
10. Item View Classes

u Using the Item View Convenience

Classes

u Using Predefined Models

u Implementing Custom Models

u Implementing Custom Delegates

Many applications let the user search, view, and edit individual items that be-
long to a data set. The data might be held in files or accessed from a database
or a network server. The standard approach to dealing with data sets like this
is to use Qt’s item view classes.

In earlier versions of Qt, the item view widgets were populated with the entire
contents of a data set; the users would perform all their searches and edits on
the data held in the widget, and at some point the changes would be written
back to the data source. Although simple to understand and use, this approach
doesn’t scale well to very large data sets and doesn’t lend itself to situations
where we want to display the same data set in two or more different widgets.

The Smalltalk language popularized a flexible approach to visualizing large
data sets: model–view–controller (MVC). In the MVC approach, the model rep-
resents the data set and is responsible for fetching the data that is needed for
viewing and for writing back any changes. Each type of data set has its own
model, but the API that the models provide to the views is uniform no matter
what the underlying data set. The viewpresents the data to the user. With any
large data set only a limited amount of data will be visible at any one time, so
that is the only data that the view asks for. The controller mediates between
the user and the view, converting user actions into requests to navigate or edit
data, which the view then transmits to the model as necessary.

Delegate

Data Source Model View

Figure 10.1. Qt’s model/view architecture

Qt provides a model/view architecture inspired by the MVC approach. In
Qt, the model behaves the same as it does for classic MVC. But instead of a
controller, Qt uses a slightly different abstraction: the delegate. The delegate

217

218 10. Item View Classes

is used to provide fine control over how items are rendered and edited. Qt
provides a default delegate for every type of view. This is sufficient for most
applications, so we usually don’t need to care about it.

Using Qt’s model/view architecture,we can use models that only fetch the data
that is actually needed for display in the view. This makes handling very large
data sets much faster and less memory hungry than reading all the data. And
by registering a model with two or more views, we can give the user the oppor-
tunity of viewing and interacting with the data in different ways, with little
overhead. Qt automatically keeps multiple views in sync, reflecting changes
to one in all the others. An additional benefit of the model/view architecture is
that if we decide to change how the underlying data set is stored, we just need
to change the model; the views will continue to behave correctly.

List View 1 List View 2 List View 3 Table View 1 Table View 2

Model

Data Source

Figure 10.2. One model can serve multiple views

In many situations, we only need to present relatively small numbers of items
to the user. In these common cases, we can use Qt’s convenience item view
classes (QListWidget, QTableWidget, and QTreeWidget) and populate them with
items directly. These classes behave in a similar way to the item view class-
es provided by earlier versions of Qt. They store their data in “items” (for ex-
ample, a QTableWidget contains QTableWidgetItems). Internally, the convenience
classes use custom models that make the items visible to the views.

For large data sets, duplicating the data is often not an option. In these cases,
we can use Qt’s views (QListView, QTableView, and QTreeView), in conjunction with
a data model, which can be a custom model or one of Qt’s predefined models.
For example, if the data set is held in a database, we can combine a QTableView

with a QSqlTableModel.

Using the Item View Convenience Classes

Using Qt’s item view convenience subclasses is usually simpler than defining
a custom model and is appropriate when we don’t need the benefits of sepa-
rating the model and the view. We used this technique in Chapter 4 when we
subclassed QTableWidget and QTableWidgetItem to implement spreadsheet func-
tionality.

Using the Item View Convenience Classes 219

In this section, we will show how to use the convenience item view subclasses
to display items. The first example shows a read-only QListWidget, the second
example shows an editable QTableWidget, and the third example shows a
read-only QTreeWidget.

We begin with a simple dialog that lets the user pick a flowchart symbol from
a list. Each item consists of an icon, a text, and a unique ID.

Figure 10.3. The Flowchart Symbol Picker application

Let’s start with an extract from the dialog’s header file:

class FlowChartSymbolPicker : public QDialog
{
 Q_OBJECT

public:
 FlowChartSymbolPicker(const QMap<int, QString> &symbolMap,
 QWidget *parent = 0);

 int selectedId() const { return id; }
 void done(int result);

•••
};

When we construct the dialog, we must pass it a QMap<int,QString>, and after it
has executed we can retrieve the chosen ID (or +--1 if the user didn’t select any
item) by calling selectedId().

FlowChartSymbolPicker::FlowChartSymbolPicker(
 const QMap<int, QString> &symbolMap, QWidget *parent)
 : QDialog(parent)
{
 id = -1;

 listWidget = new QListWidget;
 listWidget->setIconSize(QSize(60, 60));

 QMapIterator<int, QString> i(symbolMap);

220 10. Item View Classes

 while (i.hasNext()) {
 i.next();
 QListWidgetItem *item = new QListWidgetItem(i.value(),
 listWidget);
 item->setIcon(iconForSymbol(i.value()));
 item->setData(Qt::UserRole, i.key());
 }

•••
}

We initialize id (the last selected ID) to +--1. Next we construct a QListWidget, a
convenience item view widget. We iterate over each item in the flowchart sym-
bol map and create a QListWidgetItem to represent each one. The QListWidget-

Item constructor takes a QString that represents the text to display, followed by
the parent QListWidget.

Then we set the item’s icon and we call setData() to store our arbitrary ID in
the QListWidgetItem. The iconForSymbol() private function returns a QIcon for a
given symbol name.

QListWidgetItem’s have several roles, each of which has an associated QVariant.
The most common roles are Qt::DisplayRole, Qt::EditRole, and Qt::IconRole,
and for these there are convenience setter and getter functions (setText(),
setIcon()), but there are several other roles. We can also define custom roles by
specifying a numeric value of Qt::UserRole or higher. In our example, we use
Qt::UserRole to store each item’s ID.

The omitted part of the constructor is concerned with creating the buttons,
laying out the widgets, and setting the window’s title.

void FlowChartSymbolPicker::done(int result)
{
 id = -1;
 if (result == QDialog::Accepted) {
 QListWidgetItem *item = listWidget->currentItem();
 if (item)
 id = item->data(Qt::UserRole).toInt();
 }
 QDialog::done(result);
}

The done() function is reimplemented from QDialog. It is called when the user
presses OK or Cancel. If the user clicked OK, we retrieve the relevant item and
extract the ID using the data() function. If we were interested in the item’s
text, we could retrieve it by calling item->data(Qt::DisplayRole).toString() or
more conveniently, item->text().

By default, QListWidget is read-only. If we wanted the user to edit the items, we
could set the view’s edit triggers using QAbstractItemView::setEditTriggers();
for example, a setting of QAbstractItemView::AnyKeyPressed means that the user
can begin editing an item just by starting to type. Alternatively, we could
provide an Edit button (and perhaps Add and Delete buttons) and connect them
to slots so that we could handle the editing operations programmatically.

Using the Item View Convenience Classes 221

Now that we have seen how to use a convenience item view class for viewing
and selecting data, we will look at an example where we can edit data. Again
we are using a dialog, this time one that presents a set of (x, y) coordinates that
the user can edit.

Figure 10.4. The Coordinate Setter application

As with the previous example, we will focus on the item view relevant code,
starting with the constructor.

CoordinateSetter::CoordinateSetter(QList<QPointF> *coords,
 QWidget *parent)
 : QDialog(parent)
{
 coordinates = coords;

 tableWidget = new QTableWidget(0, 2);
 tableWidget->setHorizontalHeaderLabels(
 QStringList() << tr("X") << tr("Y"));

 for (int row = 0; row < coordinates->count(); ++row) {
 QPointF point = coordinates->at(row);
 addRow();
 tableWidget->item(row, 0)->setText(QString::number(point.x()));
 tableWidget->item(row, 1)->setText(QString::number(point.y()));
 }

•••
}

The QTableWidget constructor takes the initial number of table rows and
columns to display. Every item in a QTableWidget is represented by a QTable-

WidgetItem, including horizontal and vertical header items. The setHorizontal-

HeaderLabels() function sets the text for each horizontal table widget item to
the corresponding text in the string list it is passed. By default, QTableWidget
provides a vertical header with rows labeled from 1, which is exactly what we
want, so we don’t need to set the vertical header labels manually.

222 10. Item View Classes

Once we have created and centered the column labels, we iterate through the
coordinate data that was passed in. For every (x, y) pair, we create two QTable-

WidgetItems corresponding to the x and y coordinates. The items are added to
the table using QTableWidget::setItem(), which takes a row and a column in
addition to the item.

By default, QTableWidget allows editing. The user can edit any cell in the table
by navigating to it and then either pressing F2 or simply by typing. All changes
made by the user in the view will be automatically reflected into the QTableWid-

getItems. To prevent editing, we can call setEditTriggers(QAbstractItemView::
NoEditTriggers).

void CoordinateSetter::addRow()
{
 int row = tableWidget->rowCount();

 tableWidget->insertRow(row);

 QTableWidgetItem *item0 = new QTableWidgetItem;
 item0->setTextAlignment(Qt::AlignRight | Qt::AlignVCenter);
 tableWidget->setItem(row, 0, item0);

 QTableWidgetItem *item1 = new QTableWidgetItem;
 item1->setTextAlignment(Qt::AlignRight | Qt::AlignVCenter);
 tableWidget->setItem(row, 1, item1);

 tableWidget->setCurrentItem(item0);
}

The addRow() slot is invoked when the user clicks the Add Row button. We
append a new row using insertRow(). If the user attempts to edit a cell in the
new row, the QTableWidget will automatically create a new QTableWidgetItem.

void CoordinateSetter::done(int result)
{
 if (result == QDialog::Accepted) {
 coordinates->clear();
 for (int row = 0; row < tableWidget->rowCount(); ++row) {
 double x = tableWidget->item(row, 0)->text().toDouble();
 double y = tableWidget->item(row, 1)->text().toDouble();
 coordinates->append(QPointF(x, y));
 }
 }
 QDialog::done(result);
}

Finally, when the user clicks OK, we clear the coordinates that were passed in
to the dialog, and create a new set based on the coordinates in the QTableWid-

get’s items.

For our third and final example of Qt’s convenience item view widgets, we will
look at some snippets from an application that shows Qt application settings
using a QTreeWidget. Read-only is the default for QTreeWidget.

Using the Item View Convenience Classes 223

Figure 10.5. The Settings Viewer application

Here’s an extract from the constructor:

SettingsViewer::SettingsViewer(QWidget *parent)
 : QDialog(parent)
{
 organization = "Trolltech";
 application = "Designer";

 treeWidget = new QTreeWidget;
 treeWidget->setColumnCount(2);
 treeWidget->setHeaderLabels(
 QStringList() << tr("Key") << tr("Value"));
 treeWidget->header()->setResizeMode(0, QHeaderView::Stretch);
 treeWidget->header()->setResizeMode(1, QHeaderView::Stretch);

•••
 setWindowTitle(tr("Settings Viewer"));
 readSettings();
}

To access an application’s settings, a QSettings object must be created with the
organization’s name and the application’s name as parameters. We set default
names (“Designer” by “Trolltech”) and then construct a new QTreeWidget. At the
end, we call the readSettings() function.

void SettingsViewer::readSettings()
{
 QSettings settings(organization, application);

 treeWidget->clear();
 addChildSettings(settings, 0, "");

 treeWidget->sortByColumn(0);
 treeWidget->setFocus();
 setWindowTitle(tr("Settings Viewer - %1 by %2")
 .arg(application).arg(organization));
}

224 10. Item View Classes

Application settings are stored in a hierarchy of keys and values. The add-

ChildSettings() private function takes a settings object, a parent QTreeWid-

getItem, and the current “group”. A group is the QSettings equivalent of a file
system directory. The addChildSettings() function can call itself recursively to
traverse an arbitrary tree structure. The initial call from the readSettings()

function passes 0 as the parent item to represent the root.

void SettingsViewer::addChildSettings(QSettings &settings,
 QTreeWidgetItem *parent, const QString &group)
{
 QTreeWidgetItem *item;

 settings.beginGroup(group);

 foreach (QString key, settings.childKeys()) {
 if (parent) {
 item = new QTreeWidgetItem(parent);
 } else {
 item = new QTreeWidgetItem(treeWidget);
 }
 item->setText(0, key);
 item->setText(1, settings.value(key).toString());
 }
 foreach (QString group, settings.childGroups()) {
 if (parent) {
 item = new QTreeWidgetItem(parent);
 } else {
 item = new QTreeWidgetItem(treeWidget);
 }
 item->setText(0, group);
 addChildSettings(settings, item, group);
 }
 settings.endGroup();
}

The addChildSettings() function is used to create all the QTreeWidgetItems. It
iterates over all the keys at the current level in the settings hierarchy and
creates one QTableWidgetItem per key. If 0 was passed as the parent item, we
create the item as a child of the QTreeWidget itself (making it a top-level item);
otherwise, we create the item as a child of parent. The first column is set to the
name of the key and the second column to the corresponding value.

Next, the function iterates over every group at the current level. For each
group, a new QTreeWidgetItem is created with its first column set to the group’s
name. The function then calls itself recursively with the group item as the
parent to populate the QTreeWidget with the group’s child items.

The item view widgets shown in this section allow us to use a style of program-
ming that is very similar to that used in earlier versions of Qt: reading an en-
tire data set into an item view widget, using item objects to represent data el-
ements, and (if the items are editable) writing back to the data source. In the
following sections, we will go beyond this simple approach and take full advan-
tage of Qt’s model/view architecture.

Using Predefined Models 225

Using Predefined Models

Qt provides several predefined models for use with the view classes:

QStringListModel Stores a list of strings

QStandardItemModel Stores arbitrary hierarchical data

QDirModel Encapsulates the local file system

QSqlQueryModel Encapsulates an SQL result set

QSqlTableModel Encapsulates an SQL table

QSqlRelationalTableModel Encapsulates an SQL table with foreign keys

QSortFilterProxyModel Sorts and/or filters another model

In this section, we will look at how to use the QStringListModel, the QDirModel,
and the QSortFilterProxyModel. The SQL models are covered in Chapter 13.

Let’s begin with a simple dialog that users can use to add, delete, and edit a
QStringList, where each string represents a team leader.

Figure 10.6. The Team Leaders application

Here’s the relevant extract from the constructor:

TeamLeadersDialog::TeamLeadersDialog(const QStringList &leaders,
 QWidget *parent)
 : QDialog(parent)
{
 model = new QStringListModel(this);
 model->setStringList(leaders);

 listView = new QListView;
 listView->setModel(model);
 listView->setEditTriggers(QAbstractItemView::AnyKeyPressed
 | QAbstractItemView::DoubleClicked);

•••
}

226 10. Item View Classes

We begin by creating and populating a QStringListModel. Next we create a
QListView and set its model to the one we have just created. We also set some
editing triggers to allow the user to edit a string simply by starting to type on
it or by double-clicking it. By default, no editing triggers are set on a QListView,
making the view effectively read-only.

void TeamLeadersDialog::insert()
{
 int row = listView->currentIndex().row();
 model->insertRows(row, 1);

 QModelIndex index = model->index(row);
 listView->setCurrentIndex(index);
 listView->edit(index);
}

When the user clicks the Insert button, the insert() slot is invoked. The slot be-
gins by retrieving the row number for the list view’s current item. Every data
item in a model has a corresponding “model index”, which is represented by a
QModelIndex object. We will look at model indexes in detail in the next section,
but for now it is sufficient to know that an index has three main components: a
row, a column, and a pointer to the model to which it belongs. For a one-dimen-
sional list model, the column is always 0.

Once we have the row number, we insert one new row at that position. The
insertion is performed on the model, and the model automatically updates the
list view. We then set the list view’s current index to the blank row we just
inserted. Finally, we set the list view to editing mode on the new row, just as
if the user had pressed a key or double-clicked to initiate editing.

void TeamLeadersDialog::del()
{
 model->removeRows(listView->currentIndex().row(), 1);
}

In the constructor, the Delete button’s clicked() signal is connected to the del()

slot. Since we are just deleting the current row, we can call removeRows() with
the current index position and a row count of 1. Just like with insertion, we
rely on the model to update the view accordingly.

QStringList TeamLeadersDialog::leaders() const
{
 return model->stringList();
}

Finally, the leaders() function provides a means of reading back the edited
strings when the dialog is closed.

TeamLeadersDialog could be made into a generic string list editing dialog sim-
ply by parameterizing its window title. Another generic dialog that is often
required is one that presents a list of files or directories to the user. The next
example uses the QDirModel class, which encapsulates the computer’s file sys-
tem and is capable of showing (and hiding) various file attributes. This model

Using Predefined Models 227

can apply a filter to restrict the kinds of file system entries that are shown and
can order the entries in various ways.

Figure 10.7. The Directory Viewer application

We will begin by looking at the creation and setting up of the model and the
view in the Directory Viewer dialog’s constructor.

DirectoryViewer::DirectoryViewer(QWidget *parent)
 : QDialog(parent)
{
 model = new QDirModel;
 model->setReadOnly(false);
 model->setSorting(QDir::DirsFirst | QDir::IgnoreCase | QDir::Name);

 treeView = new QTreeView;
 treeView->setModel(model);
 treeView->header()->setStretchLastSection(true);
 treeView->header()->setSortIndicator(0, Qt::AscendingOrder);
 treeView->header()->setSortIndicatorShown(true);
 treeView->header()->setClickable(true);

 QModelIndex index = model->index(QDir::currentPath());
 treeView->expand(index);
 treeView->scrollTo(index);
 treeView->resizeColumnToContents(0);

•••
}

Once the model has been constructed, we make it editable and set various
initial sort ordering attributes. We then create the QTreeView that will display
the model’s data. The QTreeView’s header can be used to provide user-controlled
sorting. By making the header clickable, the user can sort by whichever
column header they click, with repeated clicks alternating between ascending
and descending orders. Once the tree view’s header has been set up, we get
the model index of the current directory and make sure that this directory is
visible by expanding its parents if necessary using expand(), and scrolling to

228 10. Item View Classes

it using scrollTo(). Then we make sure that the first column is wide enough to
show all its entries without using ellipses (…).

In the part of the constructor code that isn’t shown here, we connected the
Create Directory and Remove buttons to slots to perform these actions. We do
not need a Rename button since users can rename in-place by pressing F2

and typing.

void DirectoryViewer::createDirectory()
{
 QModelIndex index = treeView->currentIndex();
 if (!index.isValid())
 return;

 QString dirName = QInputDialog::getText(this,
 tr("Create Directory"),
 tr("Directory name"));
 if (!dirName.isEmpty()) {
 if (!model->mkdir(index, dirName).isValid())
 QMessageBox::information(this, tr("Create Directory"),
 tr("Failed to create the directory"));
 }
}

If the user enters a directory name in the input dialog, we attempt to create
a directory with this name as a child of the current directory. The QDirModel::

mkdir() function takes the parent directory’s index and the name of the new
directory, and returns the model index of the directory it created. If the
operation fails, it returns an invalid model index.

void DirectoryViewer::remove()
{
 QModelIndex index = treeView->currentIndex();
 if (!index.isValid())
 return;

 bool ok;
 if (model->fileInfo(index).isDir()) {
 ok = model->rmdir(index);
 } else {
 ok = model->remove(index);
 }
 if (!ok)
 QMessageBox::information(this, tr("Remove"),
 tr("Failed to remove %1").arg(model->fileName(index)));
}

If the user clicks Remove, we attempt to remove the file or directory associated
with the current item. We could use QDir to accomplish that, but QDirModel

offers convenience functions that work on QModelIndexes.

The last example in this section shows how to use QSortFilterProxyModel. Un-
like the other predefined models, this model encapsulates an existing model
and manipulates the data that passes between the underlying model and the

Using Predefined Models 229

view. In our example, the underlying model is a QStringListModel initialized
with the list of color names recognized by Qt (obtained through QColor::col-

orNames()). The user can type a filter string in a QLineEdit and specify how this
string is to be interpreted (as a regular expression, a wildcard pattern, or a
fixed string) using a combobox.

Figure 10.8. The Color Names application

Here’s an extract from the ColorNamesDialog constructor:

ColorNamesDialog::ColorNamesDialog(QWidget *parent)
 : QDialog(parent)
{
 sourceModel = new QStringListModel(this);
 sourceModel->setStringList(QColor::colorNames());

 proxyModel = new QSortFilterProxyModel(this);
 proxyModel->setSourceModel(sourceModel);
 proxyModel->setFilterKeyColumn(0);

 listView = new QListView;
 listView->setModel(proxyModel);

•••
 syntaxComboBox = new QComboBox;
 syntaxComboBox->addItem(tr("Regular expression"), QRegExp::RegExp);
 syntaxComboBox->addItem(tr("Wildcard"), QRegExp::Wildcard);
 syntaxComboBox->addItem(tr("Fixed string"), QRegExp::FixedString);

•••
}

The QStringListModel is created and populated in the usual way. This is fol-
lowed by the construction of the QSortFilterProxyModel. We pass the underly-
ing model using setSourceModel() and tell the proxy to filter based on column
0 of the original model. The QComboBox::addItem() function accepts an optional
“data” argument of type QVariant; we use this to store the QRegExp::PatternSyn-

tax value that corresponds to each item’s text.

230 10. Item View Classes

void ColorNamesDialog::reapplyFilter()
{
 QRegExp::PatternSyntax syntax =
 QRegExp::PatternSyntax(syntaxComboBox->itemData(
 syntaxComboBox->currentIndex()).toInt());
 QRegExp regExp(filterLineEdit->text(), Qt::CaseInsensitive, syntax);
 proxyModel->setFilterRegExp(regExp);
}

The reapplyFilter() slot is invoked whenever the user changes the filter string
or the pattern syntax combobox. We create a QRegExp using the text in the line
edit. Then we set its pattern syntax to the one stored in the syntax combobox’s
current item’s data. When we call setFilterRegExp(), the new filter becomes
active and the view is automatically updated.

Implementing Custom Models

Qt’s predefined models offer a convenient means of handling and viewing data.
However, some data sources cannot be used efficiently using the predefined
models, and for these situations it is necessary to create custom models
optimized for the underlying data source.

Before we embark on creating custom models, let’s first review the key con-
cepts used in Qt’s model/view architecture. Every data element in a model
has a model index and a set of attributes, called roles, that can take arbitrary
values. We saw earlier in the chapter that the most commonly used roles are
Qt::DisplayRole and Qt::EditRole. Other roles are used for supplementary data
(for example, Qt::ToolTipRole, Qt::StatusTipRole, and Qt::WhatsThisRole), and
yet others for controlling basic display attributes (such as Qt::FontRole, Qt::
TextAlignmentRole, Qt::TextColorRole, and Qt::BackgroundColorRole).

List Model

root
row

0

1

2

Table Model

root
row

0

1

2

column 0 1 2

Tree Model

root
row

0

0

1

1

2

column 0 1 2

Figure 10.9. Schematic view of Qt’s models

Implementing Custom Models 231

For a list model, the only relevant index component is the row number, accessi-
ble from QModelIndex::row(). For a table model, the relevant index components
are the row and column numbers, accessible from QModelIndex::row() and QMod-

elIndex::column(). For both list and table models, every item’s parent is the
root, which is represented by an invalid QModelIndex. The first two examples in
this section show how to implement custom table models.

A tree model is similar to a table model, with the following differences. Like
a table model, the parent of top-level items is the root (an invalid QModelIndex),
but every other item’s parent is some other item in the hierarchy. Parents are
accessible from QModelIndex::parent(). Every item has its role data, and zero or
more children, each an item in its own right. Since items can have other items
as children, it is possible to represent recursive (tree-like) data structures, as
the final example in this section will show.

The first example in this section is a read-only table model that shows currency
values in relation to each other.

Figure 10.10. The Currencies application

The application could be implemented using a simple table, but we want to
use a custom model to take advantage of certain properties of the data to
minimize storage. If we were to store the 162 currently traded currencies in a
table, we would need to store 162 × 162 = 26244 values; with the custom model
presented below, we only need to store 162 values (the value of each currency
in relation to the U.S. dollar).

The CurrencyModel class will be used with a standard QTableView. The Currency-

Model is populated with a QMap<QString,double>; each key is a currency code and
each value is the value of the currency in U.S. dollars. Here’s a code snippet
that shows how the map is populated and how the model is used:

 QMap<QString, double> currencyMap;
 currencyMap.insert("AUD", 1.3259);
 currencyMap.insert("CHF", 1.2970);

•••
 currencyMap.insert("SGD", 1.6901);
 currencyMap.insert("USD", 1.0000);

232 10. Item View Classes

 CurrencyModel currencyModel;
 currencyModel.setCurrencyMap(currencyMap);

 QTableView tableView;
 tableView.setModel(¤cyModel);
 tableView.setAlternatingRowColors(true);

Now we can look at the implementation of the model, starting with its
header:

class CurrencyModel : public QAbstractTableModel
{
public:
 CurrencyModel(QObject *parent = 0);

 void setCurrencyMap(const QMap<QString, double> &map);
 int rowCount(const QModelIndex &parent) const;
 int columnCount(const QModelIndex &parent) const;
 QVariant data(const QModelIndex &index, int role) const;
 QVariant headerData(int section, Qt::Orientation orientation,
 int role) const;

private:
 QString currencyAt(int offset) const;

 QMap<QString, double> currencyMap;
};

We have chosen to subclass QAbstractTableModel for our model since that most
closely matches our data source. Qt provides several model base classes, in-
cluding QAbstractListModel, QAbstractTableModel, and QAbstractItemModel. The
QAbstractItemModel class is used to support a wide variety of models, including
those that are based on recursive data structures,while the QAbstractListModel

and QAbstractTableModel classes are provided for convenience when using one-
dimensional or two-dimensional data sets.

QObject

QAbstractItemModel

QAbstractListModel QAbstractTableModel

Figure 10.11. Inheritance tree for the abstract model classes

For a read-only table model, we must reimplement three functions: rowCount(),
columnCount(), and data(). In this case, we have also reimplemented header-

Data(), and we provide a function to initialize the data (setCurrencyMap()).

CurrencyModel::CurrencyModel(QObject *parent)
 : QAbstractTableModel(parent)
{
}

Implementing Custom Models 233

We do not need to do anything in the constructor, except pass the parent

parameter to the base class.

int CurrencyModel::rowCount(const QModelIndex & /* parent */) const
{
 return currencyMap.count();
}

int CurrencyModel::columnCount(const QModelIndex & /* parent */) const
{
 return currencyMap.count();
}

For this table model, the row and column counts are the number of currencies
in the currency map. The parent parameter has no meaning for a table model;
it is there because rowCount() and columnCount() are inherited from the more
generic QAbstractItemModel base class, which supports hierarchies.

QVariant CurrencyModel::data(const QModelIndex &index, int role) const
{
 if (!index.isValid())
 return QVariant();

 if (role == Qt::TextAlignmentRole) {
 return int(Qt::AlignRight | Qt::AlignVCenter);
 } else if (role == Qt::DisplayRole) {
 QString rowCurrency = currencyAt(index.row());
 QString columnCurrency = currencyAt(index.column());

 if (currencyMap.value(rowCurrency) == 0.0)
 return "####";

 double amount = currencyMap.value(columnCurrency)
 / currencyMap.value(rowCurrency);

 return QString("%1").arg(amount, 0, ’f’, 4);
 }
 return QVariant();
}

The data() function returns the value of any of an item’s roles. The item
is specified as a QModelIndex. For a table model, the interesting components
of a QModelIndex are its row and column number, available using row() and
column().

If the role is Qt::TextAlignmentRole, we return an alignment suitable for
numbers. If the display role is Qt::DisplayRole, we look up the value for each
currency and calculate the exchange rate.

We could return the calculated value as a double, but then we would have no
control over how many decimal places were shown (unless we use a custom
delegate). Instead, we return the value as a string, formatted as we want.

234 10. Item View Classes

QVariant CurrencyModel::headerData(int section,
 Qt::Orientation /* orientation */,
 int role) const
{
 if (role != Qt::DisplayRole)
 return QVariant();
 return currencyAt(section);
}

The headerData() function is called by the view to populate its horizontal and
vertical headers. The section parameter is the row or column number (depend-
ing on the orientation). Since the rows and columns have the same currency
codes, we do not care about the orientation and simply return the code of the
currency for the given section number.

void CurrencyModel::setCurrencyMap(const QMap<QString, double> &map)
{
 currencyMap = map;
 reset();
}

The caller can change the currency map using setCurrencyMap(). The QAbstract-

ItemModel::reset() call tells any views that are using the model that all their
data is invalid; this forces them to request fresh data for the items that are
visible.

QString CurrencyModel::currencyAt(int offset) const
{
 return (currencyMap.begin() + offset).key();
}

The currencyAt() function returns the key (the currency code) at the given
offset in the currency map. We use an STL-style iterator to find the item and
call key() on it.

As we have just seen, it is not difficult to create read-only models, and depend-
ing on the nature of the underlying data, there are potential savings in mem-
ory and speed with a well-designed model. The next example, the Cities appli-
cation, is also table-based, but this time all the data is entered by the user.

This application is used to store values indicating the distance between any
two cities. Like the previous example, we could simply use a QTableWidget and
store one item for every city pair. However, a custom model could be more
efficient, because the distance from any city A to any different city B is the
same whether traveling from A to B or from B to A , so the items are mirrored
along the main diagonal.

To see how a custom model compares with a simple table, let us assume that
we have three cities, A , B , and C . If we store a value for every combination,
we would need to store nine values. A carefully designed model would require
only the three items (A , B), (A , C), and (B , C).

Implementing Custom Models 235

Figure 10.12. The Cities application

Here’s how we set up and use the model:

 QStringList cities;
 cities << "Arvika" << "Boden" << "Eskilstuna" << "Falun"
 << "Filipstad" << "Halmstad" << "Helsingborg" << "Karlstad"
 << "Kiruna" << "Kramfors" << "Motala" << "Sandviken"
 << "Skara" << "Stockholm" << "Sundsvall" << "Trelleborg";

 CityModel cityModel;
 cityModel.setCities(cities);

 QTableView tableView;
 tableView.setModel(&cityModel);
 tableView.setAlternatingRowColors(true);

We must reimplement the same functions as we did for the previous example.
In addition, we must also reimplement setData() and flags() to make the
model editable. Here is the class definition:

class CityModel : public QAbstractTableModel
{
 Q_OBJECT

public:
 CityModel(QObject *parent = 0);

 void setCities(const QStringList &cityNames);
 int rowCount(const QModelIndex &parent) const;
 int columnCount(const QModelIndex &parent) const;
 QVariant data(const QModelIndex &index, int role) const;
 bool setData(const QModelIndex &index, const QVariant &value,
 int role);
 QVariant headerData(int section, Qt::Orientation orientation,
 int role) const;
 Qt::ItemFlags flags(const QModelIndex &index) const;

private:
 int offsetOf(int row, int column) const;

 QStringList cities;
 QVector<int> distances;
};

236 10. Item View Classes

For this model, we are using two data structures: cities of type QStringList

to hold the city names, and distances of type QVector<int> to hold the distance
between each unique pair of cities.

CityModel::CityModel(QObject *parent)
 : QAbstractTableModel(parent)
{
}

The constructor does nothing beyond pass on the parent parameter to the
base class.

int CityModel::rowCount(const QModelIndex & /* parent */) const
{
 return cities.count();
}

int CityModel::columnCount(const QModelIndex & /* parent */) const
{
 return cities.count();
}

Since we have a square grid of cities, the number of rows and columns is the
number of cities in our list.

QVariant CityModel::data(const QModelIndex &index, int role) const
{
 if (!index.isValid())
 return QVariant();

 if (role == Qt::TextAlignmentRole) {
 return int(Qt::AlignRight | Qt::AlignVCenter);
 } else if (role == Qt::DisplayRole) {
 if (index.row() == index.column())
 return 0;
 int offset = offsetOf(index.row(), index.column());
 return distances[offset];
 }
 return QVariant();
}

The data() function is similar to what we did in CurrencyModel. It returns 0 if
the row and column are the same, because that corresponds to the case where
the two cities are the same; otherwise, it finds the entry for the given row and
column in the distances vector and returns the distance for that particular pair
of cities.

QVariant CityModel::headerData(int section,
 Qt::Orientation /* orientation */,
 int role) const
{
 if (role == Qt::DisplayRole)
 return cities[section];
 return QVariant();
}

Implementing Custom Models 237

The headerData() function is simple because we have a square table with every
row having an identical column header. We simply return the name of the city
at the given offset in the cities string list.

bool CityModel::setData(const QModelIndex &index,
 const QVariant &value, int role)
{
 if (index.isValid() && index.row() != index.column()
 && role == Qt::EditRole) {
 int offset = offsetOf(index.row(), index.column());
 distances[offset] = value.toInt();

 QModelIndex transposedIndex = createIndex(index.column(),
 index.row());
 emit dataChanged(index, index);
 emit dataChanged(transposedIndex, transposedIndex);
 return true;
 }
 return false;
}

The setData() function is called when the user edits an item. Providing the
model index is valid, the two cities are different, and the data element to
modify is the Qt::EditRole, the function stores the value the user entered in the
distances vector.

The createIndex() function is used to generate a model index. We need it to
get the model index of the item on the other side of the main diagonal that
corresponds with the item being set, since both items must show the same
data. The createIndex() function takes the row before the column; here we
invert the parameters to get the model index of the diagonally opposite item
to the one specified by index.

We emit the dataChanged() signal with the model index of the item that was
changed. The reason this signal takes two model indexes is that it is possible
for a change to affect a rectangular region of more than one row and column, so
the indexes passed are the index of the top left and bottom right items of those
that have changed. We also emit the dataChanged() signal for the transposed
index to ensure that the view will refresh the item. Finally, we return true or
false to indicate whether or not the edit succeeded.

Qt::ItemFlags CityModel::flags(const QModelIndex &index) const
{
 Qt::ItemFlags flags = QAbstractItemModel::flags(index);
 if (index.row() != index.column())
 flags |= Qt::ItemIsEditable;
 return flags;
}

The flags() function is used by the model to communicate what can be done
with an item (for example, whether it is editable). The default implementation
from QAbstractTableModel returns Qt::ItemIsSelectable | Qt::ItemIsEnabled. We

238 10. Item View Classes

add the Qt::ItemIsEditable flag for all items except those lying on the diagonals
(which are always 0).

void CityModel::setCities(const QStringList &cityNames)
{
 cities = cityNames;
 distances.resize(cities.count() * (cities.count() - 1) / 2);
 distances.fill(0);
 reset();
}

If a new list of cities is given, we set the private QStringList to the new list,
resize and clear the distances vector, and call QAbstractItemModel::reset() to
notify any views that their visible items must be refetched.

int CityModel::offsetOf(int row, int column) const
{
 if (row < column)
 qSwap(row, column);
 return (row * (row - 1) / 2) + column;
}

The offsetOf() private function computes the index of a given city pair in the
distances vector. For example, if we had cities A , B , C , and D, and the user
updated row 3, column 1, B to D, the offset would be 3 × (3 +-- 1)/2 + 1 = 4. If
the user had instead updated row 1, column 3, D to B , thanks to the qSwap(),
exactly the same calculation would be performed and an identical offset would
be returned.

Table Model

A B C D

A 0 AÖB AÖC AÖD

B AÖB 0 BÖC BÖD

C AÖC BÖC 0 CÖD

D AÖD BÖD CÖD 0

Cities

A B C D

Distances

AÖB AÖC AÖD BÖC BÖD CÖD

Figure 10.13. The cities and distances data structures and the table model

The last example in this section is a model that shows the parse tree for a given
regular expression. A regular expression consists of one or more terms, sep-
arated by ‘|’ characters. Thus, the regular expression “alpha|bravo|charlie”
contains three terms. Each term is a sequence of one or more factors; for exam-
ple, the term “bravo” consists of five factors (each letter is a factor). The factors
can be further decomposed into an atom and an optional quantifier, such as ‘∗’,
‘+’, and ‘?’. Since regular expressions can have parenthesized subexpressions,
they can have recursive parse trees.

The regular expression shown in Figure 10.14, “ab|(cd)?e”, matches an ‘a’
followed by a ‘b’, or alternatively either a ‘c’ followed by a ‘d’ followed by an ‘e’,
or just an ‘e’ on its own. So it will match “ab” and “cde”, but not “bc” or “cd”.

Implementing Custom Models 239

Figure 10.14. The Regexp Parser application

The Regexp Parser application consists of four classes:

• RegExpWindow is a window that lets the user enter a regular expression and
shows the corresponding parse tree.

• RegExpParser generates a parse tree from a regular expression.

• RegExpModel is a tree model that encapsulates a parse tree.

• Node represents an item in a parse tree.

Let’s start with the Node class:

class Node
{
public:
 enum Type { RegExp, Expression, Term, Factor, Atom, Terminal };

 Node(Type type, const QString &str = "");
 ~Node();

 Type type;
 QString str;
 Node *parent;
 QList<Node *> children;
};

Every node has a type, a string (which may be empty), a parent (which may be
0), and a list of child nodes (which may be empty).

Node::Node(Type type, const QString &str)
{
 this->type = type;
 this->str = str;
 parent = 0;
}

240 10. Item View Classes

The constructor simply initializes the node’s type and string. Because all the
data is public, code that uses Node can manipulate the type, string, parent, and
children directly.

Node::~Node()
{
 qDeleteAll(children);
}

The qDeleteAll() function iterates over a container of pointers and calls
delete on each one. It does not set the pointers to 0, so if it is used outside of a
destructor it is common to follow it with a call to clear() on the container that
holds the pointers.

Now that we have defined our data items (each represented by a Node), we are
ready to create a model:

class RegExpModel : public QAbstractItemModel
{
public:
 RegExpModel(QObject *parent = 0);
 ~RegExpModel();

 void setRootNode(Node *node);

 QModelIndex index(int row, int column,
 const QModelIndex &parent) const;
 QModelIndex parent(const QModelIndex &child) const;

 int rowCount(const QModelIndex &parent) const;
 int columnCount(const QModelIndex &parent) const;
 QVariant data(const QModelIndex &index, int role) const;
 QVariant headerData(int section, Qt::Orientation orientation,
 int role) const;

private:
 Node *nodeFromIndex(const QModelIndex &index) const;

 Node *rootNode;
};

This time we have inherited from QAbstractItemModel rather than from its con-
venience subclassQAbstractTableModel,because we want to create a hierarchical
model. The essential functions that we must reimplement remain the same,
except that we must also implement index() and parent(). To set the model’s
data, we have a setRootNode() function that must be called with a parse tree’s
root node.

RegExpModel::RegExpModel(QObject *parent)
 : QAbstractItemModel(parent)
{
 rootNode = 0;
}

Implementing Custom Models 241

In the model’s constructor, we just need to set the root node to a safe null value
and pass on the parent to the base class.

RegExpModel::~RegExpModel()
{
 delete rootNode;
}

In the destructor we delete the root node. If the root node has children, each
of these is deleted, and so on recursively, by the Node destructor.

void RegExpModel::setRootNode(Node *node)
{
 delete rootNode;
 rootNode = node;
 reset();
}

When a new root node is set, we begin by deleting any previous root node (and
all of its children). Then we set the new root node and call reset() to notify any
views that they must refetch the data for any visible items.

QModelIndex RegExpModel::index(int row, int column,
 const QModelIndex &parent) const
{
 if (!rootNode)
 return QModelIndex();
 Node *parentNode = nodeFromIndex(parent);
 return createIndex(row, column, parentNode->children[row]);
}

The index() function is reimplemented from QAbstractItemModel. It is called
whenever the model or the view needs to create a QModelIndex for a particular
child item (or a top-level item if parent is an invalid QModelIndex). For table and
list models, we don’t need to reimplement this function, because QAbstractList-

Model’s and QAbstractTableModel’s default implementations normally suffice.

In our index() implementation, if no parse tree is set, we return an invalid
QModelIndex. Otherwise, we create a QModelIndex with the given row and column
and with a Node * for the requested child. For hierarchical models, knowing
the row and column of an item relative to its parent is not enough to uniquely
identify it; we must also know who the parent is. To solve this, we can store a
pointer to the internal node in the QModelIndex. QModelIndex gives us the option
of storing a void * or an int in addition to the row and column numbers.

The Node * for the child is obtained through the parent node’s children list. The
parent node is extracted from the parent model index using the nodeFromIndex()

private function:

Node *RegExpModel::nodeFromIndex(const QModelIndex &index) const
{
 if (index.isValid()) {
 return static_cast<Node *>(index.internalPointer());
 } else {

242 10. Item View Classes

 return rootNode;
 }
}

The nodeFromIndex() function casts the given index’s void * to a Node *, or returns
the root node if the index is invalid, since an invalid model index is used to
represent the root in a model.

int RegExpModel::rowCount(const QModelIndex &parent) const
{
 Node *parentNode = nodeFromIndex(parent);
 if (!parentNode)
 return 0;
 return parentNode->children.count();
}

The number of rows for a given item is simply how many children it has.

int RegExpModel::columnCount(const QModelIndex & /* parent */) const
{
 return 2;
}

The number of columns is fixed at 2. The first column holds the node types; the
second column holds the node values.

QModelIndex RegExpModel::parent(const QModelIndex &child) const
{
 Node *node = nodeFromIndex(child);
 if (!node)
 return QModelIndex();
 Node *parentNode = node->parent;
 if (!parentNode)
 return QModelIndex();
 Node *grandparentNode = parentNode->parent;
 if (!grandparentNode)
 return QModelIndex();

 int row = grandparentNode->children.indexOf(parentNode);
 return createIndex(row, child.column(), parentNode);
}

Retrieving the parent QModelIndex from a child is a bit more work than finding
a parent’s child. We can easily retrieve the parent node using nodeFromIndex()

and going up using the Node’s parent pointer, but to obtain the row number
(the position of the parent among its siblings), we need to go back to the
grandparent and find the parent’s index position in its parent’s (that is, the
child’s grandparent’s) list of children.

QVariant RegExpModel::data(const QModelIndex &index, int role) const
{
 if (role != Qt::DisplayRole)
 return QVariant();

 Node *node = nodeFromIndex(index);
 if (!node)

Implementing Custom Models 243

 return QVariant();

 if (index.column() == 0) {
 switch (node->type) {
 case Node::RegExp:
 return tr("RegExp");
 case Node::Expression:
 return tr("Expression");
 case Node::Term:
 return tr("Term");
 case Node::Factor:
 return tr("Factor");
 case Node::Atom:
 return tr("Atom");
 case Node::Terminal:
 return tr("Terminal");
 default:
 return tr("Unknown");
 }
 } else if (index.column() == 1) {
 return node->str;
 }
 return QVariant();
}

In data(), we retrieve the Node * for the requested item and we use it to access
the underlying data. If the caller wants a value for any role except Qt::

DisplayRole or if we cannot retrieve a Node for the given model index, we return
an invalid QVariant. If the column is 0, we return the name of the node’s type;
if the column is 1, we return the node’s value (its string).

QVariant RegExpModel::headerData(int section,
 Qt::Orientation orientation,
 int role) const
{
 if (orientation == Qt::Horizontal && role == Qt::DisplayRole) {
 if (section == 0) {
 return tr("Node");
 } else if (section == 1) {
 return tr("Value");
 }
 }
 return QVariant();
}

In our headerData() reimplementation, we return appropriate horizontal head-
er labels. The QTreeView class, which is used to visualize hierarchical models,
has no vertical header, so we ignore that possibility.

Now that we have covered the Node and RegExpModel classes, let’s see how the
root node is created when the user changes the text in the line edit:

void RegExpWindow::regExpChanged(const QString ®Exp)
{
 RegExpParser parser;

244 10. Item View Classes

 Node *rootNode = parser.parse(regExp);
 regExpModel->setRootNode(rootNode);
}

When the user changes the text in the application’s line edit, the main win-
dow’s regExpChanged() slot is called. In this slot, the user’s text is parsed and
the parser returns a pointer to the root node of the parse tree.

We have not shown the RegExpParser class because it is not relevant for GUI or
model/view programming. The full source for this example is on the CD.

In this section, we have seen how to create three different custom models.
Many models are much simpler than those shown here, with one-to-one corre-
spondences between items and model indexes. Further model/view examples
are provided with Qt itself, along with extensive documentation.

Implementing Custom Delegates

Individual items in viewsare rendered and edited using delegates. In most cas-
es, the default delegate supplied by a view is sufficient. If we want to have finer
control over the rendering of items, we can often achieve what we want simply
by using a custom model: In our data() reimplementation we can handle the
Qt::FontRole, Qt::TextAlignmentRole, Qt::TextColorRole, and Qt::BackgroundCol-

orRole, and these are used by the default delegate. For example, in the Cities
and Currencies examples shown earlier, we handled the Qt::TextAlignmentRole

to get right-aligned numbers.

If we want even greater control, we can create our own delegate class and set
it on the views that we want to make use of it. The Track Editor dialog shown
below makes use of a custom delegate. It shows the titles of music tracks and
their durations. The data held by the model will be simply QStrings (titles) and
ints (seconds), but the durations will be separated into minutes and seconds
and will be editable using a QTimeEdit.

Figure 10.15. The Track Editor dialog

Implementing Custom Delegates 245

The Track Editor dialog uses a QTableWidget, a convenience item view subclass
that operates on QTableWidgetItems. The data is provided as a list of Tracks:

class Track
{
public:
 Track(const QString &title = "", int duration = 0);

 QString title;
 int duration;
};

Here is an extract from the constructor that shows the creation and population
of the table widget:

TrackEditor::TrackEditor(QList<Track> *tracks, QWidget *parent)
 : QDialog(parent)
{
 this->tracks = tracks;

 tableWidget = new QTableWidget(tracks->count(), 2);
 tableWidget->setItemDelegate(new TrackDelegate(1));
 tableWidget->setHorizontalHeaderLabels(
 QStringList() << tr("Track") << tr("Duration"));

 for (int row = 0; row < tracks->count(); ++row) {
 Track track = tracks->at(row);

 QTableWidgetItem *item0 = new QTableWidgetItem(track.title);
 tableWidget->setItem(row, 0, item0);

 QTableWidgetItem *item1
 = new QTableWidgetItem(QString::number(track.duration));
 item1->setTextAlignment(Qt::AlignRight);
 tableWidget->setItem(row, 1, item1);
 }

•••
}

The constructor creates a table widget, and instead of simply using the default
delegate, we set our custom TrackDelegate, passing it the column that holds
time data. We begin by setting the column headings, and then iterate through
the data, populating the rows with the name and duration of each track.

The rest of the constructor and the rest of the TrackEditor dialog holds no
surprises, so we will now look at the TrackDelegate that handles the rendering
and editing of track data.

class TrackDelegate : public QItemDelegate
{
 Q_OBJECT

public:
 TrackDelegate(int durationColumn, QObject *parent = 0);

246 10. Item View Classes

 void paint(QPainter *painter, const QStyleOptionViewItem &option,
 const QModelIndex &index) const;
 QWidget *createEditor(QWidget *parent,
 const QStyleOptionViewItem &option,
 const QModelIndex &index) const;
 void setEditorData(QWidget *editor, const QModelIndex &index) const;
 void setModelData(QWidget *editor, QAbstractItemModel *model,
 const QModelIndex &index) const;

private slots:
 void commitAndCloseEditor();

private:
 int durationColumn;
};

We use QItemDelegate as our base class, so that we benefit from the default
delegate implementation. We could also have used QAbstractItemDelegate if we
had wanted to start from scratch. To provide a delegate that can edit data, we
must implement createEditor(), setEditorData(), and setModelData(). We also
implement paint() to change the rendering of the duration column.

TrackDelegate::TrackDelegate(int durationColumn, QObject *parent)
 : QItemDelegate(parent)
{
 this->durationColumn = durationColumn;
}

The durationColumn parameter to the constructor tells the delegate which
column holds the track duration.

void TrackDelegate::paint(QPainter *painter,
 const QStyleOptionViewItem &option,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 int secs = index.model()->data(index, Qt::DisplayRole).toInt();
 QString text = QString("%1:%2")
 .arg(secs / 60, 2, 10, QChar(’0’))
 .arg(secs % 60, 2, 10, QChar(’0’));

 QStyleOptionViewItem myOption = option;
 myOption.displayAlignment = Qt::AlignRight | Qt::AlignVCenter;

 drawDisplay(painter, myOption, myOption.rect, text);
 drawFocus(painter, myOption, myOption.rect);
 } else{
 QItemDelegate::paint(painter, option, index);
 }
}

Since we want to render the duration in the form “minutes :seconds”, we have
reimplemented the paint() function. The arg() calls take an integer to render
as a string, how many characters the string should have, the base of the
integer (10 for decimal), and the padding character.

Implementing Custom Delegates 247

To right-align the text, we copy the current style options and overwrite the
default alignment. We then call QItemDelegate::drawDisplay() to draw the text,
followed by QItemDelegate::drawFocus(), which will draw a focus rectangle if
the item has focus and will do nothing otherwise. Using drawDisplay() is very
convenient, especially when used with our own style options. We could also
draw using the painter directly.

QWidget *TrackDelegate::createEditor(QWidget *parent,
 const QStyleOptionViewItem &option,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 QTimeEdit *timeEdit = new QTimeEdit(parent);
 timeEdit->setDisplayFormat("mm:ss");
 connect(timeEdit, SIGNAL(editingFinished()),
 this, SLOT(commitAndCloseEditor()));
 return timeEdit;
 } else {
 return QItemDelegate::createEditor(parent, option, index);
 }
}

We only want to control the editing of track durations, leaving the editing of
track names to the default delegate. We achieve this by checking which col-
umn the delegate has been asked to provide an editor for. If it’s the duration
column,we create a QTimeEdit, set the display format appropriately,and connect
its editingFinished() signal to our commitAndCloseEditor() slot. For any other
column, we pass on the edit handling to the default delegate.

void TrackDelegate::commitAndCloseEditor()
{
 QTimeEdit *editor = qobject_cast<QTimeEdit *>(sender());
 emit commitData(editor);
 emit closeEditor(editor);
}

If the user presses Enter or moves the focus out of the QTimeEdit (but not if they
press Esc), the editingFinished() signal is emitted and the commitAndCloseEdi-

tor() slot is called. This slot emits the commitData() signal to inform the view
that there is edited data to replace existing data. It also emits the closeEdi-

tor() signal to notify the view that this editor is no longer required, at which
point the model will delete it. The editor is retrieved using QObject::sender(),
which returns the object that emitted the signal that triggered the slot. If the
user cancels (by pressing Esc), the view will simply delete the editor.

void TrackDelegate::setEditorData(QWidget *editor,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 int secs = index.model()->data(index, Qt::DisplayRole).toInt();
 QTimeEdit *timeEdit = qobject_cast<QTimeEdit *>(editor);
 timeEdit->setTime(QTime(0, secs / 60, secs % 60));
 } else {

248 10. Item View Classes

 QItemDelegate::setEditorData(editor, index);
 }
}

When the user initiates editing, the view calls createEditor() to create an
editor, and then setEditorData() to initialize the editor with the item’s current
data. If the editor is for the duration column, we extract the track’s duration
in seconds and set the QTimeEdit’s time to the corresponding number of minutes
and seconds; otherwise, we let the default delegate handle the initialization.

void TrackDelegate::setModelData(QWidget *editor,
 QAbstractItemModel *model,
 const QModelIndex &index) const
{
 if (index.column() == durationColumn) {
 QTimeEdit *timeEdit = qobject_cast<QTimeEdit *>(editor);
 QTime time = timeEdit->time();
 int secs = (time.minute() * 60) + time.second();
 model->setData(index, secs);
 } else {
 QItemDelegate::setModelData(editor, model, index);
 }
}

If the user completes the edit (for example, by left-clicking outside the editor
widget, or by pressing Enter or Tab) rather than canceling it, the model must
be updated with the editor’s data. If the duration was edited, we extract the
minutes and seconds from the QTimeEdit, and set the data to the corresponding
number of seconds.

Although not necessary in this case, it is entirely possible to create a custom
delegate that finely controls the editing and rendering of any item in a model.
We have chosen to take control of a particular column,but since the QModelIndex

is passed to all the QItemDelegate functions that we reimplement, we can take
control by column,row,rectangular region,parent,or any combination of these,
right down to individual items if required.

In this chapter, we have presented a broad overview of Qt’s model/view
architecture. We have shown how to use the view convenience subclasses, how
to use Qt’s predefined models, and how to create custom models and custom
delegates. But the model/view architecture is so rich that we have not had the
space to cover all the things it makes possible. For example, we could create a
custom view that does not render its items as a list, table, or tree. This is done
by the Chart example located in Qt’s examples/itemviews/chart directory, which
shows a custom view that renders model data in the form of a pie chart.

It is also possible to use multiple views to view the same model without any for-
mality. Any editsmade through one view will be automatically and immediate-
ly reflected in the other views. This kind of functionality is particularly useful
for viewing large data sets where the user may wish to see sections of data that
are logically far apart. The architecture also supports selections: Where two

Implementing Custom Delegates 249

or more views are using the same model, each view can be set to have its own
independent selections, or the selections can be shared across the views.

Qt’s online documentation provides comprehensive coverage of item view
programming and the classes that implement it. See http://doc.trolltech.

com/4.1/model-view.html for a list of all the relevant classes, and http://doc.

trolltech.com/4.1/model-view-programming.html for additional information and
links to the relevant examples included with Qt.

