In the 1950s and 1960s, the prominent conference gathering places for practitioners and users of computer technology were the twice yearly Joint Computer Conferences (JCCs)—initially called the Eastern and Western JCCs, but later renamed the Spring and Fall JCCs and even later, the annual National (AFIPS) Computer Conference. From this milieu, the topic of computer security—later to be called information system security and currently also referred to as “protection of the national information infrastructure”—moved from the world of classified defense interests into public view.

A few people—Robert L. Patrick, John P. Haverty, and I among others—all then at the RAND Corporation—had been talking about the growing dependence of the country and its institutions on computer technology. It concerned us that the installed systems might not be able to protect themselves and their data against intrusive and destructive attacks. We decided that it was time to bring the security aspect of computer systems to the attention of the technology and user communities.

The enabling event was the development within the National Security Agency (NSA) of a remote-access time-sharing system with a full set of security access controls, running on a Univac 494 machine, and serving terminals and users not only within the headquarters building at Fort George G. Meade, Maryland, but also worldwide. Fortuitously, I knew details of the system.

Persuading two others from RAND to help—Dr. Harold Peterson and Dr. Rein Turn—plus Bernard Peters of NSA, I organized a group of papers and presented it to the SJCC conference management as a ready-made additional paper session to be chaired by me. [1] The conference accepted the offer, and the session was presented at the Atlantic City (NJ) Convention Hall in 1967.

Soon thereafter and driven by a request from a defense contractor to include both defense classified and business applications concurrently in a single mainframe machine functioning in a remote-access mode, the Department of Defense, acting through the Advanced Research Projects Agency (ARPA) and later the Defense Science Board (DSB), organized a committee, which I chaired, to study the issue of security controls for computer systems. The intent was to produce a document that could be the basis for formulating a DoD policy position on the matter.
The report of the committee was initially published as a classified document and was formally presented to the sponsor (the DSB) in January 1970. It was later declassified and republished (by the RAND Corporation) in October 1979. [2] It was widely circulated and became nicknamed “the Ware report.” The report and a historical introduction are available on the RAND web site. [3]

Subsequently, the United States Air Force (USAF) sponsored another committee chaired by James P. Anderson. [4] Its report, published in 1972, recommended a 6-year R&D security program totaling some $8M. [5] The USAF responded and funded several projects, three of which were to design and implement an operating system with security controls for a specific computer.

Eventually these activities led to the “Criteria and Evaluation” program sponsored by the NSA. It culminated in the “Orange Book” [6] in 1983 and subsequently its supporting array of documents, which were nicknamed “the rainbow series.” [7] Later, in the 1980s and on into the 1990s, the subject became an international one leading to the ISO standard known as the “Common Criteria.” [8]

It is important to understand the context in which system security was studied in the early decades. The defense establishment had a long history of protecting classified information in document form. It had evolved a very elaborate scheme for compartmenting material into groups, sub-groups and super-groups, each requiring a specific personnel clearance and need-to-know as the basis for access. [9] It also had a centuries-long legacy of encryption technology and experience for protecting classified information in transit. Finally, it understood the personnel problem and the need to establish the trustworthiness of its people. And it certainly understood the physical security matter.

Thus, “the” computer security issue, as it was understood in the 1960s and even later, was how to create in a computer system a group of access controls that would implement or emulate the processes of the prior paper world, plus the associated issues of protecting such software against unauthorized change, subversion, and illicit use, and of embedding the entire system in a secure physical environment with appropriate management oversights and operational doctrine and procedures. The poorly understood aspect of security was primarily the software issue with, however, a collateral hardware aspect; namely, the risk that it might malfunction—or be penetrated—and subvert the proper behavior of software. For the related aspects of communications, personnel, and physical security, there was a plethora of rules, regulations, doctrine, and experience to cover them. It was largely a matter of merging all of it with the hardware/software aspects to yield an overall secure system and operating environment.

However, the world has now changed in essential ways. The desktop computer and workstation have appeared and proliferated widely. The Internet is flourishing and the reality of a World Wide Web is in place. Networking has exploded and communication among computer systems is the rule, not the exception. Many commercial transactions are now web-based; many commercial communities—the financial one in particular—have moved into a web posture. The “user” of any computer system can literally be anyone in the world. Networking among computer systems is ubiquitous; information-system outreach is the goal.
The net effect of all of this has been to expose the computer-based information system—its hardware, its software, its software processes, its databases, its communications—to an environment over which no one—not end-user, not network administrator or system owner, not even government—has control. What must be done is to provide appropriate technical, procedural, operational, and environmental safeguards against threats as they might appear or be imagined, embedded in a societally acceptable legal framework.

And appear threats did—from individuals and organizations, national and international. The motivations to penetrate systems for evil purpose or to create malicious software—generally with an offensive or damaging consequence—vary from personal intellectual satisfaction to espionage, to financial reward, to revenge, to civil disobedience, and to other reasons. Information-system security has moved from a largely self-contained bounded environment interacting with a generally known and disciplined user community to one of worldwide scope with a body of users that may not be known and are not necessarily trusted. Importantly, security controls now must deal with circumstances over which there is largely no control or expectation of avoiding their impact. Computer security, as it has evolved, shares a similarity with liability insurance; they each face a threat environment that is known in a very general way and can generate attacks over a broad spectrum of possibilities; but the exact details or even time or certainty of an attack is unknown until an event has occurred.

On the other hand, the modern world thrives on information and its flows; the contemporary world, society, and institutions cannot function without their computer-communication-based information systems. Hence, these systems must be protected in all dimensions—technical, procedural, operational, environmental. The system owner and its staff have become responsible for protecting the organization’s information assets.

Progress has been slow, in large part because the threat has not been perceived as real or as damaging enough; but also in part because the perceived cost of comprehensive information system security is seen as too high compared to the risks—especially the financial consequences—of not doing it. Managements, whose support with appropriate funding is essential, have been slow to be convinced.

This book addresses the broad sweep of issues above: the nature of the threat and system vulnerabilities (Chapter 1); cryptography (Chapters 2 and 12); the Common Criteria (Chapter 5); the World Wide Web and Internet (Chapter 7); managing risk (Chapter 8); software vulnerabilities (Chapter 3); and legal, ethical, and privacy issues (Chapters 10 and 11). The book also describes security controls that are currently available such as encryption protocols, software development practices, firewalls, and intrusion-detection systems. Overall, this book provides a broad and sound foundation for the information-system specialist who is charged with planning and/or organizing and/or managing and/or implementing a comprehensive information-system security program.

Yet to be solved are many technical aspects of information security—R&D for hardware, software, systems, and architecture; and the corresponding products. Notwithstanding, technology per se is not the long pole in the tent of progress. Organizational and management motivation and commitment to get the security job done is. Today, the collective information infrastructure of the country and of the world is slowly mov-
ing up the learning curve; every mischievous or malicious event helps to push it along. The terrorism-based events of recent times are helping to drive it. Is it far enough up the curve to have reached an appropriate balance between system safety and threat? Almost certainly, the answer is, “No, not yet; there is a long way to go.” [10]

Willis H. Ware
The RAND Corporation
Santa Monica, California
Citations

 http://rand.org/publications/R/R609.1/intro.html, Historical setting for R-609.1

5. All of these documents are cited in the bibliography of this book. For images of these historical papers on a CDROM, see the “History of Computer Security Project, Early Papers Part 1,” Professor Matt Bishop; Department of Computer Science, University of California at Davis. http://seclab.cs.ucdavis.edu/projects/history

7. So named because the cover of each document in the series had a unique and distinctively colored cover page. For example, the “Red Book” is “Trusted Network Interpretation,” National Computer Security Center, National Security Agency, Ft. George G. Meade, Maryland; NCSC-TG-005, July 31, 1987. USGPO Stock number 008-000-00486-2.