
31Adding Images, Media, and Scripts

CHAPTER 3

Adding Images, Media, and
Scripts

I
mages, media, and scripting help a site become “dynamic and rich.” This is called
dynamic because many of these features offer the opportunity for the site visitor to
interact in an active way with the site. It’s rich because the site becomes richer visually

and in terms of content. Images in this chapter refers specifically to images you’ll be
adding to your page as part of the design itself or as a means of enhancing the content,
such as with photos. Images must be processed in a specific way for the Web, using a
good image editor; you can quickly learn the details.

NOTE
Web graphics can be created by a wide range of programs, but typically you’re
going to want to have a decent image editor, such as Photoshop (if your wallet is
a little smaller, you can try Jasc’s Paint Shop Pro). There are numerous other web
graphic programs; you can find them by searching for “web graphics software” at
your favorite search engine.

Two primary types of web graphic formats exist: GIF and JPEG. The GIF file format is
best for images with few, flat colors and line drawings; JPEGs are best for images with
many colors and color gradients, such as photos. A third type of web graphic format is
PNG, but the lack of support for PNG in some browsers makes it a less stable choice.

Multimedia on the Web can refer to a number of things, including animated GIFs, Flash
animations, audio, video, and Java applets. Scripts in this chapter refers to JavaScript and
DHTML effects that you can add to your documents, creating a richer user experience.

NOTE
Although images, media, and scripting can bring more options to your site, they
also can add unnecessary clutter and download time. I like to think of most content
of this nature to be decorative. Just as you wouldn’t want to overdecorate a house,
think about how less can be more when it comes to your page.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 31

32 Adding Images, Media, and Scripts > The img Element

The img Element

When working with images, the element you’ll be using is img. This is an empty ele-
ment—in other words, it does not contain any text content. As a result, it doesn’t require
a closing tag. It’s written in XHTML as follows:

Placed all by itself within the body of your document, this will do nothing at all. So along
with the img element itself, you’ll need to point to the location of the image. This is done
using the src attribute, which stands for “source.”

In the value of the source attribute, you’ll add the location and the name of the actual
web graphic file, along with its extension. Example 3-1 shows a complete document with
the image source included.

EXAMPLE 3-1 Adding the image into the document body

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

<title>Chapter 3</title>

</head>

<body>

</body>
</html>

NOTE
You’ll notice that I’ve used a subdirectory called images in which to store my web
graphics. It’s conventional to place images in a subdirectory beneath the documents
that use them or, if you have a fairly small site, in one image location off the root
directory.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 32

33Adding Images, Media, and Scripts > The img Element

This causes the image to appear in your browser window (see Figure 3-1).

FIGURE 3-1 The image appears within the browser window.

Without any content in the document, the image automatically is placed in the upper-left
corner. You’ll ultimately be doing a lot more with this image to make it more useful:

• Assist browsers with better rendering

• Provide helpful information to those who might not be able to view the image

• Link the image

NOTE
You’ll explore how to do these things using XHTML first, but in Chapter 8, “Working
with Color and Images Using CSS,” you’ll learn more advanced methods to control
an image’s presentation using CSS.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 33

34 Adding Images, Media, and Scripts > Adding width and height Values

Adding width and height Values

The next thing you’ll want to do for your image is add width and height values. This
actually assists browsers in rendering images more efficiently, so it’s always a good idea to
add this information.

You can find the image’s width and height in a couple ways. The first way is that you can
look for it in your imaging editor (see Figure 3-2).

Another way to find width and height is to open the image itself in your browser.

Figure 3-3 depicts the image itself (not the HTML file), and you can see in the title bar
that the width and height are displayed.

FIGURE 3-2 Look for the width and height in pixels for
your image—here, Photoshop displays the width and
height at the top of the Image Size dialog box.

FIGURE 3-3 I opened the image in my brows-
er, and the image width and height appear
within the browser’s title bar.

NOTE
Not all browsers have this feature, but most common ones do.

When you’ve got the image dimensions—in this case, 250 pixels wide by 188 pixels
high—you can place it into your image markup:

NOTE
You should always include the correct width and height. If the width and height val-
ues are larger than the actual image, the browser will stretch the image to make it
fit. If you note smaller values, the browser will squeeze the image into the smaller
size, scrunching it up.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 34

35Adding Images, Media, and Scripts > Providing Alternative Text

Providing Alternative Text

Some people surf the Web without images turned on. Sounds strange in today’s world of
high bandwidth, but some people still don’t have high-speed access, so images can slow
down their access to your page’s content, and they will disable the images. Another
important concern is that many people visiting the Web are visually impaired or blind. In
all these cases, it’s helpful to provide some clues to your visitor as to what the image rep-
resents.

This is done using alternative text, which uses the alt attribute and a description, as
shown in Example 3-2.

EXAMPLE 3-2 Adding an alt text description

<img src=”photo.jpg” width=”250” height=”188” alt=”photograph of a delicious
Vietnamese noodle dish from restaurant Pho 88” />

Alternative text descriptions appear in two ways on the site. First, they appear in the loca-
tion of the image before the image load and when images are disabled (see Figure 3-4).

FIGURE 3-4 Alternative text in a browser where images are disabled.

The second way alternative text appears is upon mouseover of an image. This assists
everyone because it provides more contextual clues on the image’s purpose (see
Figure 3-5).

FIGURE 3-5 Alternative text in a ToolTip as the mouse passes over the image.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 35

36 Adding Images, Media, and Scripts > Linking the Image

Linking the Image

Many times you will want to link an image to either another HTML document or a
detailed version of the image. In either case, linking an image works the same way as link-
ing text. You surround the image code with the anchor element and the reference to
where the image is linking, just as if it were the text content (see Example 3-3).

EXAMPLE 3-3 Linking the image

<img src=”images/photo.jpg” width=”250” height=”188” alt=”photograph of a
delicious Vietnamese noodle dish from restaurant Pho 88” />

The image is now linked, and when clicked on, it will take the visitor to the detail.html
page. You can even add a title attribute to the link if you want further details about the
link to be available to your visitors. By default, browsers place a border around the image
to highlight the fact that it is a linked image, and the hand cursor appears upon
mouseover, too (see Figure 3-6).

FIGURE 3-6 A linked image.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 36

37Adding Images, Media, and Scripts > Linking the Image

If the image link is followed, the browser will use the default visited link color around the
image. Of course, many people find the link border unsightly. If you’d like to get rid of
your border immediately, you can do so by turning it off directly in the HTML, as shown
in Example 3-4.

EXAMPLE 3-4 Using the border attribute

<img src=”images/photo.jpg” width=”250” height=”188” alt=”photograph of a
delicious Vietnamese noodle dish from restaurant Pho 88” border=”0” />

The image, while still linked, now displays no border (see Figure 3-7).

FIGURE 3-7 The image, while still linked, has no visible border.

Beware: Borders Are Presentational

The border attribute is considered presentational because it can be used decora-
tively. By providing a value greater than 0, the border size changes, whether the
image is linked or not. Ideally, you will use CSS instead of the border attribute to
modify your borders. CSS will also be used to position or float the image within its
content. You’ll learn more about this in Chapter 11, “Margins, Borders, and
Padding,” and Chapter 12, “Positioning, Floats, and Z-index.”

Holzschlag_03.qxd 3/30/05 9:13 AM Page 37

38 Adding Images, Media, and Scripts > Linking to an Audio or Video File

Linking to an Audio or Video File

If you’d like to provide links to media on your site, you can do so just as easily as linking
an image. Many file types exist for audio and video, the most popular these days being
the MP3, QuickTime, Real, and Windows Media files.

You first place your media file into a subdirectory. As with images, this is a convention
that helps you keep all your various files organized. In this case, I’ve named the subdirec-
tory media (how’s that for brilliant?) and placed two files in it, one an MP3 audio file and
the other an .avi video file. Example 3-5 shows my document and how I’ve linked to my
media files.

EXAMPLE 3-5 Linking to audio and video

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>
<head>
<title>Chapter 3</title>
</head>

<body>

Link to Audio Sample

Link to Video Sample

</body>
</html>

I’ve added text within the links and placed a break between the two links so they appear
on top of one another rather than side by side, for the sake of clarity. This results in the
links as shown in Figure 3-8.

FIGURE 3-8 Links to audio and video samples.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 38

39Adding Images, Media, and Scripts > Linking to an Audio or Video File

So far, pretty easy, right? Well, there are a few more things to do with links to give visitors
an easier time managing the audio and video.

Beware Browser Behavior Differs

Different browsers and different browser configurations influence the way that linked
audio and video is displayed. As the link is selected, some browsers automatically
download the file into an external media player and play the audio or video clip.
Other browsers provide a pop-up option asking whether you’d like to open the file
with the appropriate application, or download it and save it to your hard drive.
Because of these differences in behavior, it’s helpful to let your visitors know as
much about the link they’re about to click on as possible.

Because most audio and video clips are quite large, it’s helpful to provide the file sizes on
the page so visitors are prepared. You can do this by simply typing the details into the
link or directly after it.

NOTE
Some folks even go so far as to provide a range of file sizes for their low-, medium-,
and high-bandwidth visitors.

Another way to assist is to place a description of the file into the title attribute of the
link (see Figure 3-9).

This helps provide more detail to all and also alerts those folks who can’t see or hear to
understand what the link is for (see Example 3-6).

EXAMPLE 3-6 Adding details for your visitors

Link to Audio
Sample. Size: 1,300KB

Link to
Video Sample. Size: 29,000KB

FIGURE 3-9 Providing helpful details for audio and video links.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 39

40 Adding Images, Media, and Scripts > Embedding Files Using the object Element

Embedding Files Using the object Element

Another means of providing audio, video, and other multimedia such as Flash anima-
tions and Java applets is to embed them directly into the page. This means that the soft-
ware plug-in automatically loads with the page.

All external files are considered objects. This includes images as well as multimedia files.
In contemporary HTML and XHTML specifications, the proper way to include all multi-
media is to use the object element to embed a file directly:

<object data=”media/video-sample.avi” type=”video/avi” />

This results in the player application appearing on the page. The video can then be played
(see Figure 3-10).

FIGURE 3-10 The embedded player loaded into Internet Explorer.

NOTE
Of course, you can do a lot more in terms of providing advanced settings. To learn
more about the many available settings for multimedia, see the excellent tutorial at
http://www.w3schools.com/media/default.asp.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 40

41Adding Images, Media, and Scripts > Embedding Files Using the object Element

In instances with Flash files, you use the object element to achieve inline results, as you
can see in Example 3-7.

EXAMPLE 3-7 Embedding a Flash movie file (SWF) into a page using <object>

<object classid=”clsid:d27cdb6e-ae6d-11cf-96b8-444553540000” width=”100”
height=”100” codebase=”http://active.macromedia.com/flash6/cabs/
swflash.cab#version=6,0,0,0”>
<param name=”movie” value=”media/ava.swf” />
<param name=”play” value=”true” />
<param name=”loop” value=”true” />
<param name=”quality” value=”high” />
</object>

In most standards-compliant browsers that also have Flash enabled, the file should play
directly upon loading, as shown in Figure 3-11.

FIGURE 3-11 The Flash animation of the AVA logo plays inline in Internet Explorer.

NOTE
As you can see, quite a bit of information has to go along with objects, including
codebase information and use of the parameter element to define not only the loca-
tion of the file, but also aspects about how it’s to be played. These options are all
generated by Macromedia Flash when you create the Flash file. For more informa-
tion on Flash, see http://www.macromedia.com/software/flash/.

You can use the object element for audio and Java applets, too. Simply add the correct
codebase information and desired parameters, and you’ll be good to go.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 41

42 Adding Images, Media, and Scripts > But Your Honor, I Object!

But Your Honor, I Object!

Okay, the entire last section was filled with lies. Not that I’m trying to steer you wrong—
I’m trying to do quite the opposite. All external media should be addressed using the
object element if you want to be using markup that exists in the valid world of HTML
and XHTML.

However, there’s a big stumbling block with using the object element, and that is that
support for it is inconsistent across browsers and platforms. This is very disturbing from
a purist’s point of view because there’s no other alternative within the specifications.

QUANTUM LEAP: OBJECT HANDLING IN XHTML 2.0
In XHTML 2.0, the object element becomes ubiquitous. In other words, any other
elements for external objects, including the img element, are made obsolete.
Obviously, it’s preliminary to use XHTML 2.0 because your results will be limited to
those very few browsers that support object for img. But it gives you a good idea of
the direction XHTML is taking.

Here’s what it boils down to, in simple terms: If you want your multimedia to be as con-
sistent as possible across browsers, you have to turn to a proprietary element, the embed
element. This element has never existed in any of the formal specs, but most all browsers
support it; although your pages with the embed element will cause validation errors,
they’re going to work.

Conventional wisdom mixes both object and embed. So if you were to use this approach
with the same Flash file just described, you’d end up with the markup shown in Example
3-8.

EXAMPLE 3-8 Embedding a Flash movie file (SWF) into a page using <object> and <embed>

<object classid=”clsid:d27cdb6e-ae6d-11cf-96b8-444553540000” width=”100”
height=”100” codebase=”http://active.macromedia.com/flash6/cabs/
swflash.cab#version=6,0,0,0”>
<param name=”movie” value=”media/ava.swf” />
<param name=”play” value=”true” />
<param name=”loop” value=”true” />
<param name=”quality” value=”high” />
<embed src=”media/ava.swf” width=”100” height=”100” play=”true”
loop=”true” quality=”high”></embed>
</object>

The Flash movie will now play inline in almost every browser.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 42

43Adding Images, Media, and Scripts > Adding Scripts

Adding Scripts

Another means of bringing interactivity and interest to your pages is adding scripts to
them. Typically, this refers to JavaScript or what is known as Dynamic HTML or
DHTML, which is a combination of technologies, including HTML, CSS, JavaScript, and
the Document Object Model. Combining these technologies gives you rich features such
as drop-down menus and interactive games.

QUANTUM LEAP: THE DOCUMENT OBJECT MODEL
The Document Object Model, also referred to as the DOM, is the interface within
browsers that enables you to attach scripting to specific elements. Part of the
reason DHTML has been controversial and problematic is that browsers have imple-
mented nonstandard DOMs, which have resulted in poor consistency. When you are
looking for DHTML scripts, be sure that you’re using those scripts that offer the
most cross-browser support. The DOM is standardized, and all contemporary,
standards-based browsers are working to implement DOM standards efficiently.

You can add scripts to your document in two primary ways. One is to place the script
into the head portion of your document. This is referred to as an embedded script.
The other way is to place your script external to the document, which is referred to as a
linked script.

Embedding a Script
To embed a JavaScript in the head portion of your document, you use the script element
to contain the script (see Example 3-9).

EXAMPLE 3-9 Embedding a script into the head of a document

<head>
<script type=”text/javascript”>
function newWindow() {foodWindow = window.open(“images/photo.jpg”,
“foodWin”, “width=250,height=188”)}
</script>

</head>

The purpose of this script is to set up the document to open the image photo.jpg in a
new window when a specific link is clicked. You also need a bit of script in the actual link
found in the body of the document, as follows:

Delicious Vietnamese Lunch

Holzschlag_03.qxd 3/30/05 9:13 AM Page 43

44 Adding Images, Media, and Scripts > Adding Scripts

Figure 3-12 demonstrates how clicking on the link makes the pop-up window appear
with the image intact.

FIGURE 3-12 The results of the embedded script.

Linking to a Script
In terms of best practices, the more you can get out of your document and into external
files in terms of scripting and style, the better. You can have many pages pointing to one
script, and if you require changes to the script, you can make them to the one script file
instead of to many documents with embedded scripts.

To link to the script, first place the script code (without any HTML) into a separate file,
and name the file with a .js extension, as in popup.js. You can place that file into a sub-
directory named scripts (just as you did with images and media), and then use the script
element to link it to the document (see Example 3-10).

EXAMPLE 3-10 Linking to the script

<head>
<script src=”scripts/popup.js” type=”text/javascript”></script>
</head>

Leave the link code as is within the body of the document, and the results will be exactly
the same as demonstrated in Figure 3-12.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 44

45Adding Images, Media, and Scripts > Scripting and Browser Concerns

Scripting and Browser Concerns

In some instances, people are using old browsers with no JavaScript support or poor sup-
port for the script element itself, or have JavaScript disabled. Working around these
issues requires some additional markup.

NOTE
Most contemporary web designers do not use the workarounds here unless they
absolutely know that they have to support older browsers. However, you might want
to use them. At the very least, it’s important that you see these techniques in action
so you’ll recognize them when viewing HTML from other sources.

Hiding Scripts from Older Browsers
If you’re using embedded JavaScript, some older browsers attempt to display whatever is
contained within the script element as body text.

To avoid this, many people got into the habit of “commenting out” their scripts—in
other words, using comment syntax to prevent the script from being displayed (see
Example 3-11).

EXAMPLE 3-11 Hiding a script with comments

<head>
<script type=”text/javascript”>
<!-- this hides the script from older browsers
function newWindow() {foodWindow = window.open(“images/photo.jpg”,
“foodWin”, “width=250,height=188”)}
// End hiding script from old browsers -->
</script>

</head>

Note the //. This is JavaScript syntax that enables you to write in a comment after that
point that won’t be displayed, either. The commenting used here will not prevent the
script from operating normally in any browser that supports it.

Using the noscript Element
If you’d like to add some text so supporting browsers will display a message regarding
script support, you can do so using the noscript element (see Example 3-12).

Holzschlag_03.qxd 3/30/05 9:13 AM Page 45

46 Adding Images, Media, and Scripts > Scripting and Browser Concerns

EXAMPLE 3-12 Using the noscript element

<head>
<script type=”text/javascript”>
<!-- this hides the script from older browsers
function newWindow() {foodWindow = window.open(“images/photo.jpg”,
“foodWin”, “width=250,height=188”)}
// End hiding script from old browsers -->
</script>

<noscript>Attention: Your browser does not support JavaScript or you
have disabled JavaScript.
</noscript>

</head>

Browsers that support scripting and do not have scripting disabled will not see the con-
tents of the noscript element.

However, those browsers without JavaScript or, as in the case with Figure 3-13, browsers
with JavaScript purposely turned off will display the text within the noscript element.

FIGURE 3-13 The noscript text within a browser with disabled JavaScript.

As you can see, the link is still intact, but the pop-up script will not work if JavaScript is
disabled or unavailable.

Finding Scripts Online

One of the great things about JavaScript and DHTML is that so many free scripts
are available. Of course, the downside of having so many free scripts available
means that many of those scripts might be substandard or that newer, better scripts
have come along since. Because of that, use discretion and read the fine print. A
few sites that I like include http://javascriptkit.com/, http://simplythebest.net/
scripts/DHTML_scripts/, http://www.javascripts.com/, and http://www.dynamic-
drive.com/.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 46

47Adding Images, Media, and Scripts > Imagine That!

Imagine That!

From structure to well-formatted text, to great imagery and interactive features, you’ve
sure come a long way in three short chapters.

Of course, if you’re getting frustrated because all of this seems very much like building a
house while you’re imagining how it’s going to be decorated, that’s understandable. It’s
important to keep in mind that building great web pages in today’s world means taking
the extra time to organize your materials, have clear goals, and take pride in the crafting
of your documents.

As with a home, the better the foundation, the more well-built and finely crafted the
structure, the easier it will be to make aesthetic modifications. This is really what we’re
after by taking the time to build our pages correctly. Just something as simple as placing
all your images in an image directory, scripts in a script directory, and additional media
in corresponding directories means having an internal site structure that will grow with
you instead of causing collapse as your site grows and changes to meet your needs.

Imagine if you hadn’t taken the time early on to build the structure well. Take the advice
of professional web developers who have learned the hard way: Not building the infra-
structure well can lead to all kinds of expensive, time-consuming, and downright frus-
trating problems along the way.

Now that you’re a bit more organized in terms of your document, text, and image and
media management, it’s time to get fancier. In the next chapter, you’ll be learning how to
build effective tables. Once the holy grail of how websites were laid out visually, tables are
being revisited for their structural integrity.

What we’re learning is that CSS is a lot more efficient and flexible for the presentational
aspects of our site, but tables can be extremely useful for displaying a range of informa-
tion in effective ways. Depending upon your needs, you might find tables an excellent
way of managing data, further assisting your site visitors to easily get to and understand
the information you’re sharing with them.

Holzschlag_03.qxd 3/30/05 9:13 AM Page 47

Holzschlag_03.qxd 3/30/05 9:13 AM Page 48

