
Software Development
Methodology Today

Cease dependence on inspection to achieve quality.
—W. Edwards Deming

Quality is a many-splendored thing, and every improvement of its attributes
is at once an advance and an advantage.

—C. V. Ramamoorthy

Overview
Both personal productivity and enterprise server software are routinely
shipped to their users with defects, called bugs from the early days of comput-
ing. This error rate and its consequent failures in operation would not be tol-
erated for any manufactured or “hardware” product sold today. But software
is not a manufactured product in the same sense as a mechanical device or
household appliance, even a desktop computer. Since programming began as
an intellectual and economic activity with the ENIAC in 1946, a great deal of
attention has been given to making software programs as reliable as the com-
puter hardware they run on. Unlike most manufactured goods, software
undergoes continual redesign and upgrading in practice because the system
component adapts the general-purpose computer to its varied and often-
changing, special-purpose applications. As needs change, so must the soft-
ware programs that were designed to meet them. A large body of technology
has developed over the past 50 years to make software more reliable and
hence trustworthy. This introductory chapter reviews the leading models for
software development and proposes a robust software development model

3

CHAPTER 1

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 3

based on the best practices of the past, while incorporating the promise of
more recent programming technology. The Robust Software Development Model
(RSDM) recognizes that although software is designed and “engineered,” it is
not manufactured in the usual sense of that word. Furthermore, it recognizes
an even stronger need in software development to address quality problems
upstream, because that is where almost all software defects are introduced.
Design for Trustworthy Software (DFTS) addresses the challenges of producing
trustworthy software using a combination of the iterative Robust Software
Development Model, Software Design Optimization Engineering, and Object-Oriented
Design Technology.

Chapter Outline

4 Chapter 1 • Software Development Methodology Today

■ Software Development: The
Need for a New Paradigm

■ Software Development Strategies
and Life-Cycle Models

■ Software Process Improvement

■ ADR Method

■ Seven Components of the
Robust Software Development
Process

■ Robust Software Development
Model

■ Key Points

■ Additional Resources

■ Internet Exercises

■ Review Questions

■ Discussion Questions and
Projects

■ Endnotes

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 4

Software Development: The Need for a New Paradigm
Computing has been the fastest-growing technology in human history. The performance of
computing hardware has increased by more than a factor of 1010 (10,000 million times)
since the commercial exploitation of the electronic technology developed for the ENIAC
50 years ago, first by Eckert and Mauchly Corp., later by IBM, and eventually by many
others. In the same amount of time, programming performance, a highly labor-intensive
activity, has increased by about 500 times. A productivity increase of this magnitude for a
labor-intensive activity in only 50 years is truly amazing, but unfortunately it is dwarfed by
productivity gains in hardware. It’s further marred by low customer satisfaction resulting
from high cost, low reliability, and unacceptable development delays. In addition, the
incredible increase in available computer hardware cycles has forced a demand for more and
better software. Much of the increase in programming productivity has, as you might
expect, been due to increased automation in computer software production. Increased
internal use of this enormous hardware largesse to offset shortcomings in software and
“manware” have accounted for most of the gain. Programmers are not 500 times more pro-
ductive today because they can program faster or better, but because they have more sophis-
ticated tools such as compilers, operating systems, program development environments,
and integrated development environments. They also employ more sophisticated organiza-
tional concepts in the cooperative development of programs and employ more sophisti-
cated programming language constructs such as Object-Oriented Programming (OOP),
class libraries, and object frameworks. The first automation tools developed in the 1950s
by people such as Betty Holburton1 at the Harvard Computation Laboratory (the sort-
merge generator) and Mandalay Grems2 at the Boeing Airplane Company (interpretive
programming systems) have emerged again. Now they take the form of automatic program
generation, round-tripping, and of course the ubiquitous Java Virtual Machine, itself an
interpretive programming system.

Over the years, a number of rules of thumb or best practices have developed among
enterprise software developers, both in-house and commercial or third-party vendors.
Enterprise software is the set of programs that a firm, small or large, uses to run its busi-
ness. It is usually conceded that it costs ten times as much to prepare (or “bulletproof”) an
enterprise application for the marketplace as it costs to get it running in the “lab.” It costs

Software Development: The Need for a New Paradigm 5

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 5

another factor of 2 from that point to market a software package to the break-even point.
The high cost of software development in both time and dollars, not to mention political
or career costs (software development is often referred to as an “electropolitical” problem,
and a high-risk project as a “death march”), has encouraged the rise of the third-party appli-
cation software industry and its many vendors. Our experience with leading both in-house
and third-party vendor enterprise software development indicates that the cost of main-
taining a software system over its typical five-year life cycle is equal to its original develop-
ment cost.

Each of the steps in the software life cycle, as shown in Figure 1.1, is supported by
numerous methods and approaches, all well-documented by textbooks and taught in uni-
versity and industrial courses. The steps are also supported by numerous consulting firms,
each having a custom or proprietary methodology, and by practitioners well-trained in it.
In spite of all of this experience supported by both computing and organizational tech-
nology, the question remains: “Why does software have bugs?” In the past two decades it
has been popular to employ an analogy between hardware design and manufacture and
software design and development. Software “engineering” has become a topic of intense
interest in an effort to learn from the proven practices of hardware engineering—that is,
how we might design and build bug-free software. After all, no reputable hardware manu-
facturer would ship products known to have flaws, yet software developers do this rou-
tinely. Why?

6 Chapter 1 • Software Development Methodology Today

Specification
or Functional

Design
(WHAT)

Architecture
or Technical

Design
(HOW)

Programming Testing
Documentation

and Training
Maintainance

FIGURE 1.1
Essential Steps in the Traditional Enterprise Software Development Process

One response is that software is intrinsically more complex than hardware because it has
more states, or modes of behavior. No machine has 1,000 operating modes, but any inte-
grated enterprise business application system is likely to have 2,500 or more input forms.
Software complexity is conventionally described as proportional to some factor—say, N—

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 6

depending on the type of program, times the number of inputs, I, multiplied by the num-
ber of outputs, O, to some power, P. Thus

software complexity = N*I*OP

This can be thought of as increasing with the number of input parameters but growing
exponentially with the number of output results.

Computers, controlled by software, naturally have more states—that is, they have larger
performance envelopes than do other, essentially mechanical, systems. Thus, they are more
complex.

Sidebar 1.1: Computer Complexity

When one of the authors of this book went from being an aircraft designer to a computer
architect in 1967, he was confronted by the complexity of the then newly developing multi-
processor computer. At the time, Marshall McLuhan’s book Understanding Media was a pop-
ular read. In it, this Canadian professor of English literature stated that a supersonic air
transport plane is far simpler than a multiprocessor computer system. This was an amazing
insight for a professor of English literature, but he was correct.

One of the authors of this book worked on the structural optimization of the Concorde and on
a structural aspect of the swing-wing of the Boeing SST. In 1968 he was responsible for mak-
ing the Univac 1108 function as a three-way multiprocessor. Every night at midnight he
reported to the Univac test floor in Roseville, Minnesota, where he was assigned three 1108
mainframe computers. He connected the new multiprocessor CRT console he had designed
and loaded a copy of the Exec 8 operating system modified for this new functionality. Ten
times in a row the OS crashed at a different step of the bootstrap process. He began to won-
der if this machine were a finite automaton after all. Of course it was, and the diverse halting
points were a consequence of interrupt races, but he took much comfort from reading Marshall
McLuhan. Today, highly parallel machines are commonplace in business, industry, and the sci-
entific laboratory—and they are indeed far more complex than supersonic transport aircraft
(none of which are still flying now that the Concorde has been taken out of service).

Although software engineering has become a popular subject of many books and is
taught in many university computing curricula, we find the engineering/manufacturing
metaphor to be a bit weak for software development. Most of a hardware product’s poten-
tial problems become apparent in testing. Almost all of them can be corrected by tuning

Software Development: The Need for a New Paradigm 7

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 7

the hardware manufacturing process to reduce product and/or process variability. Software
is different. Few potential problems can be detected in testing due to the complexity
difference between software and hardware. None of them can be corrected by tuning the
manufacturing process, because software has no manufacturing process! Making copies of
eight CD-ROMs for shipment to the next customer along with a box of installation and
user manuals offers little chance for fine-tuning and in any case introduces no variability. It
is more like book publishing, in which you can at most slip an errata sheet into the mis-
printed book before shipping, or, in the case of software, an upgrade or fix-disk.

So, what is the solution? Our contention is that because errors in software are almost all
created well upstream in the design process, and because software is all design and devel-
opment, with no true manufacturing component, everything that can be done to create
bug-free software must be done as far upstream in the design process as possible. Hence our
advocacy of Taguchi Methods (see Chapters 2, 15, and 17) for robust software architecture.
Software development is an immensely more taxing process than hardware development.
Although there is no silver bullet, we contend that the Taguchi Methods described in the
next chapter can be deployed as a key instrument in addressing software product quality
upstream at the design stage. Processes are often described as having upstream activities
such as design and downstream activities such as testing. This book advocates moving the
quality-related aspects of development as far upstream in the development process as pos-
sible. The RSDM presented in this book provides a powerful framework to develop trust-
worthy software in a time- and cost-effective manner.

This introductory chapter is an overview of the software development situation today in
the view of one of the authors. Although he has been developing both systems and appli-
cations software since 1957, no single individual’s career can encompass the entire spectrum
of software design and development possibilities. We have tried in this chapter to indicate
when we are speaking from personal experience and sharing our personal opinions, and
when we are referring to the experience of others.

Software Development Strategies and Life-Cycle Models
Here we will describe from a rather high altitude the various development methods and
processes employed for software today. We focus on designing, creating, and maintaining
large-scale enterprise application software, whether developed by vendors or in-house
development teams. The creation and use of one-off and simple interface programs is no
challenge. Developing huge operating systems such as Microsoft XP with millions of lines
of code (LOC), or large, complex systems such as the FAA’s Enroute System, bring very
special problems of their own and are beyond the scope of this book. This is not to say that

8 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 8

the methodology we propose for robust software architecture is not applicable; rather, we
will not consider their applications here. The time-honored enterprise software develop-
ment process generally follows these steps (as shown in Figure 1.1):

• Specification or functional design, done by system analysts in consort with the
potential end users of the software to determine why to do this, what the applica-
tion will do, and for whom it will do it.

• Architecture or technical design, done by system designers as the way to achieve the
goals of the functional design using the computer systems available, or to be
acquired, in the context of the enterprise as it now operates. This is how the system
will function.

• Programming or implementation, done by computer programmers together with
the system designers.

• Testing of new systems (or regression testing of modified systems) to ensure that the
goals of the functional design and technical design are met.

• Documentation of the system, both intrinsically for its future maintainers, and
extrinsically for its future users. For large systems this step may involve end-user
training as well.

• Maintenance of the application system over its typical five-year life cycle, employing
the design document now recrafted as the Technical Specification or System
Maintenance Document.

This model and its variations, which we overview in this chapter, are largely software devel-
oper-focused rather than being truly customer-centric. They have traditionally attempted to
address issues such as project cost and implementation overruns rather than customer satis-
faction issues such as software reliability, dependability, availability, and upgradeability. It
may also be pointed out that all these models follow the “design-test-design” approach.
Quality assurance is thus based on fault detection rather than fault prevention, the central
tenet of this book’s approach. We will also discuss—in Chapters 2, 4, and 11 in particular—
how the model that we propose takes a fault-prevention route that is based not only on cus-
tomer specifications but also on meeting the totality of the user’s needs and environment.

A software development model is an organized strategy for carrying out the steps in the
life cycle of a software application program or system in a predictable, efficient, and repeat-
able way. Here we will begin with the primary time-honored models, of which there are
many variants. These are the build-and-fix model, the waterfall model, the evolutionary

Software Development Strategies and Life-Cycle Models 9

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 9

model, the spiral model, and the iterative development model. Rapid prototyping and
extreme programming are processes that have more recently augmented the waterfall
model. The gradual acceptance of OOP over the past decade, together with its object
frameworks and sophisticated integrated development environments, have been a boon to
software developers and have encouraged new developments in automatic programming
technology.

These life-cycle models and their many variations have been widely documented. So
have current technology enhancements in various software development methods and
process improvement models, such as the Rational Unified Process (RUP), the Capability
Maturity Model (CMM), and the ISO 9000-3 Guidelines. Therefore, we will consider them
only briefly. We will illustrate some of the opportunities we want to address using the
RSDM within the overall framework of DFTS technology. It is not our purpose to catalog
and compare existing software development technology in any detail. We only want to
establish a general context for introducing a new approach.

Build-and-Fix Model
The build-and-fix model was adopted from an earlier and simpler age of hardware product
development. Those of us who bought early Volkswagen automobiles in the 1950s and ’60s
remember it well. As new models were brought out and old models updated, the cars were
sold apparently without benefit of testing, only to be tested by the customer. In every case,
the vehicles were promptly and cheerfully repaired by the dealer at no cost to their owners,
except for the inconvenience and occasional risk of a breakdown. This method clearly
works, but it depends on having a faithful and patient customer set almost totally depend-
ent on the use of your product! It is the same with software. A few well-known vendors are
famous for their numerous free upgrades and the rapid proliferation of new versions. This
always works best in a monopolistic or semimonopolistic environment, in which the cus-
tomer has limited access to alternative vendors. Unfortunately in the build-and-fix
approach, the product’s overall quality is never really addressed, even though some of the
development issues are ultimately corrected. Also, there is no way to feed back to the design
process any proactive improvement approaches. Corrections are put back into the market
as bug fixes, service packs, or upgrades as soon as possible as a means of marketing “dam-
age control.” Thus, little learning takes place within the development process. Because of
this, build-and-fix is totally reactive and, by today’s standards, is not really a development
model at all. However, the model shown in Figure 1.2 is perhaps still the approach most
widely used by software developers today, as many will readily, and somewhat shamefully,
admit.

10 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 10

FIGURE 1.2
Build-and-Fix Software Development Model

Waterfall Model
The classic waterfall model was introduced in the 1970s by Win Royce at Lockheed. It is
so named because it can be represented or graphically modeled as a cascade from establish-
ing requirements, to design creation, to program implementation, to system test, to release
to customer, as shown in Figure 1.3. It was a great step forward in software development as
an engineering discipline. The figure also depicts the single-level feedback paths that were
not part of the original model but that have been added to all subsequent improvements of
the model; they are described here. The original waterfall model had little or no feedback
between stages, just as water does not reverse or flow uphill in a cascade but is drawn ever
downward by gravity. This method might work satisfactorily if design requirements could
be perfectly addressed before flowing down to design creation, and if the design were per-
fect when program implementation began, and if the code were perfect before testing
began, and if testing guaranteed that no bugs remained in the code before the users applied
it, and of course if the users never changed their minds about requirements. Alas, none of
these things is ever true. Some simple hardware products may be designed and manufac-
tured this way, but this model has been unsatisfactory for software products because of the
complexity issue. It is simply impossible to guarantee correctness of any program of more
than about 169 lines of code by any process as rigorous as mathematical proof. Proving pro-
gram functionality a priori was advantageous and useful in the early days of embedded
computer control systems, when such programs were tiny, but today’s multifunction cell
phones may require a million lines of code or more!

Software Development Strategies and Life-Cycle Models 11

Functional
Design
(WHAT)

Technical
Design
(HOW)

Implementation Deployment Usage

Problem
Bug

Report
Vendor

Evaluation
FixUpgrade

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 11

FIGURE 1.3
Waterfall Model for Software Development

Rapid Prototyping Model
Rapid prototyping has long been used in the development of one-off programs, based on
the familiar model of the chemical engineer’s pilot plant. More recently it has been used to
prototype larger systems in two variants—the “throwaway” model and the “operational”
model, which is really the incremental model to be discussed later. This development
process produces a program that performs some essential or perhaps typical set of functions
for the final product. A throwaway prototype approach is often used if the goal is to test
the implementation method, language, or end-user acceptability. If this technology is com-
pletely viable, the prototype may become the basis of the final product development, but
normally it is merely a vehicle to arrive at a completely secure functional specification, as
shown in Figure 1.4. From that point on the process is very similar to the waterfall model.
The major difference between this and the waterfall model is not just the creation of the
operational prototype or functional subset; the essence is that it be done very quickly—
hence the term rapid prototyping.3

12 Chapter 1 • Software Development Methodology Today

Establish
Requirements

Design
Creation

Program
Implementation

System
Test

Release to
Customer

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 12

FIGURE 1.4
Rapid Prototyping Model

Incremental Model
The incremental model recognizes that software development steps are not discrete.
Instead, Build 0 (a prototype) is improved and functionality is added until it becomes Build
1, which becomes Build 2, and so on. These builds are not the versions released to the

Software Development Strategies and Life-Cycle Models 13

Rapid
Prototyping

Verification

Specify

Verification

Design

Verification

Implement

Test

Integrate

Test

Maintain

New Requirements

Decommission

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 13

public but are merely staged compilations of the developing system at a new level of func-
tionality or completeness. As a major system nears completion, the project manager may
schedule a new build every day at 5 p.m. Heaven help the programmer or team who does
not have their module ready for the build or whose module causes compilation or regres-
sion testing to fail! As Figure 1.5 shows, the incremental model is a variant of the waterfall
and rapid prototyping models. It is intended to deliver an operational-quality system at
each build stage, but it does not yet complete the functional specification.4 One of the
biggest advantages of the incremental model is that it is flexible enough to respond to crit-
ical specification changes as development progresses. Another clear advantage is that ana-
lysts and developers can tackle smaller chunks of complexity. Psychologists teach the “rule
of seven”: the mind can think about only seven related things at once. Even the trained
mind can juggle only so many details at once. Users and developers both learn from a new
system’s development process, and any model that allows them to incorporate this learning
into the product is advantageous. The downside risk is, of course, that learning exceeds pro-
ductivity and the development project becomes a research project exceeding time and
budget or, worse, never delivers the product at all. Since almost every program to be devel-
oped is one that has never been written before, or hasn’t been written by this particular
team, research program syndrome occurs all too often. However, learning need not exceed
productivity if the development team remains cognizant of risk and focused on customer
requirements.

Extreme Programming
Extreme Programming (XP) is a rather recent development of the incremental model that
puts the client in the driver’s seat. Each feature or feature set of the final product envisioned
by the client and the development team is individually scoped for cost and development
time. The client then selects features that will be included in the next build (again, a build
is an operational system at some level of functionally) based on a cost-benefit analysis. The
major advantage of this approach for small to medium-size systems (10 to 100 man-years
of effort) is that it works when the client’s requirements are vague or continually change.
This development model is distinguished by its flexibility because it can work in the face
of a high degree of specification ambiguity on the user’s part. As shown in Figure 1.6, this
model is akin to repeated rapid prototyping, in which the goal is to get certain functional-
ity in place for critical business reasons by a certain time and at a known cost.5

14 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 14

FIGURE 1.5
Incremental Model

Software Development Strategies and Life-Cycle Models 15

Requirements

Verification

Maintain

Decommission

Specification

Verification

Architectural
Design

Verification

Release 1:Design,Code,
Test, Implement (DCTI)
Release 2: DCTI
Release 3: DCTI

(each release offers new
features and functionalities)

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 15

FIGURE 1.6
Extreme Programming Model
Adapted from Don Wells: www.extremeprogramming.org. Don Wells XP website gives an excellent
overview of the XP development process. A more exhaustive treatment is given in Kent Beck. Extreme
Programming Explained (Boston: Addison-Wesley, 2000)

Spiral Model
The spiral model, developed by Dr. Barry Boehm6 at TRW, is an enhancement of the
waterfall/rapid prototype model, with risk analysis preceding each phase of the cascade. You
can imagine the rapid prototyping model drawn in the form of a spiral, as shown in Figure
1.7. This model has been successfully used for the internal development of large systems
and is especially useful when software reuse is a goal and when specific quality objectives
can be incorporated. It does depend on being able to accurately assess risks during devel-
opment. This depends on controlling all factors and eliminating or at least minimizing
exogenous influences. Like the other extensions of and improvements to the waterfall
model, it adds feedback to earlier stages. This model has seen service in the development of
major programming projects over a number of years, and is well documented in publica-
tions by Boehm and others.

16 Chapter 1 • Software Development Methodology Today

Process
Iteration

System
Metaphor

Spike

Uncertain
Estimates

Confident
Estimates

New
Version

Customer
Approval

Next
Release

Functional

New User Inputs

Testing scenarios

Bugs

Next Iteration

Architectural
Spike

Release
Planning

Acceptance
Testing

Voice of
the Customer

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 16

FIGURE 1.7
Spiral Model
Adapted from B. W. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, 21 (May 1988), pp. 61–72.

Object-Oriented Programming
Object-Oriented Programming (OOP) technology is not a software development model. It
is a new way of designing, writing, and documenting programs that came about after the

Software Development Strategies and Life-Cycle Models 17

Prototype 2Budget 2 Prototype 1 Prototype 3 Prototype 4Budget 3Budget 4 Budget 1

Alte
rn

at
ive

s 4

Alte
rn

at
ive

s 3

Con
str

ain
ts

4

Risk Analysis 4

Con
ce

pt
 o

f

Ope
ra

tio
n

Vali
da

te
d

Req
uir

em
en

ts

Sof
tw

ar
e

Req
uir

em
en

ts

Sof
tw

ar
e

Des
ign

Requirem
ents,

Life-cycle Plan

Sys
te

m

Tes
t

Unit

Tes
t

Det
ail

ed

Des
ign

Cod
e

Acc
ep

ta
nc

e

Tes
t

Developm
ent Plan

Im
plem

entation Plan

Integration and Test Plan

Determine Goals, Alternatives,
and Constraints

Evaluate Alternatives
and Risks

Develop and
Test PlanPlan

Con
str

ain
ts

3

Alte
rn

at
ive

s 2
Con

str
ain

ts
2

Alte
rn

at
ive

s 1

Con
str

ain
ts

1

Risk Analysis 3

Risk Analysis 2Risk Analysis 1

Acc
ep

ta
nc

e

Tes
t

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 17

development of early OOP languages such as C++ and Smalltalk. However, OOP does
enhance the effectiveness of earlier software development models intended for procedural
programming languages, because it allows the development of applications by slices rather
than by layers. The central ideas of OOP are encapsulation and polymorphism, which
dramatically reduce complexity and increase program reusability. We will give examples of
these from our experience in later chapters. OOP has become a major development tech-
nology, especially since the wide acceptance of the Java programming language and
Internet-based application programs. OOP analysis, design, and programming factor
system functionality into objects, which include data and methods designed to achieve a
specific, scope-limited set of tasks. The objects are implementations or instances of program
classes, which are arranged into class hierarchies in which subclasses inherit properties (data
and methods) from superclasses. The OOP model is well supported by both program devel-
opment environments (PDEs) and more sophisticated team-oriented integrated develop-
ment environments (IDEs), which encourage or at least enable automatic code generation.

OOP is a different style of programming than traditional procedural programming.
Hence, it has given rise to a whole family of software development models. Here we will
describe the popular Booch Round-Tripping model,7 as shown in Figure 1.8. This model
assumes a pair of coordinated tool sets—one for analysis and design and another for pro-
gram development. For example, you can use the Uniform Modeling Language (UML) to
graphically describe an application program or system as a class hierarchy. The UML can
be fed to the IDE to produce a Java or C++ program, which consists of the housekeeping
and control logic and a large number of stubs and skeleton programs. The various stub and
skeleton programs can be coded to a greater or lesser extent to develop the program to a
given level or “slice” of functionality. The code can be fed back or “round-tripped” to the
UML processor to create a new graphical description of the system. Changes and additions
can be made to the new UML description and a new program generated. This general
process is not really new. The Texas Instruments TEF tool set and the Xcellerator tool set
both allowed this same process with procedural COBOL programs. These tools proved
their worth in the preparation for the Y2K crisis. A working COBOL application with two-
digit year dates could be reverse-engineered to produce an accurate flowchart of the appli-
cation (not as it was originally programmed, but as it was actually implemented and
running). Then it could be modified at a high level to add four-digit year date capability.
Finally, a new COBOL program could be generated, compiled, and tested. This older one-
time reverse engineering is now built into the design feedback loop of the Booch Round-
Trip OOP development model. It can be further supported with code generators that can
create large amounts of code based on recurring design patterns.

18 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 18

FIGURE 1.8
Round-Tripping Model

Iterative Development or Evolutionary Model
The iterative development model is the most realistic of the traditional software develop-
ment models. Rather than being open-loop like build-and-fix or the original waterfall mod-
els, it has continuous feedback between each stage and the prior one. Occasionally it has
feedback across several stages in well-developed versions, as illustrated in Figure 1.9. In its
most effective applications, this model is used in an incremental iterative way. That is, apply-
ing feedback from the last stage back to the first stage results in each iteration’s producing
a useable executable release of the software product. A lower feedback arrow indicates this
feature, but the combined incremental iterative method schema is often drawn as a circle.
It has been applied to both procedural and object-oriented program development.

Software Development Strategies and Life-Cycle Models 19

UML Analysis
and Design
Graphical
Process

Java Code
Generation

Add/Modify Code
Update UML

Graphics

Functional
Design

Technical
Design

Program
Implementation

Units Test System Test
Release to
Customer

FIGURE 1.9
Iterative Model of Software Development

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 19

Comparison of Various Life-Cycle Models
Table 1.1 is a high-level comparison between software development models that we have
gathered into groups or categories. Most are versions or enhancements of the waterfall
model. The fundamental difference between the models is the amount of engineering doc-
umentation generated and used. Thus, a more “engineering-oriented” approach may have
higher overhead but can support the development of larger systems with less risk and can
support complex systems with long life cycles that include maintenance and extension
requirements.

TABLE 1.1
Comparison of Traditional Software Development Models

Model Pros Cons

Build-and-fix OK for small one-off programs Useless for large programs

Waterfall Disciplined, document-driven Result may not satisfy client

Rapid prototyping Guarantees client satisfaction May not work for large
applications

Extreme Early return on software Has not yet been widely used
programming development

Spiral Ultimate waterfall model Large system in-house develop-
ment only

Incremental Promotes maintainability Can degenerate to build-and-fix

OOP Supported by IDE tools May lack discipline

Iterative Can be used by OOP May allow overiteration

Software Process Improvement
Although the legacy models for software development just discussed are honored by time
and are used extensively even today, they are surely not the latest thinking on this subject.
We will describe only briefly RUP, CMM, and ISO 9000 software process improvement
development models, because they will receive attention in later chapters. These are very
different things but are considered here as a diverse set of technologies that are often “com-
pared” by software development managers. RUP and CMM are the result of considerable
government-sponsored academic research and industrial development. When rigorously
applied, they yield good, even excellent, results. They also provide a documentation trail
that eases the repair of any errors and bugs that do manage to slip through a tightly crafted

20 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 20

process net. These newer methods are widely used by military and aerospace contractors
who are required to build highly secure and reliable software for aircraft, naval vessels, and
weapons systems. In our experience they have had relatively little impact on enterprise soft-
ware development so far, whether internally or by way of third-party vendors.

Rational Unified Process
The Rational Unified Process (RUP) is modeled in two dimensions, rather than linearly or
even circularly, as the previously described models are. The horizontal axis of Table 1.2 rep-
resents time, and the vertical axis represents logical groupings of core activities.8

TABLE 1.2
A Two-Dimensional Process Structure—Rational Unified Model

Phase

Transition to
Workflow Inception Elaboration Construction Next Phase

Application model Definition Comparison Clarification Consensus

Requirements Gathering Evaluation User review Approval

Architecture Analysis Design Implementation Documentation

Test Planning Units test System test Regression
testing

Deployment User training User planning Site installation User regression
testing

Configuration Long-range Change Detailed plan Planning
management planning management for evolution approvals

Project Statements Contractor or Bidding and Let contracts or
management of work team selection budget internal

identification teams

Environment Hiring or Team building Training Certification
relocation

The Rational Model is characterized by a set of software best practices and the extensive
application of use cases. A use case is a set of specified action sequences, including variant
and error sequences, that a system or subsystem can perform interacting with outside
actors.9 The use cases are very effective at defining software functionality10 and even plan-
ning to accommodate error or “noise.” However, the RUP’s most important advantage is

Software Process Improvement 21

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 21

its iterative process that allows changes in functional requirements also to be accom-
modated as they inevitably change during system development. Not only do external cir-
cumstances reflect changes to the design, but also the user’s understanding of system
functionality becomes clearer as that functionality develops. The RUP has been developing
since 1995 and can claim well over 1,000 user organizations.

Capability Maturity Model
The Capability Maturity Model (CMM) for software development was developed by the
Software Engineering Institute at Carnegie Mellon University. CMM is an organizational
maturity model, not a specific technology model. Maturity involves continuous process
improvement based on evaluation of iterative execution, gathering results, and analyzing
metrics. As such, it has a very broad universe of application. The CMM is based on four
principles:11

• Evolution (process improvement) is possible but takes time. The process view tells
us that a process can be incrementally improved until the result of that process
becomes adequately reliable.

• Process maturity has distinguishable stages. The five levels of the CMM are indica-
tors of process maturity and capability and have proven effective for measuring
process improvement.

• Evolution implies that some things must be done before others. Experience with
CMM since 1987 has shown that organizations grow in maturity and capability in
predictable ways.

• Maturity will erode unless it is sustained. Lasting changes require continued effort.

The five levels of the CMM, in order of developing maturity, are as follows:

• Level 1 (Ad Hoc): Characterized by the development of software that works, even
though no one really understands why. The team cannot reliably repeat past
successes.

• Level 2 (Repeatable): Characterized by requirements management, project plan-
ning, project tracking, quality assurance, configuration management.

• Level 3 (Defined): Organization project focus and project definition, training pro-
gram, integrated software management, software product engineering, intergroup
coordination, peer reviews.

22 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 22

• Level 4 (Managed): Quantitative process management, software quality
management.

• Level 5 (Optimizing): Defect prevention, technology change management, process
change management.

Note that level 3 already seems to be higher than most software development organiza-
tions attain to, and would seem to be a very worthy goal for any development organization.
However, the CMM has two levels of evolutionary competence/capability maturity above
even this high-water mark. CMM as well as Capability Maturity Model Integration
(CMMI) and PCMM (People Capability Maturity Model) have had enthusiastic accept-
ance among software developers in India. In 2000, the CMM was upgraded to CMMI. The
Software Engineering Institute (SEI) no longer maintains the CMM model. IT firms in
India accounted for 50 out of 74 CMM level 5-rated companies worldwide in 2003.12

They are also leading in other quality management systems, such as Six Sigma, ISO 9001,
ISO 14001, and BS 7799. It would seem that embracing a multitude of systems and
models has helped software developers in India take a rapid lead in product and process
improvement, but still there is no silver bullet!

ISO 9000-3 Software Development Guidance Standard
This guidance standard is a guideline for the application of standards to the development,
supply, and maintenance of computer software. It is not a development model like RUP or
even a organization developmental model like CMM. Neither is it a certification process.
It is a guidance document that explains how ISO 9001 should be interpreted within the
software industry (see Figure 1.10). It has been used since 1994, having been introduced as
ISO 9001 Software Quality Management.13 It was updated in 2002 as ISO 9000-3.
Prudent compliance of ISO 9000-3 may result in the following benefits:

• Increases the likelihood of quality software products

• Gives you a competitive advantage over non-ISO 9000 certified development
vendors

• Assures customers of the end product’s quality

• Defines the phases, roles, and responsibilities of the software development process

• Measures the efficiency of the development process

• Gives structure to what is often a chaotic process

Software Process Improvement 23

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 23

FIGURE 1.10
ISO 9000-3 Software Development Model

The document was designed as a checklist for the development, supply, and mainte-
nance of software. It is not intended as a certification document, like other standards in the
ISO 9000 series. Copies of the guideline can be ordered from the ISO in Switzerland. Also,
many consulting firms have Web sites that present the ISO 9000-3 guidelines in a cogent,
simplified, and accessible way.14

The Tickit process was created by the British Computer Society and the United
Kingdom Department of Trade and Industry for actually certifying ISO 9000-3 software
development.15 This partnership has turned the ISO 9000-3 guideline standard into a com-
pliance standard. It allows software vendors to be certified for upholding the ISO 9000-3
standard after passing the required audits. As with other ISO 9000 standards, there is a
great deal of emphasis on management, organization, and process that we will not describe
in this brief overview. Rather, we will emphasize the ISO development procedures that con-
trol software design and development. These include the use of life-cycle models to organ-
ize and create a suitable design method by reviewing past designs and considering what is
appropriate for each new project. The following three sets of issues are addressed:

24 Chapter 1 • Software Development Methodology Today

Work to be
Done

Undiscovered
Rework

Known
Rework

Work Really
Done

Technology

Software Development Process Textblock

Baseline
(Product/Service) People

Business
Needs

Software
Enhancements

Undiscovered
Rework

Cost
Schedule
Performance
(Quality, Productivity, etc.)

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 24

• Preparation of a software development plan to control:

• Technical activities (design, coding, testing)

• Managerial activities (supervision, review)

• Design input (functional specs, customer needs)

• Design output (design specs, procedures)

• Design validation

• Design verification

• Design review

• Design changes

• Development of procedures to control the following documents and data:

• Specifications

• Requirements

• Communications

• Descriptions

• Procedures

• Contracts

• Development of procedures to plan, monitor, and control the production, installa-
tion, and service processes for managing the following:

• Software replication

• Software release

• Software installation

• Develop software test plans (for unit and integration testing)

• Perform software validation tests

• Document testing procedures

Much of this sounds like common sense, and of course it is. The advantage of incorporat-
ing such best practices and conventional wisdom into a guidance standard is to encourage
uniformity among software vendors worldwide and leveling of software buyers’ expecta-
tions so that they are comfortable with purchasing and mixing certified vendors’ products.

Software Process Improvement 25

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 25

Comparison of RUP, CMM, and ISO 9000
A brief comparison of these process improvement systems is provided in Table 1.3. Such a
comparison is a bit awkward, like comparing apples and oranges, but apples and oranges
are both fruit. In our experience, software development managers often ask each other, “Are
you using RUP, CMM, or ISO 9000?” as if these were logically discrete alternatives,
whereas they are three different things.

TABLE 1.3
Comparison of RUP, CMM, and ISO 9000

Method Pros Cons

RUP Well supported by tools Expensive to maintain
Supports OOP development High training costs
More than 1,000 users Used downstream with RSDM

CMM Sets very high goals Completely process-oriented
Easy to initiate Requires long-term top management
Hundreds of users support

ISO 9000-3 Provides process guidelines Some firms may seek to gain certification
Documentation facilitated without process redesign
Comprehensive, detailed

The RUP is very well supported by an extensive array of software development and
process management tools. It supports the development of object-oriented programs. It is
expensive to install and has a rather steep learning curve with high training costs but is well
worth the time and cost to implement. RUP is estimated to be in use by well over 1,000
firms. Its usability with RSDM will be detailed later. The CMM sets very high ultimate
goals but is easy to initiate. However, it does require a long-term commitment from top
management to be effective over time and to be able to progress to maturity level 3 and
beyond. It is estimated to have well over 400 users in the United States. As stated earlier, it
is very popular in India, where the majority of CMM user firms are located. ISO 9000-3
was updated in 2002. It is essential for the development of third-party enterprise software
to be sold and used in the EEC. A large number of consulting firms in both Europe and
North America are dedicated to training, auditing, and compliance coaching for ISO 9000.
Users report that it works quite well, although at first it appears to be merely institutional-
ized common sense. Perhaps the only downside is, because it is a required certification,
some firms may just try to get the certification without really redesigning software devel-
opment processes to conform to the guidelines.

Table 21.4 in Chapter 21 compares different quality systems currently common in soft-
ware companies. These systems serve different needs and can coexist. The need for integra-
tion is discussed in Chapter 21 (see Case Study 21.1) and Chapter 27.

26 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 26

ADR Method
ADR stands for assembly (A), disassembly (D), and reassembly (R)—the major aspects of
component-based software development.16 Software components in enterprise systems are
fairly large functional units that manage the creation and processing of a form, which usu-
ally corresponds to an actual business form in its electronic instance. For example, a gen-
eral ledger (GL) system may consist of 170 components, some 12 or more of which must
be used to create a general ledger for a firm from scratch. Each component in the GL appli-
cation corresponds to an accounting function that the application is designed to perform.
This approach arose in the early days of 4GL (Fourth-Generation Language) software
development and has continued to be popular into the OOP era. OOP components tend
to be somewhat smaller than 4GL components due to the class factoring process that nat-
urally accompanies Object-Oriented Analysis and Design. In the cited paper,16 Professor
Ramamoorthy describes the evolution of software quality models and generalizes and clas-
sifies them.

Seven Components of the Robust Software
Development Process
Software has become an increasingly indispensable element of a wide range of military,
industrial, and business applications. But it is often characterized by high costs, low relia-
bility, and unacceptable delays. Often, they are downright unacceptable (see Sidebar 1.2).
Software life-cycle costs (LCC) typically far exceed the hardware costs. Low software qual-
ity has a direct impact on cost. Some 40% of software development cost is spent testing to
remove errors and to ensure high quality, and 80 to 90% of the software LCC goes to fix,
adapt, and expand the delivered program to meet users’ unanticipated, changing, or grow-
ing needs.17 While the software costs far exceed hardware costs, the corresponding fre-
quency of failure rate between software and hardware could be as high as 100:1. This ratio
can be even higher for more advanced microprocessor-based systems.18 Clearly, these are
huge issues that cannot be addressed effectively by continuing to deploy traditional soft-
ware development approaches.

It is well known that various quality issues are interrelated. Moreover, high costs and
delays can be attributed to low software reliability.18 Thus, it is conceivable that several
objectives may be met with the correct strategic intervention. Quality has a great many
useful attributes, and you must clearly understand the customer perspectives throughout
the software life cycle. This helps you not only understand the changing user needs but also
avoid cost escalation, delays, and unnecessary complexity. You need to deploy a multi-
pronged strategy to address quality issues in large and complex software such as enterprise
applications. The Seven Components of a Robust Software Development Process are
shown in Figure 1.11. They are as follows:

Seven Components of the Robust Software Development Process 27

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 27

1. A steadfast development process that can provide interaction with users
by identifying their spoken and unspoken requirements throughout the
software life cycle.

2. Provision for feedback and iteration between two or more development
stages as needed.

3. An instrument to optimize design for reliability (or other attributes),
cost, and cycle time at once at upstream stages. This particular activity,
which addresses software product robustness, is one of the unique fea-
tures of the RSDM, because other software development models do not.

4. Opportunity for the early return on investment that incremental develop-
ment methods provide.

5. Step-wise development to build an application as needed and to provide
adequate documentation.

6. Provision for risk analyses at various stages.

7. Capability to provide for object-oriented development.

28 Chapter 1 • Software Development Methodology Today

Capability to extract
user requirements at

various stages

Adequate
documentation

Robust software
optimization

upstream

Early return on
investment

Provision for
Object-Oriented

Development

Risk analyses at
various stages

Feedback &
interaction between

stages

7 Components of
Robust Software

Development

FIGURE 1.11
Seven Components of the Robust Software Development Process

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 28

Robust Software Development Model
Our proposed model for software development is based on DFTS technology, as shown in
Figure 2.6 in Chapter 2. DFTS technology consists of Robust Software Development
Model, Software Design Optimization Engineering, and Object-Oriented Design
Technology. As you will soon see, it is a more elaborate combined form of the cascade and
iterative models with feedback at every level. In fact, it attempts to incorporate the best
practices and features from various development methodologies and collectively provides
for a customer-focused robust software technology. It is intended to meet all seven key
requirements for a robust software architecture development method just identified.
Although Taguchi Methods have been applied to upstream software design in a few cases,19,

20 there is not yet an extensive body of literature devoted to this area.

The primary focus of this book is to explain this model in the context of robust software
design and to show you how you can use it for DFTS. The purpose of this book is to give
you a map for robust software design from the hardware design arena to that of software
design and development. We will also establish a context for methodologies such as Taguchi
Methods and Quality Function Deployment (QFD) in the software arena. We will show
you how they can be used as the upstream architectural design process for some of the
established software quality models using Professor Ramamoorthy’s taxonomy, as well as
the software quality management processes that will allow the development organization
using it to become a learning organization.

Sidebar 1.2: Mission-Critical Aircraft Control Software

The control computer of a Malaysian Airlines Boeing 777 seemed intent on crashing itself on
a trip from Perth to Kuala Lumpur on August 1, 2005. According to The Australian newspa-
per, the Malaysian flight crew had to battle for control of the aircraft after a glitch occurred in
the computerized control system. The plane was about an hour into the flight when it sud-
denly climbed 3,000 feet and almost stalled. The Australian Air Transport Safety Bureau
report posted on its Web site said the pilot was able to disconnect the autopilot and lower the
nose to prevent the stall, but the auto throttles refused to disengage. When the nose pitched
down, they increased power.a Even pushing the throttles to idle didn’t deter the silicon brains,
and the plane pitched up again and climbed 2,000 feet the second time. The pilot flew back
to Perth on manual, but the auto throttles wouldn’t turn off. As he was landing, the primary
flight display gave a false low airspeed warning, and the throttles jammed again. The display
also warned of a nonexistent wind shear. Boeing spokesman Ken Morton said it was the only
such problem ever experienced on the 777, but airlines have been told via an emergency direc-
tive to load an earlier software version just in case. The investigation is focusing on the air data

Robust Software Development Model 29

ahttp://www.atsb.gov.au/aviation/occurs/occurs_detail.cfm?ID=767

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 29

inertial data reference unit, which apparently supplied false acceleration figures to the primary
flight computer.

More recently, a JetBlue Airbus 320 flight from Burbank, California to New York on
September 21, 2005 attracted several hours of news coverage when the control software locked
its front landing gear wheels at a 90-degree angle at takeoff. After dumping fuel for three
hours, the plane landed without injuries at LAX. However, the front landing gear was
destroyed in the process in a blaze of sparks and fire. An NTSB official called the problem
commonb. A Canadian study issued last year reported 67 nose wheel incidents with Airbus
319, 320, and 321 models. The NTSB official leading the investigation said that “If we find
a pattern, we will certainly do something.” (From the Los Angeles Times, September 22, 2005)

Software failures in aircraft control systems are likely to incur a much higher social and eco-
nomic cost than an error in a client’s invoice, or even an inventory mistake. Unfortunately
they are much harder to find and correct as well.

bhttp://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgad.nsf/0/25F9233FE09B613F8625706
C005D0C53?OpenDocument

Key Points
• In spite of 50 years of software development methodology and process improve-

ment, we need a new paradigm to develop increasingly complex software systems.

• Productivity gains in software development have not kept up with the performance
increases in hardware. New hardware technology enables and encourages new appli-
cations, which require much larger and more complex programs.

• Perhaps a dozen models of software development aim to improve development pro-
ductivity and/or enhance quality. They all work reasonably well when faithfully and
diligently applied.

• The Department of Defense has sponsored a number of software development
process improvement initiatives as a leader in the use of sophisticated computer
applications and dedicated or embedded applications.

• The Design for Trustworthy Software (DFTS) technology addresses challenges of
producing trustworthy software using a combination of the iterative Robust
Software Development Model, Software Design Optimization Engineering, and
Object-Oriented Design Technology.

30 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 30

Additional Resources
http://www.prenhallprofessional.com/title/0131872508

http://www.agilenty.com/publications

Internet Exercises
1. Search the Internet for U.S., Canadian, and Australian government

reports on failure in aircraft control software. Is this problem getting bet-
ter or worse?

2. Search the Internet for sites dedicated to the Rational Unified Process.
How would you present an argument to your management to employ
this process for software development in your own organization?

3. Look at the CMM site at the Software Development Institute. Can you
see how this complex model could be applied in your organization?

4. What is the current status of the ISO 9000-3 Software Development
Model, and what firms are supporting its use by software developers?

Review Questions
1. The CEO of the company for which you are MIS director asks why the

new enterprise software for which he paid millions still has bugs. What
do you tell him?

2. Which software development model does your organization or an organi-
zation you are familiar with employ? Do you consider it successful? If
not, what does it lack, and where does it fail?

3. If a computer program is algorithmically similar to a mathematical theo-
rem, why can’t the person who designed it prove it will work properly
before it is run?

4. How is object-oriented programming fundamentally different from ear-
lier procedural programming technology? What promise do these differ-
ences hold for future software trustworthiness?

Review Questions 31

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 31

Discussion Questions and Projects
1. Create a table that shows the benefits and costs of using RUP, CMM,

and ISO 9000-3 development models in terms of the size of the pro-
grams an organization develops and the number it completes per year.

2. Does your organization’s software development process fit into the table
you just created? If so, estimate the one-time costs and continuing costs
of introducing the new model. Also estimate the benefits, long-term cost
savings, and competitive advantages of using it.

Endnotes
1P. C. Patton, “The Development of the Idea of Computer Programming,” QMCS White
Paper 2003.3, St. Thomas University, June 2003, p. 4.
2Ibid, p. 6.
3S. R. Schach, Object-Oriented and Classical Software Engineering (Boston: McGraw-Hill,
2002), p. 71.
4Ibid, p. 73.
5K. Beck, “Embracing Change with Extreme Programming,” IEEE Computer, 32 (October
1999), pp. 70–77.
6B. W. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, 21 (May 1988), pp. 61–72.
7G. Booch, Object-Oriented Analysis and Design with Applications, 2nd Ed. (Menlo Park,
CA: Addison-Wesley, 1994).
8P. Krutchen, The Rational Unified Process (Boston: Addison-Wesley, 2000), p. 23.
9J. Rumbaugh, I. Jacobson, G. Booch, The Uniform Modeling Language (Boston: Addison-
Wesley, 1998).
10A. Cockburn, Writing Effective Use Cases (Boston: Addison-Wesley, 2001).
11K. M. Dymond, A Guide to the CMM (Annapolis, MD: Process Transition International,
2002), pp. 1–4.
12http://www.nasscom.org/artdisplay.asp?Art_id=3851
13M. G. Jenner, Software Quality Management and ISO 9001 (New York: Wiley, 1995).

32 Chapter 1 • Software Development Methodology Today

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 32

14http://www.praxiom.com/
15M. Callahan, The Application of ISO 9000 to Software, Team 7, 2002.
16C. V. Ramamoorthy, Evolution and Evaluation of Software Quality Models, Proceedings.
14th International Conference on Tools with Artificial Intelligence (ICTAI ’02), 2002.
17W. Kuo, V. Rajendra Prasad, F. A. Tillman, Ching-Lai Wang. Optimal Reliability Design
(Cambridge: Cambridge University Press, 2001), p. 5.
18D. Simmons, N. Ellis, H. W. Kuo. Software Measurement: A Visualization Toolkit for
Project Control and Process Improvement (Englewood, NJ: Prentice-Hall, 1998).
19B. Kanchana, Software Quality and Dependability Issues for the Airborne Surveillance
Platform, Doctoral Dissertation, Indian Institute of Science, Bangalore, India, Dec. 1998.
20G. Taguchi, S. Chowdhury, Yuin Wu, Taguchi’s Quality Engineering Handbook (Boston:
Jossey-Bass, 2004).

Endnotes 33

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 33

02_0131872508_ch01.qxd 8/9/06 4:43 PM Page 34

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

