

CHAPTER 8 CLASS LOADERS

182

Under the Java 1.1 and later platforms, the call to

defineClass

 is replaced with

c = defineClass(name, bytes, 0, bytes.length);

The first example is acceptable under Java 1.1 but deprecated (that is, it’s considered
bad style, and one day it may no longer be acceptable). If the

name

 doesn’t match
the name of the class found in the bytes, then a

ClassFormatError

 is thrown.
If the class is found neither in the cache nor wherever

findClass

 looks for it,
the class loader calls

findSystemClass

 to see whether the system can locate a
definition for the class. If

findSystemClass

 doesn’t find it, it throws a

ClassNot-

FoundException

, since that was the last chance to find the class.

8.3.1 Caching Classes

It’s important that a class loader return the same

Class

 object each time it’s given
a particular name. If the same class were loaded more than once, it would be con-
fusing to users who might find that two classes with identical names aren’t identi-
cal. Class static constructors might be invoked multiple times, causing problems
for classes that were designed to expect them to be called only once.

Under Java 1.0, it was the responsibility of the class loader to cache classes
itself. This is usually done with a

Hashtable

, as shown in the template. However,
this still leaves the possibility of confusion, since two different class loaders might
each load a class into the system with the same name. Java 1.1 resolves this prob-
lem by handling the caching itself. It makes this cache available to the class loader
developer through a method called

findLoadedClass

:

Class findLoadedClass(String name);

A call to

findLoadedClass

 replaces the cache lookup. When

defineClass

 is
called, it maps the name of the class to the

Class

 that is returned. After that,

findLoadedClass

 always returns that

Class

 whenever it’s given the same name,
no matter which class loader invokes it.

When implementing your class loader, you will have to decide whether to use
the Java 1.0 interface or the 1.1 interface. The 1.0 interface is supported on virtual
machines supporting Java 1.1 but not vice versa. However, using the 1.0 interface
will have different results on a JVM 1.1 if the class loader tries to define a class
more than once. On a JVM 1.0, it would actually load the classes multiple times,
and the system would have two different classes with the same name. These
classes wouldn’t share

static

 fields or use

private

 fields or methods on the
other. On 1.1 and later JVMs, however,

defineClass

 throws an exception when
it’s asked to define the class a second time anywhere in the virtual machine, even
if the bytes are identical.

26 | ENGEL.ch08 Page 182 Friday, May 19, 2000 2:35 PM

Tyrrell Albaugh

Tyrrell Albaugh

