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PART II

Fundamental Concepts
and Techniques

Chapter 3

SAMPLING
AND QUANTIZING

Our main purpose in this book is to study the basic techniques required to accurately
simulate communication systems using digital computers. In most communications
applications, waveforms are generated and processed through the system under
study. The computer, of course, can only process numbers representing samples of
the waveforms of interest. In addition, since the computer has finite word length,
the sample values have finite precision. In other words, the sample values are
quantized. Thus, sampling and quantizing are underlying operations in all digital
simulations, and each of these operations give rise to errors in the simulation results.
The complete elimination of these error sources is not possible and tradeoffs are
often required. We will see that the best we can do is to minimize the effects of
sampling and quantizing on simulation accuracy. It is worth noting that many
physical systems make use of digital signal-processing (DSP) techniques and also
suffer from the effects of sampling and quantizing errors.
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56 Sampling and Quantizing Chapter 3

3.1 Sampling

As illustrated in Figure 3.1, a digital signal is formed from an analog signal by the
operations of sampling, quantizing, and encoding. The analog signal, denoted x(t),
is continuous in both time and amplitude. The result of the sampling operation is
a signal that is still continuous in amplitude but discrete in time. Such signals are
often referred to as sampled-data signals. A digital signal is formed from a sampled
data-signal by encoding the time-sampled values onto a finite set of values. As we
will see, errors are usually induced at each step of this process.

3.1.1 The Lowpass Sampling Theorem

The first step in forming a digital signal from a continuous-time signal, x (t), is to
sample x (t) at a uniformly spaced series of points in time to produce the sample
values, xs(t) = x (kTs) = x[k].1 The parameter Ts is known as the sampling period
and is the inverse of the sampling frequency, fs.

A model for the sampling operation is illustrated in Figure 3.2. The signal x (t)
is multiplied by a periodic pulse p (t) to form the sampled signal xs (t). In other
words

xs (t) = x (t) p (t) (3.1)

The signal p (t) is referred to as the sampling function. The sampling function is
assumed to be a narrow pulse, which is either zero or one. Thus xs (t) = x (t) when
p (t) = 1, and xs (t) = 0 when p (t) = 0. We will see shortly that only the period of
the sampling function p(t) is significant and the waveshape of p(t) is arbitrary. The
pulse type function illustrated in Figure 3.2 simply provides us with the intuitively
pleasing notion of a switch periodically closing at the sampling instants.

Sample Quantize Encode

( )x t

Analog signal
(Continuous in
both time and
amplitude)

Sampled-data
signal (Discrete in
time and
continuous in
amplitude)

Discrete time
discrete
amplitude
signal

Digital
signal

x[k]

Figure 3.1 Sampling, quantizing, and encoding.

1Once a signal is sampled, the sample values are a function of the index k and the notation
x[k] is used. This notation, made popular by Oppenheim and Schafer [1], is commonly used in
the DSP literature. Since the square brackets implies a sampling operation the subscript s is not
needed to denote sampling. The value of x[·] is defined only for integer arguments.
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Section 3.1. Sampling 57

( )p t

( )x t ( )sx t

(a) Sampling operation

…

t

( )p t

0 Ts 2Ts 3Ts

(b) Sampling function

Figure 3.2 Sampling operation and sampling function.

Since p (t) is a periodic signal, it can be represented by the Fourier series

p (t) =
∞∑

n=−∞
Cn exp(j2πnfst) (3.2)

in which the Fourier coefficients are given by

Cn =
1
Ts

∫ Ts/2

−Ts/2

p (t) exp(−j2πnfst) dt (3.3)

Substituting (3.2) into (3.1) gives

xs (t) = x(t)
∞∑

n=−∞
Cn exp(j2πnfst) (3.4)

for the sampled signal.
In order to derive the sampling theorem and thereby show that under appro-

priate conditions x (t) is completely represented by the samples x (kTs), we must
derive the spectrum of xs (t) and show that x(t) can indeed be reconstructed from
xs(t). The Fourier transform of the sampled signal is

Xs (f) =
∫ ∞

−∞
x(t)

∞∑
n=−∞

Cn exp(j2πnfst) exp(−j2πft) dt (3.5)

which, upon interchanging integration and summation, becomes

Xs (f) =
∞∑

n=−∞
Cn

∫ ∞

−∞
x (t) exp [−j2π(f − nfs)t] dt (3.6)

Since the Fourier transform of the continuous-time signal x(t) is

X (f) =
∫ ∞

−∞
x (t) exp(−j2πft) dt (3.7)
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58 Sampling and Quantizing Chapter 3

it follows from (3.6) that the Fourier transform of the sampled signal can be written

Xs (f) =
∞∑

n=−∞
CnX (f − nfs) (3.8)

We therefore see that the effect of sampling a continuous-time signal is to reproduce
the spectrum of the signal being sampled about dc (f = 0) and all harmonics of
the sampling frequency (f = nfs). The translated spectra are weighted by the
corresponding Fourier coefficient in the series expansion of the sampling pulse p(t).

The next, and final, step in the development of the sampling theorem is to
define p(t). Since the samples are assumed to be taken instantaneously, a suitable
definition of p(t) is

p(t) =
∞∑

k=−∞
δ(t − kTs) (3.9)

This is known as impulse function sampling in which the sample values are rep-
resented by the weights of the impulse functions. Substitution of (3.9) into (3.3)
gives

Cn =
1
Ts

∫ Ts/2

−Ts/2

δ (t) exp(−j2πnfst) dt (3.10)

Applying the sifting property of the delta function gives

Cn =
1
Ts

= fs (3.11)

Using this result in (3.2) shows that the Fourier transform of p(t) can be represented
by

P (f) = fs

∞∑
n=−∞

δ(f − nfs) (3.12)

For impulse function sampling Cn = fs for all n. Thus, using (3.8) the spectrum of
the sampled signal becomes

Xs (f) = fs

∞∑
n=−∞

X (f − nfs) (3.13)

Note that this result could have also been obtained from the expression

Xs(f) = X(f) � P (f) (3.14)

where � denotes convolution. The generation of Xs(f) using (3.14) is illustrated in
Figure 3.3 for the case of a bandlimited signal.
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60 Sampling and Quantizing Chapter 3

The sampling theorem can be developed from observation of Figure 3.3. In order
for the samples x (nTs) to contain all of the information in the continuous-time signal
x (t), so that no information is lost in the sampling process, the sampling must be
performed so that x (t) can be reconstructed without error from the samples x (nTs).
We will see that reconstruction of x(t) from xs(t) is accomplished by extracting the
n = 0 term from Xs(f) by lowpass filtering. Accomplishing reconstruction without
error therefore requires that the portion of the spectrum of Xs(f) about f = ±fs

[the n = ±1 terms in (3.13)] not overlap the portion of the spectrum about f = 0
[the n = 0 term in (3.13)]. In other words, all translated spectra in (3.13) must be
disjoint. This requires that fs − fh > fh or fs > 2fh, which proves the sampling
theorem for lowpass signals.

Theorem 1 A bandlimited signal may be reconstructed without error from sam-
ples of the signal if the sampling frequency fs exceeds 2fh, where fh is the highest
frequency present in the signal being sampled.

While this theorem is usually referred to as the lowpass sampling theorem, it also
works for bandpass signals. However, applying the lowpass sampling theorem to
bandpass signals usually results in excessively high sampling frequencies. Sampling
bandpass signals is the topic of a later section.

If fs < 2fh the spectra centered on f = ±fs overlap the spectrum centered on
f = 0 and the output of the reconstruction filter, as illustrated in Figure 3.4, will
be a distorted version of x(t). This distortion is referred to as aliasing. The effect
of aliasing is also illustrated in Figure 3.4, assuming that the spectrum of x(t) is
real.

Passband of
reconstruction filter

 f
 −fs  2fs fs0

Aliasing
error

 f
0

 Xs(f)

− f s / 2 f s / 2

Figure 3.4 Illustration of undersampling leading to aliasing error.
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Section 3.1. Sampling 61

3.1.2 Sampling Lowpass Random Signals

The waveform x(t) in the preceding discussion was assumed to be a deterministic
finite-energy signal. As a result of these assumptions, the Fourier transform exists
and the sampling theorem could be based on the spectrum (the Fourier transform) of
the signal. In most of our applications throughout this book it will be more natural
to assume that the simulation processes sample functions of a random process.
Therefore, instead of selecting a sampling frequency based on the Fourier transform
of the signal to be sampled, the selection of an appropriate sampling frequency must
be based on the power spectral density (PSD) of the sampling frequency.

For the case of random signals we write

Xs(t) = X(t)P (t) (3.15)

where the sampling function P (t) is written

P (t) =
∞∑

k=−∞
δ(t − kTs − D) (3.16)

in which D is a random variable independent of X(t) and uniformly distributed
in (0, Ts). Note the similarity of (3.15) and (3.1) and the similarity of (3.16) and
(3.9). There are only two essential differences. First, uppercase letters are used in
the time functions X(t), P (t), and Xs(t) to remind us that they represent random
processes. The other difference is the use of the random variable D in (3.16). The
effect of D is to ensure that Xs(t) is a stationary random process. Without the
inclusion of D the sampled signal is cyclostationary. The effect of D is to make the
time origin of P (t) random but fixed.

The power spectral density of Xs(t) is found by first determining the autocor-
relation function of

Xs(t) = X(t)
∞∑

k=−∞
δ(t − kTs − D) (3.17)

The Fourier transform of the resulting autocorrelation function gives the PSD of
Xs(t), which is [2]

SXs(f) = f2
s

∞∑
n=−∞

SX (f − nfs) (3.18)

where SX(f) denotes the PSD of X(t). Note the similarity of (3.18) and (3.13).
Also note that Figures 3.3 and 3.4 apply if the spectra are PSDs corresponding
to X(t) and if the axes are labeled accordingly. Note that the sampling theorem
as previously derived still holds, and therefore the signal must be sampled at a
frequency exceeding twice the sampling frequency if aliasing is to be avoided.

3.1.3 Bandpass Sampling

We now consider the problem of sampling bandpass signals. There are a number of
strategies that can be used for representing bandpass signals by a set of samples.
In the following sections we consider the two most common methods.
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62 Sampling and Quantizing Chapter 3

The Bandpass Sampling Theorem

The bandpass sampling theorem for real bandpass signals is stated as follows [2]:

Theorem 2 If a bandpass signal has bandwidth B and highest frequency fh, the
signal can be sampled and reconstructed using a sampling frequency of fs = 2fh/m,
where m is the largest integer not exceeding fh/B. All higher sampling frequencies
are not necessarily usable unless they exceed 2fh, which is the value of fs dictated
by the lowpass sampling theorem.

A plot of the normalized sampling frequency fs/B as a function of the normalized
center frequency f0/B is illustrated in Figure 3.5, where f0 and fh are related by
fh = f0+B/2. We see that the allowable sampling frequency always lies in the range
2B ≤ fs ≤ 4B. However, for f0 � B, which is typically the case, the sampling
frequency dictated by the bandpass sampling theorem is approximately equal to,
but is lower bounded by, 2B.

Sampling Direct/Quadrature Signals

Suppose we have a bandpass signal expressed in the form

x(t) = A(t) cos [2πfct + φ(t)] (3.19)

The function A(t) is referred to as the envelope of the bandpass signal and the
function φ(t) is referred to as the phase deviation of the bandpass signal. In most
communications applications both A(t) and φ(t) are lowpass signal and have band-
widths roughly on the order of the bandwidth of the information-bearing signal.
Using standard trigonometric identities, the bandpass signal can be written

x(t) = A(t) cosφ(t) cos 2πfct − A(t) sin φ(t) sin 2πfct (3.20)

or

x(t) = xd(t) cos 2πfct − xq(t) sin 2πfct (3.21)

In this representation

xd(t) = A(t) cos φ(t) (3.22)

is called the direct (or in-phase) component and

xq(t) = A(t) sin φ(t) (3.23)

is the quadrature component. Since A(t) and φ(t) are lowpass signals, it follows
that xd(t) and xq(t) are lowpass signals and therefore must be sampled in accor-
dance with the lowpass sampling theorem. Note from (3.21) that if xd(t), xq(t)
and the carrier frequency fc are known, the bandpass signal can be reconstructed
without error. The representation of bandpass signals using direct and quadature
components will be covered in detail in Chapter 4.
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64 Sampling and Quantizing Chapter 3

 f
0

~
( )X f

−
B

2
B

2

 f
0

X f( )

f0− f0

B

(a) Bandpass signal

(b) Complex envelope

Figure 3.6 Bandpass signal and the corresponding complex envelope.

The frequency-domain representation of a bandpass signal is given in Figure
3.6(a). The complex envelope corresponding to this signal is defined by

x̃(t) = xd(t) + jxq(t) (3.24)

Since both xd(t) and xq(t) are lowpass signals:

X̃(f) = Xd(f) + jXq(f) (3.25)

is lowpass as illustrated in Figure 3.6(b). In Figure 3.6 we see that X̃(f), and
consequently xd(t) and xq(t) are lowpass signals. Thus xd(t) and xq(t) must be
sampled according to the lowpass sampling theorem. Since the highest frequency
present in xd(t) and xq(t) is B/2, the minimum sampling frequency for each is
B. However, two lowpass signals [xd(t) and xq(t)] must be sampled rather than
one. As a result, a sampling rate exceeding 2B must be used. We therefore see
that sampling the complex envelope using the lowpass sampling theorem yields the
same required sampling frequency as sampling the real bandpass signal using the
bandpass sampling theorem for the typical case in which f0 � B.

Example 3.1. It follows from the preceding discussion that the bandpass signal
x(t) can be reconstructed without error if xd(t) and xq(t) are sampled appropriately
in accordance with the lowpass sampling theorem. The advantage of representing
bandpass signals by lowpass signals is obvious. Consider, for example, that we are
to represent 1 second of an FM signal by a set of samples. Assume that the carrier
frequency is 100 MHz (typical for the FM broadcast band) and that the highest
frequency present in the modulation or information-bearing signal is 15 kHz. The
bandwidth B of the modulated signal is usually approximated by Carson’s rule [2],
which is

B = 2(D + 1)W (3.26)
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Assuming a deviation ratio D of 5 gives

B = 2(5 + 1)15 kHz (3.27)

which is 180 kHz (90 kHz each side of the carrier). The highest frequency present
in the modulated signal is therefore 100,090 kHz. Thus, 1 second of signal requires
a minimum of 200,180,000 samples according to the lowpass sampling theorem.

Now suppose we elect to represent the FM signal in direct/quadrature form.
The bandwidth of both xd(t) and xq(t) is B/2, or 90 kHz. Thus xd(t) and xq(t) will
each require at least 180,000 samples to represent 1 second of signal. This gives a
total of 360,000 lowpass samples to represent 1 second of data. The savings is

200, 180, 000
360, 000

≈ 556 (3.28)

and translates directly into a corresponding reduction in computer run time. �

3.2 Quantizing

The quantizing process and a simple fixed-point encoding process is illustrated in
Figure 3.7, which shows a continuous-time waveform and a number of samples of
that waveform. The sample values are represented by the heavy dots. Each sample
falls into a quantizing level. Assuming that there are n quantizing levels and that
each quantizing level is represented by a b-bit binary word, it follows that

n = 2b (3.29)

In Figure 3.7 each quantizing level is mapped to three-bit (b = 3 and n = 8)
digital word. After quantizing, sample values are represented by the digital word

000

001

101

110

111

100

010

011

Figure 3.7 Quantizing and encoding.
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66 Sampling and Quantizing Chapter 3

x k

e kq

x kq

Figure 3.8 Model for quantizing error.

corresponding to the quantizing level into which the sample value falls, and digi-
tal processing of the waveform is accomplished by processing these digital words.
For example, the first three sample values (from left to right) in Figure 3.7 are
represented by the binary sequence 100110111.

From sampling theory we know that a continuous-time bandlimited signal, sam-
pled at a frequency exceeding the Nyquist frequency, can be reconstructed without
error from the samples. Therefore, under these conditions the sampling operation
is reversible. The quantizing operation, however, is not reversible. Once sample
values are quantized, only the quantizing level is maintained and therefore a ran-
dom error is induced. As before, the value of the waveform at the sampling instant
t = kTs is denoted x[k], and the corresponding quantized value is denoted xq[k],
which is

xq[k] = x[k] + eq[k] (3.30)

where eq[k] is the error induced by the quantizing process. The quantizer model
implied by (3.30) is illustrated in Figure 3.8. If the original signal is not bandlimited,
the resulting digital signal contains both aliasing and quantizing errors.

The quantity of interest is the signal-to-noise ratio (SNR), where the noise is
interpreted as the noise resulting from the quantizing process. The SNR due to
quantizing, denoted (SNR)q, is

(SNR)q =
S

Nq
=

E
{
x2[k]

}
E
{
e2

q[k]
} (3.31)

where E{·} denotes statistical expectation and Nq is the noise power resulting
from the quantizing process. In order to determine (SNR)q the probability density
function of the error eq[k] must be known. The pdf of the quantizing error is a
function of the format used to represent numbers in the computer. There are a
wide variety of formats that can be used. The broad categories are fixed point and
floating point.

Fixed-Point Arithmetic

Even though we are, for the most part, considering simulation using general-purpose
computers in which numbers are represented in a floating-point format, we pause
to consider quantizing errors resulting from fixed-point number representations.
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There are several reasons for considering fixed-point arithmetic (quantizing). First,
by considering fixed-point arithmetic, the basic mechanism by which quantizing er-
rors arise is illustrated. Also, special-purpose simulators have been developed that
use fixed-point arithmetic because fixed-point calculations can be executed much
faster than floating-point calculations. In addition, power consumption is usually
lower with fixed-point processors. Perhaps the most important reason for consid-
ering fixed-point arithmetic is that devices using fixed-point arithmetic must often
be simulated. For example, software-based communications systems are becoming
popular, since they can easily be reconfigured for different applications by simply
downloading appropriate programs to the device. In order to be commercially at-
tractive in a competitive environment, these systems must be available at the lowest
possible cost. Cost is typically minimized by using fixed-point arithmetic and, in
addition, fixed-point algorithms execute much faster than floating-point algorithms.
We should point out that the design of these software-based devices usually starts
with a simulation and, when the simulation shows that the device is properly de-
signed and meets specifications, the simulation code is downloaded to the device.2

In such applications, the simulation of the device and the physical device merge to a
great extent. As previously mentioned, speed, cost, and power consumption require-
ments usually dictate that many commercial devices utilize fixed-point arithmetic,
and simulation is an important tool for the design and performance evaluation of
these devices.

Assume that the width of a quantizing level, as illustrated in Figure 3.7, is
denoted ∆. Also assume that a sample value corresponding to a given quantizing
level is assumed to be the value at the center of the quantizing level.3 In this
case the maximum value of |eq[k]| is ∆/2. If the number of quantizing levels is
large, corresponding to long digital wordlengths, and if the signal varies significantly
from sample to sample, a given sample is equally likely to fall at any point in the
quantizing level. For this case the errors due to quantizing can be assumed to be
uniformly distributed and independent. The pdf (probability density function) of
the quantizing error is therefore uniform over the range [−∆/2, ∆/2] as illustrated
in Figure 3.9. Denoting the quantizing error of the kth sample by eq[k], we have

E {eq[k]} =
∫ ∆/2

−∆/2

x
1
∆

dx = 0 (3.32)

so that the quantizing error is zero mean. The variance of eq[k] is

E
{
e2

q[k]
}

=
∫ ∆/2

−∆/2

x2 1
∆

dx =
∆2

12
(3.33)

We now compute the signal-to-noise ratio due to quantizing.
2Recall the design cycle discussed in Chapter 1.
3In order to demonstrate basic principles, the pdf is assumed to be for a simple zero-mean pro-

cess. In practice the pdf will depend on the manner in which fixed-point numbers are represented
in the computer. The most common representations are sign-magnitude, ones-complement, and
twos-complement [1].
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∆
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∆
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Figure 3.9 Assumed pdf of quantizing error.

Assume that a quantizer has a dynamic range D and that the word length is b.
Assuming binary arithmetic, there are 2b possible quantizing levels and the dynamic
range is given by

D = 2b∆ (3.34)

Thus

∆ = D2−b (3.35)

and the noise power due to quantizing is

Nq = E
{
e2

q[k]
}

=
D2

12
2−2b (3.36)

The dynamic range is determined by the peak-to-peak value of the input signal to
the quantizer. If the signal power is S, the signal-to-noise ratio due to quantizing,
(SNR)q, is

(SNR)q =
S(

D2

12

)
2−2b

=
12S

D2
22b (3.37)

Assuming the signal to be zero mean, the values of S and D are related by the
crest factor of the underlying signal. The crest factor is defined as the ratio of the
RMS, or standard deviation, of a signal to the peak value of the signal. To illustrate
this relationship, assume that the underlying signal, having dynamic range (peak-
to-peak value) D, lies in the range ±D. Since the signal power is S, the standard
deviation is

√
S. Therefore, the crest factor is

Fc =
√

S

D/2
=

2
√

S

D
(3.38)

Substitution of (3.38) into (3.37) gives

(SNR)q = 3F 2
c 22b (3.39)
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which, in dB units, is

(SNR)q = 4.7712 + 20 log10 Fc + 6.0206b dB (3.40)

Note that signals with a high crest factor are more immune to quantizing error than
signals with a small crest factor. This result is logical, since signals with a high crest
factor have a large standard deviation, which means that they are more spread out
through the quantizing levels. It is, however, the word length b that has the most
significant impact on (SNR)q. Note that (SNR)q improves by 6 dB for each bit
added to the word length.

Floating-Point Arithmetic

As mentioned previously, throughout most of this book our concern will be simula-
tions for execution on general-purpose computers that utilize floating-point number
representations. The form of a floating-point number is ±M ∗ (±10ˆE), where M
and E are referred to as the mantissa and exponent, respectively. Where accuracy
is required, 64-bit (double-precision) digital words are used and these 64 bits must
be allocated between the mantissa and exponent. This allocation can have a sig-
nificant effect on the result of a given computation. Fortunately, this assignment
has been standardized and most, but not all, computers adhere to the standard.
The ANSI/IEEE standard for floating-point arithmetic specifies that 53 bits are
assigned to the mantissa and 11 bits are assigned to the exponent [3]. Fortunately,
MATLAB provides a simple way to determine whether or not the IEEE standard
is implemented on a given computer. One simply enters isieee at the MATLAB
prompt, and a 1 is returned if the standard is implemented.

Since we will be using MATLAB throughout this book for developing and
demonstrating simulations, it is important to consider the accuracy that can be
expected. For our purposes, the most important parameters resulting from the
floating-point format are the resolution (the difference between 1 and the next
largest floating-point number), which is the MATLAB variable eps, the largest
number that can be represented (realmax in MATLAB) and the smallest posi-
tive number that can be represented (realmin in MATLAB). Executing the simple
MATLAB script mparameters tests for compliance with the IEEE floating-point
standard and returns the values of each of these three important parameters. The
script mparameters follows.

% File: c3_mparameters.m
format long % display full precision
a = [‘The value of isieee is ’,num2str(isieee),‘.’];
b = [‘The value of eps is ’,num2str(eps,15),‘.’];
c = [‘The value of realmax is ’,num2str(realmax,15),‘.’];
d = [‘The value of realmin is ’,num2str(realmin,15),‘.’];
disp(a) % display isieee
disp(b) % display eps
disp(c) % display realmax
disp(d) % display realmin
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format short % restore default format
% End script file.

Executing the file mparameters on a computer that implements the IEEE floating-
point standard provides the following results:

>> mparameters
The value of isieee is 1.
The value of eps is 2.22044604925031e-016.
The value of realmax is 1.79769313486232e+308.
The value of realmin is 2.2250738585072e-308.

The first result displayed (isiee = 1) indicates that the computer does indeed
conform to the ANSI/IEEE standard for floating-point arithmetic. The next result
is eps, which is essentially the smallest resolvable difference between two numbers.
Note that eps is 2−52 (the extra bit associated with the mantissa accounts for the
sign bit), which illustrates the relationship between eps and the word length. We
see that more than 15 significant figures of accuracy are achieved. It is the value
of eps that ties most closely to the width of the quantization level ∆ that was
discussed in connection with fixed-point arithmetic. Note that ±realmax defines
the dynamic range, which, in this case exceeds 600 orders of magnitude.

Example 3.2. Suppose that we use floating-point arithmetic, consistent with the
ANSI/IEEE standard, to compute the value of

A = 1 − 0.4 − 0.3 − 0.2 − 0.1 (3.41)

which is obviously zero. However, performing this computation in MATLAB gives
the following:

>> a = 1-0.4-0.3-0.2-0.1
a =
-2.7756e-017

We see that the error induced by floating-point arithmetic is certainly small and is
probably negligible in most applications. The error is not zero, however, and the
user should always keep in mind that computed results are not usually exact. �

From this point forward we will assume that the quantizing errors resulting
from floating-point calculations are negligible. While this is an appropriate (and
necessary) assumption for the material contained in the remainder of this book,
one should be aware that even small errors can accumulate, in certain types of
calculations, to the point where the results are useless. DSP calculations in which
the signal of interest is a small difference of two very large numbers are a classical
example. Very large block length FFTs can give problems because of the large
number of butterfly calculations that are cascaded. There are many other examples.
In developing DSP algorithms care must be used to ensure that finite word length
effects are minimized.
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3.3 Reconstruction and Interpolation

We now consider the reconstruction of a continuous-time signal from a sequence of
samples. Since a digital simulation processes only sample values, a continuous-time
signal is never reconstructed from a set of samples in a simulation environment.
Consideration of the reconstruction process, however, leads to the subject of inter-
polation, which is an important operation in a simulation environment.

The general reconstruction technique is to pass the samples through a linear
filter having an impulse response h(t). Thus the reconstructed waveform is given
by xr(t) = xs(t) � h(t), where, as before, � denotes convolution. From (3.1) and
(3.9) we can write

xs(t) = x(t)
∞∑

k=−∞
δ(t − kTs) =

∞∑
k=−∞

x(kTs)δ(t − kTs) (3.42)

Thus, the reconstructed signal is given by

xr(t) =

[ ∞∑
k=−∞

x(kTs)δ(t − kTs)

]
� h(t) (3.43)

which is

xr(t) =
∞∑

k=−∞
x(kTs)h (t − kTs) (3.44)

The problem is to choose a h(t) that gives satisfactory results with a reasonable
level of computational burden.

3.3.1 Ideal Reconstruction

Assuming that a bandlimited signal is sampled at a rate exceeding 2fh, the signal
may be reconstructed by passing the samples through an ideal lowpass filter having
a bandwidth of fs/2. This can be seen in Figure 3.10. If fs > 2fh the spectra
centered on f = ±fs do not overlap the spectrum centered on f = 0. The output
of the resconstruction filter is fsX(f) or, in the time domain, fsx(t). Amplitude
scaling by 1/fs = Ts yields x(t).

It follows from Figure 3.10 that the impulse response of the reconstruction filter
is

h(t) = Ts

∫ fs/2

−fs/2

exp(j2πft)df (3.45)

where the scale factor of Ts has been included. Thus:

h(t) = Ts
1

j2πt
[exp (jπfst) − exp (jπfst)] (3.46)
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Passband of
reconstruction filter

 f
 −fs  2fs fs0  fh

 Afs

 fs / 2

 Xs(f)

f fs h−

Ts

Figure 3.10 Reconstruction filter.

or

h(t) = Ts
1
πt

sin(πfst) = sinc(fst) (3.47)

Substitution into (3.44) gives

xr(t) =
∞∑

k=−∞
x(kTs) sinc [fs(t − kTs)] (3.48)

or, in more convenient form:

xr(t) =
∞∑

k=−∞
x(kTs) sinc

(
t

Ts
− k

)
(3.49)

Note that since the signal x(t) is assumed bandlimited and the sampling frequency
is sufficiently high to ensure that aliasing errors are avoided, xr(t) = x(t). Thus,
perfect reconstruction is achieved, at least in theory. Note, however, that (3.49) can
never be used in practice, since the sinc(·) function is infinite in extent. Equation
(3.49) will be used, however, as the building block for a practical interpolation
technique in the following section.

3.3.2 Upsampling and Downsampling

Upsampling and downsampling are used in the simulation of many systems. The
need for these operations is illustrated by an example. Consider the direct sequence
spread-spectrum system illustrated in Figure 3.11. The data source generates a data
signal having a narrowband spectrum of bandwidth W .4 The data signal is multi-
plied by a wideband spreading code c(t), which is represented by a binary sequence

4The terms narrowband and wideband are used in a relative sense.
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with a symbol rate much greater than the data rate. The ratio of the spreading
code rate to the data rate is called the processing gain of the system. Multiplication
by the spreading code c(t) generates a wideband signal, having bandwidth B. The
channel imperfections may consist of interference from other users, jamming signals
in military communication systems, noise, and perhaps other degradations not ac-
counted for in Figure 3.11. The waveform at the output of the channel is multiplied
by the despreading code. The spreading code is assumed to take on values ±1 and
if the spreading code and the despreading code are identical and properly synchro-
nized, multiplying the spreading code and the despreading code gives c2(t) = 1 so
that the spreading and despreading codes have no effect on the channel of interest.
Note that the data signal is multiplied by c(t) twice and the channel impairments
are multiplied by c(t) only once. Thus, at the input to the lowpass filter following
multiplication by the despreading code the data signal is again narrowband and all
other components are wideband. The lowpass filter extracts the narrowband data
signal and passes it to the receiver.

The important attribute of the system illustrated in Figure 3.11 is that both
narrowband signals and wideband signals are present. If B � W , which is typically
the case, sampling the narrowband signal at the sampling rate required for the
wideband signal will be inefficient and will result in excessive simulation run times.
Ideally, each signal should be sampled with a sampling rate appropriate for that
signal.

Since signals having two different bandwidths are present in the example sys-
tem, it is appropriate to use two different sampling rates. Thus the sampling rate
must be increased at the boundary between the narrowband and wideband por-
tions of the system (left-hand dashed line in Figure 3.11) and decreased at the
boundary between the wideband and narrowband portions of the system (right-
hand dashed line in Figure 3.11). Increasing the sampling rate is accomplished by
upsampling followed by interpolation, in which new sample values are interpolated
from old sample values. Reducing the sampling rate is accomplished by decima-
tion in which unneeded samples are discarded. Upsampling is represented by a
block with an upward-pointing arrow and downsampling is represented by a block
with a downward-pointing arrow. The parameter M represents the factor by which
the sampling period is reduced (upsampling) or increased (downsampling) by the
process.

In the material to follow we will use Ts to represent the sampling period prior
to the upsampling or downampling process. After upsampling or downsampling,
the sampling period will be represented by Tu or Td, respectively. The signal prior
to upsampling or downsampling is denoted x(t) (no subscript on x) and the signal
after upsampling or downsampling will be denoted using the appropriate subscript;
for example, xu(t) and xd(t).

Upsampling and Interpolation

Upsampling is the first operation illustrated in Figure 3.11 and is the process
through which the sampling frequency is increased. Since upsampling reduces
the sampling period by a factor of M the new sampling period Tu and the old
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sampling period Ts are related by Tu = Ts/M . Thus, in terms of an underlying
continuous-time signal x(t), the upsampling process generates new sample values
x(kTu) = x(kTs/M) from the old sample values x(kTs). As an example, suppose
that we construct a new set of samples by interpolating the reconstructed signal
xr(t), given by (3.49) at points t = nTs/M . Performing this operations gives

xi(nTu) = x(nTs/M) =
∞∑

k=−∞
x(kTs) sinc

( n

M
− k
)

(3.50)

This is not a practical interpolator, since the sinc(·) function is infinite in extent.
Truncating the sinc(·) function yields

xi(nTu) = x(nTs/M) ∼=
L∑

k=−L

x(kTs) sinc
( n

M
− k
)

(3.51)

a more practical, although not perfect, interpolator. Making L large clearly reduces
the interpolation error. However, since each interpolated sample requires 2L + 1
samples, the computational burden is often unacceptable for large L. Thus, there is
a tradeoff between computational burden and accuracy. This tradeoff will be seen
many times in our study of simulation. Note also that, since a causal function must
be used for interpolation, a delay of LTs is induced. This delay does not present a
problem in simulation, but we must be aware of its presence.

A more practical interpolator, requiring much less computation than the sinc(·)
function interpolator, is the linear interpolator. The linear interpolator, although
much simpler than the sinc(·) function interpolator, can be used when the un-
derlying signal is significantly oversampled. The impulse response of the linear
interpolator is defined by

h[k] =
{

(M − |k|)/M, k = 0,±1,±2, · · · ,±(M − 1)
0, otherwise (3.52)

Note that there are 2M − 1 nonzero values of h[k]. A MATLAB program for
developing h[k] follows:

% File: c3_lininterp.m
function h=c3_lininterp(M)
h1 = zeros(1,(M-1));
for j=1:(M-1)

h1(j) = j/M;
end
h = [0,h1,1,fliplr(h1),0];
% End of function file.

The upsampling operation is implemented on a discrete set of samples as a two-
step process as illustrated in Figure 3.12. We first form xu[k] from x[k] according to
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M

Linear filter

h[k]

Upsample Interpolate

x k x ku x ki

Figure 3.12 Upsampling and interpolation.

xu[k] =
{

x[k/M ], k = 0,±M,±2M, · · · ,
0, otherwise (3.53)

which can be implemented with the MATLAB code

% File: c3_upsample.m
function out=c3_upsamp(in,M)
L = length(in);
out = zeros(1,(L-1)*M+1);
for j=1:L
out(M*(j-1)+1)=in(j);

end
% End of function file.

The result of this operation is to place M−1 zero value samples between each sample
in the original sequence x[k]. Interpolation is then accomplished by convolving xu[k]
with h[k], the impulse response of the linear interpolator. The process of linear
interpolation with M = 3 is illustrated in Figure 3.13. Note that only two samples
are used in the upsampling operation. The necessary delay is then Ts. As illustrated
in Figure 3.13, the interpolated value is found by summing the contributions from

x k

x k −1

k −1 k

f
M

M
x k1

1
=

−

f
M

M
x k2

2
1=

−
−

Interpolated value
f f1 2+

Figure 3.13 Illustration of interpolation process.
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x[k] and x[k−1], which are ((M −1)/M)x[k] and ((M −2)/M)x[k−1], respectively.
Thus, with M = 3, the interpolated value is

2
3
x [k] +

1
3
x [k − 1]

Since only two samples are used in the interpolation process, linear interpolation is
very fast.

Example 3.3. As an illustration of upsampling and interpolation we consider
interpolating the samples of a sinewave. The basic samples are illustrated in the
top segment of Figure 3.14 as x[k]. Upsampling with M = 6 yields the sample
values xu[k]. Linear interpolation with M = 6 gives the sequence of samples xi[k].
Note the delay of Ts. The MATLAB program used to generate Figure 3.14 follows:

% File: c3 upsampex.m
M = 6; % upsample factor
h = c3 lininterp(M); % imp response of linear interpolator
t = 0:10; % time vector
tu = 0:60; % upsampled time vector
x = sin(2*pi*t/10); % original samples
xu = c3 upsamp(x,M); % upsampled sequence
subplot(3,1,1)

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

0 10 20 30 40 50 60
-1

0

1

0 10 20 30 40 50 60 70 80
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0

1

x k
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Figure 3.14 Upsampling and interpolation operations used in Example 3.3.
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stem(t,x,‘k.’)
ylabel(‘x’)
subplot(3,1,2)
stem(tu,xu,‘k.’)
ylabel(‘xu’)
xi = conv(h,xu);
subplot(3,1,3)
stem(xi,‘k.’)
ylabel(‘xi’)

�
It is clear that upsampling and downsampling involve a significant amount of

overhead. If the upsampling factor M is modest, say, 2 or 3, it is usually best to
develop the simulation using a single sampling frequency and therefore oversample
the narrowband signals present in the system. If, however, the difference in B and
W exceeds an order of magnitude, it is usually most efficient to utilize multiple
sampling frequencies in the simulation and sample each signal at an appropriate
sampling frequency.

Downsampling (Decimation)

Downsampling is the second operation illustrated in Figure 3.11 and is the process
through which the sampling frequency is reduced. The process is accomplished by
replacing a block of M samples by a single sample. Downsampling is therefore
much simpler than upsampling. The functional representation for the samples at
the output of a downsampler is obtained by recognizing that the downsampling
process increases the sampling period by a factor of M . Thus the samples at the
output of a downsampler, denoted xd(kTd), are given by xd(kTd) = x(kMTs). The
sample values are given by

xd[k] = x[kM ] (3.54)

We need to be careful, however, to ensure that the downsampled signal does not
exhibit aliasing.

3.4 The Simulation Sampling Frequency

A fundamental decision that must be made in the development of a simulation is
the selection of the sampling frequency. For linear systems without feedback, the
necessary sampling frequency is dictated by the allowable aliasing error, which in
turn is dependent on the power spectral density of the underlying pulse shape.5 We
therefore pause to consider a common model for representing baseband signals used

5It will be shown in later chapters that, in addition to signal bandwidth, a number of other
factors affect the required sampling frequency. For example, the presence of nonlinearities result
in a requirement for higher sampling frequencies. The same is often true for systems containing
feedback. In addition, multipath channels place requirements on the sampling frequency so that
the multipath delays can be resolved. All of these topics will be considered in detail in later
chapters.
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for data transmission and to develop a technique for calculating the power spectral
density of the signal corresponding to the pulse shape. Since the pulse shape plays
such an important role in the selection of an appropriate sampling frequency, we
consider the problem in some detail.

We know from our study of sampling that the complete elimination of aliasing
errors requires an infinite sampling frequency. This is clearly a situation that cannot
be achieved in practice. In addition, as the sampling frequency increases, more
samples must be processed for each data symbol passed through the system. This
increases the time required for executing the simulation. Since aliasing errors cannot
be eliminated in practice, a natural strategy is to choose a sampling frequency for
the simulation that achieves an acceptable tradeoff between aliasing errors and
simulation run time. Of course, a sampling frequency must be selected so that the
errors due to aliasing are negligible compared to the system degradations being
investigated by the simulation.

3.4.1 General Development

A common model for the transmitted signal in a digital communication system is

x(t) = A
∞∑

k=0

akp(t − kT − ∆) (3.55)

where

· · · , a−2, a−1, a0, a1, a2, · · · , ak, · · ·

is a sequence of a random variables representing the data. The values of ak are typ-
ically denoted +1 or -1 in a binary digital system, p(t) is the pulse shape function,
T is the symbol period (bit period for binary transmission), and ∆ is a random
variable uniformly distributed over the sampling period.6 The parameter A is a
scaling constant used to establish the power in the transmitted signal. By incorpo-
rating this parameter, we can scale the pulse shape function so that the peak value
is unity. We assume that E{ak} = 0 and E {akak+m} = Rm represent the mean
and the autocorrelation of the data sequence, respectively.

It is easily shown [2] that the autocorrelation function of the transmitted signal
is given by

RXX(τ) = A2
∞∑

m=−∞
Rmr(τ − mT ) (3.56)

in which

r(τ) =
1
T

∫ ∞

−∞
p(t)p(t + τ)dt (3.57)

6Note that we are now using p(t) for the pulse shape rather than for the sampling function as
in the preceding section. The meaning of p(t) will be clear from the context in which it is used.
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The required sampling frequency is determined from the PSD of the transmitted
signal. Applying the Weiner-Khintchine theorem to (3.56) gives

SX(f) = A2

∫ ∞

−∞

( ∞∑
m=−∞

Rmr(τ − mT )

)
exp (−j2πfτ) dτ (3.58)

or

SX(f) = A2
∞∑

m=−∞
Rm

∫ ∞

−∞
r(τ − mT ) exp (−j2πfτ) dτ (3.59)

We now put this in a form more useful for computation.
The first step is to apply the change of variables α = τ − mT to (3.59). This

gives

SX(f) = A2
∞∑

m=−∞
Rm

∫ ∞

−∞
r(α) exp [−j2πf(α + mT )] dα (3.60)

Denoting

Sr(f) =
∫ ∞

−∞
r(α) exp(−j2πfα) dα (3.61)

gives

SX(f) = A2
∞∑

m=−∞
RmSr(f) exp(−j2πfmT ) (3.62)

We now determine Sr(f).
Fourier transforming (3.57) gives

Sr(f) =
∫ ∞

−∞

(
1
T

∫ ∞

−∞
p(t)p(t + α) dt

)
exp(−j2πfα) dα (3.63)

Applying the change of variables β = t+α allows (3.63) to be expressed in the form

Sr(f) =
1
T

(∫ ∞

−∞
p(t) exp(j2πft) dt

)(∫ ∞

−∞
p(β) exp(−j2πfβ) dβ

)
(3.64)

The second term in (3.64) is the Fourier transform of the pulse shape function p(t)
and the first term is the complex conjugate of the first term. This gives

Sr(f) =
|P (f)|2

T
=

G(f)
T

(3.65)

where G(f) is the energy spectral density of the pulse shape function p(t). Substi-
tution of (3.65) into (3.62) gives the general result

SX(f) = A2 G(f)
T

∞∑
m=−∞

Rm exp(−j2πfmT ) (3.66)

In many applications the data symbols can be assumed independent. This assump-
tion results in significant simplifications.
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3.4.2 Independent Data Symbols

If the data symbols {ak} are independent the autocorrelation becomes

Rm = E {akak+m} = E {ak}E {ak+m} = a2
kδ[m] (3.67)

so that Rm = a2
k for m = 0 and Rm = 0 otherwise. The PSD of x(t) as defined by

(3.66) takes a very simple form for this case:

SX(f) = A2 a2
kG(f)

T
(3.68)

If the data symbols are assumed to be ak = ±1 for all k, a2
k = 1 and

SX(f) = A2 G(f)
T

(3.69)

which is independent of the data.7 For the case in which the data symbols are not
independent, the underlying autocorrelation function Rm must be determined and
(3.66) must be evaluated term by term. See [2] for an example.

Example 3.4. Consider the rectangular pulse shape illustrated in Figure 3.15. It
follows from Figure 3.15 that

P (f) =
∫ T

0

exp(−j2πft) dt =
1

j2πf
[1 − exp(−j2πfT )] (3.70)

This can be placed in the form

P (f) =
1

j2πf
[exp(jπfT ) − exp(−jπfT )] exp(−jπfT )

=
sin(πfT )

πf
exp(−jπfT ) (3.71)

 t

 p(t)

0

1

 T

Figure 3.15 Rectangular pulse shape.

7We make the assumption that the data samples are +1 and −1 rather than +1 and 0 to be
consistent with the assumption that E{ak} = 0.
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or, in terms of the sinc(·) function

P (f) = T sinc(fT ) exp(−jπfT ) (3.72)

Therefore

G(f) = |P (f)|2 = T 2 sinc2(fT )

Substitution into (3.69) gives

SX(f) = A2T sinc2(fT ) (3.73)

for the power spectral density of x(t).
The transmitted power is, from (3.69)

P =
∫ ∞

−∞
SX(f) df = A2 1

T

∫ ∞

−∞
G(f) df (3.74)

From Parseval’s theorem and Figure 3.15 we know that∫ ∞

−∞
G(f)df =

∫ ∞

−∞
|P (f)|2 df =

∫ ∞

−∞
p2(t) dt = T (3.75)

Substitution into (3.74) gives

P = A2 (3.76)

as expected. This simple result arises from the fact that p(t) is a unit amplitude
pulse. Thus

∑
akp(t − kT − ∆) has unit power. Multiplication by A as shown

in (3.55) simply scales the power by A2. For other pulse shapes the relationship
between power and A must be computed using the technique just illustrated. Re-
member also the assumed data sequence {ak} is a unit power (variance) process.

�

Example 3.5. An interesting pulse shape, which will be needed later, is illustrated
in Figure 3.16(a). The basic pulse shape p(t) can be expressed p1(t) � p1(t) where
� denotes convolution and p1(t) is illustrated in Figure 3.16(b). Taking the Fourier
transform of p1(t) gives

P1(f) =

√
T

2
sinc

(
T

2
f

)
exp(−jπfT/2) (3.77)

Since convolution in the time domain is equivalent to multiplication in the frequency
domain we have

|P (f)| = |P1(f)|2 =
T

2
sinc2

(
T

2
f

)
(3.78)
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(a) Triangular pulse shape (b) Basic shape for convolution

Figure 3.16 Triangular pulse shape.

Thus

G(f) = |P (f)|2 =
T 2

4
sinc4

(
T

2
f

)
(3.79)

Substitution into (3.69) gives

SX(f) =
A2T

4
sinc4

(
T

2
f

)
(3.80)

This result will be used later in this chapter and in the problems. �

3.4.3 Simulation Sampling Frequency

We now return to the problem of relating the simulation sampling frequency to a
given pulse shape. This is accomplished by considering the signal-to-noise ratio of
the sampling process where the noise power arises from aliasing. The goal is to select
a sampling frequency so that the errors due to aliasing are negligible compared to
the system degradations being investigated by the simulation. It will be shown that
the required sampling frequency is dependent upon the waveshapes present in the
simulation model.

Consider a waveform defined by (3.55), having the rectangular pulse shape il-
lustrated in Figure 3.15, to be sampled as illustrated in Figure 3.17. In drawing

Figure 3.17 Sequence of rectangular pulses sampled at six samples per symbol.
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Figure 3.17 a sampling frequency of six times the symbol frequency was assumed.
The power spectral density of the data sequence is given by (3.73). Combining this
result with (3.18) gives

SXs(f) = f2
s

∞∑
n=−∞

A2T sinc2[(f − nfs)T ] (3.81)

Sampling the data sequence at m samples per symbol (fs = m/T ) gives

SXs(f) = f2
s

∞∑
n=−∞

A2T sinc2
[
(f − nm

T
)T
]

(3.82)

which is

SXs(f) = f2
s

∞∑
n=−∞

A2T sinc2 (fT − nm) (3.83)

The next task is to compute the signal-to-noise ratio due to aliasing.
The signal-to-noise ratio due to aliasing can be expressed (SNR)a = S/Na where

the signal power is

S =
∫ fs/2

−fs/2

f2
s A2T sinc2(fT ) df = 2f2

s A2T

∫ fs/2

0

sinc2(fT ) df (3.84)

and the noise power due to aliasing is

Na =
∫ fs/2

−fs/2

f2
s

∞∑
n=−∞

n�=0

A2T sinc2 (fT − nm) df

= 2f2
s A2T

∞∑
n=−∞

n�=0

∫ fs/2

0

sinc2 (fT − nm) df (3.85)

Note that we have made use of the fact that PSD is an even function of frequency.
The signal power is determined by integrating the n = 0 term in (3.83) over the
simulation bandwidth |f | < fs/2. The noise power due to aliasing is the power from
all of the frequency translated terms (n 	= 0) that fall in the simulation bandwidth.
Thus, the noise due to aliasing is found by integrating over all terms in (3.83) with
the n = 0 term excepted. This is made clear by Figure 3.18, which is drawn (not
to scale) for m = 6. Figure 3.18 illustrates the positive frequency portion of the
n = 0 term of (3.83) in the range 0 < f < fs. The translated spectra for n = ±1
and n = 2 are also shown.

The next step in the determination of (SNR)a is to show that both S and Na

can be determined using only the n = 0 term in (3.83). The lobes of the sinc(·)
function, each having width 1/T , are illustrated and numbered in Figure 3.18. Note
that for m = 6 and n = 0 lobes 1, 2, and 3 fall in the range 0 < f < fs/2 and
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therefore represent signal power. Lobes 4, 5, and 6 fall into the range 0 < f < fs/2
for the n = 1 term and therefore represents aliasing noise. In a similar manner
lobes 7, 8, and 9 result from the n = −1 term in (3.83) and lobes 10, 11, and 12
result from the n = 2 term in (3.83). Continuing this line of thought shows that

∞∑
n=−∞

n�=0

∫ fs/2

0

sinc2 (fT − nm) df =
∫ ∞

fs/2

sinc2 (fT − nm) df (3.86)

Therefore

(SNR)a =
S

Na
=

∫ fs/2

0
sinc2(fT ) df∫∞

fs/2
sinc2(fT ) df

(3.87)

As can be seen by comparing Examples 3.4 and 3.5, the form of the integrand will
be different depending on the pulse shape.

We will frequently find it necessary to use numerical integration in order to
evaluate (SNR)a. In order to accomplish this a second sampling operation is intro-
duced in which the continuous frequency variable f is sampled at points f = jf1.
For accuracy we clearly require f1 
 1/T so that many samples are taken in each
lobe of the sinc(·) function. Frequency sampling in this way allows the integrals in
(3.87) to be replaced by sums. In order to satisfy f1 
 1/T let f1 = 1/(kT ) where
k is large so that the error induced by the numerical integration is small. With
f = jf1 and f1 = 1/(kT ) we have

fT =
j

k
(3.88)

The next step is to compute the folding frequency fs/2 in terms of the discrete
parameters k and m. From Figure 3.18 we see that, for m samples per symbol, the
folding frequency fs/2 is m/(2T ). Since k samples are taken for every frequency
interval of width 1/T , the folding frequency corresponds to the index km/2. Using
(3.88) and the fact that fs/2 corresponds to km/2 in (3.87) gives

(SNR)a
∼=

∑km/2
j=0 sinc2(j/k)∑∞

j=km/2 sinc2(j/k)
(3.89)

The preceding is an approximation because numerical integration is used to approx-
imate the true value of the integral.

The MATLAB program to evaluate (3.89) follows.

% File: c3_sna.m
k = 50; % samples per lobe
nsamp = 50000; % total frequency samples
snrdb = zeros(1,17); % initialize memory
x = 4:20; % vector for plotting
for m = 4:20 % iterate samples per symbol
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signal = 0; noise = 0; % initialize sum values
f_fold = k*m/2; % folding frequency
for j = 1:f_fold

term = (sin(pi*j/k)/(pi*j/k))^2;
signal = signal+term;

end
for j = (f_fold+1):nsamp

term = (sin(pi*j/k)/(pi*j/k))^2;
noise = noise+term;

end
snrdb(m-3) = 10*log10(signal/noise);

end
plot(x,snrdb) % plot results}
xlabel(‘Samples per symbol’)}
ylabel(‘Signal-to-aliasing noise ratio’)}
% End script file.

Note that 50 frequency samples are taken in each lobe of the sinc(·) function and
that a total of 50,000 frequency samples are taken. Thus, the summation in the
denominator of (3.89) spans 1,000 lobes of the sinc(·) function, after which the PSD
is assumed negligible. This assumption may be verified by experimenting with the
parameter nsamp.

Executing the preceding program yields the result illustrated in Figure 3.19.
Note that (SNR)a is slightly less than 17 dB for m = 10 samples per symbol
and that (SNR)a continues to increase as m increases. However, the impact on
(SNR)a decreases for increasing m. Also note that the PSD of the sampled signal
decreases as 1/f2 for a rectangular pulse shape. Example 3.5 shows that the PSD
of the sampled signal decreases as 1/f4 for a triangular pulse shape. Thus, for a
given value of m, the value of (SNR)a will be greater for the triangular pulse shape
than for the rectangular pulse shape. The rectangular pulse shape represents is a
worst-case situation. Other pulse shapes are considered in the Problems.

In a practical communications system the pulse shape p(t) is chosen to give
a required bandwidth efficiency [2]. High bandwidth efficiency implies that the
spectrum of x(t) as defined by (3.55) is compact about f = 0.8 Thus, signals that
exhibit high bandwidth efficiency require a smaller value of m for a given (SNR)a.

3.5 Summary

The purpose of this chapter was to cover a number of topics related to sampling
and the representation of sample values in communication system simulations. Two
fundamental sampling theorems were considered the lowpass sampling theorem and
the bandpass sampling theorem. Since bandpass signals are usually represented by
lowpass signals in system simulations, the lowpass sampling theorem is the most

8The reference is f = 0 rather than f = fc, in which fc is a nonzero carrier frequency, since
(3.55) represents a lowpass model of a bandpass process.
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Figure 3.19 Signal-to-aliasing-noise ratio for the rectangular pulse shape.

important of these to theorems for our application. We saw that a bandlimited
lowpass signal may be sampled and that the underlying bandpass signal may be
reconstructed from the sample values if the sampling frequency exceeds twice the
bandwidth of the bandlimited lowpass signal. The bandpass sampling theorem,
although less useful in the simulation context than the lowpass sampling theorem,
gave a somewhat similar result. Bandpass signals could be sampled and recon-
structed if the sampling frequency is between 2B and 4B where B is the bandwidth
of the bandpass signal being sampled.

Next quantizing was considered. Quantizing errors are present in all simulations,
since sample values must be represented by digital words of finite length. Two types
of quantizing errors were considered; errors resulting from fixed-point number rep-
resentations and errors resulting from floating-point number representations. When
fixed-point number representations are used, the signal-to-quantizing-noise ratio in-
creases 6 dB for each bit added to the word length. When simulations are preformed
on general-purpose computers, which use floating-point number representations, the
noise resulting from quantizing errors is usually negligible. This noise, however, is
never zero and there are situations in which errors can accumulate and significantly
degrade the accuracy of the simulation result. The simulation user must therefore
be aware of this potential error source.
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The third section of this chapter treated reconstruction and interpolation. We
saw that if a lowpass bandlimited signal is sampled with a sampling frequency
exceeding twice the signal bandwidth, the underlying continuous-time signal can be
reconstructed without error by weighting each sample with a sin(x)/x waveform,
which is equivalent to passing the samples through an ideal lowpass filter. The
result is a waveform defined for all values of time and, by extracting “new” sam-
ples between the original samples, interpolated samples can be generated. This
operation, known as upsampling, increases the effective sampling frequency. The
inverse operation, downsampling, can be accomplished by extracting every M th

sample from the original set of samples. Using the operations of upsampling and
downsampling, one can develop a simulation in which multiple sampling frequen-
cies are present. This is useful when the system being simulated contains signals
having widely differing bandwidths. A spread-spectrum communications system is
an example of such a system.

The final topic treated in this chapter was the important problem of relating the
sampling frequency to the pulse shape used for waveform transmission. The pulse
shape was assumed time limited and therefore cannot be bandlimited. Therefore
aliasing errors occur. The criterion used for selecting the sampling frequency was
to determine the required signal-to-noise ratio, where aliasing error constituted the
noise source. A general method was developed for determining the PSD of the
modulated signal and numerical integration of this PSD determined the signal-to-
aliasing-noise ratio.

3.6 Further Reading

Most textbooks on basic communication theory consider several of the topics pre-
sented in this chapter. Included are the sampling theorem and models for trans-
mitted signals using various pulse shape functions. Examples are:

R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modu-
lation and Noise, 5th ed., New York: Wiley, 2001.

R. E. Ziemer and R. L. Peterson, Introduction to Digital Communication, 2nd ed.,
Upper Saddle River, NJ: Prentice Hall, 2001.

The topics of quantizing, interpolation, and decimation are typically covered in text-
books on digital signal processing. Although a wide variety of books are available
in this category, the following is recommended:

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Upper
Saddle River, NJ: Prentice Hall, 1989.

The following textbook is an excellent reference on multirate signal processing and
sampling rate conversion:

R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Upper
Saddle River, NJ: Prentice Hall, 1983.
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Simulation applications of the topics presented in this chapter can be found in:

M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, 2nd ed., New York: Kluwer Academic/Plenum Publishers, 2000.

3.7 References

1. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Upper
Saddle River, NJ: Prentice-Hall, 1989.

2. R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems,
Modulation and Noise, 5th ed., New York: Wiley, 2002.

3. The ANSI/IEEE Standard 754-1985 (available from IEEE).

3.8 Problems

3.1 A signal x(t), given by

x(t) = 5 cos(6πt) + 3 sin(8πt)

is sampled using a sampling frequency fs of 10 samples per second. Plot
X(f) and Xs(f). Plot the output of the reconstruction filter assuming that
the reconstruction filter is an ideal lowpass filter with a bandwidth of fs/2.
The passband gain of the reconstruction filter is Ts = 1/fs.

3.2 Repeat the preceding problem using a sampling frequency of 7 samples per
second.

3.3 Develop a MATLAB program that produces, and therefore verifies, Figure
3.5.

3.4 A bandpass signal has a center frequency of 15 MHz and a bandwidth of 750
kHz (375 kHz each side of the carrier).

(a) Using the bandpass sampling theorem determine the minimum sampling
frequency at which the bandpass signal can be sampled and reconstructed
without error.

(b) By drawing the spectrum of the sampled signal and defining all frequen-
cies of interest, show that the signal can be reconstructed without error
if the sampling frequency found in (a) is used.

(c) Starting with the sampling frequency found in (a) consider the effect
of increasing the sampling frequency. By how much can the sampling
frequency be increased without incurring aliasing errors?

3.5 Assume that a signal defined by 5 sin(10πt) is sampled and quantized using a
fixed-point number representation.

(a) Determine the dynamic range of the signal.



“TranterBook” — 2003/11/18 — 16:12 — page 91 — #109
�

�

�

�

�

�

�

�

Section 3.8. Problems 91

(b) Determine the crest factor of the signal.

(c) Determine the signal-to-noise ratio (SNR)a for b = 4, 8, 16, and 32 bits.

3.6 Repeat the preceding problem for the signal illustrated Figure 3.20.

3.7 In evaluating the effect of a fixed-point quantizing process, the assumption was
made that the error induced by the quantizing process can be represented by
a uniformly distributed random value. In this problem we investigate the
validity of this assumption.

(a) Use sin(6t) as a signal. Using a sampling frequency of 20 Hz, generate,
using MATLAB, a vector of 10,000 samples of this waveform. Note that
the signal frequency and the sampling frequency are not harmonically
related. Why was this done?

(b) Develop a MATLAB model for a fixed-point quantizer that contains 16
quantizing levels (b = 4). Using this model quantize the sample values
generated in (a). Generate a vector representing the 10,000 values of
quantizing error.

(c) Compute the values of E{e[k]} and E{e2[k]}. Compare with the theo-
retical values and explain the results.

(d) Using the MATLAB function hist, generate a histogram of the quantiz-
ing errors. What do you conclude?

3.8 The value of realmax is the largest number that can be represented on a com-
puter that adheres to the ANSI/IEEE standard for representing floating-point
numbers. Anything larger results in an overflow, which in MATLAB is repre-
sented by Inf. Using a computer that adheres to the ANSI/IEEE standard
make the following computations and answer the accompanying questions:

(a) Compute realmax + 1. Note that no overflow occurs. Explain this
apparent contradiction.

(b) Compute realmax + 1.0e291 and realmax + 1.0e292. Explain the
results.

3.9 Using MATLAB, compute

A = 1 − 0.5 − 0.25 − 0.125− 0.125

Compare the result of this calculation with the result of Example 3.2. Explain
the difference.

3.10 Fill in the steps to derive (3.56) and (3.57).

3.11 Data is transmitted as modeled by (3.55) in which the pulse shape p(t) is the
triangular pulse illustrated in Figure 3.16(a). Develop a MATLAB program
to plot the signal to aliasing noise ratio (SNR)a as the number of samples per
symbol varies from 4 to 20. Compare the result with that of the rectangular
pulse shape by plotting both on the same set of axes. Explain the results.
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3.12 The energy spectral density of an MSK (minimum shift keyed) signal is defined
by

GMSK(f) =
16Tb cos2 (2πTbf)

π2
[
1 − (4Tbf)2

]2
where Tb is the bit time [2]. Develop a MATLAB program to plot the signal
to aliasing noise ratio (SNR)a as the number of samples per symbol varies
from 4 to 20. Compare the result with that of the rectangular pulse shape by
plotting both on the same set of axes. Explain the results.

3.13 Repeat the preceding problem for the QPSK signal for which

G(f) = 2Tb sinc2 (2Tbf)




