Index

A
abstraction, service-oriented analysis and design, 86-87
 Component layer, 88-89
 Enterprise layer, 87
 Object layer, 89
 Process layer, 88
 Service layer, 88
access constraints, 127
achieving middleware independence with explicit process state, 75
activities (service-oriented analysis and design), 95
 categorizing services, 97
 identifying services, 95-97
 realization of services, 98-99
 specification of services, 97-98
adapting
 operating environment constraints, 126
 roles, 77
adoption, 65-67
 enterprise-and-partner-network adoption, 66
 enterprise adoption, 66
 industry adoption, 201
 initial adoption, 66
 line-of-business adoption, 66
adoption strategies, 6-7
agility, 12
aligning
 IT with business processes and metrics, 28-30
 IT-to-business services alignment, 26
 IT with business via incremental delivery, 30-31
analysis and design, 86. See also models
 service-oriented analysis and design. See service-oriented analysis
application response measurement (ARM), 169
Application Services, 59
applying SOA characteristics, 41
architects, 78
 formalizing architectural decisions, 104
 identifying architectural best practices, 105
 performing product and package mappings, 105
 selecting architectural methodologies, 104
SOA architects, 80
architectural best practices, identifying, 105
architectural decisions, formalizing, 104
architectural methodologies, selecting, 104
architecture, 22
 clarifying role of architects, 24-25
 event-driven architectures, 200
 model-driven architectures, 201
security considerations, 136-137
unraveling the concept of architecture, 22-24
ARM (application response measurement), 169
asymmetric key systems, 142
Austrian Federal Ministry of Justice (MoJ), 189
authentication, 138
message authentication, 138
security tokens, 158
authentication credentials, 138
authorization, 139-140
privacy, 141
WS-Policy, 152
WS-Policy, leveraging, 152
availability, SOA-driven management, 165

B
bandwidth, network bandwidth (performance), 129
basic security services, implementing, 153-154
benefits of implementing SOA for business, 17-18
binding performance, 129
bottom-up synthesis, identifying services, 97
BPM (business process modeling), 86
business, 11
benefits of implementing SOA, 17, 18
change, 12-13
change, enterprise reconstruction, 13-15
change, industry deconstruction, 14-15
extinction of, 11-12
opportunities that will be missed by not implementing SOA, 18
rethinking components for business and applications, 19-20
SOA value roadmap. See SOA value roadmap
value of SOA, 5-6
when not to implement SOA, 20
why companies need SOA, 17
business analysts, 78

business constraints, 123-124
business expectations, monitoring, 75
Business Function Services, 60
business partners, coordinating policies between, 147
business performance management, 173-174
business process modeling (BPM), 86
business processes, aligning with IT and metrics, 28-30
Business Services, 59
business service management, 165, 173-174
bus destination, 51

capacity planning, scalability, 130
case studies
SOA in Government Services, 189-192
SOA in the Insurance Industry, 181
SOA in the Insurance Industry, impact of project, 186-188
SOA in the Insurance Industry, IT and business challenges, 182
SOA in the Insurance Industry, lessons learned, 188-189
SOA in the Insurance Industry, solution implementation, 182-186
catalogs, ESAs, 106
categorizing services, 97
CBE (Common Base Event), 169
CBM (Component Business Modeling), 88, 96
center of excellence (COE), 69
central governance, 70
challenges to management perspectives, 170-171
change
in business, enterprise reconstruction, 13-15
in business, industry deconstruction, 14-15
flexibility, 12-13
characteristics of SOA
applying, 41
data formats, 41
information models, 41
invocation patterns, 39
location, 38
platforms, 37
programming languages, 39
protocols, 38
security, 39
service models, 40
service versioning, 39, 40
checklists for business change agility, 22
clients, solutions (request response templates), 118
client framework, request response templates, 118
COE (center of excellence), 69
cohesion, service-oriented analysis, 92-93
Common Base Event (CBE), 169
Common Services, 60
companies. See business
comparing solutions, 114
components
business, 16
reusable components, 19-20, 37
Component Business Modeling (CBM), 88, 96
component design and development centers, 65
Component layer, 88-89
confidentiality, 137-138
consequences, ESAs, 106
multitiered disconnected operations, 114-115
request response templates, 119-120
constraints
access constraints, 127
business constraints, 123-124
expertise constraints, 127
operating environment constraints, 126-127
technical model constraints, 127
technology constraints. See technology constraints
content management, 54
context, ESAs, 106
multitiered disconnected operations, 109-110
request response templates, 116
contract dimension, loose-coupling, 91
coordinating policies between business partners, 147
corporations, 11. See also business
credential references, 158
credential stores, 158
cryptographic key policies, 147
cryptography, 142-143

D
data formats, 41
data management, 54
data protection policies, 146
data store, 51
data volume, performance, 129
demilitarized zone (DMZ), 153
deployment, operational management, 171-172
designers, 80-81
design patterns, 104
developers, 78
digital models, creating digital models of business, 26-28
digital signatures, 141-143
XML digital signatures, 148
digital signing, 143
disaster-recovery NFRs, 132
distributed governance, 70
distributed service management, event-driven management, 164
DMZ (demilitarized zone), 153
domains, 36
information management domain, 53-57
trust domains. See trust domains
driving forces, 13

E
EAI (enterprise application integration), 2, 40
ebXML, 48
EIF (IBM Tivoli Event Integration Facility), 178
EII (enterprise information integration), 54
EMF (Eclipse Modeling Framework), 56
empowerment, governance, 70
encryption, 142
XML encryption, 149
end-to-end transaction time, SLAs, 173
time,
enterprise-and-partner-network
adoption, 66
enterprise adoption, 66
time,
enterprise application integration (EAI), 2, 40
enterprise information integration (EII), 54
Enterprise layer, 87
enterprise reconstruction, 13-15
time,
enterprise service bus. See ESB
time, enterprise services, 36
ESAs (enterprise solution assets), 104-108
time, catalogs, 106
multitiered disconnected operations, 107-108
time, consequences, 114-115
time, context, 109-110
forces, 110
time, problem synopsis, 108
solutions, 110-114
request response templates, 107, 115-120
time, selecting, 108
solving enterprise architecture problems, 107
ESB (enterprise service bus), 43, 45, 60, 168
managing, with key services management, 168-169
mediation, 46-47
quality-of-service-based routing, 45-46
transport, 45
Web services gateway, 47
ETL (Extract-Transform-Load), 55
event-driven architectures, 200
event-driven management, 164
event management, IT application and resource management, 174
evolving standards, key services management, 169
examining roles, 77
exceptions, monitoring business exceptions, 75
expertise constraints, 127
explicit process state, achieving middleware independence, 75
extinction of businesses, 11-12

F
federated security, 150-151
federation, 54, 144
implementing, 155-156
federation services, 159
flexibility, 12-13
forces, ESAs, 106
multitiered disconnected operations, 110
request response templates, 116
formalizing architectural decisions, 104
format dimension, loose-coupling, 92
Forrester Research, January 2004 survey, 14
funding governance, 70

G

governance, 68-70, 198
processes, 72-73
technical governance, 75
tips for success, 74
governance model, launching, 73-74
governance principles, 69-70
granularity, service-oriented analysis and design, 94
guiding principles, 197-198

H–I

HTTP, 38
IBM
EMF, 56
ODOE, 57-60
IBM Tivoli Business Systems Manager, 173
IBM Tivoli Enterprise Console, 175, 178
IBM Tivoli Event Console, 175
IBM Tivoli Event Integration Facility (EIF), 178
IBM Tivoli Federated Identity Manager, 159
IBM Tivoli Monitoring, 177
IBM Tivoli Monitoring for Applications, 177
IBM Tivoli Monitoring for Business Integration, 178
IBM Tivoli Monitoring for Databases, 178
IBM Tivoli Monitoring for Messaging and Collaboration, 178
IBM Tivoli Monitoring for Transaction Performance, 176
IBM Tivoli Monitoring for Web Infrastructure, 178
IBM Tivoli Monitoring for Web Services PRPQ, 176
IBM Tivoli Provisioning Manager, 175
IBM Tivoli Service Level Advisor, 174
IBM Web Services Navigator, 177
IBM WebSphere Application Server, 50-51

identifying
architectural best practices, 105
services, 95-97
identity, 138
IETF (Internet Engineering Task Force), 148
IFW (Information Framework), 48
IFX, 48
impact of security, performance, 156, 157
implementation requirements for SOA
security, 144
cryptographic key policies, 147
data protection policies, 146
managing security policies, 144
message layer security policies, 145-146
security token policies, 146-147
transport security policies, 144-145
implementing
basic security services, 153, 154
federation, 155, 156
message layer security services, 155
PoC services, 154-155
trust services, 155
incompatibility, 2
incremental delivery, aligning IT with business, 30-31
independence, middleware
independence, 75
industry adoption, 201
industry business standards, 124
industry deconstruction, 14-15
industry models, 47-48
information management, 54
information management domain, 53
information management, 54-55
meta-data integration, 57
meta-data management, 56-57
information management services,
54-55, 60
information model/service graphs, 118
information models, 41
infrastructure orchestration, 165
infrastructure services, 41, 60
orchestration, 42-43
resource virtualization services, 42
SLA, 42-43
utility business services, 43
initial adoption, 66
innovation, operating environment constraints, 126
integrating roles, 81-83
integration, 2
integration challenges, 1-2
integration specialists, 81
integrity, 137
Internet Engineering Task Force (IETF), 148
interoperability testers, 81
invocation patterns, 39
IT
aligning with business processes and metrics, 28-30
aligning with business via incremental delivery, 30-31
and business services alignment, 26
realigning around services, 25-26
IT application and resource management,
174-176
IT governance, 69
IT project manager, 78

J–K
J2EE, 50
JMS (Java Messaging Services), 38
Kerberos tokens, 147
key services management, 167-168
ESB, 168-169
evolving standards, 169
knowledge transfer facilitators, 79

L
languages, WSDL. See WSDL
language dimension, loose-coupling, 91
launching governance model, 73-74
Lawrence, Paul, 2
layers, abstraction. See abstraction
legal constraints, business constraints, 124
levels of SOA-driven management, 164-167
leveraging
 WS-Federation, 151
 WS-Policy, 152
 WS-Security, 149
 WS-Trust, 150
Liberty Alliance Project, 159
line-of-business adoption, 66
local, 112
location, 38
loose-coupling, service-oriented analysis and design, 91-92
Lorsch, Jay, 2

M
manageability NFRs, 131, 132
management
 business performance management, 173-174
 business service management, 165, 173-174
 distributed service management, 164
 event-driven management, 164
 IT application and resource management, 174-176
 key services management, 167-169
 levels of SOA-driven management, 164-167
 operational management, 169-172
 transaction performance, 176
 Web services, 176-177
management perspectives, challenges to, 170-171
managing
 risk, of SOA roadmap, 70-72
 security, 157-158
 security policies, 144
mappings, 105
MDA (model-driven architecture), 86
mediation, ESB, 46-47
mediation layer, 140
mediators, 46
message authentication, 138
message layer security policies, 145-146
message layer security services, implementing, 155
messaging engine, 50
meta-data integration, 57
meta-data management, 56-57
Metadata Object Facility (MOF), 54
metrics, aligning, with IT and business processes, 28-30
middleware independence, achieving with explicit process state, 75
model-driven architecture (MDA), 86, 201
modeling, service-oriented analysis and design, 86
models
 governance models, launching, 73-74
 industry models, 47-48
 information models, 41
 platform-independent realization, 48-49
 platform-specific realization, 49
 programming models, 200
 service models, 40
 SOA enterprise software models. See SOA enterprise software models
modularization, reducing impact, 75
MOF (Metadata Object Facility), 54
MoJ (Autrian Federal Ministry of Justice), 189
monitoring
 business exceptions, 75
 Web services, 199
motivation, governance, 68, 69
multitiered disconnected operations, 107-108
 consequences, 114-115
 context, 109-110
 forces, 110
 problem synopsis, 108
 solutions, 110-114

N
Nadhan, E.G., 70
names, ESAs, 106
navigators, request response templates, 118
network bandwidth, performance, 129
New Generation of Operation Support Services (NGOSS), 48
NFRs (non-functional requirements), 123
- business constraints, 123-124
- disaster-recovery NFRs, 132
- manageability NFRs, 131-132
- nonruntime qualities, 131-132
- performance NFRs, 127-129
- runtime qualities, 127-131
- scalability NFRs, 130
- security NFRs, 131
- technology constraints, 124-127
- transactional integrity NFRs, 130
- version management NFRs, 132
- NGOSS (New Generation of Operation Support Services), 48
- non-repudiation, 141-142
- nonruntime qualities, 131-132

P
- package mappings, performing, 105
- parsing, performance, 129
- participants, solutions, request response templates, 118
- patterns
 - design patterns, 104
 - invocation patterns, 39
- performance
 - binding, 129
 - data volume, 129
 - impact of security, 156-157
 - network bandwidth, 129
 - parsing, 129
 - security, 129
 - service granularity, 128
 - transaction performance, 176
- performance NFRs, runtime qualities, 127-129
- performing product and package mappings, 105
- persistent message confidentiality, 138
- PII (personally identifiable information), 141
- PKI (public key infrastructure), 142-143
- platforms, 37
 - open development platforms, 199
 - platform-independent realization, 48-49
 - platform-specific realization, 49
 - virtual services platforms, 200
- PoC (point of contact), 153
 - transport layer PoCs, 158
- Web services layer, 158-159
PoC services, implementing, 154-155
policies. WS-Policy, 152
policy-based routing, scalability, 130
privacy, 141
problems, solving enterprise architecture
problems (ESAs), 107
problem synopsis, ESAs, 106
 multitiered disconnected
 operations, 108
 request response templates, 115
processes, governance processes, 72-73
process flow designers, 80
Process layer, 88
product mappings, performing, 105
programming languages, 39
programming models, 200
project offices, organizing, 63-65
 component design and development
 centers, 65
 operations centers, 65
SOA business transformation architecture council, 64
SOA technical architecture board, 65
project phases, roles, 77
project roles. See roles
proprietary systems, 12
protocols, 38
protocol dimension, loose-coupling, 92
provisioning
 IT application and resource management, 175
 scalability, 130
SOA-driven management, 166
public key infrastructure (PKI), 142-143
public key systems, 142

Q–R
QoS (quality of service), ESB, 45-46
RAS (reusable asset specification), 105
RDF (Resource Description Framework), 54
reach and range, value of SOA, 6
read-only services, 112
realigning IT around services, 25-26
realizing services, 98-99
reducing impact by modularization, 75
reengineering information management
 into services, 54-55
request response templates, 107, 115
 consequences, 119-120
 context, 116
 forces, 116
 problem synopsis, 115
 solutions, 117-118
request template, 118
request template XSD, 118
requirements of services management,
 131-132
resource-driven operational models, 164
Resource Description Framework (RDF), 54
resource monitoring, 177
resource virtualization services, 42
response template, 118
response template XSD, 118
rethinking components for business and
 applications, 19, 20
reusable asset specification (RAS), 105
reusable components, 19-20, 37
reuse, service-oriented analysis and design,
 89-90
risk of SOA roadmap, managing, 70-72
roles, 76-78
 adapting, 77
 architects, 78
 business analysts, 78
 developers, 78
 examining, 77
 functions of, 76
 integrating existing and new roles,
 81-83
 integration specialists, 81
 interoperability testers, 81
 IT project manager, 78
 knowledge transfer facilitators, 79
 process flow designers, 80
 project phases, 77
 security specialists, 78
 services governors, 81
 service deployers, 79
 service developers, 78-80
 service integration testers, 79
 service modelers or designers, 80
 and skills, 77
SOA architects, 80
SOA project managers, 79
SOA system administrators, 79
system and database administrators, 78
toolsmiths, 79
UDDI administrators, 81
UDDI designers, 81
routing QoS, 45-46
runtime qualities, 127
performance NFRs, 127-129
scalability NFRs, 130
security NFRs, 131
transactional integrity NFRs, 130

S
S&P 500, 11
SAML assertion, 146
scalability NFRs, runtime qualities, 130
secure sockets layer (SSL), 145
security, 39
architectural considerations for SOA
security model, 135-137
authentication, 138
authorization, 139-140
confidentiality, 137-138
cryptography, 142-143
digital signatures, 141-143
federation, 144
implementation requirements, 144-147
implementing, 153-156
integrity, 137
IT application and resource management, 176
managing, 157-158
non-repudiation, 141-142
performance, 129, 156-157
privacy, 141
session management, 139
SOA-driven management, 165
trust, 143
WS-Federation, 150-151
WS-Policy, 152
WS-SecureConversation, 151-152
WS-Security, 148-149
WS-Trust, 150
security NFRs, runtime qualities, 131
security policies
coordinating between partners, 147
managing, 144
message layer security policies, 145-146
transport security policies, 144-145
security specialists, 78
security token policies, 146-147
security tokens, 158
selecting
architectural methodologies, 104
ESAs, 108
semantic Web services, 199
service-level agreements. See SLA
service-oriented analysis and design, 85-86
abstraction layers, 86-89
activities, 95-99
loose-coupling, 91-92
modeling, 86
reuse, 89-90
service encapsulation, 90
service granularity, 94
strong cohesion, 92-93
well-designed services, 94
service assets, 200
service deployers, 79
service designers, 80
service developers, 78-80
service encapsulation, service-oriented
analysis and design, 90
service granularity
performance, 128
service-oriented analysis and design, 94
service graphs, 118
service integration, WebSphere Application Server, 50-51
service integration abus, 50
service integration testers, 79
Service layer, 88
service modelers, 80
service models, 40
service versioning, 39-40
services
business, 16
categorizing, 97
identifying, 95-97
infrastructure services. See infrastructure services
orchestration, 42-43
read-only services, 112
realization of, 98-99
reengineering information management into, 54-55
resource virtualization services, 42
SLA, 42-43
specifying, 97-98
transactional services, 112
utility business services, 43
utility services, 201
well-designed services, service-oriented analysis and design, 94
services governors, 81
services management, requirements for, 131-132
services platforms, 3
sessions, 139
session management, 139
security tokens, 158
WS-SecureConversation, 151-152
signature validation, 143
Simple Network Management Protocol (SNMP), 178
Simple Object Access Protocol. See SOAP
single log-out (SLO), 159
single sign-on (SSO), 159
skills and roles, 77
SLAs, 42-43, 123, 165, 172
end-to-end transaction time, 173
SLO (single log-out), 159
smart service solution, 114
smart stub solution, 113
SNMP (Simple Network Management Protocol), 178
SOA, 3-4
adoption strategies, 6-7
definitions of, 4-5, 16
reach and range, 6
value to business, 5-6
versus previous approaches, 18-19
SOA-driven management, levels of, 164-167
SOAP (Simple Object Access Protocol), 38, 40, 48
SOA architects, 80
SOA business transformation architecture council, 64
SOA enterprise software models, 47
industry models, 47, 48
information management domain, 53-57
J2EE realization, 50
platform-independent realization, 48-49
platform-specific realization, 49
service integration on WebSphere Application Server, 50-51
SOA project managers, 79
SOA roadmap, managing risk of, 70-72
SOA system administrators, 79
SOA technical architecture board, 65
SOA value roadmap
aligning IT with business processes and metrics, 28-30
aligning IT with business via incremental delivery, 30-31
checklist for business change agility, 22 clarifying role of architects, 24-25
creating digital models of business, 26-28
explaining SOA to business people, 21
IT-to-business services alignment, 26
realigning IT around services, 25-26
unraveling the concept of architecture, 22-24
solutions
comparing, 114
ESAs, 106
multitiered disconnected operations, ESAs, 110-114
request response templates, ESAs, 117-118
specifying services, 97-98
SSL (secure sockets layer), 145
SSO (single sign-on), 159
staleness, 112
standards, 20, 196-198
evolving standards, key services management, 169
industry business standards, 124
technology, 199
strategic direction, governance, 69-70
strong cohesion, service-oriented analysis and design, 92-93
surveys, Forrester Research (January 2004), 14
symmetric key systems, 142
system and database administrators, 78
T

taxonomies, building, 96

technical governance, 75

technical model constraints, 127

technology, standards, 199

technology constraints, 124-127

Telecommunications Industry,
 Telemanagement Forum, 124

time dimension, loose-coupling, 92

tokens
 Kerberos tokens, 147
 username tokens, 146
 WS-Security, 148

toolsmiths, 79

top-down analysis, identifying services, 96

transactional integrity NFRs, runtime
 qualities, 130

transactional services, 112

transaction performance, 176

transient message confidentiality, 138

transport, ESB, 45

transport layer PoCs, 158

transport security policies, 144-145

trust, 143

trust domains, 143
 WS-Trust, 150

trust relationship management, 157

trust services, 159
 implementing, 155

U

U.S. Steel, 11

UDDI (Universal Description, Discovery, and Integration), 48

UDDI administrators, 81

UDDI designers, 81

UML (Unified Modeling Language), 86

Universal Description, Discovery, and Integration (UDDI), 48

upstream filtering, scalability, 130

username tokens, 146

utility business services, 43

utility services, 201

V

value roadmap
 aligning IT with business processes and metrics, 28-30
 aligning IT with business via incremental delivery, 30-31
 checklist for business change agility, 22
 clarifying role of architects, 24-25
 creating digital models of business, 26-28
 explaining SOA to business people, 21
 IT-to-business services alignment, 26
 realigning IT around services, 25-26
 unraveling the concept of architecture, 22-24
 versioning, service versioning, 39-40
 version management NFRs, 132
 virtual services platforms, 200
 visualization, 199

W

W3C (World Wide Web Consortium), 49, 148

WebSphere application Server, services integration, 50, 51

Web services, 19
 managing, 176-177
 monitoring, 199
 semantic Web services, 199
 WS-Security Roadmap, 147

Web Services Description Language. See WSDL

Web Services Distributed Management (WSDM), 169

Web services gateway, ESB, 47

Web Services Interoperability Organization (WS-I), 45

Web services layer PoC, 158-159

Web Services Security, SOAP Message Security (WSS-SMS), 148

Web Services Security Technical Committee (WSS-TC), 148

well-designed services, service-oriented analysis and design, 94

World Wide Web Consortium (W3C), 49, 148
WS-* (Web services), 147
WS-Federation, 150-151
WS-I (Web Services Interoperability Organization), 45, 48-49
WS-Policy, 49, 98
leveraging, 152
WS-Resources, 49, 75
WS-SecureConversation, 151
leveraging, 152
WS-Security, 49, 148
leveraging, 149
tokens, 148
XML digital signatures, 148
XML encryption, 149
WS-Security Roadmap, 147
WS-Trust, 150
WSDL (Web Services Description Language), 39, 44, 48
WSDM (Web Services Distributed Management), 169
WSS-SMS (Web Services Security), SOAP Message Security), 148
WSS-TC (Web Services Security Technical Committee), 148

X
X.509 certificate, 146
XML, 40
XML-DSig (XML Digital Signature), 148
XML digital signatures, WS-Security, 148
XML encryption, WS-Security, 149