
91

5C H A P T E R 5

Editing and Refactoring Code

� Opening the Source Editor
� Managing Automatic Insertion of Closing Characters
� Displaying Line Numbers
� Inserting Snippets from Code Templates
� Using Editor Hints to Generate Missing Code
� Matching Other Words in a File
� Generating Methods to Implement and Override
� Creating and Using Macros
� Creating and Customizing File Templates
� Handling Imports
� Displaying Javadoc Documentation While Editing
� Formatting Code
� Text Selection Shortcuts
� Navigating within the Current Java File
� Navigating from the Source Editor
� Searching and Replacing
� Refactoring Commands
� Deleting Code Safely
� Extracting a Superclass to Consolidate Common Methods
� Changing References to Use a Supertype
� Unnesting Classes
� Tracking Notes to Yourself in Your Code
� Comparing Differences Between Two Files
� Splitting the Source Editor
� Maximizing Space for the Source Editor
� Changing Source Editor Keyboard Shortcuts

keegan.book Page 91 Wednesday, April 19, 2006 9:40 PM

92

NETBEANS IDE PROVIDES A WIDE VARIETY OF TOOLS to support Java appli-
cation development, but it is the Source Editor where you will spend most of
your time. Given that fact, a lot of attention has been put into features and sub-
tle touches to make coding faster and more pleasurable.

Code completion and other code generation features help you identify code ele-
ments to use and then generate code for you. Refactoring features enable you to
easily make complex changes to the structure of your code and have those
changes propagated throughout your project. Keyboard shortcuts for these code
generation features and for file navigation ensure that your hands rarely have to
leave the keyboard.

Architecturally, the Source Editor is a collection of different types of editors,
each of which contains features specific to certain kinds of files. For example,
when you open a Java file, there is a syntax highlighting scheme specifically for
Java files, along with code completion, refactoring, and other features specific
to Java files. Likewise, when you open JSP, HTML, XML, .properties, deploy-
ment descriptor, and other types of files, you get a set of features specific to
those files.

Perhaps most importantly, the Source Editor is tightly integrated with other
parts of the IDE, which greatly streamlines your workflow. For example, you can
specify breakpoints directly in the Source Editor and trace code as it executes.
When compilation errors are reported in the Output window, you can jump to
the source of those errors by double-clicking the error or pressing F12.

In this chapter, we will demonstrate the ways you can use the IDE’s editing fea-
tures to simplify and speed common coding tasks.

Opening the Source Editor
Before starting to work in the Source Editor, you will typically want to have an
IDE project set up. You can then open an existing file or create a new file from a
template. See Chapter 3 for basic information on creating projects and files and
for a description of the various file templates.

If you would simply like to create a file without setting up a project, you can use
the Favorites window. The Favorites window enables you to make arbitrary fold-
ers and files on your system accessible through the IDE. The Favorites window is

keegan.book Page 92 Wednesday, April 19, 2006 9:40 PM

Managing Automatic Insertion of Closing Characters 93

not designed for full-scale project development, but it can be useful if you just
want to open and edit a few files quickly.

To use the Source Editor without creating a project:

1. Choose Window | Favorites to open the Favorites window.

2. Add the folder where you want the file to live (or where it already lives) by
right-clicking in the Favorites window, choosing Add to Favorites, and
choosing the folder from the file chooser.

3. In the Favorites window, navigate to the file that you want to edit and double-
click it to open it in the Source Editor.

If you want to create a new file, right-click a folder node, choose New |
Empty File, and enter a filename (including extension).

Managing Automatic Insertion of Closing Characters
When typing in the Source Editor, one of the first things that you will notice is
that the closing characters are automatically inserted when you type the opening
character. For example, if you type a quote mark, the closing quote mark is
inserted at the end of the line. Likewise, parentheses(()), brackets ([]), and curly
braces ({}) are completed for you.

While this might seem annoying at first, the feature was designed to not get in
your way. If you type the closing character yourself, the automatically inserted
character is overwritten. Also, you can end a line by typing a semicolon (;) to
finish a statement. The semicolon is inserted at the end of the line after the auto-
matically generated character or characters.

See the following subtopics for information on how to use the insertion of
matching closing characters.

Finishing a Statement
When the Source Editor inserts matching characters at the end of the line, this
would appear to force you to move the insertion point manually past the closing
character before you can type the semicolon. In fact, you can just type the semi-
colon without moving the insertion point, and it will be placed at the end of the
line automatically.

keegan.book Page 93 Wednesday, April 19, 2006 9:40 PM

94 Chapter 5 � Editing and Refactoring Code

For example, to get the line

ArrayList ls = new ArrayList();

you would only have to type

ArrayList ls = new ArrayList(;

Splitting a String Between Two Lines
If you have a long string that you want to split between two lines, the Source
Editor adds the syntax for concatenating the string when you press Enter.

For example, to get the lines

String s = "Though typing can seem tedious, reading long" +
"and convoluted sentences can be even worse."

you could type

String s = "Though typing can seem tedious, reading long
and convoluted sentences can be even worse.

The final three quote marks and the plus sign (+) are added for you.

If you want to break the line without creating the concatenation, press Shift-Enter.

Displaying Line Numbers
By default, line numbers are switched off in the Source Editor to save space and
reduce visual clutter. If you need the line numbers, you can turn them on by
choosing View | Show Line Numbers. You can also right-click in the left margin
of the Source Editor and choose Show Line Numbers.

Generating Code Snippets without Leaving the
Keyboard
The Source Editor has several features for reducing the keystrokes needed for
typing code. And you can access many of these features without using the
mouse, having to use menus, or remembering scores of keyboard shortcuts.

keegan.book Page 94 Wednesday, April 19, 2006 9:40 PM

Generating Code Snippets without Leaving the Keyboard 95

Arguably the most important mechanisms for generating code are the following:

� Ctrl-spacebar keyboard shortcut. This shortcut opens the code comple-
tion box, as shown in Figure 5-1. The code completion box contains a
context-sensitive list of ways you can complete the statement you are
currently typing and of other code snippets you might want to insert in
your code.

� Multi-keystroke abbreviations for longer snippets of code called code tem-
plates. These abbreviations are expanded into the full code snippet after you
press the spacebar.

� Alt-Enter keyboard shortcut. You can use this shortcut to display sugges-
tions the IDE has regarding missing code and then have the IDE insert that
code. The IDE notifies you that it has a suggestion by displaying a lightbulb
() icon in the left margin of the line you are typing.

In addition to saving keystrokes and use of the mouse, these features might pre-
vent typos and also help you find the right class and method names.

The following several sections illustrate how to get the most out of these fea-
tures. These topics concentrate on features for Java files, but many of the fea-
tures (such as code completion and word matching) are also available for other
types of files, such as JSP and HTML files.

Figure 5-1 Code completion box

keegan.book Page 95 Wednesday, April 19, 2006 9:40 PM

96 Chapter 5 � Editing and Refactoring Code

Using Code Completion
When you are typing Java identifiers in the Source Editor, you can use the IDE’s
code completion box to help you finish expressions, as shown in Figure 5-1. In
addition, a box with Javadoc documentation appears (as shown in Figure 5-2)
and displays documentation for the currently selected item in the code comple-
tion box.

Beginning with NetBeans IDE 5.0, many types of code generation have been
added to the code completion box. Using the code completion box, you can:

� Fill in names of classes and class members. (After you select a class to fill in,
an import statement is also filled in, if appropriate.)

� Browse Javadoc documentation of available classes.

� Generate whole snippets of code from dynamic code templates. You can
customize code templates and create new ones. See Inserting Snippets from
Code Templates for more information.

� Generate getter and setter methods.

� Generate skeletons for abstract methods of classes extended by and inter-
faces implemented by the current class.

� Override inherited methods.

� Generate skeletons of anonymous inner classes.

Figure 5-2 Javadoc box that accompanies the code completion box

keegan.book Page 96 Wednesday, April 19, 2006 9:40 PM

Using Code Completion 97

To open the code completion box, do one of the following:

� Type the first few characters of an expression and then press Ctrl-spacebar
(or Ctrl-\).

� Pause after typing a period (.) in an expression.

� Type a space, and then pause for a moment.

The code completion box opens with a selection of possible matches for what
you have typed so far.

To narrow the selection in the code completion box, continue typing the expression.

To complete the expression and close the code completion box, do one of the
following:

� Continue typing until there is only one option left and then press Enter.

� Scroll through the list, using the arrow keys or your mouse to select a value,
and then press Enter.

To close the code completion box without entering any selection, press Esc.

To complete the expression and leave the code completion box open, select a
completion and press the period (.) key. This is useful if you are chaining meth-
ods. For example, if you want to type

getRootPane().setDefaultButton(defaultButtonName)

you might do the following:

1. Type getRo (which would leave only getRootPane() in the code completion
box) and press the period (.) key.

2. Type .setDef (which should make setDefaultButton(JButton defaultBut-
ton) the selected method in the code completion box, as shown in Figure 5-3)
and press Enter.

getRootPane().setDefaultButton() should now be inserted in your code
with the insertion point placed between the final parentheses. A tooltip
appears with information on the type of parameter for you to enter.

keegan.book Page 97 Wednesday, April 19, 2006 9:40 PM

98 Chapter 5 � Editing and Refactoring Code

3. Type a name for the parameter.

4. Type a semicolon (;) to finish the statement. The semicolon is automatically
placed after the final parenthesis.

Code Completion Tricks
When typing with the code completion box open, there are a few tricks you can
use to more quickly narrow the selection and generate the code you are looking
for. For example:

� You can use “camel case” when typing class names. For example, if you want
to create an instance of HashSet, you can type private HS and press Ctrl-
spacebar to display HashSet (and other classes that have a capital H and a
capital S in their names).

� You can use the comma (,) and semicolon (;) keys to insert the highlighted
item from the code completion box into your code. The comma or semi-
colon is inserted into your code after the chosen item from the code comple-
tion box.

� You can fill in text that is common to all of the remaining choices in the list by
pressing Tab. This can save you several keystrokes (or use of the arrow keys or
mouse) when the selection in the code completion box is narrowed to choices
with the same prefix. For example, if you are working with a Hashtable object
ht , and you have typed ht.n, there will be two methods beginning with
notify (notify() and notifyAll()). To more quickly narrow the selection to
just notifyAll(), press Tab to expand ht.n to ht.notify and then type A. You
can then press Enter to complete the statement with notifyAll().

Disabling Automatic Appearance of the Java Code Completion Box
If you find the code completion box to be more of a nuisance than a help,
you can disable automatic appearance of the code completion popup. Code

Figure 5-3 Code completion box with setDefaultButton(JButton defaultButton) selected

keegan.book Page 98 Wednesday, April 19, 2006 9:40 PM

Using Code Completion 99

completion will still work if you manually activate it by pressing Ctrl-spacebar
or Ctrl-\.

You can also leave automatic appearance of the code completion popup enabled
but disable the bulkier Javadoc code completion dialog box. The Javadoc popup
can be manually invoked with Ctrl-Shift-spacebar.

To disable automatic appearance of the code completion box:

1. Choose Tools | Options, click Editor in the left panel, and select the General tab.

2. Deselect the Auto Popup Completion Window property and click OK.

To disable automatic appearance of the Javadoc popup when you use the code
completion box:

1. Choose Tools | Options, click Advanced Options, expand the Editing | Editor
Settings node, and select the Java Editor node.

2. In the Expert settings, deselect the Auto Popup Javadoc Window property.

You can also merely adjust the amount of time that elapses before the code completion
box appears. To do so, choose Tools | Options, click Advanced Options, expand the
Editing | Editor Settings node, and select the Java Editor node. In the Delay of Comple-
tion Window Auto Popup property, enter a new value (in milliseconds). By default, the
delay is 250 milliseconds.

Changing Shortcuts for Code Completion
If you prefer to use different shortcuts for code completion, you can change
those shortcuts in NetBeans IDE:

1. Choose Tools | Options, click Editor in the left panel, and select the Keymap tab.

2. Expand the Other folder and select the command for which you want to
change the shortcut.

Commands that apply to code completion are Show Code Completion Popup,
Show Code Completion Tip Popup, and Show Documentation Popup.

3. Click Add, and type the shortcut that you want to use.

You can remove an already assigned keyboard shortcut by selecting the
shortcut and clicking Remove.

keegan.book Page 99 Wednesday, April 19, 2006 9:40 PM

100 Chapter 5 � Editing and Refactoring Code

Inserting Snippets from Code Templates
As you are typing in the Source Editor, you can use code templates to greatly
speed up the entry of commonly used sequences of reserved words and common
code patterns, such as for loops and field declarations. The IDE comes with a set
of templates, and you can create your own.

Some code templates are composed of segments of commonly used code, such
as private static final int. Others are more dynamic, generating a skeleton
and then letting you easily tab through them to fill in the variable text (without
having to use the mouse or arrow keys to move the cursor from blank to blank).
Where a code snippet repeats an identifier (such as an Iterator object, as shown
in Figure 5-4), you just have to type the identifier name once.

Here are a few examples:

� You can use the newo template to quickly create a new object instance. You
type newo and a space, the IDE generates Object name = new
Object(args); and highlights the two occurrences of Object. You can then
type a class name and press Tab. Both occurrences of Object are changed to
the class name and then args is selected. You can then fill in the parameters
and press Enter to place the insertion point at the end of the inserted code.

You can use Shift-Tab to move backward through the parameters. You can
press Enter at any time to skip any parameters and jump straight to the end
of the template (or where it is specified that the cursor should rest after the
template’s parameters are filled in).

� You can use the fori template to create a loop for manipulating all of the
elements in an array. Initially, the IDE generates the following:

 for (int i = 0; i < arr.length; i++) {

 }

Figure 5-4 Code template with variable text to be inserted

keegan.book Page 100 Wednesday, April 19, 2006 9:40 PM

Inserting Snippets from Code Templates 101

The index is automatically given a name that is unique within the current
scope (defaulting to i). You can manually change that value (causing the
IDE to change the value in all three places) or directly tab to arr, to type the
array name. If an array is in scope, the IDE will use its name by default. The
next time you press Tab, the cursor lands on the next line, where you can
type the array processing code.

� You can use the forc template to create a skeleton for loop that uses an
Iterator object to iterate over a collection as shown in Figure 5-4.

This code template has the additional benefit of generating an import state-
ment for Iterator.

You can access code templates in either of the following ways:

� Typing the first few letters of the code, pressing Ctrl-spacebar, and then
selecting the template from the list in the code completion box. In the code
completion box, templates are indicated with the icon, as shown in Fig-
ure 5-5. The full text of the template is shown in the Javadoc box.

� Typing the abbreviation for the code template directly in the Source Editor
and then pressing the spacebar. You can find the abbreviations for the built-
in Java code templates in Table 5-1. If you discover a code template in the
code completion box, the abbreviation for that template is in the right col-
umn of that abbreviation’s listing.

Figure 5-5 Code completion box and Javadoc box, with a code template selected

keegan.book Page 101 Wednesday, April 19, 2006 9:40 PM

102 Chapter 5 � Editing and Refactoring Code

If an abbreviation is the same as the text that you want to type (for example, you
do not want it to be expanded into something else), press Shift-spacebar to keep
it from expanding.

See Table 5-1 for a list of code templates (and their abbreviations) for Java files.
The IDE also comes with sets of abbreviations for JSP files (see Chapter 8, Using
Code Templates for JSP Files), XML files, and DTD files. You can create your
own abbreviations for these file types and for other file types as well (such as for
HTML files, SQL files, etc.).

Table 5-1 Java Code Templates in the Source Editor

Abbreviation Expands To

ab abstract

bo boolean

br break

ca catch (

cl class

cn continue

df default:

dowhile do {
 ${cursor}
} while (${condition});

En Enumeration

eq equals

Ex Exception

ex extends

fa false

fi final

fy finally

fl float

forc for (Iterator it = collection.iterator(); it.hasNext();) {
 Object elem = (Object) it.next();

}

fore for (Iterator it = collection.iterator(); it.hasNext();) {
 Object elem = (Object) it.next();

}

(continued)

keegan.book Page 102 Wednesday, April 19, 2006 9:40 PM

Inserting Snippets from Code Templates 103

fori for (int i = 0; i < ${arr array}.length; i++) {
 ${cursor}
}

ie interface

ifelse if (${condition}) {
 ${cursor}
} else {

}

im implements

iof instanceof

ir import

le length

newo Object name = new Object(args);

Ob Object

pst printStackTrace();

pr private

psf private static final

psfb private static final boolean

psfi private static final int

psfs private static final String

pe protected

pu public

Psf public static final

Psfb public static final boolean

Psfi public static final int

Psfs public static final String

psvm public static void main(String[] args) {
 ${cursor}
}

re return

st static

St String

serr System.err.println("${cursor}");

sout System.out.println("${cursor}");

sw switch {

(continued)

Table 5-1 Java Code Templates in the Source Editor (Continued)

Abbreviation Expands To

keegan.book Page 103 Wednesday, April 19, 2006 9:40 PM

104 Chapter 5 � Editing and Refactoring Code

Adding, Changing, and Removing Code Templates
The code templates that come with the IDE are representative of the kind of
things you can do with code templates, but they represent only a tiny fraction of
the number of potentially useful templates.

You can modify existing code templates and create entirely new ones to suit the
patterns that you use frequently in your code.

To create a new code template:

1. Choose Tools | Options, click Editor in the left panel, and select the Code
Templates tab.

2. Click New.

3. In the New Code Template dialog box, type an abbreviation for the template
and click OK.

4. In the Expanded Text field, insert the text for the template. See Code Tem-
plate Syntax below for information on how to customize the behavior of
your templates.

5. Click OK to save the template and exit the Options dialog box.

sy synchronized

tds Thread.dumpStack();

tw throw

twn throw new

th throws

trycatch try {
 ${cursor}
} catch (Exception e) {

}

wh while (

whilei while (it.hasNext()) {
 Object elem = (Object) it.next();
 ${cursor}
}

Table 5-1 Java Code Templates in the Source Editor (Continued)

Abbreviation Expands To

keegan.book Page 104 Wednesday, April 19, 2006 9:40 PM

Inserting Snippets from Code Templates 105

To modify a code template:

1. Choose Tools | Options, click Editor in the left panel, and select the Code
Templates tab.

2. Select a template from the Templates table and edit its text in the Expanded
Text field.

3. Click OK to save the changes and exit the Options dialog box.

In NetBeans IDE 5.0, you cannot directly change the abbreviation for a code template. If
you want to assign a different shortcut to an existing template, select that shortcut,
copy its expanded text, create a new code template with that text and a different abbre-
viation, and then remove the template with the undesired abbreviation.

To remove a code template:

1. Choose Tools | Options, click Editor in the left panel, and select the Code
Templates tab.

2. Select a template from the Templates table and click Remove.

3. Click OK to save the changes and exit the Options dialog box.

Code Template Syntax
In code templates, you can set up the variable text to provide the following ben-
efits for the template user:

� Display a descriptive hint for remaining text that needs to be typed in.

� Enable typing of an identifier once and have it generated in multiple places

� Make sure that an import statement is added for a class.

� Specify a type that a parameter of the code template is an instance of in
order for the IDE to automatically generate an appropriate value for that
parameter when the template is used to insert code.

� Automatically set up a variable name for an iterator, making sure that that
variable name is not already used within the current scope.

� Set a location for the cursor to appear within the generated snippet once the
static text has been generated and the variable text has been filled in.

keegan.book Page 105 Wednesday, April 19, 2006 9:40 PM

106 Chapter 5 � Editing and Refactoring Code

For example, you might want to easily generate something like the following
code for a class that you instantiate often:

FileWriter filewriter = new FileWriter(outputFile);

In the definition for such a code template, you could use something like the
following:

${fw type = "java.io.FileWriter"
 editable="false"} ${filewriter} = new ${fw}(${outputFile});

When the template is inserted into the code, the following things happen:

� ${fw type = "java.io.FileWriter" editable="false"} is converted to
FileWriter in the inserted code.

� ${fw} is also converted to Filewriter (as it is essentially shorthand for the
previously defined ${fw type = "java.io.FileWriter" edit-
able="false"}).

� ${filewriter} and ${outputFile} generate text (filewriter and output-
File, respectively).

� filewriter is selected. You can type a new name for the field and then press
Tab to select outputFile and type a name for that parameter. Then you can
press Tab or Enter to place the cursor after the whole generated snippet.

You could further refine the code template by defining an instanceof attribute for
${outputFile} (e.g. OutputFile instanceof = "java.io.File"). This would
enable the IDE to detect an instance of that class and dynamically insert the name
of the instance variable in the generated snippet instead of merely outputFile.

See Table 5-2 for a description of examples of the syntax that you can use in the
creation of code templates.

Changing the Expander Shortcut for Code Templates
If you find that the code templates get in your way because they inadvertently get
invoked when you type certain strings, you can configure the IDE to activate the
templates with a different key or key combination. This enables you to continue
using the code template feature without having to individually change any tem-
plates that get in your way.

keegan.book Page 106 Wednesday, April 19, 2006 9:40 PM

Inserting Snippets from Code Templates 107

Table 5-2 Java Code Template Syntax

Syntax Element Example Description

${} Used to enclose dynamic parts in the template.

${ElementName} Text you put within the braces will appear in the generated
code snippet as highlighted text that you can type over.

For example, if you use ${Object}, that would be a hint for
the template user to type in an object name.

If a given ElementName appears multiple times in the code
template definition, you only have to replace the variable
text once when you create a code snippet from that
template.

${ElementName type="FULLY-
QUALIFIED-CLASS-NAME"
editable="false"}

Includes a class name as part of the inserted code and has
the IDE automatically insert an import statement for the
class, if necessary.

Here, ElementName can be any unique identifier, but it is
only used within the template syntax. The class referred to
in FULLY-QUALIFIED-CLASS-NAME is inserted when you use
the template. Specifying editable="false" merely ensures
that the inserted class name is not highlighted for editing.

For example, the forc code template uses ${iter
type="java.util.Iterator" editable=false} to enter
Iterator into the generated code and add an import
statement for that class.

${ElementName
instanceof="FULLY-
QUALIFIED-CLASS-NAME"}

Declares that, if possible, the variable text that is initially
generated should be the name of an instance variable of
FULLY-QUALIFIED-CLASS-NAME that has been declared in the
class. If there is no instance of that class available,
ElementName is inserted.

This construct is used in the forc and fore templates.

${ElementName array} Declares that, if possible, the variable text that is initially
generated should be the name of an array that is used in the
class. If there is no array available within the current scope,
ElementName is inserted.

This construct is used in the fori template.

${ElementName index} Generates a variable that is unused in the current scope, the
default being i. If i is already used, then j is attempted, and
then k , etc.

${cursor} Determines where the cursor will end up after the code
snippet has been inserted and all of the variable text has
been filled in.

keegan.book Page 107 Wednesday, April 19, 2006 9:40 PM

108 Chapter 5 � Editing and Refactoring Code

To change the code template expander key:

1. Choose Tools | Options, click Editor in the left panel, and select the Code
Templates tab.

2. Select the preferred key or key combination from the Expand Template On
drop-down list.

3. Click OK to save the change and exit the Options dialog box.

Using Editor Hints to Generate Missing Code
When the IDE detects an error for which it has identified a possible fix, a light-
bulb () icon appears in the left margin of that line. You can click the lightbulb
or press Alt-Enter to display a list of possible fixes. If one of those fixes suits you,
you can select it and press Enter to have the fix generated in your code.

Often, the “error” is not a coding mistake but a reflection of the fact that you
have not gotten around to filling in the missing code. In those cases, the editor
hints simply automate the entry of certain types of code.

For example, assume you have just typed the following code, but x is not defined
anywhere in the class.

 int newIntegerTransformer () {
 return x;
 }

If your cursor is still resting on the line of the return statement, the icon will
appear. If you click the icon or press Alt-Enter, you will be offered three possible
solutions as shown in Figure 5-6. You can select one of those hints to generate
the code.

Figure 5-6 Display of editor hints

keegan.book Page 108 Wednesday, April 19, 2006 9:40 PM

Matching Other Words in a File 109

In NetBeans IDE 5.0, editor hints only appear when you are in the line where the error is
detected. In subsequent releases that is likely to change.

The IDE is able to provide hints for and generate the following solutions to
common coding errors:

� Add a missing import statement

� Insert abstract methods that are declared in a class’ implemented interfaces
and abstract superclasses

� Insert a method parameter

� Create a missing method

� Create a missing field

� Create a missing local variable

� Initialize a variable

� Insert a cast

� Add a throws clause with the appropriate exception

� Surround the code with a try-catch block including the appropriate excep-
tion

Matching Other Words in a File
If you are typing a word that appears elsewhere in your file, you can use a key-
board shortcut to complete that word according to the first word found in the
Source Editor that matches the characters you have typed. This word-match fea-
ture works for any text in the file. It also searches through files that you have
been recently working in (in the order that you have last accessed the files).

To search backward from the cursor for a match, press Ctrl-K.

To search forward from the cursor for a match, press Ctrl-L.

For example, if you have defined the method refreshCustomerInfo on line 100
and now want to call that method from line 50, you can type ref and then press
Ctrl-L. If there are no other words that start with ref between lines 50 and 100,
the rest of the word refreshCustomerInfo will be filled in. If a different match is
found, keep pressing Ctrl-L until the match that you want is filled in.

keegan.book Page 109 Wednesday, April 19, 2006 9:40 PM

110 Chapter 5 � Editing and Refactoring Code

For typing variable names, you might find that the word match feature is preferable to
code completion, since the IDE only has to search a few files for a text string (as
opposed to code completion feature, where the IDE searches the whole classpath).

Generating Methods to Implement and Override
When you extend a class or implement an interface, you have abstract methods
that you need to implement and possibly non-abstract methods that you can over-
ride. The IDE has several tools that help you generate these methods in your class:

� Editor hints. When you add the implements or extends clause, a lightbulb
() icon appears in the left margin. You can click this icon or press Alt-
Enter to view a hint to implement abstract methods. If you select the hint
and press Enter, the IDE generates the methods for you. This hint only is
available when your cursor is in the line of the class declaration.

� Code completion. You can generate methods to implement and override
individually by pressing Ctrl-Space and choosing the methods from the
code completion box. As shown in Figure 5-7, methods to implement or
override are marked implement and override, respectively.

� Override and Implement Methods dialog box. You can use this dialog box
(shown in Figure 5-8) for generating any combination of the available
implementable or overridable methods. This feature also enables you to

Figure 5-7 Code completion box showing methods to implement and methods available
to be overridden

keegan.book Page 110 Wednesday, April 19, 2006 9:40 PM

Generating JavaBeans Component Code 111

generate calls to the super implementation of the methods within the body
of the generated methods. To open this dialog box, choose Source | Override
Methods or press Ctrl-I. To select multiple methods, use Ctrl-click.

Generating JavaBeans Component Code
The IDE has a few levels of support for creating JavaBeans components. You can
use the following features:

� Code completion. When you have a field in your class without a corre-
sponding get or set method, you can generate that method by pressing
Ctrl-Space and choosing the method from the code completion box.

� Refactor | Encapsulate Fields command. You can use this command to gen-
erate get and set methods, change the field’s access modifier, and update
code that directly accesses the field to use the getters and setters instead.

� Bean Patterns node. In the Projects window, each class has a subnode called
Bean Patterns as shown in Figure 5-9. You can right-click this node and
choose from a variety of commands that enable you to generate code for
bean properties, property change support, and event listening. In addition,
you can generate BeanInfo classes.

Figure 5-8 Override and Implement Methods dialog box

keegan.book Page 111 Wednesday, April 19, 2006 9:40 PM

112 Chapter 5 � Editing and Refactoring Code

Creating and Using Macros
You can record macros in the IDE to reduce what would normally involve a long
set of keystrokes to one keyboard shortcut. In macros, you can combine the typing
of characters in the Source Editor and the typing of other keyboard shortcuts.

To record a macro:

1. Put the insertion point in the part of a file in the Source Editor where you
want to record the macro.

2. Click the button in the Source Editor’s toolbar (or press Ctrl-J and then
type s) to begin recording.

3. Record the macro using any sequence of keystrokes, whether it is the typing
of characters or using keyboard shortcuts. Mouse movements and clicks
(such as menu selections) are not recorded.

4. Click the in the Source Editor’s toolbar (or press Ctrl-J and then type e) to
finish recording.

5. In the Macro field of the Recorded Macro dialog box that appears, fine-tune
the macro, if necessary.

6. Click Add to assign a keyboard shortcut to the macro.

7. In the Add Keybinding dialog box, press the keys that you want to use for
the keyboard shortcut. (For example, if you want the shortcut Alt-Shift-Z,
press the Alt, Shift, and Z keys.) If you press a wrong key, click the Clear but-
ton to start over.

Be careful not to use a shortcut that is already assigned. If the shortcut you
enter is an editor shortcut, a warning appears in the dialog box. However, if

Figure 5-9 Bean Patterns node and menu

keegan.book Page 112 Wednesday, April 19, 2006 9:40 PM

Creating and Customizing File Templates 113

the key combination is a shortcut that applies outside of the Source Editor,
you will not be warned.

You can assign a new shortcut in the Options window. Choose Tools |
Options, click the Editor panel, select the Macros tab, and then click the Set
Shortcut button.

Creating and Customizing File Templates
You can customize the templates that you create files from in the IDE and create
your own templates. This might be useful if you need to add standard elements
in all of your files (such as copyright notices) or want to change the way other
elements are generated.

You can also create your own templates and make them available in the New File
wizard.

There are several macros available for use in templates to generate text dynami-
cally in the created files. These macros are identifiable by the double underscores
that appear both before and after the macro name. See Table 5-3 for a list of the
macros available.

To edit a template:

1. Choose Tools | Template Manager.

2. Expand the appropriate category node and select the template that you want
to edit.

3. Click Open in Editor.

4. Edit the template and then save it.

Not all of the templates listed in the Template Manager can be modified at the user
level. In some cases, the templates are available in the New File wizard but do not rep-
resent file constructs (such as those in the Enterprise and Sun Resources categories).

To create a new file template based on another template:

1. Choose Tools | Template Manager.

2. Navigate to and select the template on which you want to model the new
template and click Duplicate.

keegan.book Page 113 Wednesday, April 19, 2006 9:40 PM

114 Chapter 5 � Editing and Refactoring Code

A new node appears for the copied template. _1 is appended to the tem-
plate’s name.

3. Click Open in Editor.

4. Edit the file, incorporating any of the template macros that you want to use
(see Table 5-3), and save it.

If the template is for a Java class, you can use the filename for the class name
and constructor name. These are automatically adjusted in the files you cre-
ate from the template.

To import a file template:

1. Choose Tools | Template Manager.

2. Select the category folder for the template.

3. Click Add to open the Add Template dialog box.

4. Navigate to and select the file that you want to import as a template. Then
click Add.

Table 5-3 Java File Template Macros

Macro Substituted Information

__USER__ Your username. If you would like to change the
value of __USER__, choose Tools | Options, click
Advanced Options, and select the Editing | Java
Sources node. Then click the button in the
Strings Table property and change the value of
USER.

__DATE__ The date the new file is created.

__TIME__ The time the new file is created.

__NAME__ The name of the class (without the file
extension). It is best not to use this macro for the
class and constructor name in the file (instead,
use the filename).

__PACKAGE__ The name of the package where the class is
created.

__PACKAGE_SLASHES__ The name of the class’ package with slash (/)
delimiters instead of periods (.).

(continued)

keegan.book Page 114 Wednesday, April 19, 2006 9:40 PM

Handling Imports 115

Handling Imports
When you use the IDE’s code completion and editor hints features, import state-
ments are generated for you automatically.

For example, if you have the code completion box open and you start typing a
simple class name instead of its fully-qualified class name (e.g., you type Con and
then select ConcurrentHashMap from the code completion box), the following
import statement will be added to the beginning of the file:

import java.util.concurrent.ConcurrentHashMap;

For cases where these mechanisms are not sufficient for the management of
import statements, you can use the following commands:

� Fix Imports (Alt-Shift-F), which automatically inserts any missing import
statements for the whole file. Import statements are generated by class
(rather than by package). For rapid management of your imports, use this
command.

� Fast Import (Alt-Shift-I), which enables you to add an import statement or
generate the fully qualified class name for the currently selected identifier.
This command is useful if you want to generate an import statement for a
whole package or if you want to use a fully qualified class name inline
instead of an import statement.

__PACKAGE_AND_NAME__ The fully qualified name of the file (such as
com.mydomain.mypackage.MyClass).

__PACKAGE_AND_NAME_SLASHES__ The fully qualified name of the file with slash (/)
delimiters instead of periods (.).

__QUOTES__ A double quote mark ("). Use this macro if
you want the substituted text to appear in
quotes in the generated file. (If you place a
macro within quote marks in the template,
text is not substituted for the macro name in
the created file.)

Table 5-3 Java File Template Macros (Continued)

Macro Substituted Information

keegan.book Page 115 Wednesday, April 19, 2006 9:40 PM

116 Chapter 5 � Editing and Refactoring Code

Displaying Javadoc Documentation While Editing
The IDE gives you a few ways to access documentation for JDK and library classes.

To glance at documentation for the currently selected class in the Source Editor,
press Ctrl-Shift-spacebar. A popup window appears with the Javadoc documen-
tation for the class. This popup also appears when you use code completion. You
can dismiss the popup by clicking outside of the popup.

To open a web browser on documentation for the selected class, right-click the
class and choose Show Javadoc (or press Alt-F1).

To open the index page for a library’s documentation in a web browser, choose
View | Documentation Indices and choose the index from the submenu.

Documentation for some libraries is bundled with the IDE. However, you might need to
register the documentation for other libraries in the IDE for the Javadoc features to
work. See Making External Sources and Javadoc Available in the IDE in Chapter 3 for
more information.

Paradoxically, JDK documentation is available through a popup in the Source Editor but
not through a browser by default. This is because the Javadoc popup in the Source Editor
picks up the documentation from the sources that are included with the JDK. However,
the browser view of the documentation requires compiled Javadoc documentation, which
you have to download separately from the JDK. See Referencing JDK Documentation
(Javadoc) from the Project in Chapter 3.

Formatting Code
When you type or have code generated in the Source Editor, your Java code is
automatically formatted in the following ways by default:

� Members of classes are indented four spaces.

� Continued statements are indented eight spaces.

� Any tabs that you enter are converted to spaces.

� When you are in a block comment (starting with /**), an asterisk is auto-
matically added to the new line when you press Enter.

� The opening curly brace is put on the same line as the declaration of the
class or method.

� No space is put before an opening parenthesis.

keegan.book Page 116 Wednesday, April 19, 2006 9:40 PM

Formatting Code 117

If your file loses correct formatting, you can reformat the whole file by selecting
Source | Reformat Code (Ctrl-Shift-F). If you have any lines selected, the refor-
matting applies only to those lines.

If you have copied code, you can have it inserted with correct formatting by
pasting with the Ctrl-Shift-V shortcut.

Indenting Blocks of Code Manually
You can select multiple lines of code and then indent all those lines by pressing
Tab or Ctrl-T.

You can reverse indentation of lines by selecting those lines and then pressing
Shift-Tab or Ctrl-D.

Changing Formatting Rules
For various file types, you can adjust formatting settings, such as for number of
spaces per tab, placement of curly braces, and so on.

To adjust formatting rules for Java files:

1. Choose Tools | Options.

2. Click Editor in the left panel and select the Indentation tab.

3. Adjust the properties for the indentation engine to your taste.

4. Reformat each file to the new rules by opening the file and pressing Ctrl-
Shift-F (with no text selected).

For other file types, you can change formatting properties in the Advanced
Options part of the Options Window and by adjusting that file type’s indenta-
tion engine.

To change formatting rules for non-Java file types:

1. Choose Tools | Options and click Advanced Options.

2. Expand Editing | Indentation Engines, and select the indentation engine for
the file type for which you want to modify formatting rules.

keegan.book Page 117 Wednesday, April 19, 2006 9:40 PM

118 Chapter 5 � Editing and Refactoring Code

If there is no specific indentation engine for your file type, find out which
indentation is being used for that file type by expanding Editing | Editor Set-
tings, selecting the editor type, and looking at the value of its Indentation
Engine property.

3. Adjust the properties for the indentation engine to your taste.

4. Reformat each file to the new rules by opening the file and pressing Ctrl-
Shift-F (with no text selected).

There are other preset indentation engines available (the “simple” and “line
wrapping” indentation engines) you might prefer to use.

To change the indentation engine that is used for a file type:

1. Choose Tools | Options and click Advanced Options.

2. Expand Editing | Editor Settings and select the node for the editor type for
which you want to change the indentation engine.

3. Select the indentation engine from the Indentation Engine property’s
combo box.

4. Reformat each file to the new rules by opening the file and pressing Ctrl-
Shift-F (with no text selected).

To create a new indentation engine:

1. Choose Tools | Options and click Advanced Options.

2. Expand Editing | Indentation Engines, right-click the node for the indenta-
tion engine on which you want to base your new indentation engine, and
choose Copy.

3. Right-click the Indentation Engines node and choose Paste | Copy.

4. Modify the name of the indentation inline and adjust the properties to
your taste.

5. In the Advanced Options part of the Options dialog box, expand Editing |
Editor Settings and select the node for the editor (such as Java Editor or
HTML Editor) that you want the indentation engine to apply to.

keegan.book Page 118 Wednesday, April 19, 2006 9:40 PM

Formatting Code 119

Changing Fonts and Colors
You can adjust the fonts that are used in the Source Editor and the way colors
and background highlighting are used to represent syntactic elements of your
code. You can make changes that apply to all file types and changes that apply to
specific file types.

To make changes in fonts and colors that are reflected throughout all editor
types:

1. Choose Tools | Options and click the Fonts & Colors panel.

2. In the Languages drop-down list, select All Languages.

3. In the Category list, select Default.

4. Use the Font, Foreground, Background, Effects, and Effect Color fields to
change the appearance of that code element.

These changes should be reflected in the syntax categories for all the lan-
guages, since other categories are essentially designed as customizations of
this one.

To change fonts and colors for a specific code syntax element:

1. Choose Tools | Options and click the Fonts & Colors panel.

2. Select the editor type from the Languages drop-down list.

If the syntax element applies to multiple languages, select All Languages.

3. Select a syntax element in the Category list.

4. Use the Font, Foreground, Background, Effects, and Effect Color fields to
change the appearance of that code element.

You can also create profiles of fonts and colors. The IDE comes with two profiles built
in – NetBeans (the default profile) and City Lights (which is based on a black back-
ground).

You can choose the profile from the Profile combo box at the top of the Fonts & Colors
panel. You can create a new profile by clicking Duplicate to start a new profile based on
the selected profile.

keegan.book Page 119 Wednesday, April 19, 2006 9:40 PM

120 Chapter 5 � Editing and Refactoring Code

Text Selection Shortcuts
To enable you to keep both hands on the keyboard, a number of shortcuts allow
you to select text, deselect text, and change the text that is selected. See Table 5-4
for a selection of these shortcuts.

Navigating within the Current Java File
The IDE provides several mechanisms to make it easier to view and navigate a
given Java file:

Table 5-4 Text Selection Shortcuts

Description Shortcut

Selects the current identifier or other word that the
insertion point is on.

Alt-J

Selects all the text between a set of parentheses,
brackets, or curly braces. The insertion point must be
resting immediately after either the opening or closing
parenthesis/bracket/brace.

Ctrl-Shift-[

Selects the current code element. Upon subsequent
pressings, incrementally increases the size of the
selection to include surrounding code elements. For
example, if you press Alt-Shift-S once, the current word
is selected. If you press it again, the rest of the
expression might be selected. Pressing a third time
might select the whole statement. Pressing a fourth
time might select the whole method.

Alt-Shift-S

Selects the next (previous) character or extends the
selection one character.

Shift-Right (Shift-Left)

Selects the next (previous) word or extends the
selection one word.

Ctrl-Shift-Right (Ctrl-Shift-Left)

Creates or extends the text selection one line down
(up).

Shift-Down (Shift-Up)

Creates or extends the text selection to the end
(beginning) of the line.

Shift-End (Shift-Home)

Creates or extends the text selection to the end
(beginning) of the document.

Ctrl-Shift-End (Ctrl-Shift-Home)

Creates or extends the text selection one page down
(up).

Shift-Page Down (Shift-Page Up)

keegan.book Page 120 Wednesday, April 19, 2006 9:40 PM

Navigating within the Current Java File 121

� The Navigator window, which appears below the Projects window and pro-
vides a list of members (for example, constructors, fields, and methods) in
the currently selected Java file.

� Bookmarks, which enable you to easily jump back to specific places in the file.

� The Alt-K and Alt-L “jump list” shortcuts, mentioned in Jumping Between
Areas Where You Have Been Working later in this chapter.

� Keyboard shortcuts to scroll the window. See Table 5-5 in the following
section.

� The code folding feature, which enables you to collapse sections of code
(such as method bodies, Javadoc comments, and blocks of import state-
ments), thus making a broader section of your class visible in the window at
a given time.

Viewing and Navigating Members of a Class
The IDE’s Navigator window (shown in Figure 5-10) provides a list of all “mem-
bers” (constructors, methods, and fields) of your class. You can double-click a
member in this list to jump to its source code in the Source Editor. Alternatively,
instead of using the mouse, press Ctrl-7 to give focus to the Navigator window.
Then begin typing the identifier until the Navigator locates it and press Enter to
select that identifier in the Source Editor.

You can use the filter buttons at the bottom of the window to hide non-public
members, static members, fields, and/or inherited members.

Figure 5-10 Navigator window

keegan.book Page 121 Wednesday, April 19, 2006 9:40 PM

122 Chapter 5 � Editing and Refactoring Code

Moving the Insertion Point and Scrolling the Window
There is a wide range of shortcuts that you can use for moving the insertion
point around and scrolling the Source Editor without moving the insertion
point. See Table 5-5 for a list of some of the most useful file navigation shortcuts.

Bookmarking Lines of Code
You can set bookmarks in files to make it easy to find an area of the file that you
are working with frequently. You can then cycle through the file’s bookmarks by
pressing F2 (next bookmark) or Shift-F2 (previous bookmark).

To bookmark a line in a file, click in the line and press Ctrl-F2. To remove a
bookmark, also use Ctrl-F2.

Hiding Sections of Code
You can collapse (or fold) low-level details of code so that only one line of
that block is visible in the Source Editor, leaving more room to view other
lines. Methods, inner classes, import blocks, and Javadoc comments are all
foldable.

Table 5-5 Cursor and Scrolling Shortcuts

Description Shortcut

Moves the insertion point to the next word (previous word). Ctrl-Right (Ctrl-Left)

Moves the insertion point to the top (bottom) of the file. Ctrl-Home (Ctrl-End)

Scrolls up (down) without moving the insertion point. Ctrl-Up (Ctrl-Down)

Scrolls the window so that the current line moves to the top of the
window.

Alt-U, then T

Scrolls the window so that the current line moves to the middle of
the window.

Alt-U, then M

Scrolls the window so that the current line moves to the bottom of
the window.

Alt-U, then B

Moves the insertion point to the parenthesis, bracket, or curly brace
that matches the one directly before your insertion point.

Ctrl-[

keegan.book Page 122 Wednesday, April 19, 2006 9:40 PM

Navigating within the Current Java File 123

Collapsible blocks of code are marked with the icon in the left margin next to
the first line of the block. The rest of the block is marked with a vertical line that
extends down from the icon. Collapsed blocks are marked with the icon.
You can click one of these icons to fold or expand the particular block it repre-
sents. See Figure 5-11 for an example.

You can also collapse and expand single or multiple blocks of code with key-
board shortcuts and menu items in the Edit | Code Folds menu and the Code
Folds submenu in the Source Editor. See Table 5-6 for a list of these commands
and shortcuts.

By default, none of the code that you write is folded. You can configure the
Source Editor to fold Java code by default when you create a file or open a previ-
ously unopened file.

Figure 5-11 Examples of expanded and folded code in the Source Editor

Table 5-6 Code Folding Commands

Command Shortcut

Collapse Fold Ctrl-NumPad-Minus

Expand Fold Ctrl-NumPad-Plus

Collapse All Ctrl-Shift-NumPad-Minus

Expand All Ctrl-Shift-NumPad-Plus

Collapse All Javadoc none

Expand All Javadoc none

Collapse All Java Code (collapses everything except Javadoc
documentation)

none

Expand All Java Code (expands everything except Javadoc
documentation)

none

keegan.book Page 123 Wednesday, April 19, 2006 9:40 PM

124 Chapter 5 � Editing and Refactoring Code

To configure the IDE to fold certain elements of Java code automatically:

1. Choose Tools | Options, click the Editor panel, and select the General tab.

2. Where it says Collapse By Default, select the checkboxes for the elements
that you want folded by default. You can choose from methods, inner
classes, imports, Javadoc comments, and the initial comment.

Navigating from the Source Editor
The IDE includes handy shortcuts for navigating among files, different bits of
code, and different windows. The more of these shortcuts you can incorporate
into your workflow, the less your fingers will have to stray from your keyboard
to your mouse.

Switching Between Open Files
Besides using the Source Editor’s tabs and drop-down list, you can switch
between open files using the keyboard shortcuts shown in Table 5-7.

Jumping to Related Code and Documentation
The shortcuts in Table 5-8 enable you to jump to parts of the current file or
other files that are relevant to the selected identifier. The first six of these short-
cuts are available from the Navigate menu and the Go To submenu of the Source
Editor’s contextual (right-click) menu. The Show Javadoc command is available
straight from the Source Editor’s contextual menu.

Table 5-7 Shortcuts for Navigating Among Open Files

Shortcut Description

Alt-Left and Alt-Right Select files in order of tab position.

Ctrl-Tab Opens a popup box showing all open files. Hold down the Ctrl key
and press the Tab key multiple times until the file that you want to
view is selected. Then release both keys to close the box and display
the file.

Shift-F4 Opens a dialog box that lists all open files. You can use the mouse or
the arrow keys to select the file that you want to view and press Enter
to close the dialog box and display the file.

keegan.book Page 124 Wednesday, April 19, 2006 9:40 PM

Navigating from the Source Editor 125

Jumping Between Areas Where You Have Been Working
When you are working on multiple files at once or in different areas of the
same file, you can use the “jump list” shortcuts to navigate directly to areas
where you have been working instead of scrolling and/or switching windows.
The “jump list” is essentially a history of lines where you have done work in
the Source Editor.

You can navigate back and forth between jump list locations with the Alt-K
(back) and Alt-L (forward) shortcuts. Use Alt-Shift-K and Alt-Shift-L to navi-
gate files in the jump list without stopping at multiple places in a file.

Table 5-8 Java Class Navigation Shortcuts

Command Shortcut Description

Go to Source Alt-O (or
Ctrl-click)

Jumps to the source code for the currently selected class,
method, or field, if the source is available. You can achieve
this either by pressing Alt-O with the identifier selected or
by holding down the Ctrl key, hovering the mouse over
the identifier until it is underlined in blue, and then
clicking it.

Go to Declaration Alt-G Jumps to the declaration of the currently selected class,
method, or field.

Go to Super
Implementation

Ctrl-B Jumps to the super implementation of the currently
selected method (if the selected method overrides a
method from another class or is an implementation of a
method defined in an interface).

Go to Line Ctrl-G Jumps to a specific line number in the current file.

Go to Class Alt-Shift-O Enables you to type a class name and then jumps to the
source code for that class if it is available to the IDE.

Go To Test Alt-Shift-E Jumps to the unit test for the selected class.

Show Javadoc Alt-F1 Displays documentation for the selected class in a web
browser. For this command to work, Javadoc for the
class must be made available to the IDE through the
Java Platform Manager (for JDK documentation) or the
Library Manager (for documentation for other
libraries). See Referencing JDK Documentation
(Javadoc) from the Project in Chapter 3 and Making
External Sources and Javadoc Available in the IDE, also
in Chapter 3.

keegan.book Page 125 Wednesday, April 19, 2006 9:40 PM

126 Chapter 5 � Editing and Refactoring Code

Jumping from the Source Editor to a File’s Node
When you are typing in the Source Editor, you can jump to the node that repre-
sents the current file in other windows. This can be useful, for example, if you
want to navigate quickly to another file in the same package or you want to
browse versioning information for the current file.

See Table 5-9 for a list of available shortcuts.

Searching and Replacing
There are several types of searches in the IDE for different needs. You can

� Find occurrences of an identifier for a class, method, or field in your project
using the Find Usages command

� Rename a class, method, or field throughout your project by using the
Rename command

� Find and replace specific character combinations in an open file by pressing
Ctrl-F in the file

� Find files that match search criteria based on characters in the file, char-
acters in the filename, file type, and/or date by right-clicking a folder or
project node in the Projects window and choosing Find (or by pressing
Ctrl-F)

Finding Occurrences of the Currently Selected Class, Method, or
Field Name
When you are working in the Source Editor, you can quickly find out where a
given Java identifier is used in your project using the Find Usages command.

Table 5-9 Shortcuts for Selecting the Current File in a Different Window

Command Shortcut

Select the node for the current file in the Projects window. Ctrl-Shift-1

Select the node for the current file in the Files window. Ctrl-Shift-2

Select the node for the current file in the Favorites window. Ctrl-Shift-3

keegan.book Page 126 Wednesday, April 19, 2006 9:40 PM

Searching and Replacing 127

Find Usages improves upon a typical Find command by being sensitive to the
relevance of text in the Java language context.

Depending on what kind of identifier you have selected and which options you
have selected in the Find Usages dialog box, the Find Usages command output
displays lines in your project that contain a combination of the following items:

� (For classes and interfaces) a declaration of a method or variable of the class
or interface

� (For classes and interfaces) a usage of the type, such as at the creation of a
new instance, importing a class, extending a class, implementing an inter-
face, casting a type, or throwing an exception

� (For classes and interfaces) a usage of the type’s methods or fields

� (For classes and interfaces) subtypes

� (For fields) the getting or setting of the field’s value

� (For methods) the calling of the method

� (For methods) any overriding methods

� Comments that reference the identifier

The Find Usages command does not match

� Parts of words

� Words that differ in case

To find occurrences of a specific identifier in your code:

1. In the Source Editor, move the insertion point to the class, method, or field
name that you want to find occurrences of.

2. Choose Edit | Find Usages, right-click and choose Find Usages, or press
Alt-F7.

3. In the Find Usages dialog box, select the types of occurrences that you want
displayed and click Next.

The results are displayed in the Usages window (shown in Figure 5-12), which
appears at the bottom of the IDE.

keegan.book Page 127 Wednesday, April 19, 2006 9:40 PM

128 Chapter 5 � Editing and Refactoring Code

You can navigate to a given occurrence of a class, method, or field name by double-
clicking the occurrences line in the Usages window.

Renaming All Occurrences of the Currently Selected Class,
Method, or Field Name
If you want to rename a class, method, or field, you can use the Refactor |
Rename command to update all occurrences of the identifier in the Project to
the new name. Unlike standard search and replace operations, the Rename com-
mand is sensitive to the Java context of your code, which makes it much more
easy and reliable to use when reworking code. In addition, with the Rename
command, you get a preview of the changes to be made and can prevent renam-
ing of specific occurrences.

To rename a class, method, or field name:

1. In the Source Editor, move the insertion point to an occurrence in the code
of the class, method, or field name that you want to rename.

2. Right-click and choose Refactor | Rename or press Alt-Shift-R.

3. In the Rename dialog box, type the new name for the element.

If you want occurrences of the name in comments to also be changed, check
the Apply Name on Comments checkbox.

4. In the Rename dialog box, click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

Figure 5-12 Usages window

keegan.book Page 128 Wednesday, April 19, 2006 9:40 PM

Searching and Replacing 129

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

5. In the Refactoring window (shown in Figure 5-13), which appears at the
bottom of the IDE, verify the occurrences that are set to change. If there is
an occurrence that you do not want to change, deselect that line’s checkbox.

6. Click Do Refactoring to apply the changes.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

You can initiate the renaming of a class or interface by renaming it inline in the Projects
window. If you rename a node but do not want that change to be reflected in other
places, select the Rename Without Refactoring checkbox.

Searching and Replacing Combinations of Characters in a File
If you merely want to find a combination of characters in your file, click in the
file that you want to search, choose Edit | Find (Ctrl-F), and type the text that
you want to find in the Find dialog box (as shown in Figure 5-14).

In the Find dialog box, you can use a regular expression as your search criterion
by selecting the Regular Expressions checkbox.

Unlike the Find Usages command, the Find command allows you to search for
parts of words, do case-insensitive searches, and highlight matches in the cur-
rent file.

Figure 5-13 Refactoring preview window

keegan.book Page 129 Wednesday, April 19, 2006 9:40 PM

130 Chapter 5 � Editing and Refactoring Code

Once you have dismissed the Find dialog box, you can jump between occur-
rences of the search string by pressing F3 (next occurrence) and Shift-F3 (previ-
ous occurrence).

To select the word in which the cursor is resting and start searching for other
occurrences of that word, press Ctrl-F3.

To search and replace text, click in the file that you want to replace text, press
Ctrl-H, and fill in the Find What and Replace With fields.

By default, matches to a Find command remain highlighted in the Source Editor after
you have dismissed the Find dialog box. To turn off the highlighting, press Alt-Shift-H.

Other File Searches
If you want to do a search on multiple files for something other than an occur-
rence of a specific Java identifier, you can use the Find and Find in Projects
commands. These commands enable you to search files within a folder,
project, or all projects.

You can base these commands on any combination of the following types of
criteria:

� Matches to a substring or regular expression on text in the file

� Matches to a substring or regular expression on the filename

� Dates the files were modified

� File type

Figure 5-14 Find window for the Source Editor

keegan.book Page 130 Wednesday, April 19, 2006 9:40 PM

Deleting Code Safely 131

To initiate such a file search, do one of the following:

� Choose Edit | Find in Projects to search all files in all open projects (includ-
ing project metadata files).

� In the Projects window, right-click the node for the folder or project that
you want to search in and choose Find (or press Ctrl-F). If you choose Find
this way, the project metadata, including the build script and the contents of
the nbproject folder, are not searched.

� Right-click a folder in the Files window and choose Find. If you choose Find
this way, the project metadata, including the build script and the contents of
the nbproject folder, are also searched.

After you initiate the search, fill as many search criteria as you would like. When
you fill in a criterion on a given tab, the Use This Criterion for Search checkbox
is selected. Deselect this checkbox if you decide to search according to a different
type of criterion and you do not want the criterion on the currently selected tab
to be used.

After you enter the criteria in the Find dialog box or the Find in Projects dialog
box (shown in Figure 5-15) and click Search, the results are displayed in the
Search Results window with nodes for each matched file. For full-text searches,
these nodes can be expanded to reveal the individual lines where matched text
occurs. You can double-click a match to open that file in the Source Editor (and,
in the case of full-text matches, jump to the line of the match).

The dialog box that appears when you press Ctrl-F or choose Edit | Find (or Edit | Find in
Projects) depends on which IDE window has focus. If you have the Source Editor
selected, the Find dialog box for an individual file appears. If you have a node selected
in the Projects window (or one of the other tree-view windows), the dialog box for
searching in multiple files is opened.

Deleting Code Safely
Over time, your code might gather elements that have limited or no usefulness.
To make the code easier to maintain, it is desirable to remove as much of this
code as possible. However, it might be hard to immediately determine whether
you can delete such code without causing errors elsewhere.

keegan.book Page 131 Wednesday, April 19, 2006 9:40 PM

132 Chapter 5 � Editing and Refactoring Code

Figure 5-15 Find in Projects dialog box

Refactoring Commands
NetBeans IDE has special support for refactoring code. The term refactoring refers to
renaming and rearranging code without changing what the code does. Reasons for refac-
toring include things such as the need to separate API from implementation, making code
easier to read, and making code easier to reuse.

The IDE’s refactoring support makes refactoring easier by enabling you to update all of the
code in your project automatically to reflect changes that you make in other parts of your
project.

For example, if you rename a class, references to that class in other classes are also updated.

You can access most refactoring commands from the Refactor menu on the main menu
bar or by right-clicking in the Source Editor or on a class node in the Projects window and
choosing from the Refactor submenu. The Find Usages command is in the Edit menu and
the contextual (right-click) menu for the Source Editor and the Projects window.

Typically, the currently selected identifier is filled in as the code element to be refactored.

Table 5-10 provides a summary of the refactoring commands that are available. These
commands are explained more thoroughly in task-specific topics throughout this chapter.

keegan.book Page 132 Wednesday, April 19, 2006 9:40 PM

Deleting Code Safely 133

Table 5-10 Refactoring Commands

Command Description

Find Usages Displays all occurrences of the name of a given class, method, or
field. See Finding Occurrences of the Currently Selected Class,
Method, or Field Name earlier in this chapter.

Rename Renames all occurrences of the selected class, interface, method, or
field name. See Renaming All Occurrences of the Currently Selected
Class, Method, or Field Name earlier in this chapter.

Safely Delete Deletes a code element after making sure that no other code
references that element. See Deleting Code Safely earlier in this
chapter.

Change Method
Parameters

Enables you to change the parameters and the access modifier for the
given method. See Changing a Method’s Signature later in this
chapter.

Encapsulate Fields Generates accessor methods (getters and setters) for a field and
changes code that accesses the field directly so that it uses those new
accessor methods instead. See Encapsulating a Field later in this
chapter.

Move Class Moves a class to a different package and updates all references to that
class with the new package name. See Moving a Class to a Different
Package later in this chapter.

Pull Up Moves a method, inner class, or field to a class’ superclass. You can
also use this command to declare the method in the superclass and
keep the method definition in the current class. See Moving Class
Members to Other Classes later in this chapter.

Push Down Moves a method, inner class, or field to a class’ direct subclasses. You
can also use this command to keep the method declaration in the
current class and move the method definition to the subclasses. See
Moving Class Members to Other Classes later in this chapter.

Extract Method Creates a new method based on a selection of code in the selected
class and replaces the extracted statements with a call to the new
method. See Creating a Method from Existing Statements later in
this chapter.

Extract Interface Creates a new interface based on a selection of methods in the
selected class and adds the new interface to the class’ implements
clause. See Creating an Interface from Existing Methods later in this
chapter.

(continued)

keegan.book Page 133 Wednesday, April 19, 2006 9:40 PM

134 Chapter 5 � Editing and Refactoring Code

The IDE’s Safely Delete command can help you with the process of removing
unused code, saving you cycles of manual searches and compilation attempts.
When you use this command, the IDE checks to see if the selected code element
is referenced elsewhere. If the code element is not used, the IDE deletes it. If the
code element is used, the IDE displays where the code is used. You can then
resolve references to the code you want to delete and then try the Safely Delete
operation again.

You can use the Safely Delete command on any type (such as a class, interface,
and or enumeration), method, field, or local variable.

To safely delete a code element:

1. In the Source Editor or Projects window, right-click the code element that
you want to delete and choose Refactor | Safely Delete.

2. In the Safe Delete dialog box, make sure that the item to be deleted is listed.

3. If you want the IDE to look inside comments for mentions of the code ele-
ment, select the Search in Comments checkbox.

If this checkbox is not selected, comments referring to the code element are
not affected if you delete the code element.

Extract Superclass Creates a new superclass based on a selection of methods in the
selected class. You can have the class created with just method
declarations, or you can have whole method definitions moved into
the new class. See Extracting a Superclass to Consolidate Common
Methods later in this chapter.

Use Supertype Where
Possible

Change code to reference objects of a superclass (or other type)
instead of objects of a subclass. See Changing References to Use a
Supertype later in this chapter.

Move Inner to Outer
Level

Moves a class up one level. If the class is a top-level inner class, it is
made into an outer class and moved into its own source file. If the
class is nested within the scope of an inner class, method, or variable,
it is moved up to the same level as that scope. See Unnesting Classes
later in this chapter.

Convert Anonymous
Class to Inner

Converts an anonymous inner class to a named inner class. See
Unnesting Classes later in this chapter.

Table 5-10 Refactoring Commands (Continued)

Command Description

keegan.book Page 134 Wednesday, April 19, 2006 9:40 PM

Changing a Method’s Signature 135

If this checkbox is selected, any found references to the code element in
comments will prevent the code element from being immediately deleted,
even if the code element is not used.

4. Click Next.

If no references to the code element are found, the Safe Delete dialog box
closes and the code element is deleted.

If references to the code element are found, no code is deleted and the Safely
Delete dialog box remains open. If you click the Show Usages button, the
Usages window opens and displays the references to that code element.
Double-click an item in the list to jump to the line of code that it represents.
If you remove the cited references, you can click the Rerun Safe Delete but-
ton to repeat the attempt to safely delete the code element.

To undo the Safely Delete command, choose Refactor | Undo.

Changing a Method’s Signature
If you want to change a method’s signature, you can use the IDE’s Refactor |
Change Method Parameters command to update other code in your project that
uses that method. Specifically, you can

� Add parameters.

� Change the order of parameters.

� Change the access modifier for the method.

� Remove unused parameters.

You cannot use the Change Method Parameters command to remove a parame-
ter from a method if the parameter is used in your code.

To change a method’s signature:

1. Right-click the method in the Source Editor or the Projects window and
choose Refactor | Change Method Parameters.

2. Click Add if you want to add parameters to the method. Then edit the
Name, Type, and (optionally) the Default Value cells for the parameter. You
have to double-click a cell to make it editable.

keegan.book Page 135 Wednesday, April 19, 2006 9:40 PM

136 Chapter 5 � Editing and Refactoring Code

3. To switch the order of parameters, select a parameter in the Parameters table
and click Move Up or Move Down.

4. Select the preferred access modifier from the Access Modifier combo box.

5. Click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

6. In the Refactoring window, look at the preview of the code to be changed. If
there is a modification that you do not want to be made, deselect the check-
box next to the line for that change.

7. Click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

Encapsulating a Field
One common design pattern in Java programs is to make fields accessible and
changeable only by methods in the defining class. In the convention used by
JavaBeans components, the field is given private access and accessor methods are
written for the field with broader access privileges. The names of the accessor
methods are created by prefixing get and set to the field’s name.

If you have fields that are visible to other classes and would like to better control
access to those fields, you can use the IDE’s Encapsulate Fields command to
automate the necessary code modifications. The Encapsulate Fields command
does the following things:

� Generates getter and setter methods for the desired fields.

� Enables you to change the access modifier for the fields and accessor
methods.

� Changes code elsewhere in your project that accesses the fields directly to
instead use the newly generated accessor methods.

keegan.book Page 136 Wednesday, April 19, 2006 9:40 PM

Encapsulating a Field 137

To encapsulate fields in a class:

1. Right-click the field or the whole class in the Source Editor or the Projects
window and choose Refactor | Encapsulate Fields.

2. In the Encapsulate Fields dialog box, select the Create Getter and Create Set-
ter checkboxes for each field that you want to have encapsulated.

If you have selected a specific field, the checkboxes for just that field should
be selected by default.

If you have selected the whole class, the checkboxes for all of the class’ fields
should be selected by default.

3. In the Fields’ Visibility drop-down list, set the access modifier to use for the
fields that you are encapsulating.

Typically, you would select private here. If you select a different visibility
level, other classes will still have direct access to the fields for which you are
generating accessor methods.

4. In the Accessors’ Visibility drop-down list, set the access modifier to use for
the generated getters and setters.

5. If you decide to leave the fields visible to other classes but you want to have
current references to the field replaced with references to the accessor meth-
ods, select the Use Accessors Even When Field Is Accessible checkbox.
Otherwise, those direct references to the field will remain in the code.

This checkbox is only relevant if you decide to leave the fields accessible to
other classes and there is code in those classes that accesses the fields directly.

6. Click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

7. In the Refactoring window, verify the changes that are about to be made and
click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

keegan.book Page 137 Wednesday, April 19, 2006 9:40 PM

138 Chapter 5 � Editing and Refactoring Code

Moving a Class to a Different Package
If you want to place a class in a different package, you can use the IDE’s refactor-
ing features to move the class and then update references to that class automati-
cally throughout your project.

To move a class:

1. In the Projects window, drag the class from its current package to the pack-
age you want to place it in. (You can also use the Cut and Paste commands
in the contextual menus or the corresponding keyboard shortcuts.)

2. In the Move Class or Move Classes dialog box (shown in Figure 5-16), click
Next after verifying that the To Package and This Class fields reflect the des-
tination package and the class you are moving. (If you move multiple
classes, a List of Classes text area is shown instead of the This Class field.)

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

3. In the Refactoring window (shown in Figure 5-17), look at the preview of
the code to be changed. If there is a modification that you do not want to be
made, deselect the checkbox next to the line for that change.

Figure 5-16 Move Classes dialog box

keegan.book Page 138 Wednesday, April 19, 2006 9:40 PM

Moving Class Members to Other Classes 139

4. Click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

If you want to create a new package and move all of the classes in the old package to
the new package, you can do an in-place rename of a package in the Projects window
(or of a folder in the Files window).

Moving Class Members to Other Classes
The IDE has the Pull Up and Push Down refactoring commands for moving
methods and fields to other classes and interfaces. When you use these com-
mands to move class members, the IDE updates references to those members
throughout your project. These commands are useful for improving the inherit-
ance structure of your code. You can:

� Move methods and fields to a superclass or super-interface.

� Leave method implementations in the current class but create abstract dec-
larations for those methods in a superclass.

� Move methods and fields to the class’s subclasses or sub-interfaces.

� Move the implementations of methods to subclasses while leaving abstract
method declarations in the current class.

� Move the interface name from the implements clause of a class to the
implements clause of another class.

Figure 5-17 Refactoring window

keegan.book Page 139 Wednesday, April 19, 2006 9:40 PM

140 Chapter 5 � Editing and Refactoring Code

Moving Code to a Superclass
To move a member, a method’s declaration, or an implements clause from the
current class to a superclass:

1. In the Source Editor or the Projects window, select the class or interface that
contains the member or members that you want to move.

2. Choose Refactor | Pull Up to open the Pull Up dialog box.

3. In the Destination Supertype drop-down list, select the superclass or inter-
face that you want to move the members to.

4. Select the checkbox for each member that you want to move.

If you want to leave the method implementation in the current class and
create an abstract declaration for the method in the superclass, select the
Make Abstract checkbox for the method.

If the class from which you are moving members implements an interface, a
checkbox for that interface is included in the dialog box. If you select the check-
box for that interface, the interface is removed from the implements clause of
the current class and moved to the implements clause of the class to which you
are moving members. (If you select a checkbox for an interface, be sure that all
the checkboxes for the methods declared in that interface are also selected.)

5. Click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

6. In the Refactoring window, look at the preview of the code to be changed. If
there is a modification that you do not want to be made, deselect the check-
box next to the line for that change.

7. Click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

Moving Code to Subclasses
To move a member, a method’s implementation, or an implements clause from
the current class to that class’ subclasses:

keegan.book Page 140 Wednesday, April 19, 2006 9:40 PM

Creating a Method from Existing Statements 141

1. In the Source Editor or the Projects window, select the class or interface that
contains the member or members that you want to move.

2. Choose Refactor | Push Down to open the Push Down dialog box.

3. Select the checkbox for each member you want to move.

If you want to leave an abstract declaration for the method in the current
class and move the implementation to the subclasses, select the Keep
Abstract checkbox for the method.

If the class from which you are moving members implements an interface, a
checkbox for that interface is included in the dialog box. If you select the
checkbox for that interface, the interface is removed from the implements
clause of the current class and moved to the implements clause of the class to
which you are moving members.

4. Click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

5. In the Refactoring window, look at the preview of the code to be changed. If
there is a modification that you do not want to be made, deselect the check-
box next to the line for that change.

6. Click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

Creating a Method from Existing Statements
As your code evolves, you might find it desirable to break some methods up into
multiple methods. You can use the Extract Method command to simplify this
process. The Extract Method command does the following:

� Creates a new method and moves the selected statements to that method.

� Adds a call to the new method in the location from where the statements
were moved.

To extract a method from existing statements:

keegan.book Page 141 Wednesday, April 19, 2006 9:40 PM

142 Chapter 5 � Editing and Refactoring Code

1. In the Source Editor, select the statements that you want to be extracted into
the new method.

2. Right-click the selection and choose Refactor | Extract Method.

3. In the Extract Method dialog box, enter a name for the method and select an
access level.

4. If you want the method to be static, select the Static checkbox.

5. Click Next.

If you left the Preview All Changes checkbox clear, the method is immedi-
ately extracted.

If you have selected the Preview All Changes checkbox, the changes to be
made to your code are listed in the Refactoring window. After verifying the
changes, click Do Refactoring to complete the method extraction.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

Creating an Interface from Existing Methods
If you decide to divide your code into API and implementation layers, you can
get started on that conversion by using the Extract Interface command to create
an interface from methods in an existing class. The Extract Interface command
does the following:

� Creates a new interface containing declarations for selected public methods.

� Adds the name of the created interface to the implements clause of the class
from which the interface is extracted. (If the interface is extracted from
another interface, the name of the newly created interface is added to the
extends clause of the other interface.)

To extract an interface from existing methods:

1. In the Source Editor or the Projects window, select the class that contains
the methods that you want to be extracted into the new interface.

2. Choose Refactor | Extract Interface.

3. In the Extract Interface dialog box, select the checkbox for each method that
you want to be declared in the new interface.

keegan.book Page 142 Wednesday, April 19, 2006 9:40 PM

Extracting a Superclass to Consolidate Common Methods 143

If the class from which you are extracting an interface already implements
an interface, a checkbox for that interface is included in the Extract Interface
dialog box. If you select the checkbox for that interface, the interface is
removed from the implements clause of the previously implementing inter-
face and moved to the extends clause of the new interface.

4. Click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

5. In the Refactoring window, look at the preview of the code to be changed. If
there is a modification that you do not want to be made, deselect the check-
box next to the line for that change.

6. Click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

When you use the Extract Interface command, the interface is always created in the
same package as the class from which it was extracted. If you want to move the inter-
face to another package, you can use the Refactor | Move Class command to do so.

Extracting a Superclass to Consolidate Common
Methods
As a project evolves, you might need to add levels to your inheritance hierarchy.
For example, if you have two or more classes with essentially duplicate methods
that are not formally related, you might want to create a superclass to hold these
common methods. Doing so will make your code easier to read, modify, and
extend, whether now or in the future.

You can use the Extract Superclass command to create such a superclass based
on methods in one of the classes that you want to turn into a subclass. For each
method that you add to the superclass, the Extract Superclass command enables
you to choose between the following two options:

� Moving the whole method to the superclass

� Creating an abstract declaration for the method in the superclass and leaving
the implementation in the original class

keegan.book Page 143 Wednesday, April 19, 2006 9:40 PM

144 Chapter 5 � Editing and Refactoring Code

To extract a new superclass:

1. In the Source Editor or the Projects window, select the class that contains
the methods that you want to be extracted into the new superclass.

2. Choose Refactor | Extract Superclass.

3. In the Extract Superclass dialog box, select the checkbox for each method
and field that you want to be moved to the new superclass. Private methods
and private fields are not included.

If you want to leave a method implementation in the current class and cre-
ate an abstract declaration for the method in the superclass, select the Make
Abstract checkbox for the method.

If the class from which you are extracting a superclass implements an inter-
face, a checkbox for that interface is included in the Extract Superclass dia-
log box. If you select the checkbox for that interface, the interface is removed
from the implements clause of the class that you are extracting from and
moved to the implements clause of the new superclass.

4. Click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

5. In the Refactoring window, look at the preview of the code to be changed. If
there is a modification that you do not want to be made, deselect the check-
box next to the line for that change.

6. Click Do Refactoring.

If you later find that the refactoring has had some consequences you would
like to reverse, you can choose Refactor | Undo.

After you have extracted the superclass, you can use a combination of the fol-
lowing techniques to complete the code reorganization:

� Add the name of the new superclass to the extends clause of any other
classes that you want to extend the new superclass.

� Use the Pull Up command to move methods from other classes to the new
superclass. As with the Extract Superclass command, you can move whole

keegan.book Page 144 Wednesday, April 19, 2006 9:40 PM

Changing References to Use a Supertype 145

methods or merely create abstract declarations for the methods in the new
superclass. See Moving Class Members to Other Classes earlier in this chapter.

� For other classes that you want to extend the new superclass, use the Over-
ride and Implement Methods feature (Ctrl-I) to add methods from the
superclass to those classes. See Generating Methods to Override from
Extended Classes earlier in this chapter.

� Use the Use Supertype Where Possible command to change references in
your code to the original class to the just created superclass. See Changing
References to Use a Supertype below.

Changing References to Use a Supertype
You can use the Use Supertype Where Possible refactoring command to change
code to reference objects of a superclass (or other type) instead of objects of a
subclass. The operation only changes the reference in places where your code
can accommodate such upcasting.

Typically you would use this refactoring operation to enable a single method to take
as an argument different types of objects (all deriving from the same superclass).

This operation might be particularly useful after you have used the Extract
Superclass command.

To change references to a supertype:

1. Select the class to which you want to replaces references and choose Refactor
| Use Supertype Where Possible.

2. In the Select Supertype to Use list, select the class or other type that should
be referenced instead of the type currently referenced and click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

3. In the Refactoring window, look at the preview of the code to be changed. If
there is a modification that you do not want to be made, deselect the check-
box next to the line for that change.

keegan.book Page 145 Wednesday, April 19, 2006 9:40 PM

146 Chapter 5 � Editing and Refactoring Code

4. Click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

Unnesting Classes
As a project grows, you might find that some classes become tangled with a
dense structure of inner classes that are hard to read and which cannot be ele-
gantly modified or extended. If this is the case, you might want to simplify the
nesting structure and move some classes into their own source files.

The IDE has a pair of useful commands for simplifying your code’s nesting
structure:

� Move Inner to Outer Level. This command moves a class up one level.

If the class is a top-level inner class, it is made an outer class and moved into
its own source file.

If the class is nested within an inner class, method, or variable scope, it is
moved up one level.

� Convert Anonymous Class to Inner. This command converts an anonymous
inner class (i.e., a class that is unnamed and has no constructor) into a
named inner class (inner class that has a name and a constructor). This also
makes it possible for other code to reference this class.

Moving an Inner Class up One Level
To move an inner class up one level:

1. In the Source Editor, right-click the inner class that you want to move and
choose Refactor | Move Inner to Outer Level.

2. In the Class Name field of the Move Inner to Outer Level dialog box, set the
name of the class.

3. Select the Declare Field for the Current Outer Class checkbox if you want to
generate a field in the moved inner class to hold the outer class instance and
include a reference to that instance as a parameter in the moved class’ con-
structor.

keegan.book Page 146 Wednesday, April 19, 2006 9:40 PM

Unnesting Classes 147

If you select this option, fill in the Field Name text field with a name for the
the outer class’ instance field.

4. Click Next.

If you have deselected the Preview All Changes checkbox, the changes are
applied immediately.

If you leave the Preview All Changes checkbox selected, the Refactoring win-
dow appears with a preview of the changes.

5. In the Refactoring window, look at the preview of the code to be changed. If
there is a modification that you do not want to be made, deselect the check-
box next to the line for that change.

6. Click Do Refactoring.

If you later find that the refactoring has had some consequences that you
would like to reverse, you can choose Refactor | Undo.

Unless you have selected the Preview All Changes box, the inner class is
immediately moved up one level.

If you have selected the Preview All Changes box, the changes to be made are
shown in the Refactoring window. You can then apply the changes by click-
ing Do Refactoring.

If the result is different from what you expected, you can reverse the com-
mand by choosing Refactor | Undo.

Converting an Anonymous Inner Class to a Named Inner Class
To convert an anonymous inner class to a named inner class:

1. In the Source Editor, right-click the anonymous inner class that you want to
convert and choose Refactor | Convert Anonymous Class to Inner.

2. In the Inner Class Name field of the Convert Anonymous Class to Inner dia-
log box, enter a name for the class.

3. In the Access field, select the access modifier for the class.

4. Select the Declare Static checkbox if you want the class to be static.

5. In the Constructor Parameters list, use the Move Up and Move Down but-
tons to set the order of the parameters.

6. Click Next.

keegan.book Page 147 Wednesday, April 19, 2006 9:40 PM

148 Chapter 5 � Editing and Refactoring Code

Unless you have selected the Preview All Changes box, the anonymous class
is converted to the named inner class.

If you have selected the Preview All Changes box, the changes to be made are
shown in the Refactoring window. You can then apply the changes by click-
ing Do Refactoring.

If the result is different from than expected, you can reverse the command
by choosing Refactor | Undo.

Tracking Notes to Yourself in Your Code
The IDE has a task list feature that provides a way for you to write notes in
your code and then view all of these notes in a single task (or “to do”) list. You
can use the task list as the center of operations when cleaning up loose ends in
your code.

A line is displayed in the task list if it is “tagged” with (contains) any of the fol-
lowing text:

� @todo

� TODO

� FIXME

� XXX

� PENDING

� <<<<<<<

When you type a tag in your code, it must be typed as a whole word for the IDE to rec-
ognize it. For example, if you do not put a space between the tag and the note, the note
will not appear in the task list.

To view the task list, choose Window | To Do (or press Ctrl-6).

Once you have displayed the To Do window (shown in Figure 5-18), you can
view tasks for the current file, for all open files, or for a specific folder by clicking
the corresponding button at the top of the To Do window.

keegan.book Page 148 Wednesday, April 19, 2006 9:40 PM

Tracking Notes to Yourself in Your Code 149

You can sort task-list items by task, location, or priority by clicking the corre-
sponding column titles. See Displaying Tasks by Priority later in this chapter for
information on displaying the Priority column.

You can jump from an entry in the task list straight to the line in the code where
you wrote the note by double-clicking the entry.

Adding, Removing, and Changing Task-List Tags
To change the tags that are used for the task list:

1. Choose Tools | Options, click Advanced Options, and select the Editing | To
Do Settings node.

2. Click the button in the Task Tags property.

3. In the To Do Settings dialog box, use the Add, Change, and Delete buttons
to modify the contents of the Task List table.

Displaying Tasks by Priority
You can also display priorities for each task-list item. The available priorities are
High, Medium-High, Medium, Medium-Low, and Low.

By default, the Priority column is not displayed. You can display the Priority col-
umn by clicking the icon and selecting the Priority checkbox in the Change
Visible Columns dialog box.

The priority values can be assigned by tag. By default, all tags are assigned
Medium priority except the <<<<<<< tag, which is given High priority.

Figure 5-18 To Do window

keegan.book Page 149 Wednesday, April 19, 2006 9:40 PM

150 Chapter 5 � Editing and Refactoring Code

To change a priority value for a tag:

1. Choose Tools | Options, click Advanced Options, and select the Editing | To
Do Settings node.

2. Click the button in the Task Tags property.

3. In the To Do Settings dialog box, select the new priority in the combo box in
the Priority column for the tag that you want to change.

Filtering Task-List Entries
You can further limit the entries displayed in the task list by creating and using
filters. When you use a filter, only entries that match criteria specified by the fil-
ter are displayed. Criteria include text that needs to appear in the note, the pri-
ority of the task, and/or the filename.

To create a filter:

1. Click the icon in the To Do window’s toolbar.

2. In the Edit Filters dialog box, click the New button and then type a name for
the filter in the Name field.

3. Fill in the details for the criterion.

4. Optionally, add additional criteria by clicking the More button and then fill-
ing in the details for the filters. You can select to have the filter match all or
any of the criteria using the radio buttons at the top of the dialog box.

An entry for the newly defined filter appears in a combo box in the To Do Win-
dow toolbar.

Comparing Differences Between Two Files
You can generate a side-by-side comparison of two files with the differing lines
highlighted. To compare two files, select the nodes for the two files in the
Projects window and choose Tools | Diff.

The “diff” appears as a tab in the Source Editor.

keegan.book Page 150 Wednesday, April 19, 2006 9:40 PM

Maximizing Space for the Source Editor 151

The Diff command appears in the Tools menu only when two (and no more than two)
files are selected in the Projects, Files, or Favorites window.

Splitting the Source Editor
You can split the Source Editor to view two files simultaneously or to view dif-
ferent parts of the same file.

To split the Source Editor window:

1. Make sure at least two files are already open.

2. Click a tab on one file; hold down the mouse button; and drag the tab to the
far left, far right, or bottom of the Source Editor window.

3. Release the mouse button when the red outline that appeared around the
tab when you started dragging changes to a rectangle indicating the place-
ment of the split window.

To view different parts of the same file simultaneously:

1. Click the file’s tab in the Source Editor and choose Clone Document to cre-
ate a second tab for the same document.

2. Drag and drop one of the file tabs to create a split Source Editor area. (See
the procedure above for info on dragging and dropping Source Editor tabs.)

Maximizing Space for the Source Editor
There are a number of things you can do to make more space for your code in
the IDE, such as:

� Maximize a file in the Source Editor within the IDE by double-clicking that
file’s tab. When you do this, the file takes the entire space of the IDE except
for the main menu and row of toolbars. You can make the other windows
reappear as they were by double-clicking the tab again.

� Make other windows “sliding” so that they appear only when you click or
mouse over a button representing that window on one of the edges of the
IDE. You can make a window sliding by clicking its icon. You can return
the window to its normal display by clicking the button within the sliding

keegan.book Page 151 Wednesday, April 19, 2006 9:40 PM

152 Chapter 5 � Editing and Refactoring Code

window. See Managing IDE Windows in Chapter 2 for information on
working with windows in the IDE.

� Hide the IDE’s toolbars. You can toggle the display of the main toolbars by
choosing View | Toolbars and then individually choosing the toolbars that
you want to hide (or display). You can toggle the display of the Source Edi-
tor’s toolbar by choosing View | Show Editor Toolbar.

Changing Source Editor Keyboard Shortcuts
You can change existing keyboard shortcuts or map other available commands
to shortcuts.

To add a keyboard shortcut for a command:

1. Choose Tools | Options and click the Keymap panel.

2. In the Actions panel, navigate to a command that you want to change, and
click Add.

3. In the Add Shortcut dialog box, type in the key combination that you want
to use and click OK.

The IDE also comes with keyboard shortcut profiles for the Eclipse IDE and Emacs,
either of which you can select from the Profiles drop-down box in the Keymap panel.
You can also create your own profiles.

keegan.book Page 152 Wednesday, April 19, 2006 9:40 PM

