
Chapters 1 through 4 present an introduction to C++ that provides the basis for under-
standing the rest of the material in this book. This part also provides professional pro-
grammers with insight into how their managers and technical leaders view life. This
material is intended to help developers understand how their organization works so
they can participate more fully in the decision-making process.

Preliminaries

P a r t I

What is the purpose of this chapter?

To explain what the book is all about, how it is related to the electronic FAQ and the
first edition, and what conventions are used.

This chapter discusses the purpose of the book and the conventions it follows. This
chapter also discusses our approach to FAQs and why you should buy this book if you
have the first edition or have access to the electronic FAQ.

What are C++ FAQs?

Frequently Asked Questions that should be asked about object-oriented programming
and C++.

Each FAQ provides specific guidance in the form of in-depth answers. Many FAQs also
provide a complete, working program that illustrates the principles espoused by the
FAQ. The word FAQs is pronounced like “facts.”

These FAQs aren’t necessarily questions people have asked; rather, they are the
questions people should ask. Although we never say it publicly, most of these FAQs are
based on dumb things we see people do on a fairly regular basis. We got tired of

Introduction

C h a p t e r 1

3

FAQ 1.01

FAQ 1.02

P r e l i m i n a r i e s

explaining the same fundamental notions over and over again and decided to write
them down in this book.

On the other hand, you have taken a step toward OO and C++ competence by pur-
chasing this guidebook; now take the next step by reading and understanding its message.

Who is the target audience for this book?

Professional software developers.

This book is aimed at developers including programmers, architects, and designers. It is
a fine way for the experienced programmer to learn object-oriented C++. This book is
not for beginners who are just learning to program since it assumes previous program-
ming background. Familiarity with C wouldn’t hurt but is not absolutely necessary.

Is this a book about C++ per se?

This is a C++ book with a twist.

This book focuses on the object-oriented aspects of C++. Thus, whenever you see the
word “C++,” you should assume that the words “object-oriented” are present (and we’ll
occasionally inject the words “object-oriented” as a reminder to the reader).

This book focuses on practical ways to use C++; it does not explore all of the dark
corners of the language beloved by “language lawyers.” In this way, this book is not the
traditional C++ book written from the perspective of the language and stressing the
syntax and features of C++ in all their gory detail. Instead, this book concentrates on
the key aspects of C++ (such as its OO features) and how to apply them effectively.
Another reason for this approach is that the language is so large that it is hard for devel-
opers to understand what is relevant and how to apply it.

In this vein, one of the main contributions of this book is to focus on the moral use
of C++ rather than simply describing the legal use of C++. In this context, using C++
morally means adhering to a programming discipline (i.e., a subset of all possible com-
binations of all the constructs of C++) that is relatively risk-free (whereas using C++
legally simply refers to any use of the language that the compiler accepts). We have
found that many of the problems that developers run into stem from trying to combine

4

FAQ 1.03

FAQ 1.04

I n t r o d u c t i o n

C++ features in incompatible and seemingly random ways; therefore using C++
morally is vital to using C++ effectively.

This book also tries to bridge the gap between software architecture and OO design
and C++ programming (see Chapter 4).

Why do developers need a guidebook for C++
and OO technology?

Learning to use C++ and OO properly is a long journey with many pitfalls.

Because of the sophistication and complexity of C++, developers need a road map that
shows how to use the language properly. For example, inheritance is a powerful facility
that can improve the clarity and extensibility of software, but it can also be abused in
ways that result in expensive design errors.

The field of object-oriented technology is large, evolving, and heterogeneous.
Under these circumstances, a guidebook is essential. These FAQs cover the latest inno-
vations so that you don’t have to stumble around for years learning the same lessons
others have already learned. The FAQs also expose incorrect and questionable prac-
tices.

To be effective, programmers need to understand the language features and how
the features of the language can be combined. For example, pointer arithmetic and the
is-a conversion (see FAQ 2.24) are both useful, but combining them has some subtle
edge effects that can cause big problems; see FAQ 8.16. Similar comments apply when
combining overloading and overriding (FAQ 29.02), overriding and default parame-
ters, abstract base classes and assignment (FAQ 24.05), and so on. So it is not enough to
understand each feature of C++.

What kind of guidance is given in the answers to these FAQs?

Explanations of language features, directions for using these features properly, and
guidelines indicating programming practices to avoid.

The FAQs can be divided into roughly three categories:

1. FAQs that explain what a particular language feature is and how to use it in
compliance with C++ semantics.

5

FAQ 1.05

FAQ 1.06

P r e l i m i n a r i e s

2. FAQs that explain how to use C++ properly. Some of these answers deal
with only a single language feature, while others explain how to use several
different language features in concert. Combining language features allows
sophisticated designs that can simultaneously satisfy multiple technical
requirements and business goals.

3. FAQs that expose poor programming practices. These show design and
programming practices that are legal in C++ but should be avoided
because they can lead to programs that are bug-ridden, hard to compre-
hend, expensive to maintain, difficult to extend, and lacking reuse value.

What is the electronic FAQ and why buy this book when the
electronic FAQ is free?

The electronic FAQ is a set of C++ questions and answers, originally prepared and dis-
tributed on the Internet by Marshall Cline. The Internet version is currently updated
and distributed by Marshall and is available through the news group comp.lang.c++.
This book has substantially more material than the electronic FAQ.

This book and the electronic FAQ were inspired by a seemingly unquenchable thirst
among C++ developers for more and better information about C++ through
comp.lang.c++. Addison-Wesley decided to provide an expanded form of that infor-
mation in book format.

This book covers a broader range of topics and goes into greater depth than the
electronic FAQ. It provides deeper coverage of the key points with extensive new exam-
ples.

Most of the programming examples are working, stand-alone programs, complete
with their own main(), all necessary #include files, and so on. All examples have
been compiled directly from the source text of the book; those that are complete pro-
grams have also been run.

6

FAQ 1.07

I n t r o d u c t i o n

Why should you buy this edition if you already have a copy of
the first edition?

Because the world has changed and you want to keep up with technology.

The OO world and the C++ language have changed significantly in the last few years.
There are new language constructs such as Run Time Type Identification (RTTI) and
namespaces. The Standard Template Library (STL) is a massive addition to the C++
body of essential knowledge. Design notation has apparently standardized on the Uni-
fied Modeling Language (UML). Java, CORBA, and ActiveX are now topics that every
C++ developer needs to understand. The goal of this second edition is to bring you up
to speed on all of these new developments while still keeping the pithy style and FAQ
format that was so well received in the first edition.

Finally, the second edition is much more self-contained than the first, with lots of
syntax and semantics. We’ve appreciated all your comments and suggestions and have
tried to accommodate them wherever possible.

What conventions are used in this book?

The undecorated word inheritance means “public inheritance.” Private or protected
inheritance is referred to explicitly.

Similarly the undecorated term derived class means “public derived class.” Derived
classes produced via private or protected inheritance are explicitly designated “private
derived class” or “protected derived class,” respectively.

The class names Base and Derived are used as hypothetical class names to illus-
trate the general relationship between a base class and one of its (publicly) derived
classes.

The term out-lined function indicates a function that is called via a normal CALL
instruction. In contrast, when an inlined function is invoked, the compiler inserts the
object code for that function at the point-of-call.

The term remote ownership is used when an object contains a pointer to another
object that the first object is responsible for deleting. The default destruction and copy
semantics for objects that contain remote ownership are incorrect, so explicit controls
are needed.

7

FAQ 1.08

FAQ 1.09

new

P r e l i m i n a r i e s

To allow compilation while simplifying the presentation to the reader, examples
that use the standard library have a line that says using namespace std;. This
dumping of the entire standard namespace is acceptable as a short-term conversion
technique or as a pedagogical aid, but its use in production systems is controversial.
Most authorities recommend introducing class names as needed or using the std::
qualifier.

The term OO is used as an abbreviation for “object-oriented.”
The term method is used as a synonym for “member function.”
NULL is used rather than 0 to make the code more readable. Organizational stan-

dards and guidelines should be consulted before the reader continues this practice.
The term C programming language refers to the ISO version of C.
The compiler is assumed (per the C++ Standard) to insert an implicit return 0;

at the end of main().
The intrinsic data type bool is used, which has literal values true and false.

For compilers that don’t have a built-in bool type, insert the following at the begin-
ning of each example:

typedef char bool; const bool false = 0; const bool true = 1;
The expression new MyClass, where MyClass is some type, is assumed to

throw an exception if it runs out of memory—it never returns NULL. Most compilers
implement this correctly, but some do not.

Most examples use protected: data rather than private: data. In the real
world, this is appropriate for most developers and most applications, but framework
developers probably should not use protected: data, since this would create a data
coupling between the derived classes and the protected: data of the base class. In
general, framework developers should use private: data with protected: access
functions.

Type names (names of classes, structs, unions, enums, and typedefs) start with a
capital letter; preprocessor symbols are all capitals; all other identifiers start with a low-
ercase letter. Data member names and class-scoped enumerations end with a single
underscore.

It is assumed that the file extensions .cpp and .hpp are appropriate. Some com-
pilers use a different convention.

Universal Modeling Language (UML) notation is used to express design relation-
ships.

The following priorities were used in designing the examples: (1) unity of purpose,
(2) compactness, and (3) self-contained functionality. In other words, each example
demonstrates one basic point or technique, is as short as possible, and, if possible, is a
complete, working program. The examples are not intended for plug-in reuse in
industrial-strength settings because balancing the resultant (subtle) tradeoffs would
conflict with these priorities.

8

I n t r o d u c t i o n

To avoid complicating the discussions with finding the optimal balance between
the use of virtual and inline for member functions, virtual is used more
often than strictly necessary (see FAQ 21.15). To achieve compactness, some member
functions are defined in the class body even if they wouldn’t normally be inline or
even if moving them down to the bottom of a header file would improve specification
(see FAQ 6.05). Uncalled functions are often left undefined. Some functions that are
called are also undefined, since compactness is a higher priority than self-contained
functionality. Also for compactness, examples are not wrapped in preprocessor sym-
bols that prevent multiple expansions (see FAQ 2.16).

The examples put the public: part at the beginning of the class rather than at
the end of the class. This makes it easier for those who simply want to use the class as
opposed to those who want to go in and change the internal implementation of the
class. This is normally the right tradeoff since a class is normally used a lot more often
than it is changed.

It is assumed that the C++ compiler and standard library are both compliant with
the Standard and work correctly. In the real world, this is probably not a safe assump-
tion, and you should be cautious.

9

