigDecimal.

CHAPTER 7 GENERAL PROGRAMMING152

Item 32: Avoid strings where other types are more appropriate

Strings are designed to represent text, and they do a fine job of it. Because strings
are so common and so well supported by the language, there is a natural tendency to
use strings for purposes other than those for which they were designed. This item
discusses a few things that you shouldn’t do with strings.

Strings are poor substitutes for other value types. When a piece of data
comes into a program from a file, from the network, or from keyboard input, it is
often in string form. There is a natural tendency to leave it that way, but this ten-
dency is justified only if it really is textual in nature. If it’s numeric, it should be
translated into the appropriate numeric type, such as int, float, or BigInteger.
If it’s the answer to a yes-or-no question, it should be translated into a boolean.
More generally, if there’s an appropriate value type, whether primitive or object
reference, you should use it; if there isn’t, you should write one. While this advice
may seem obvious, it is often violated.

Strings are poor substitutes for enumerated types. As discussed in Item 21,
both typesafe enums and int values make far better enumerated type constants
than strings.

Strings are poor substitutes for aggregate types. If an entity has multiple
components, it is usually a bad idea to represent it as a single string. For example,
here’s a line of code that comes from a real system—identifier names have been
changed to protect the guilty:

// Inappropriate use of string as aggregate type
String compoundKey = className + "#" + i.next();

This approach has many disadvantages. If the character used to separate fields
occurs in one of the fields, chaos may result. To access individual fields, you have
to parse the string, which is slow, tedious, and error-prone. You can’t provide
equals, toString, or compareTo methods but are forced to accept the behavior
that String provides. A better approach is simply to write a class to represent the
aggregate, often a private static member class (Item 18).

Strings are poor substitutes for capabilities. Occasionally, strings are used
to grant access to some functionality. For example, consider the design of a
thread-local variable facility. Such a facility provides variables for which each
thread has its own value. When confronted with designing such a facility several

ITEM 32: AVOID STRINGS WHERE OTHER TYPES ARE MORE APPROPRIATE 153

years ago, several people independently came up with the same design in which
client-provided string keys grant access to the contents of a thread-local variable:

// Broken - inappropriate use of String as capability!
public class ThreadLocal {
 private ThreadLocal() { } // Noninstantiable

 // Sets the current thread’s value for the named variable.
 public static void set(String key, Object value);

 // Returns the current thread’s value for the named variable.
 public static Object get(String key);
}

The problem with this approach is that the keys represent a shared global
namespace. If two independent clients of the package decide to use the same name
for their thread-local variable, they unintentionally share the variable, which will
generally cause both clients to fail. Also, the security is poor; a malicious client
could intentionally use the same key as another client to gain illicit access to the
other client’s data.

This API can be fixed by replacing the string with an unforgeable key (some-
times called a capability):

public class ThreadLocal {
private ThreadLocal() { } // Noninstantiable

 public static class Key {
 Key() { }
 }

 // Generates a unique, unforgeable key
 public static Key getKey() {
 return new Key();
 }

 public static void set(Key key, Object value);
 public static Object get(Key key);
}

While this solves both of the problems with the string-based API, you can do
better. You don’t really need the static methods any more. They can instead
become instance methods on the key, at which point the key is no longer a key: it
is a thread-local variable. At this point, the noninstantiable top-level class isn’t

CHAPTER 7 GENERAL PROGRAMMING154

doing anything for you any more, so you might as well get rid of it and rename the
nested class to ThreadLocal:

public class ThreadLocal {
 public ThreadLocal() { }
 public void set(Object value);
 public Object get();
}

This is, roughly speaking, the API that java.util.ThreadLocal provides. In
addition to solving the problems with the string-based API, it’s faster and more
elegant than either of the key-based APIs.

To summarize, avoid the natural tendency to represent objects as strings when
better data types exist or can be written. Used inappropriately, strings are more
cumbersome, less flexible, slower, and more error-prone than other types. Types
for which strings are commonly misused include primitive types, enumerated
types, and aggregate types.

ITEM 33: BEWARE THE PERFORMANCE OF STRING CONCATENATION 155

Item 33: Beware the performance of string concatenation

The string concatenation operator (+) is a convenient way to combine a few strings
into one. It is fine for generating a single line of output or for constructing the string
representation of a small, fixed-size object, but it does not scale. Using the string
concatenation operator repeatedly to concatenate n strings requires time qua-
dratic in n. It is an unfortunate consequence of the fact that strings are immutable
(Item 13). When two strings are concatenated, the contents of both are copied.

For example, consider the following method that constructs a string represen-
tation of a billing statement by repeatedly concatenating a line for each item:

// Inappropriate use of string concatenation - Performs horribly!
public String statement() {

String s = "";
for (int i = 0; i < numItems(); i++)

s += lineForItem(i); // String concatenation
return s;

}

This method performs abysmally if the number of items is large. To achieve
acceptable performance, use a StringBuffer in place of a String to store the
statement under construction:

public String statement() {
StringBuffer s = new StringBuffer(numItems() * LINE_WIDTH);
for (int i = 0; i < numItems(); i++)

s.append(lineForItem(i));
return s.toString();

}

The difference in performance is dramatic. If numItems returns 100 and
lineForItem returns a constant 80-character string, the second method is ninety
times faster on my machine than the first. Because the first method is quadratic in
the number of items and the second is linear, the performance difference is even
more dramatic for larger numbers of items. Note that the second method
preallocates a StringBuffer large enough to hold the result. Even if it is detuned
to use a default-sized StringBuffer, it is still forty-five times faster than the first.

The moral is simple: Don’t use the string concatenation operator to combine
more than a few strings unless performance is irrelevant. Use StringBuffer’s
append method instead. Alternatively, use a character array, or process the strings
one at a time instead of combining them.

CHAPTER 7 GENERAL PROGRAMMING156

Item 34: Refer to objects by their interfaces

Item 25 contains the advice that you should use interfaces rather than classes as
parameter types. More generally, you should favor the use of interfaces rather than
classes to refer to objects. If appropriate interface types exist, parameters,
return values, variables, and fields should all be declared using interface types.
The only time you really need to refer to an object’s class is when you’re creating it.
To make this concrete, consider the case of Vector, which is an implementation of
the List interface. Get in the habit of typing this:

// Good - uses interface as type
List subscribers = new Vector();

rather than this:

// Bad - uses class as type!
Vector subscribers = new Vector();

If you get into the habit of using interfaces as types, your program will be
much more flexible. If you decide that you want to switch implementations, all
you have to do is change the class name in the constructor (or use a different static
factory). For example, the first declaration could be changed to read

List subscribers = new ArrayList();

and all of the surrounding code would continue to work. The surrounding code was
unaware of the old implementation type, so it would be oblivious to the change.

There is one caveat: If the original implementation offered some special func-
tionality not required by the general contract of the interface and the code
depended on that functionality, then it is critical that the new implementation pro-
vide the same functionality. For example, if the code surrounding the first declara-
tion depended on the fact that Vector is synchronized, then it would be incorrect
to substitute ArrayList for Vector in the declaration.

So why would you want to change implementations? Because the new imple-
mentation offers better performance or because it offers desirable extra functional-
ity. A real-world example concerns the ThreadLocal class. Internally, this class
uses a package-private Map field in Thread to associate per-thread values with
ThreadLocal instances. In the 1.3 release, this field was initialized to a HashMap
instance. In the 1.4 release, a new, special-purpose Map implementation, called

ITEM 34: REFER TO OBJECTS BY THEIR INTERFACES 157

IdentityHashMap, was added to the platform. By changing a single line of code
to initialize the field to an IdentityHashMap instead of a HashMap, the ThreadLo-
cal facility was made faster.

Had the field been declared as a HashMap instead of a Map, there is no guaran-
tee that a single-line change would have been sufficient. If the client code had
used HashMap operations outside of the Map interface or passed the map to a
method that demanded a HashMap, the code would no longer compile if the field
were changed to an IdentityHashMap. Declaring the field with the interface type
“keeps you honest.”

It is entirely appropriate to refer to an object by a class rather than an
interface if no appropriate interface exists. For example, consider value
classes, such as String and BigInteger. Value classes are rarely written with
multiple implementations in mind. They are often final and rarely have corre-
sponding interfaces. It is perfectly appropriate to use a value class as a parameter,
variable, field, or return type. More generally, if a concrete class has no associated
interface, then you have no choice but to refer to it by its class whether or not it
represents a value. The Random class falls into this category.

A second case in which there is no appropriate interface type is that of objects
belonging to a framework whose fundamental types are classes rather than
interfaces. If an object belongs to such a class-based framework, it is preferable to
refer to it by the relevant base class, which is typically abstract, rather than by its
implementation class. The java.util.TimerTask class falls into this category.

A final case in which there is no appropriate interface type is that of classes
that implement an interface but provide extra methods not found in the interface—
for example, LinkedList. Such a class should be used only to refer to its
instances if the program relies on the extra methods: it should never be used as a
parameter type (Item 25).

These cases are not meant to be exhaustive but merely to convey the flavor of
situations where it is appropriate to refer to an object by its class. In practice, it
should be apparent whether a given object has an appropriate interface. If it does,
your program will be more flexible if you use the interface to refer to the object; if
not, just use the highest class in the class hierarchy that provides the required
functionality.

CHAPTER 7 GENERAL PROGRAMMING158

Item 35: Prefer interfaces to reflection

The reflection facility, java.lang.reflect, offers programmatic access to infor-
mation about loaded classes. Given a Class instance, you can obtain Constructor,
Method, and Field instances representing the constructors, methods, and fields of
the class represented by the Class instance. These objects provide programmatic
access to the class’s member names, field types, method signatures, and so on.

Moreover, Constructor, Method, and Field instances let you manipulate
their underlying counterparts reflectively: You can construct instances, invoke
methods, and access fields of the underlying class by invoking methods on the
Constructor, Field, and Method instances. For example, Method.invoke lets
you invoke any method on any object of any class (subject to the usual security
constraints). Reflection allows one class to use another, even if the latter class did
not exist when the former was compiled. This power, however, comes at a price:

• You lose all the benefits of compile-time type checking, including exception
checking. If a program attempts to invoke a nonexistent or inaccessible method
reflectively, it will fail at run time unless you’ve taken special precautions.

• The code required to perform reflective access is clumsy and verbose. It is
tedious to write and difficult to read.

• Performance suffers. As of release 1.3, reflective method invocation was
forty times slower on my machine than normal method invocation. Reflection
was rearchitected in release 1.4 for greatly improved performance, but it is still
twice as slow as normal access, and the gap is unlikely to narrow.

The reflection facility was originally designed for component-based applica-
tion builder tools. Such tools generally load classes on demand and use reflection
to find out what methods and constructors they support. The tools let their users
interactively construct applications that access these classes, but the generated
applications access the classes normally, not reflectively. Reflection is used only
at design time. As a rule, objects should not be accessed reflectively in normal
applications at run time.

There are a few sophisticated applications that demand the use of reflection.
Examples include class browsers, object inspectors, code analysis tools, and inter-
pretive embedded systems. Reflection is also appropriate for use in RPC systems
to eliminate the need for stub compilers. If you have any doubts as to whether
your application falls into one of these categories, it probably doesn’t.

ITEM 35: PREFER INTERFACES TO REFLECTION 159

You can obtain many of the benefits of reflection while incurring few of
its costs by using it only in a very limited form. For many programs that must
use a class unavailable at compile time, there exists at compile time an appropriate
interface or superclass by which to refer to the class (Item 34). If this is the case,
you can create instances reflectively and access them normally via their inter-
face or superclass. If the appropriate constructor has no parameters, as is usually
the case, then you don’t even need to use the java.lang.reflect package; the
Class.newInstance method provides the required functionality.

For example, here’s a program that creates a Set instance whose class is spec-
ified by the first command line argument. The program inserts the remaining com-
mand line arguments into the set and prints it. Regardless of the first argument, the
program prints the remaining arguments with duplicates eliminated. The order in
which these arguments are printed depends on the class specified in the first argu-
ment. If you specify “java.util.HashSet,” they’re printed in apparently random
order; if you specify “java.util.TreeSet,” they’re printed in alphabetical order,
as the elements in a TreeSet are sorted:

// Reflective instantiation with interface access
public static void main(String[] args) {
 // Translate the class name into a class object
 Class cl = null;
 try {
 cl = Class.forName(args[0]);
 } catch(ClassNotFoundException e) {
 System.err.println("Class not found.");
 System.exit(1);
 }

 // Instantiate the class
 Set s = null;
 try {
 s = (Set) cl.newInstance();
 } catch(IllegalAccessException e) {
 System.err.println("Class not accessible.");
 System.exit(1);
 } catch(InstantiationException e) {
 System.err.println("Class not instantiable.");
 System.exit(1);
 }

 // Exercise the set
 s.addAll(Arrays.asList(args).subList(1, args.length-1));
 System.out.println(s);
}

CHAPTER 7 GENERAL PROGRAMMING160

While this program is just a toy, the technique that it demonstrates is very
powerful. The toy program could easily be turned into a generic set tester that val-
idates the specified Set implementation by aggressively manipulating one or more
instances and checking that they obey the Set contract. Similarly, it could be
turned into a generic set performance analysis tool. In fact, the technique that it
demonstrates is sufficient to implement a full-blown service provider framework
(Item 1). Most of the time, this technique is all that you need in the way of reflec-
tion.

You can see two disadvantages of reflection in the example. First, the example
is capable of generating three run-time errors, all of which would have been com-
pile-time errors if reflective instantiation were not used. Second, it takes twenty
lines of tedious code to generate an instance of the class from its name, whereas a
constructor invocation would fit neatly on a single line. These disadvantages are,
however, restricted to the part of the program that instantiates the object. Once
instantiated, it is indistinguishable from any other Set instance. In a real program,
the great bulk of the code is thus unaffected by this limited use of reflection.

A legitimate, if rare, use of reflection is to break a class’s dependencies on
other classes, methods, or fields that may be absent at run time. This can be useful
if you are writing a package that must run against multiple versions of some other
package. The technique is to compile your package against the minimal environ-
ment required to support it, typically the oldest version, and to access any newer
classes or methods reflectively. To make this work, you have to take appropriate
action if a newer class or method that you are attempting to access does not exist
at run time. Appropriate action might consist of using some alternate means to
accomplish the same goal or operating with reduced functionality.

In summary, reflection is a powerful facility that is required for certain sophis-
ticated system programming tasks, but it has many disadvantages. If you are writ-
ing a program that has to work with classes unknown at compile time you should,
if at all possible, use reflection only to instantiate objects and access the objects
using some interface or superclass that is known at compile time.

ITEM 36: USE NATIVE METHODS JUDICIOUSLY 161

Item 36: Use native methods judiciously

The Java Native Interface (JNI) allows Java applications to call native methods,
which are special methods written in native programming languages such as C or
C++. Native methods can perform arbitrary computation in native languages before
returning to the Java programming language.

Historically, native methods have had three main uses. They provided access
to platform-specific facilities such as registries and file locks. They provided
access to libraries of legacy code, which could in turn provide access to legacy
data. Finally, native methods were used to write performance-critical parts of
applications in native languages for improved performance.

It is legitimate to use native methods to access platform-specific facilities, but
as the Java platform matures, it provides more and more features previously found
only in host platforms. For example, the java.util.prefs package, added in
release 1.4, offers the functionality of a registry. It is also legitimate to use native
methods to access legacy code, but there are better ways to access some legacy
code. For example, the JDBC API provides access to legacy databases.

As of release 1.3, it is rarely advisable to use native methods for improved
performance. In early releases, it was often necessary, but JVM implementations
have gotten much faster. For most tasks, it is now possible to obtain comparable
performance without resorting to native methods. By way of example, when
java.math was added to the platform in release 1.1, BigInteger was imple-
mented atop a fast multiprecision arithmetic library written in C. At the time, this
was necessary for adequate performance. In release 1.3, BigInteger was rewrit-
ten entirely in Java and carefully tuned. The new version is faster than the original
on all of Sun’s 1.3 JVM implementations for most operations and operand sizes.

The use of native methods has serious disadvantages. Because native lan-
guages are not safe (Item 24), applications using native methods are no longer
immune to memory corruption errors. Because native languages are platform
dependent, applications using native methods are no longer freely portable. Native
code must be recompiled for each target platform and may require modification as
well. There is a high fixed cost associated with going into and out of native code,
so native methods can decrease performance if they do only a small amount of
work. Finally, native methods are tedious to write and difficult to read.

In summary, think twice before using native methods. Rarely, if ever, use them
for improved performance. If you must use native methods to access low-level
resources or legacy libraries, use as little native code as possible and test it thor-
oughly. A single bug in the native code can corrupt your entire application.

CHAPTER 7 GENERAL PROGRAMMING162

Item 37: Optimize judiciously

There are three aphorisms concerning optimization that everyone should know.
They are perhaps beginning to suffer from overexposure, but in case you aren’t yet
familiar with them, here they are:

More computing sins are committed in the name of efficiency (without neces-
sarily achieving it) than for any other single reason—including blind stupidity.

—William A. Wulf [Wulf72]

We should forget about small efficiencies, say about 97% of the time: prema-
ture optimization is the root of all evil.

—Donald E. Knuth [Knuth74]

We follow two rules in the matter of optimization:

Rule 1. Don’t do it.

Rule 2 (for experts only). Don’t do it yet—that is, not until you have a
perfectly clear and unoptimized solution.

—M. A. Jackson [Jackson75]

All of these aphorisms predate the Java programming language by two
decades. They tell a deep truth about optimization: It is easy to do more harm than
good, especially if you optimize prematurely. In the process, you may produce
software that is neither fast nor correct and cannot easily be fixed.

Don’t sacrifice sound architectural principles for performance. Strive to write
good programs rather than fast ones. If a good program is not fast enough, its
architecture will allow it to be optimized. Good programs embody the principle of
information hiding: Where possible, they localize design decisions within individ-
ual modules, so individual decisions can be changed without affecting the remain-
der of the system (Item 12).

This does not mean that you can ignore performance concerns until your pro-
gram is complete. Implementation problems can be fixed by later optimization,
but pervasive architectural flaws that limit performance can be nearly impossible
to fix without rewriting the system. Changing a fundamental facet of your design
after the fact can result in an ill-structured system that is difficult to maintain and
evolve. Therefore you should think about performance during the design process.

Strive to avoid design decisions that limit performance. The components
of a design that are most difficult to change after the fact are those specifying
interactions between modules and with the outside world. Chief among these

ITEM 37: OPTIMIZE JUDICIOUSLY 163

design components are APIs, wire-level protocols, and persistent data formats.
Not only are these design components difficult or impossible to change after the
fact, but all of them can place significant limitations on the performance that a
system can ever achieve.

Consider the performance consequences of your API design decisions.
Making a public type mutable may require a lot of needless defensive copying
(Item 24). Similarly, using inheritance in a public class where composition would
have been appropriate ties the class forever to its superclass, which can place arti-
ficial limits on the performance of the subclass (Item 14). As a final example,
using an implementation type rather than an interface in an API ties you to a spe-
cific implementation, even though faster implementations may be written in the
future (Item 34).

The effects of API design on performance are very real. Consider the getSize
method in the java.awt.Component class. The decision that this performance-
critical method was to return a Dimension instance, coupled with the decision that
Dimension instances are mutable, forces any implementation of this method to
allocate a new Dimension instance on every invocation. Even though, as of release
1.3, allocating small objects is relatively inexpensive, allocating millions of
objects needlessly can do real harm to performance.

In this case, several alternatives existed. Ideally, Dimension should have been
immutable (Item 13); alternatively, the getSize method could have been replaced
by two methods returning the individual primitive components of a Dimension
object. In fact, two such methods were added to the Component API in the 1.2
release for performance reasons. Preexisting client code, however, still uses the
getSize method and still suffers the performance consequences of the original
API design decisions.

Luckily, it is generally the case that good API design is consistent with good
performance. It is a very bad idea to warp an API to achieve good perfor-
mance. The performance issue that caused you to warp the API may go away in a
future release of the platform or other underlying software, but the warped API
and the support headaches that it causes will be with you for life.

Once you’ve carefully designed your program and produced a clear, concise,
and well-structured implementation, then it may be time to consider optimization,
assuming you’re not already satisfied with the performance of the program. Recall
that Jackson’s two rules of optimization were “Don’t do it,” and “(for experts
only). Don’t do it yet.” He could have added one more: Measure performance
before and after each attempted optimization.

CHAPTER 7 GENERAL PROGRAMMING164

You may be surprised by what you find. Often attempted optimizations have
no measurable effect on performance; sometimes they make it worse. The main
reason is that it’s difficult to guess where your program is spending its time. The
part of the program that you think is slow may not be at fault, in which case you’d
be wasting your time trying to optimize it. Common wisdom reveals that pro-
grams spend 80 percent of their time in 20 percent of their code.

Profiling tools can help you decide where to focus your optimization efforts.
Such tools give you run-time information such as roughly how much time each
method is consuming and how many times it is invoked. In addition to focusing
your tuning efforts, this can alert you to the need for algorithmic changes. If a qua-
dratic (or worse) algorithm lurks inside your program, no amount of tuning will
fix the problem. You must replace the algorithm with one that’s more efficient.
The more code in the system, the more important it is to use a profiler. It’s like
looking for a needle in a haystack: The bigger the haystack, the more useful it is to
have a metal detector. The Java 2 SDK comes with a simple profiler, and several
more sophisticated profiling tools are available commercially.

The need to measure the effects of optimization is even greater on the Java
platform than on more traditional platforms, as the Java programming language
does not have a strong performance model. The relative costs of the various prim-
itive operations are not well defined. The “semantic gap” between what the pro-
grammer writes and what the CPU executes is far greater than in traditional
compiled languages which makes it very difficult to reliably predict the perfor-
mance consequences of any optimization. There are plenty of performance myths
floating around that turn out to be half-truths or outright lies.

Not only is the performance model ill-defined, but it varies from JVM imple-
mentation to JVM implementation and from release to release. If you will be run-
ning your program on multiple JVM implementations, it is important that you
measure the effects of your optimization on each. Occasionally you may be forced
to make trade-offs between performance on different JVM implementations.

To summarize, do not strive to write fast programs—strive to write good ones;
speed will follow. Do think about performance issues while you’re designing sys-
tems and especially while you’re designing APIs, wire-level protocols, and persis-
tent data formats. When you’ve finished building the system, measure its
performance. If it’s fast enough, you’re done. If not, locate the source of the prob-
lems with the aid of a profiler, and go to work optimizing the relevant parts of the
system. The first step is to examine your choice of algorithms: No amount of low-
level optimization can make up for a poor choice of algorithm. Repeat this process
as necessary, measuring the performance after every change, until you’re satisfied.

ITEM 38: ADHERE TO GENERALLY ACCEPTED NAMING CONVENTIONS 165

Item 38: Adhere to generally accepted naming conventions

The Java platform has a well-established set of naming conventions, many of which
are contained in The Java Language Specification [JLS, 6.8]. Loosely speaking,
naming conventions fall into two categories: typographical and grammatical.

There are only a handful of typographical naming conventions, covering
packages, classes, interfaces, methods, and fields. You should rarely violate them
and never without a very good reason. If an API violates these conventions, it may
be difficult to use. If an implementation violates them, it may be difficult to main-
tain. In both cases, violations have the potential to confuse and irritate other pro-
grammers who work with the code and can cause faulty assumptions that lead to
errors. The conventions are summarized in this item.

Package names should be hierarchical with the parts separated by periods.
Parts should consist of lowercase alphabetic characters and, rarely, digits. The
name of any package that will be used outside your organization should begin
with your organization’s Internet domain name with the top-level domain first, for
example, edu.cmu, com.sun, gov.nsa. The standard libraries and optional pack-
ages, whose names begin with java and javax, are exceptions to this rule. Users
must not create packages whose names begin with java or javax. Detailed rules
for converting Internet domain names to package name prefixes can be found in
The Java Language Specification [JLS, 7.7].

The remainder of a package name should consist of one or more parts describ-
ing the package. Parts should be short, generally eight or fewer characters. Mean-
ingful abbreviations are encouraged, for example, util rather than utilities.
Acronyms are acceptable, for example, awt. Parts should generally consist of a
single word or abbreviation.

Many packages have names with just one part in addition to the internet
domain name. Additional parts are appropriate for large facilities whose size
demands that they be broken up into an informal hierarchy. For example, the
javax.swing package has a rich hierarchy of packages with names such as
javax.swing.plaf.metal. Such packages are often referred to as subpackages,
although they are subpackages by convention only; there is no linguistic support
for package hierarchies.

Class and interface names should consist of one or more words, with the first
letter of each word capitalized, for example, Timer or TimerTask. Abbreviations
are to be avoided, except for acronyms and certain common abbreviations like max
and min. There is little consensus as to whether acronyms should be uppercase or
have only their first letter capitalized. While uppercase is more common, a strong

CHAPTER 7 GENERAL PROGRAMMING166

argument can be made in favor of capitalizing only the first letter. Even if multiple
acronyms occur back-to-back, you can still tell where one word starts and the next
word ends. Which class name would you rather see, HTTPURL or HttpUrl?

Method and field names follow the same typographical conventions as class
and interface names, except that the first letter of a method or field name should
be lowercase, for example, remove, ensureCapacity. If an acronym occurs as the
first word of a method or field name, it should be lowercase.

The sole exception to the previous rule concerns “constant fields,” whose
names should consist of one or more uppercase words separated by the underscore
character, for example, VALUES or NEGATIVE_INFINITY. A constant field is a static
final field whose value is immutable. If a static final field has a primitive type or
an immutable reference type (Item 13), then it is a constant field. If the type is
potentially mutable, it can still be a constant field if the referenced object is immu-
table. For example, a typesafe enum can export its universe of enumeration con-
stants in an immutable List constant (page 107). Note that constant fields
constitute the only recommended use of underscores.

Local variable names have similar typographical naming conventions to mem-
ber names, except that abbreviations are permitted, as are individual characters
and short sequences of characters whose meaning depends on the context in which
the local variable occurs, for example, i, xref, houseNumber.

For quick reference, Table 7.1 shows examples of typographical conventions.

The grammatical naming conventions are more flexible and more controver-
sial than the typographical conventions. There are no grammatical naming con-
ventions to speak of for packages. Classes are generally named with a noun or
noun phrase, for example, Timer or BufferedWriter. Interfaces are named like

Table 7.1: Examples of Typographical Conventions

Identifier Type Examples

Package com.sun.medialib, com.sun.jdi.event

Class or Interface Timer, TimerTask, KeyFactorySpi, HttpServlet

Method or Field remove, ensureCapacity, getCrc

Constant Field VALUES, NEGATIVE_INFINITY

Local Variable i, xref, houseNumber

ITEM 38: ADHERE TO GENERALLY ACCEPTED NAMING CONVENTIONS 167

classes, for example, Collection or Comparator, or with an adjective ending in
“-able” or “-ible,” for example, Runnable or Accessible.

Methods that perform some action are generally named with a verb or verb
phrase, for example, append or drawImage. Methods that return a boolean value
usually have names that begin with the word “is,” followed by a noun, a noun
phrase, or any word or phrase that functions as an adjective, for example,
isDigit, isProbablePrime, isEmpty, isEnabled, isRunning.

Methods that return a nonboolean function or attribute of the object on which
they’re invoked are usually named with a noun, a noun phrase, or a verb phrase
beginning with the verb “get,” for example, size, hashCode, or getTime. There is
a vocal contingent that claims only the third form (beginning with “get”) is
acceptable, but there is no basis for this claim. The first two forms usually lead to
more readable code, for example,

if (car.speed() > 2 * SPEED_LIMIT)
generateAudibleAlert("Watch out for cops!");

The form beginning with “get” is mandatory if the class containing the method is a
Bean [JavaBeans], and it’s advisable if you’re considering turning the class into a
Bean at a later time. Also, there is strong precedent for this form if the class contains
a method to set the same attribute. In this case, the two methods should be named
getAttribute and setAttribute.

A few method names deserve special mention. Methods that convert the type
of an object, returning an independent object of a different type, are often called
toType, for example, toString, toArray. Methods that return a view (Item 4)
whose type differs from that of the receiving object, are often called asType, for
example, asList. Methods that return a primitive with the same value as the
object on which they’re invoked are often called typeValue, for example,
intValue. Common names for static factories are valueOf and getInstance
(Item 1, page 9).

Grammatical conventions for field names are less well established and less
important than those for class, interface, and method names, as well-designed
APIs contain few if any exposed fields. Fields of type boolean are typically
named like boolean accessor methods with the initial “is” omitted, for example,
initialized, composite. Fields of other types are usually named with nouns or
noun phrases, such as height, digits, or bodyStyle. Grammatical conventions
for local variables are similar to those for fields but are even weaker.

CHAPTER 7 GENERAL PROGRAMMING168

To summarize, internalize the standard naming conventions and learn to use
them as second nature. The typographical conventions are straightforward and
largely unambiguous; the grammatical conventions are more complex and looser.
To quote from The Java Language Specification [JLS, 6.8], “These conventions
should not be followed slavishly if long-held conventional usage dictates other-
wise.” Use common sense.

	General Programming
	Item 29: Minimize the scope of local variables
	Item 30: Know and use the libraries
	Item 31: Avoid float and double if exact answers are required
	Item 32: Avoid strings where other types are more appropriate
	Item 33: Beware the performance of string concatenation
	Item 34: Refer to objects by their interfaces
	Item 35: Prefer interfaces to reflection
	Item 36: Use native methods judiciously
	Item 37: Optimize judiciously
	Item 38: Adhere to generally accepted naming conventions

