
1

C H A P T E R 1

On Your Marks …
Get Set … Go!!!
An Introduction to the
Apache Derby and IBM
Cloudscape Community

Introduction
Welcome to the Apache Derby and IBM Cloudscape family! We are glad to have you join our
community of thousands, all dedicated to open standards and open source computing.

On August 3, 2004, IBM released a technical preview of IBM Cloudscape Version 10. While
this in itself is exciting news, more importantly, IBM also made one of the most significant contri-
butions in the history of the open source database community by contributing the source code for
IBM Cloudscape to the Apache Software Foundation as the Apache Derby database. The Apache
Software Foundation subsequently accepted Apache Derby as an incubator project. At the time this
book was published, Apache Derby and IBM Cloudscape Version 10.1 was released and the Apache
Derby project graduated from an incubator project (more on that in a bit) to an Apache sub-project.

The history of the Cloudscape technology is an interesting one indeed. In 1997, Cloud-
scape Inc. released what was perhaps the world’s first real Java-based database, well before Java
became the darling of the information technology (IT) community. The Cloudscape database
began to carve its reputation as a pure Java-based relational database with just a 2 MB “finger-
print” that simplified application development. It made applications easier to deploy on any plat-
form and represented the first truly relational database for which a DBA was not a requirement!
Its significance went well beyond a “lights out” no management database. Cloudscape opened the
doors for application developers (who are not generally database savvy) to leverage the benefits
of a persistent data store for their applications.

In 1999, Informix bought Cloudscape Inc. and continued to enhance this database server, seeding
it with even richer self-managing, ease of deployment, and open standards features—many of which
were ahead of their time. IBM acquired the Cloudscape technology in July 2001 by purchasing the assets
of Informix Software. As you can see, the IBM Cloudscape (formerly just Cloudscape) database has been
around for a long time, which accounts for its maturity, robustness, and functionally rich feature set.

555255_CH01_p001-024.indd 1 9/28/05 10:10:24 AM

2 Chapter 1 On Your Marks … Get Set … Go!!!

After the Informix acquisition, the IBM Cloudscape development teams have reported
into IBM’s Database Technology Institute, under the direction of Don Haderle and Dr. Patricia
Selinger, two of the founders of relational database technology. In fact, since IBM acquired this
technology, it has funded a continually expanding development team through several new ver-
sions and added compatibility with the IBM DB2 Universal Database (DB2 UDB) family through
a fully compliant SQL application programming interface (API). This means that applications
written for IBM Cloudscape (and subsequently Apache Derby—more on that in a bit) can easily
be migrated to the DB2 UDB platform if necessary.

You might be surprised to know just how many partners, customers, and software packages
use IBM Cloudscape in their technology—the very technology you’re about to learn how to pro-
gram to. In fact, over 80 different IBM products use IBM Cloudscape for many different reasons,
including ease of deployment, portability, “hands-free” operation, an open standards-based Java
engine, the small footprint, and more. For example, IBM Cloudscape powers products such as Web-
Sphere Application Server, DB2 Content Manager, WebSphere Portal Server, IBM Director, Lotus
Workplace, and many others. The IBM Cloudscape engine is a transparent component of all these
products, and that is the whole point! Despite its application-transparency, you should be able to
sense the power of this database engine because it is trusted to support these enterprise products.

As you probably have figured out by now, IBM has open sourced the IBM Cloudscape
technology as Apache Derby and remains solidly committed to its future success. Throughout
this book, we will use the term Apache Derby to represent both the IBM Cloudscape and Apache
Derby databases because they are identical. There are some add-ons for IBM Cloudscape that
you can freely download; where appropriate, we will identify them as such.

Specifically, IBM supports the Apache Derby open source database by:

 • Contributing the IBM Cloudscape code to serve as the code base for the Apache
database

 • Donating resources to host a central Web-based location for add-on code, educational
materials, support, the IBM DB2 Universal JDBC Driver, interfaces for ODBC, PHP,
Perl, .NET, and more. The IBM Cloudscape Web site is available on IBM’s developer-
Works at: www.ibm.com/developerworks/cloudscape.

 • Funding a dedicated open source project team that includes a complete development
group with database development experience. Some members of this team are Apache
Derby committers

 • Providing hardware resources for nightly builds and testing of the open source code
lines

 • Running a full set of software and function verification test cases, and creating a fully
functional open source test suite for Apache Derby

 • Monitoring multiple Apache- and IBM-based forums and mail lists to offer free advice
and best practice information to support the Apache Derby community

555255_CH01_p001-024.indd 2 9/28/05 10:10:24 AM

Why should you be interested in developing on the Apache Derby platform? The Apache Derby
platform:

 • Is easy to deploy. This database requires no installation: just copy a 2 MB .JAR file and
set the CLASSPATH environment variable. Because it is Java-based, the database runs
anywhere a standard JVM (J2SE 1.3 or higher) can be installed: from Macintosh to
mainframe, and all points in between. In addition to this Apache Derby databases (and
their data) are platform-independent and can be moved to any machine by simply zip-
ping up your files and emailing them.

 • Requires no DBA skills or administration effort. When using Apache Derby as an
embedded solution, the application automatically starts the relational engine. Upgrades
to future versions are done in-place, at connection time. Apache Derby automatically
reclaims space, updates statistics, and much more. Quite simply, you do not need to staff
your project with a DBA.

To be a player in the open source movement, you must be a proponent of open standards. Argu-
ably, no other large IT company in the world has done more for the open source movement and
open standards than IBM. In fact, today IBM backs over 150 different open source projects.

Specifically, Apache Derby uses open standards technology such as the American National
Standards Institute’s Structured Query Language (ANSI SQL), JDBC, SQLJ, and more. In fact,
because Apache Derby is open source, future plans could include distributing Apache Derby with
various mainstream Linux distributions as an accompanying database.

The IBM user community provides valuable feedback to this open source project, including
bug reports and feature requests. Although IBM Cloudscape is the same database as the Apache
Derby database available to the open source community, the IBM Cloudscape product has a sepa-
rately purchasable service and support contract, and comes with a graphical-based installation
and setup wizard to make full platform deployments (which include binary add-on features from
IBM, such as an ODBC interface) easier and more consolidated.

Apache Derby addresses a unique market need and is a great fit for many workloads.
Although Apache Derby enriches an environment steeped with a heavy Java investment and an
open source middleware stack, it isn’t just for Java developers. APIs are provided (either directly
or through a download) for PHP, Perl, CLI, ODBC, and .NET.

In this chapter, we’ll discuss the Apache Derby and IBM Cloudscape platforms, differences
between them (again, there is nothing from a code perspective), why IBM is involved, why now,
more than ever, you should consider a relational storage engine for your applications if you’re not
already using one, and more.

If You’re Not the Kind of Person Who Reads Introduction Chapters …
We recommend that you read this chapter anyway to get a good level of detail about Apache
Derby, the motivation behind what IBM is doing in the open source space (it’s a continuation of
previous works actually), why open source in the first place, and more.

Introduction 3

555255_CH01_p001-024.indd 3 9/28/05 10:10:24 AM

4 Chapter 1 On Your Marks … Get Set … Go!!!

If you’re not going to read this chapter, but you want a one-minute overview of Apache
Derby and IBM Cloudscape, the following paragraphs, courtesy of Kathy Saunders (Release and
QA Manager for IBM Cloudscape) and Jean Anderson (Architect for IBM Cloudscape) summa-
rize this product quite well:

“Apache Derby is a lightweight, embeddable relational engine in the form of a Java class
library. Its native interface is Java Database Connectivity (JDBC), with Java-relational
extensions. It implements the SQL92E standard as well as many SQL 99 extensions. The
engine provides transactions and crash recovery, and allows multiple connections and mul-
tiple threads to use a connection. Apache Derby can be easily embedded into any Java
application program or server framework without compromising the Java-ness of the
application because it is a Java class library. Derby’s support for complex SQL transac-
tions and JDBC allows your applications to migrate to other SQL databases, such as IBM
DB2Universal Database (UDB), when they need to grow.

Apache Derby Network Server provides multi-user connectivity to Apache Derby data-
bases within a single system or over a network. The Apache Derby Network Server receives
and replies to queries from clients using the standard Distributed Database Architecture
(DRDA) protocol. Databases are accessed through the Apache Derby Network Server
using the IBM JDBC driver and the DB2 UDB JDBC universal driver.

There are several technical aspects that differentiate Apache Derby from other database
systems:

 • It’s easy to administer. When embedded in a client application, a Derby system requires
no administrative intervention.

 • It’s embeddable. Applications can embed the Database Management System (DBMS)
engine in the application process, eliminating the need to manage a separate database
process or service.

 • It can run as a separate process, using the Network Server framework or a server frame-
work of your choice.

 • It is a pure Java class library: This is important to Java developers who are trying to
maintain the advantages of Java technology, such as platform independence, ease of
configuration, and ease of installation.

 • It needs no proprietary Java Virtual Machine (JVM). Written entirely in the Java lan-
guage, it runs with any certified JVM.

 • The engine is lightweight. It is about 2 MB of class files, and it uses as little as 4 MB of
Java heap.

 • It provides the ability to write stored procedures and functions in Java that can run in
any tier of an application. Derby does not have a proprietary stored procedure lan-
guage; it uses JDBC.

Apache Derby is also like other relational database systems. It has transactions (commit and roll-
back), supports multiple connections with transactional isolation, and provides crash recovery.

555255_CH01_p001-024.indd 4 9/28/05 10:10:25 AM

The unique combination of technical capabilities allows application developers to build
data-driven applications that are pervasive (run anywhere), deployable (downloadable),
manageable, extensible, and connectable.”

Let Me Get This Straight, Apache Derby Is IBM Cloudscape?
IBM contributed the IBM Cloudscape database technology to the Apache Software Foundation
as Apache Derby while at the same time announcing the IBM Cloudscape Version 10 database
(the commercial offering based on the same open source technology).

What does all this mean? As far as the code goes—how you use it, class names, files names,
and practically anything else you can think of—you can use the terms Apache Derby and IBM
Cloudscape interchangeably (the exception to this is Apache-specific licensing rules that are gov-
erned by the Apache Software Foundation). Both Apache Derby and IBM Cloudscape are built
from the same open source Apache Derby codebase. For the most part, all packages (class names,
command names, stored procedure names, and so on) use the same naming convention under the
Apache Derby name.

There are some minor differences between Apache Derby and IBM Cloudscape with
respect to surrounding (or add-on) technologies that you should be aware of, and we will cover
them later in this chapter.

The Apache Derby database, at the time this book was written, is available from the Incuba-
tor page on the Apache Web site (http://incubator.apache.org/projects/index.html) as both source
code and compiled binaries. If you download Apache Derby, your usage of Apache Derby is
bound by the Apache License Version 2.0. The Apache License is friendly to commercial busi-
nesses (which makes this a great product that provides a zero-cost, rich, and robust data runtime).
In fact, anyone who binds to it can create his or her own commercial product. You can learn more
about the Apache Software Foundation’s licensing terms at: www.apache.org/licenses.

As previously mentioned, the Apache Derby database is distributed both in open source code
and in compiled binary format on the Apache Web site. To become a full-fledged Apache project, a
project (like Apache Derby) must start in the Apache incubator, where it is given the opportunity to
demonstrate that it can become part of a viable Apache community composed of individual contrib-
utors (you can see a list of the current contributors for Apache Derby at: http://incubator.apache.org/
projects/derby.html#Detailed+References%3A) from both within and outside of the contributing
company (in this case IBM). To learn more about how Apache incubator projects work, see http://
incubator.apache.org/. Apache Derby will not be fully accepted by the Apache Software Foundation
until it graduates from the incubator project. Incidentally, during the production phase of this book,
Apache Derby graduated from the incubator phase to an official Apache sub-project.

At the time this book was written, the Apache Derby contribution was in a “Podling” stage
and therefore requires the accompanying disclaimer (from http://incubator.apache.org/derby):

“Apache Derby is an effort undergoing incubation at the Apache Software Foundation (ASF),
sponsored by IBM. Incubation is required of all newly accepted projects until a further review
indicates that the infrastructure, communications, and decision making process have stabi-
lized in a manner consistent with other successful ASF projects. While incubation status is

Let Me Get This Straight, Apache Derby Is IBM Cloudscape? 5

555255_CH01_p001-024.indd 5 9/28/05 10:10:25 AM

6 Chapter 1 On Your Marks … Get Set … Go!!!

not necessarily a reflection of the completeness or stability of the code, it does indicate that
the project has yet to be fully endorsed by the ASF.”

In contrast, the IBM Cloudscape database is only available in binary format; however, you do not
need to pay for this license either. You can freely download and use the IBM Cloudscape database
from the IBM developerWorks Web site at: http://www.ibm.com/developerworks/cloudscape.

Whether you’re developing an Apache Derby, IBM Cloudscape, .NET, open source
(Python, PHP, or Perl), or Java application, bookmark this site. It is the most comprehensive
developer resource for the IBM databases.

This Web site provides resources for developers contributed by Apache Derby community
members from inside and outside IBM, such as technical articles, sample code, user forums,
documentation, and links to the IBM Cloudscape add-ons.

One difference between Apache Derby and IBM Cloudscape is that you can purchase a sup-
port contract for IBM Cloudscape. A support contract delivers a service level agreement (SLA)
from IBM that comes from its award winning, 24 × 7 ‘best-of-breed’ service support team. Most
of the personnel on this support team also contribute time and effort to the Apache Derby proj-
ect by monitoring forums and newsgroups. However, a support contract enables businesses to
rely on a paid support structure for critical application deployments in the same way they would
receive support for proprietary products—this means defect repudiation, committed response
times, severity classifications, and so on.

Other differences between IBM Cloudscape and Apache Derby are that IBM Cloud-
scape has:

 • A graphical installation wizard that lets you optionally select add-on IBM Cloudscape
functional components like the ones detailed in this list. It is very well suited for devel-
oper workstation deployments.

 • The DB2 Universal JDBC driver, commonly referred to as the Java Common Client
(JCC). This JCC driver is available for download from the IBM Cloudscape Web site.
The JCC driver can perform Type 2 and Type 4 JDBC connections, and it shares a com-
mon codebase that can be used for JDBC connections across the entire DB2 and IBM
Cloudscape family (there are licensing considerations for some of these connections).
The benefit is portability if the need ever arises for a more enterprise-class database
like DB2 UDB. Because the same code manages the connection and application flow
between the hosting application and the database, you can be assured that migration
efforts are trivial.

 • The IBM DB2 Plug-In for Eclipse (available as a free download from the IBM devel-
operWorks Web site). This download includes:

 • The base Eclipse software developer’s kit (SDK).

 • An Eclipse-based plug-in for Apache Derby, IBM Cloudscape, DB2, or Informix
schema and SQL statement development. This tool enriches functions previously
delivered by the old Cloudscape Cview utility.

555255_CH01_p001-024.indd 6 9/28/05 10:10:26 AM

 • An Eclipse-based plug-in for schema and data migration (with validity checking)
from Apache Derby to DB2 for Linux, UNIX, and Windows.

 • Additional data access APIs like ODBC, PHP, Perl, and .NET interfaces. These inter-
faces can all be downloaded from developerWorks (although we’ve included links to
them on the book’s Web site [www.ibmpressbooks.com/title/0131855255] to make it
easier to get going). White papers and other supporting collateral will accompany them
as they become available. For example, the ODBC collateral will explain how to inter-
face with Perl, PHP, and .NET applications using the ODBC driver.

 • Preloaded sample databases, including the traditional Cloudscape TOURSDB database
and the DB2 SAMPLE database (these are included in the installation package).

 • Scripts to help you get up and running more quickly by setting your CLASSPATH envi-
ronment variable, or by running some of the data utilities, and so on (these are included
in the installation package).

 • Sample programs that test your database server.

 • An installation program that includes an IBM Java Runtime Environment (JRE) which is
automatically installed with IBM Cloudscape for Windows and Linux (IBM Cloudscape
also ships a Java-based installer for other platforms, but you have to ensure that a JRE is
installed and configured on your server.)

 • Documentation in PDF format, and online access to an information center built on the
Eclipse help system framework. For Apache Derby, because you will have access to the
documentation source files, you could use Apache Forrest to build and publish the docu-
mentation in HTML format to your own Web site or help system.

Keep in mind that because Apache Derby and IBM Cloudscape are the same product, any of the
IBM Cloudscape add-ons mentioned in the previous list can be downloaded from IBM for use
with Apache Derby.

Development of the Apache Derby Database—Who Can
Contribute and How?
In this section, we will briefly discuss who can contribute to Apache Derby and how contribu-
tions are made. The goal of this section is not to make you an expert in how the Apache Software
Foundation process works; rather, it will briefly describe how your work could end up in Apache
Derby. For complete details on the concepts outlined in this section, see http://www.apache.org/
foundation/how-it-works.

While you read this section, keep in mind that because Apache Derby and IBM Cloudscape
share the same codebase, any changes to the host Apache Derby code are automatically reflected
in the IBM Cloudscape binaries. The add-ons provided by IBM with IBM Cloudscape are pro-
prietary, and their source code is not being made available; however, they can be freely used with
Apache Derby. For example, IBM’s Java Common Client is not open source code.

Development of the Apache Derby Database—Who Can Contribute and How? 7

555255_CH01_p001-024.indd 7 9/28/05 10:10:26 AM

8 Chapter 1 On Your Marks … Get Set … Go!!!

Because Apache Derby is an open source database project, its success relies on an ecosys-
tem to enrich and mature the quality of its code base. The development of Apache Derby is peer-
based, and these development peers come from an ecosystem that includes personnel from IBM,
current Cloudscape customers, and a host of other developers who have previous Cloudscape
experience or who choose to become experts in this field because of its obvious advantages. The
introduction of new features into the base source code must strictly follow Apache guidelines.

Anyone can be included in the Apache mailing lists and submit code. These developers
are known as Apache Derby contributors. The actual code for Apache Derby is maintained in a
Subversion (SVN) repository that is restricted to a smaller set of committers. (You can learn more
about SVN at http://subversion.tigris.org/.)

The Apache meritocracy determines which members of the Apache Derby community can
become committers. This ascension path is the nucleus of the Apache organization and its proj-
ects. The Apache Software Foundation has five different levels, as shown in Figure 1-1.

Figure 1-1 The Apache Software Foundation hierarchy

After contributors “earn their stripes” through meritable contributions and overall techni-
cal leadership for the direction of the source code, they can be promoted to committers. When a
developer is considered a committer, he or she is granted access to the SVN repository. On their
Web site, the Apache group calls this process meritocracy; literally, “govern of merit.” You earn
rights in accordance to your worth and efforts.

Committers get to vote on what contributed features make it into the build tree (again, the
source code for the product is stored in the SVN repository). In this way, an experienced commit-
tee directs future innovations for the Apache Derby project (this is all part of the Apache process).
Of course, because Apache Derby is open source, you are free to develop your own derivative
works and use them for yourself, but we encourage all developers to become active in the devel-
opment of Apache Derby—we are a community after all!

Each committee member can vote for a new feature, abstain from voting, or vote against
a new feature for Apache Derby. Any negative votes must include an alternative proposal or a
detailed explanation for the negative vote. (Bug fixes do not go through this process, but they do
require review at check-in.) In essence, the community tries to come to agreement before moving

555255_CH01_p001-024.indd 8 9/28/05 10:10:27 AM

forward with any changes. The Apache Software Foundation refers to this process as “consensus
gathering,” and it is a key construct in any Apache community.

IBM assigned six committers to the Apache Derby project when it released this product
to the open source community. These committers are all steeped in IBM Cloudscape skills. In
fact, they also have a deep understanding of other databases, such as DB2, Informix, Sybase, and
SQL Server. Some of these committers are the original architects of the Cloudscape database. For
Apache Derby to graduate from an Apache incubator project to a full-fledged Apache project (the
project currently sits as an official Apache sub-project only one year before it is accepted as an
incubator project), the committer ratio of IBMers to non-IBMers needs to “strike balance.” Who
will be among the committers that will join the Apache Derby project and help it become a full-
fledged Apache project? It could be you!

How Can IBM Sell a Product for Profit and Contribute the Same
Product to the Open Source Community?
Some members of the community might be skeptical about how IBM could possibly open source
the code base for a product that is a source of revenue. Remember, if you choose to use IBM
Cloudscape instead of Apache Derby, you are not paying for the right to use the database; you are
only paying for a support contract (if you want one).

IBM has long been a strong contributor of open source software and open standards, espe-
cially in the areas of XML, Linux, Web Services, HTML, IP, HTTP, J2EE, true grid computing,
and more. For example, IBM invented and donated the Distributed Relational Database Architec-
ture (DRDA) standard for client/server communications.

The XML4J processor is another example of software that was developed in an IBM pro-
prietary manner and later successfully open sourced. If you go to the Apache Web site, you will
find the Xerces XML projects in the project list—those came from IBM. IBM actually helped
start the Apache Software Foundation, so Apache Derby and Apache Xerces are great examples
of the synergy that can be leveraged between open source and the for-profit business sector. This
can work as long as the for-profit side of the equation is committed to open standards.

One of the best known contributions from IBM to the open source community is the Eclipse
project (www.eclipse.org), a very successful open source integrated development environment
(IDE) that was donated by IBM after they invested over 40 million dollars into it, and it not only
lives on today, but has developed into a thriving community into the millions.

Other examples include IBM’s extensive contributions to the Globus Alliance Grid speci-
fication (http://www.globus.org/ogsa/), the millions of dollars contributed toward the Linux
movement, and the fact that IBM has led or co-led the creation of Web Service foundation tech-
nologies. IBM has also made significant contributions to Java; in fact, by contributing the IBM
Cloudscape technology to the open source community as Apache Derby, IBM is enabling Java to
expand into new market segments. This is not market posturing; this is real code that has changed
(and is changing) the IT landscape forever.

The Apache Derby contribution represents over 500,000 lines of code, estimated to be
worth over 85 million dollars!

How Can IBM Sell a Product for Profit and Contribute the Same Product to the Open Source Community? 9

555255_CH01_p001-024.indd 9 9/28/05 10:10:27 AM

10 Chapter 1 On Your Marks … Get Set … Go!!!

So, in a nutshell, IBM is a significant force supporting open source innovation and collabo-
ration. The company participated in more than 120 collaborative projects that have been contrib-
uted to the open source community. IBM contributed 500 patents into a “patent commons” for
development and innovation. IBM has invested more than $1 billion in Linux development. IBM
drives the adoption of and migrations to Linux among the development community, and expands
enterprise-class tools for open source developers. So indeed, one can say that IBM is involved in
open source!

How an Open Source Database Like Apache Derby Can Help
Several vendors are open sourcing their databases these days. Some have yet to publish their
source code. The Apache Derby initiative is unique in that the entire source code is published.
IBM believes that delivering this code to the Apache Derby community enables a richer and more
robust feedback mechanism by which more functions, features, and benefits can be driven into
the Apache Derby database.

Another unique and differentiating feature of Apache Derby is that this database was born
out of a very successful proprietary initiative and consumer adoption lifecycle. Many features in
this product resulted from specific business needs, and customers paid for the right to have these
features. Since the Informix acquisition, IBM has continued to invest in this database, and it now
powers much of the IBM software middleware stack. An open source Apache Derby database is
interesting from both business and technical perspectives.

Open Source Software from a Business Perspective
From a business perspective, the Apache Derby database provides a way for individuals and
companies to collaborate on projects that result in a greater sum than each could accomplish on
their own: in short, it is synergistic.

It also flattens the “time to value” curve for projects by allocating fixed and variable costs
across a greater sum of resources (most of which are not yours, which is a good thing from a cost
allocation perspective). This effect drives down the marginal (per unit) cost of new features that
are continuously driven into a product and would otherwise cost the recipient more money to
obtain and leverage.

For example, consider maintenance programs such as Microsoft’s Software Assurance
(SA), which are used to deliver technology updates with new features to Microsoft software.
Agreements like this come with their own usage terms but no promise with respect to the deliv-
ery of new features. However, new features are prepaid in advance, without credit. For example,
SQL Server has a built-in five-year gap between SQL Server 2000 and SQL Server 2005. During
this time, Microsoft did not release a significant amount of new functionality because of the busi-
ness unit’s release schedule, in spite of a user base that required a technology update. (They did
deliver some new features. For example, their 64-bit engine was delivered outside of a scheduled
release to remain competitive in the database space.) The point here isn’t to besmirch Microsoft,
but rather to point out that the delivery of new technology had nothing to do with technological
innovation. In fact, some would argue that there has been limited technological innovation with

555255_CH01_p001-024.indd 10 9/28/05 10:10:27 AM

this product (because there wasn’t a release) in the last four years (until the release of SQL Server
2005)—yet not only was the right for these new features prepaid for, but there was also an oppor-
tunity cost of not having access to them.

On the other hand, the Apache Derby formula gives access to innovations from their earli-
est inception, as soon as they become part of the stable build stream. The point is that users of
Apache Derby can take advantage of a new feature independently of its location in the product
lifecycle, individual business unit goals, corporate funding, and so on. Rather, the decision to
take advantage of a feature is based on need—early adopters will gravitate to new features ear-
lier, whereas others might choose to wait until new features are more mature and tested—with a
database like Apache Derby, you can do this.

Because this book is written with the Apache Derby application developer in mind, it is
beyond our scope to discuss in detail the business benefits of the open source movement. There is
a host of information on the Web about the business value of open source software. A good place
to start is at www.ibm.com/developerworks/rational/library/1303.html.

Open Source Software from a Technical Perspective
From a technical perspective, because the source code for Apache Derby is readily and fully
available to an “interested” and participatory community, the open source model has the advan-
tage of transforming application developers into Apache Derby co-developers. Code bugs have
a better chance of being detected, and the community serves as a quality assurance tier beyond
the test buckets engineered by function verification testing (FVT) and system verification testing
(SVT) units in the proprietary model. Beyond the mere detection of problem code, the fix for
any issue can be delivered when the code is ready, outside of the complexities of a release cycle,
costly hot fix schedules, or emergency rating systems.

The open source model also helps drive key technical features into the product more
quickly because more developers are working on solutions to today’s problems, and they get
these improvements into the code at the same time (and not in correlation to profit center results).
Quite simply, when software like the Apache Derby database is open source, it is free from busi-
ness conditions and acts as a propellant for new features. In addition, the open source model
enables end users to leverage features in a granulized and “as-needed” fashion (some applica-
tions will need urgent access to a performance feature, whereas others can wait), with full and
open access to the build tree.

When discussing the benefits of open source software, we found the following quote quite
interesting: “Source-level debugging saves valuable time throughout the embedded develop-
ment process by eliminating the guesswork about how the code is interacting with the kernel or
other low level operating system code.” This quote (from Microsoft: http://msdn.microsoft.com/
embedded/prevver/ce3/download/source/default.aspx) captures one of the key technical advan-
tages of open source software. It’s our point exactly.

The Apache Derby project delivers where other companies’ marketing collateral tailors off.

How an Open Source Database Like Apache Derby Can Help 11

555255_CH01_p001-024.indd 11 9/28/05 10:10:28 AM

12 Chapter 1 On Your Marks … Get Set … Go!!!

Why the Need for a Local Data Store?
There are many reasons why more and more application developers and architects are turning to
embeddable or lightweight databases. Before answering “why use a relational engine underneath
an application?” which draws you to the Apache Derby platform, let’s first discuss some of the
benefits of just having a localized engine to store and manage your data.

Applications sometimes need to persist data, yet operate as an occasionally connected client
(OCC). Such applications require intermittent access to the corporate network to refresh, upload,
or pull data changes. For example, a traveling insurance agent might fill out reports throughout
the day and want to manage the data locally until a time when the data can be uploaded to the cor-
porate server. During the day, however, that user will need fast and efficient local access to data
that pertains to his or her region.

Local data stores have become more popular recently for security reasons as well. Having a
database available to an application, but not over a network, minimizes many security concerns.
Today’s economy is governed by more and more regulatory compliance rules concerning data
persistence, such as the Health Insurance Portability and Accountability Act (HIPAA), Sarbanes-
Oxley (SOX), the Basel II accord, and others. Another example of this is the challenge that many
lines of business are facing with the new corporate reporting requirements in the United States.
A lot of reporting is handled and stored in Microsoft Excel files, which might trigger compliance
issues. Apache Derby can be used to provide a secure and robust repository for this data (alleviat-
ing the issues surrounding file repositories), while providing transparent access for end users who
won’t really know that the data isn’t in a file.

In the past, data storage engines were under the complete control of IT departments, which
had a number of implications. These engines had to be resourced from IT (which meant jumping
through hoops to get a DBA’s attention or resource); you consumed corporate CPU cycles, stor-
age, and more. A self-managing and self-contained database such as Apache Derby has a “round-
ing error” of significance with respect to IT budgets and skill allocations, so you can avoid that
lengthy process altogether.

Geographic isolation might also drive the requirement for a local data store. For example,
many of today’s cars have built-in computers that gather information that will subsequently be
dumped to a certified mechanic’s computer. These databases are being enhanced in many ways.
Computers that collect driving characteristics data will run algorithms and queries that will adjust
the performance characteristics of the car (suspension, torque, air/fuel ratios, and so on) to match
the owner’s driving patterns in real time.

Another example is Rolls-Royce. Although Rolls-Royce may be well known for its spectac-
ular cars and artisanship (though the reality is that Rolls-Royce hasn’t been making Rolls-Royces
since the early 1980s), its real business is producing aero-engines, along with marine engines,
power generators, nuclear submarine power plants, and so on. Rolls-Royce attaches drives to some
of these engines that literally record gigabytes of information during operation. This data has to be
stored somewhere. Sounds like a great opportunity for a database! Take for example an airplane
whose engines record data through an entire flight pattern, which then is dumped for analysis to

555255_CH01_p001-024.indd 12 9/28/05 10:10:28 AM

the safety engineer at the destination airport—it makes us feel safe when someone sending our
plane on to the next destination knows how that engine performed that whole way!

Having data managed locally can increase performance, deliver better and more conve-
nient access to vital data, and provide many other benefits that we will not cover here.

Estimates point to data collection rates of around 450 megabytes for every man, woman,
and child per year, and in the three years prior to 2004, the world collected more data than it did
in the last ten thousand years. There are a multitude of factors driving unprecedented data storage
requirements, and these data requirements can only be handled by a relational database manage-
ment system (RDBMS).

Why Use a Relational Database?
Now that it is apparent how applications and business processes can benefit from a functional
place to persist and manage data, it is interesting to briefly comment on why a relational database
is the best choice (as opposed to other approaches, like a file system, etc.).

There are many applications out there today that use some sort of local storage format to
keep data collocated with the application, or to address any of the issues mentioned in the previ-
ous section. However, without a database, most of the proposed solutions cannot handle the ato-
micity of multiple changes (all or nothing, and the management of transactions that may impact
each other), and there is no built-in recovery mechanisms in case of a failure during the transac-
tion, no parallelism, no set-oriented data access API, no ability to share the same data at the same
time between applications or users based on the business rules, and so on.

The most common format—perhaps due to legacy decisions and the lack of an embed-
dable, small-footprint database like Apache Derby in the past—is the flat file. Some databases
even build on a flat file system, like FileMaker Pro. In the past, developers might have used a flat
file system for their data storage requirements because it was perceived to be simple (for opera-
tional and management reasons, not from a coding standpoint) and fast. However, this architec-
ture comes with its disadvantages: namely, it requires a lot of hand coding and is prone to errors.

Another common approach is XML; most programming languages implement standard
programming interfaces for reading and writing XML (the XML specification itself is an open
standard maintained by the World Wide Web Consortium). Like flat files, XML files can be easy
to understand when you open them in an XML editor; however, as your data and the relationships
between your data elements become more complex, designing a single XML file to store your
data becomes a non-trivial exercise.

Storing data in XML files forces you to implement locking mechanisms to ensure that the
files are always in a consistent state. In addition, as the amount of data you have to store in the file
grows, your application will either require more system resources to store the entire XML file in
memory, or have to reread and parse the XML file every time it has to retrieve data.

XML files are a great means of communicating between applications who don’t know each
other. In fact, XML is great for a lot of reasons. But as a data store, it requires a lot of effort for
anything more than trivial data persistence scenarios. Of course advanced databases like DB2

Why Use a Relational Database? 13

555255_CH01_p001-024.indd 13 9/28/05 10:10:28 AM

14 Chapter 1 On Your Marks … Get Set … Go!!!

UDB have the capability to provide XML repositories in combination with all the benefits that
accrue from years of experience in the relational world.

One of the most significant benefits of using a database such as Apache Derby is that it
delivers atomicity, consistency, isolation, and durability (ACID) compliance. Not all open source
or proprietary databases do that. Databases exist for the purpose of providing a reliable and per-
manent storage mechanism that encompasses very strict properties embodied by these ACID
characteristics. Although it is outside the scope of this chapter to discuss relational theory, you
can learn more about ACID transactional processing and why it is so important from the “bible”
of database theory: An Introduction to Database Systems, by C. J. Date (Addison-Wesley, 2004).

Another benefit of a relational data store is the concept of relationships. In fact, that is
what relational databases (as the name would imply) are all about: set relationships. Whereas
mathematicians can use algebra and set theory to no end for theoretical proofs, what a relational
database delivers is a mechanism by which entities can be easily traversed and assembled, in
any direction, with minimal coding effort. Need to know all the accounts with a last name that
contains a specific group of characters? What about folks in the Eastern region? What happens
to your application logic and pointer files when you move this data to another storage device in
a flat file system? All this is transparently retrievable and navigable using a relational database,
without code changes.

How is this possible? What is this ‘magic’ language by which you can interact with
your data in an abstracted way without caring about its location? Structured Query Lan-
guage (SQL): it can be used (in one form or another) to access all sorts of relational databases.
SQL is a declarative language in that it does not contain any variables, loops, or other program-
ming constructs (though there are procedural cousins that incorporate these entities). It is easy to
learn, even for the non-programming kind.

Using a data store that can process SQL makes the data model more dynamic and flexible
than it could ever hope to be when using a flat file system or some other approach. For example,
if new information is deemed to be important, a query can be quickly written and implemented
into the application. The methods by which the data needs to be accessed, or where it resides, are
not issues. Typically, with a flat file system, this information was only well known to the original
application developer; it’s just not an issue with a relational database system. With a relational
database system, access to the data and how to get to that data is abstracted from the developer.

With a flat file system, adding a new structure to the data model requires a new file (or
the editing of an existing one), the registration of (or pointer updates to) the file, and so on.
With an XML file system, you would have to modify your existing XML file structure and all
of the methods that make assumptions based on the existing structure, or add another XML file
to contain the new structure, and then implement a complex (and customized) join operation
between the two XML files. Today, with Apache Derby relational database technology, it is
as simple as a CREATE TABLE statement to add a new structure and a SELECT statement to
return the new data.

The use of SQL also opens up a database to a wide variety of interfaces and access methods
that would all have to be hand-coded when working with a flat file system. These interfaces mean

555255_CH01_p001-024.indd 14 9/28/05 10:10:29 AM

a shortened and less expensive development cycle for applications, along with a readily available
talent pool of developers and administrators.

Today’s computers are orders of magnitude more powerful than those of the previous two
generations. Many decisions were made to use flat files as opposed to a relational database some
years ago due to the cost/power ratio for computers. When an Intel x486 processor with 64 MB
of RAM was the most powerful (and expensive) computer around, you can see why economics
would dictate the use of a flat file system. Today, computers and personal devices have moved
far from the early adopters’ phase of their respective product lifecycle curves such that they are
capable of hosting a lot of data at relatively inexpensive costs.

Relational databases are very scalable as well. You can start with a database that resides on
a tablet for a single user and move it to a large symmetric multiprocessor (SMP) machine that is
used to support thousands of users and literally millions of transactions per minute.

Finally, the manageability of a relational database was thought to require an expert skill
set, and thus it was deemed inappropriate for many applications. Databases like Apache Derby
do not require users to perform table reorganizations or know anything about heap-related tuning
parameters (if you do not know what these are, don’t worry—that is the point).

How the Apache Derby Platform Can Help Your Business
There are many reasons why an Apache Derby platform decision can benefit your company, proj-
ect, or infrastructure. In this section, we will give you some examples of how Apache Derby can
be used in today’s marketplace.

From a market perspective, not all client/server or Web applications require the muscle
of an enterprise-class infrastructure database. In fact, 20–30% of applications might only need
basic relational database capabilities, and their hosting environments might not have the sys-
tem requirements to grab IT allocations (or attention for that matter) for these full-fledged data
engines. However, they still require the scalability and robustness for data integrity that are asso-
ciated with such databases, and Apache Derby gives them a way to do that.

In addition, as the amount of data being collected literally grows logarithmically and
developers learn to leverage the benefits of a relational storage model, there are more and more
demands for relational engines to be easy to use, easy to deploy, and embeddable. Developers
will use databases, but they have overwhelmingly communicated that they are not interested in
becoming DBAs.

Java has become a mainstay of the IT community; it is the write once, run anywhere imper-
ative that helps to encourage platform independence and drives down the cost of computing. In
fact, over 40% of all developers have Java-based skills. Coupled with other open source move-
ments like Linux, the market screams for a true Java-oriented database from implementation
through to the API. (Apache Derby can also support other programming languages and interfaces
like .NET and ODBC, too, so it isn’t just for Java developers.)

Finally, more than ever, the open source community is literally changing the landscape of
information technology. Open source communities drive timely innovation into operating sys-
tems; Web servers can deliver this innovation in a rapidly adoptable model at minimal costs. As

How the Apache Derby Platform Can Help Your Business 15

555255_CH01_p001-024.indd 15 9/28/05 10:10:29 AM

16 Chapter 1 On Your Marks … Get Set … Go!!!

other proprietary software companies deliver an infrastructure under predatory pricing schemes,
the market is turning to the open source community to “break the chains that bind.”

The Apache Derby database delivers the true database technology that the market has been
asking for on many fronts. Apache Derby is a Java-based embeddable database. Because it is
written in Java, it can be embedded within your Java applications and deployed anywhere. This
means that moving your application from a mainframe to a Linux- or Windows-based server is
as simple as deploying a JAR file: “just drop-and-go.” Further adding to its portability, Apache
Derby uses an SQL92 and SQL99 entry level compliant SQL API (in fact, its SQL API is 100%
compliant with the DB2 family).

There are no DBA requirements for managing Apache Derby. It could truly be hosted on
those irritating late-night infomercials that claim to take the hassle out of various day-to-day
chores. What little management there is (or that you can take advantage of for more granular
tuning) can be controlled programmatically from the application itself. For example, a database
backup can be executed through a native API call.

Finally, heavy investments in tooling create a feature-rich open source Eclipse environment
for Apache Derby application development. This allows Java developers to remain productive in
a comfortable open source environment, yet still leverage the benefits of a database.

Specifically, Apache Derby can be used for workloads such as:

 • Small business client database applications: Many small businesses do not require a
database that can support thousands of simultaneous users. For these businesses, Apache
Derby may be a perfect fit, especially because it does not require a DBA—a luxury
many small businesses cannot afford.

 • Embedded applications: Because the database is only about 2 MB in size and is imple-
mented as a Java .JAR file, it simply becomes a part of the application that is running it.

 • Client database applications: Many client applications need the power and reliability
of a fully transactional (ACID compliant) SQL database, without the unwanted over-
head of a DBA. Java applications built on the Apache Derby platform will pretty much
run on any platform that supports a JVM.

 • Local registries and repositories: Application Servers use Apache Derby to store
dynamic registries such as UDDI or meta-data stores. Because these databases are fully
transactional engines, developers do not have to worry about data corruption and system
crashes destroying their critical configuration data.

 • Small business client/server and Web-based applications: Small businesses need Web
sites that are low on maintenance and high on reliability, with plenty of head room for
seasonal business spikes. Apache Derby delivers a robust performance engine suitable
for many small business needs; for example, Web shopping carts, recommendation
engines, and so on.

 • Java development databases: Apache Derby makes it easy to put a relational database on
every developer’s desktop. Apache Derby is just 2 MB, requires no DBA, and the support

555255_CH01_p001-024.indd 16 9/28/05 10:10:30 AM

for JDBC allows for an easy switch to an open standards enterprise database during the
later stages of development and testing. This means that you can leverage this database
for development at no cost and write applications to be deployed on more industrial-
strength databases such as DB2, Informix, and so on. In the past, many shops addressed
the development database requirement with a client/server database. However, this intro-
duced the need for a DBA and opened up the possibility of one developer’s “bad code”
compromising the entire development team’s productivity by accidentally erasing test
databases or corrupting the database. It also forced system administrators to develop soft-
ware deployment strategies and to obtain the bandwidth to support them. With Apache
Derby, developers can simply copy the Apache Derby .JAR file to a local directory, set
their CLASSPATH environment variable so that it points to the .JAR file, and they are
ready for development. Even moving data around is a snap.

 • Demonstration or proof-of-concept applications: Apache Derby is an ideal database
to use for demonstrations of your software (when a database is required) and proofs of
concept. Because of its small size, Apache Derby adds very little to the download size
of your demo, and it can be invisibly embedded into your application. Your potential
customers and evaluators can run your application just as they would against an enter-
prise database without having to download, configure, and run one. Think of all those
applications that run on a multitude of databases but require a significant investment for
a simple proof-of-concept or demonstration. Apache Derby can solve these problems.

A High-Level View of the Apache Derby Database
Apache Derby is a relational database management system that is written in Java. Java and the
open source movement go hand-in-hand. Java is an attractive language in which to write such
software because its “write once, run anywhere” mantra allows for seamless portability. People
that like Java will love Apache Derby because the engine is very portable: again, from Mac to
mainframe, and all parts in between. For example, Apache Derby is heavily leveraged on main-
frames for applications that require a lightweight meta-data storage engine.

The moment many application developers or project managers hear the word “database,”
they start looking for a database administrator (DBA), and questions along the line of “how do I
implement an incremental backup” and so forth arise. The Apache Derby database is not for DBAs
(and they’re likely not to like it very much because they’ll be looking for the wrong things). In
fact, Apache Derby is unique in that it does not require professional DBAs, or DBA skills for that
matter, to run. It is truly a “lights-out” database management system. Think of Apache Derby as
that “black box” in the corner. But don’t let the “behind the scenes” characteristics of the Apache
Derby platform fool you: there are customers today with Cloudscape databases that hold tens of
gigabytes of data.

Apache Derby delivers an efficient “next to no compromise” database engine in a “finger-
print-sized” engine of only 2 MB. Along with its tiny size, it has generally minimized resource

A High-Level View of the Apache Derby Database 17

555255_CH01_p001-024.indd 17 9/28/05 10:10:30 AM

18 Chapter 1 On Your Marks … Get Set … Go!!!

requirements too. For example, in some environments, it can run with as little as 4 MB of RAM
on a J2SE/J2EE 1.3 or later platform. In addition, the number and size of tables are pretty much
limited only by the disk space available to them. (The maximum number of indexes per table is
32,767, and the maximum number of columns in a table is 1,012.) This makes Apache Derby not
only easy to deploy but also easy to embed within applications as well. In fact, it literally disap-
pears into its hosting application.

Apache Derby packs a lot of punch in its tiny 2 MB allocation. It provides a fully relational
database engine, including complete support for SQL92E and JDBC (2.0 and 3.0), and partial
support for SQL99. It has many advanced features that experienced database developers may be
accustomed to with larger databases, such as:

 • Identity columns (sometimes referred to as auto-incremented columns) for key generation

 • Fast query compilation through a cost-based optimizer that supports hash joins, sort
avoidance, and row- or table-level locking based on a percentage of data selected

 • Automated statistics collection, automatic table reorganization and space reclamation,
programmatic backups (no DBA required), and more

 • Binary large objects (BLOBs) for complex non-traditional data handling

 • Referential constraints (primary and foreign key), general constraints (unique and
check), and default values for business rules enforcement

 • Transactional processing (it’s ACID-compliant; see the “Why Use a Relational Data-
base?” section for more details) with isolation levels such as repeatable-read and
uncommitted-read

 • Objects to encapsulate business logic and promote code reuse and best practices, such as
stored procedures, user-defined functions (UDFs), and triggers

 • Views

 • Bulk load utility

 • Scrollable cursors for more efficient result set processing

 • Concurrent access by any number of program threads or processes

 • Multi-user access

 • JDBC (both an embedded driver and an external driver that’s the same one used with
DB2 UDB for z/OS and DB2 UDB for Linux, Unix, and Windows—called the Java
Common Client), ODBC, CLI, .NET, PHP, and Perl connectivity (add-on interfaces are
available from the IBM Cloudscape Web site). In fact, IBM contributed the Apache
Derby Network Client during the writing of this book—learn more at: http://incubator
.apache.org/derby/faq.html#netclient.

 • Rich security features, such as signed Java Archive (.JAR) files, encryption of stored
data (through the Java Cryptography Extension, or JCE, and other providers), ability to
run with a Java 2 security manager enabled, optional LDAP authentication, and more

555255_CH01_p001-024.indd 18 9/28/05 10:10:30 AM

 • Unlimited table size (though many operating system’s 2 GB file limits could theoreti-
cally come into play because Cloudscape stores each table as a separate file)

 • The IBM Integration Plug-in for Apache Derby; a free Eclipse-based plug-in to imple-
ment Apache Derby functionality as user interface component (http://www-106.ibm
.com/developerworks/db2/library/techarticle/dm-0501cline/)

 • National language support for program integrated information (for example, error mes-
sages, program output, and so on), and documentation for the following languages:
Spanish (es), German (de_DE), French (fr), Italian (it), Brazilian Portuguese (pt_BR),
Korean (ko_KR), Japanese (ja_JP), Traditional Chinese (zh_TW), and Simplified
Chinese (zh_CN)

Officially, Apache Derby supports any standard JVM (J2SE 1.3 or higher). Whereas most appli-
cations detail operating system support prerequisites, the JVM is really the run-time platform for
this database.

All Apache Derby components and future enhancements will adhere to the Apache Derby
Charter. This charter is a statement of direction or purpose. It dictates a course of action that
everyone involved in this community will adhere to in order to create the best possible underly-
ing data store for their applications. Specifically, it decrees that any contributions to the Apache
Derby code base must be completely written in Java, easy to use, have a small footprint, and be
secure.

Details on SQL Support in Apache Derby and IBM Cloudscape
Apache Derby and IBM Cloudscape implement the SQL92E language standard and many fea-
tures that are found in the SQL99 specification (with extensions for Java). Although not com-
plete, the following list details most of the features that you’re likely to leverage when building
your own application:

 • Basic database types, such as: CHAR, DECIMAL, DOUBLE PRECISION, FLOAT,
INTEGER, NUMERIC, REAL, SMALLINT

 • Datetime data types (from SQL92T): DATE, TIME, TIMESTAMP (with JDBC date/
time escape syntax)

 • Other types: BIGINT, VARCHAR, CHAR FOR BIT DATA, VARCHAR FOR BIT
DATA, LONG VARCHAR, LONG VARCHAR FOR BIT DATA, BLOB, CLOB

 • Basic operations: +,*,-,/,unary +,unary -

 • Basic comparisons: <,>,<=,>=,<>,=

 • Datetime literals

 • Built-in functions: ABS or ABSVAL, CAST, LENGTH, CONCATENATION (||), NULLIF
and CASE expressions, CURRENT_DATE, CURRENT_ISOLATION, CURRENT_
TIME, CURRENT_TIMESTAMP, CURRENT_USER, DATE, DAY, HOUR,
IDENTITY_VAL_LOCAL, LOCATE, LCASE or LOWER, LTRIM, MINUTE,

A High-Level View of the Apache Derby Database 19

555255_CH01_p001-024.indd 19 9/28/05 10:10:31 AM

20 Chapter 1 On Your Marks … Get Set … Go!!!

MOD, MONTH, RTRIM, SECOND, SESSION_USER, SQRT, SUBSTR, TIME,
TIMESTAMP, UCASE or UPPER, USER, YEAR

 • Basic predicates: BETWEEN, LIKE, NULL

 • Quantified predicates: IN, ALL, ANY or SOME, EXISTS

 • CREATE and DROP SCHEMA

 • CREATE and DROP TABLE

 • Check constraints

 • ALTER TABLE: ADD COLUMN and ADD or DROP CONSTRAINT

 • CREATE and DROP VIEW

 • Constraints: NOT NULL, UNIQUE, PRIMARY KEY, CHECK, FOREIGN KEY

 • Cascade delete

 • Column defaults

 • Delimited identifiers

 • Updatable cursors (through JDBC)

 • Dynamic SQL (through JDBC)

 • INSERT, UPDATE, and DELETE statements

 • Positioned updates and deletes

 • WHERE qualifications

 • GROUP BY

 • HAVING

 • ORDER BY

 • UNION and UNION ALL

 • Subqueries as expressions (from SQL92F)

 • Joins in the WHERE clause

 • Joins (SQL92T): INNER, RIGHT OUTER, LEFT OUTER, named column join, condi-
tional join

 • Aggregate functions (with DISTINCT): AVG, COUNT, MAX, MIN, SUM

 • SELECT *, SELECT table.* (SQL92T), SELECT DISTINCT, select expressions

 • Named select columns

 • SQLSTATE

 • UNION in views (SQL92T)

 • CAST (SQL92T)

 • INSERT expressions (SQL92T): insert into T2 (COL) select col from T1

555255_CH01_p001-024.indd 20 9/28/05 10:10:31 AM

 • VALUES expressions: select * from (values (1, 2)) as foo(x, y), and so on

 • Triggers

The Apache Derby Components
Developers, line of business (LOB) managers, and IT professionals have chosen and will con-
tinue to choose the Apache Derby database in countless scenarios and for numerous vertical
applications. Apache Derby can be entirely embedded within an application, used in a client/
server architecture, or even embedded in an application server.

Three major components are shipped with Apache Derby: the Apache Derby database
engine, the Apache Derby network server, and the Apache Derby ij JDBC scripting tool (there
are some other tools, but this is the main one). As previously mentioned, the Apache Derby Net-
work Client is a recent IBM contribution that will become the mainstay for many of your appli-
cations that leverage a traditional client/server environment. You can get it at: http://incubator
.apache.org/derby/faq.html#netclient.

The Apache Derby Database Engine
The core of an Apache Derby solution lies within the Apache Derby database engine. As you
have seen, the Apache Derby database engine is a full-featured, fully functional, embeddable
relational database engine. Having been part of IBM for three years, the Apache Derby SQL dia-
lect is a subset of that used for DB2. This means that Apache Derby applications are, for the most
part, fully portable to DB2. In addition, an Apache Derby database can interact with the DB2
Everyplace SyncServer (both as a client and as a backend data store), which allows it to be part of
a mobile solution that includes synchronization logic.

Apache Derby can be easily embedded within a Java application because it is implemented
as a Java class library. For example, Apache Derby is usually delivered as part of an application’s
.JAR file in which the Apache Derby .JAR file has been included.

The database is started when the Java virtual machine (JVM) that hosts the application is
started, and it is subsequently shut down when the JVM hosting the application is terminated.
Because a JVM can be multi-threaded, any threads that are spawned within the JVM hosting the
Apache Derby database engine can access the database. Concurrent access to this database, with-
out the use of the Apache Derby network server, must be made from within the same JVM.

It is possible to have multiple JVMs running on a machine and even to have separate
Apache Derby databases in each JVM. In this case, the environments are considered to be com-
pletely separate.

Apache Derby Network Server
The Apache Derby network server increases the reach of the Apache Derby database engine by
providing traditional client/server functionality across JVMs, expanded data access interface
options, as well as concurrent access between JVMs on the same machine. The Apache Derby
network server allows clients to connect over TCP/IP.

The Apache Derby Components 21

555255_CH01_p001-024.indd 21 9/28/05 10:10:31 AM

22 Chapter 1 On Your Marks … Get Set … Go!!!

When developers refer to Apache Derby as an embeddable database, they are referring to
the fact that the Apache Derby database runs within a JVM process. Without the Apache Derby
network server, there would be no networking services, data access outside of the embedded
JDBC driver in the database engine, or other infrastructure requirements; this accounts for its
small footprint.

Understanding what the embedded concept entails is critical when developing applications.
For example, one common misconception that developers have when they work with Apache
Derby as a standalone database is that it’s only a single-user database and does not have com-
munication capabilities. They believe that it is a single-user, single-connection, single-threaded
system and develop their applications accordingly. This is not true. Apache Derby as a standalone
database can support as many connections as desired, so long as they are established from the
same JVM hosting the Apache Derby engine.

For an Apache Derby database to be accessed from a process that resides outside the host-
ing JVM that loaded the Apache Derby database initially (even if the JVM process resides on the
same server), you need to load the Apache Derby network server. Read that last sentence twice
to ensure you understand it because it is often a source of confusion for Apache Derby develop-
ers when multiple JVMs reside on the same machine. The Apache Derby network server allows
for communications between JVM processes. This means that this communication infrastructure
isn’t solely required to communicate between machines; it is needed even if two different JVM
processes reside on the same machine and want to talk to the same database.

Using the Apache Derby network server, you could have a number of Java programs or
JVMs interacting with a number of Apache Derby databases (or a single database for that matter).
The Apache Derby network server is also required to support interfaces other than JDBC, like
ODBC or .NET. The Apache Derby database engine comes with an embedded JDBC driver (this
is not the JCC driver that we talked about earlier)—so you will not need the network server for
intra-JVM JDBC connections. The Apache Derby Network Client works with the Apache Derby
Network Server.

ij—The Apache Derby JDBC Scripting Tool
The ij tool is a JDBC-based scripting tool that allows SQL scripts to be executed against an
Apache Derby database. This is one of the few tools used with Apache Derby. We will use this
tool throughout the book to create a database and some tables, populate those tables, and retrieve
data from the Apache Derby database.

It is important to remember the role of the Apache Derby network server when using this
tool because many application developers end up with a connection error when using it for the
first time. For example, let’s assume a developer has created an application and is invoking that
application to test it. Starting the application starts a JVM where the application resides and where
the Apache Derby database engine runs. When testing the application, the developer might want
to add some data or work with the database schema, so what better tool with which to connect to
the database than the ij tool? If you do not have the Apache Derby network server loaded, you

555255_CH01_p001-024.indd 22 9/28/05 10:10:32 AM

are going to get an error because the ij tool is a Java tool that runs in its own JVM. For the most
part, if you are a developer, we recommend that you include the Apache Derby network server in
your environment. Otherwise, you will have to concern yourself with these sorts of issues, which
can sneak up on you if your integrated development environment (IDE) makes multiple connec-
tions to the target database.

Developing Apache Derby Applications
Because Apache Derby is a Java-based database engine, most application developers will choose
to program their applications using the JDBC API. Cloudscape supports Java applications written
in JDBC 2.0 and 3.0.

An Apache Derby application follows the same general methodology as other Java-based
applications in that a proper JDBC driver is loaded, a connection is made to the required database,
a statement object is created, and finally the statement object is used to execute some business
logic (generally an SQL statement or a stored procedure). Prepared statements are also supported
in Apache Derby, as well as parameter markers, which deliver an excellent performance boost for
your applications. In addition, the Apache Derby database leverages the Java just-in-time (JIT)
compiler for better performance through native operational profiling.

The only Apache Derby-specific code outlined in the previous paragraph is the loading of
the JDBC driver and the uniform resource locator (URL) you would specify in the connection
string. This means your Apache Derby applications can be easily altered to use other JDBC-
compliant databases, such as DB2, Informix, and so on, by loading the appropriate driver
class.

One very strong feature of Apache Derby is that the SQL API is 100% compatible with
DB2, so if you ever decide to trade up for a full-fledged database, the migration to DB2 would be
effortless. (There is also a free Eclipse-based migration toolkit for Apache Derby-to-DB2 migra-
tions!) We bet you did not know that being an Apache Derby developer meant you were a DB2
developer too. Investing your skills in Apache Derby is definitely a resume-builder!

You can use almost any Java-based IDE to develop your Apache Derby-based applications.
For example, you can use WebSphere Studio Application Developer (WSAD), Borland JBuilder,
netBeans, and so on.

In keeping with the open source tradition, a plug-in is available for the Eclipse framework
to equip application developers with a rich toolset for developing Apache Derby applications. Of
course, you can also choose to write your applications the old-fashioned way, using your favorite
editor such as emacs or vi—whatever suits your needs. When using a separate tool to help with
application development, remember that you should probably have the Apache Derby Network
Server installed as well.

The IBM DB2 plug-in for Eclipse lets you explore and create schemas for your DB2,
Apache Derby, IBM Cloudscape, and Informix databases. An example of the Eclipse IDE with
this plug-in is shown in Figure 1-2.

Developing Apache Derby Applications 23

555255_CH01_p001-024.indd 23 9/28/05 10:10:32 AM

24 Chapter 1 On Your Marks … Get Set … Go!!!

Figure 1-2 Using free open source Eclipse-based IDEs to work with Apache Derby databases

This plug-in also comes with a migration toolkit that allows you to migrate your Apache
Derby schema to a DB2 database. Over time, expect to see more and more features driven into
the plug-in and the Eclipse framework. (It is open source after all, so we are counting on some of
you to contribute!)

Of course, there are other programming interfaces that you can use to develop applications
and the tooling that goes along with it: for example, ODBC, CLI, .NET, Perl, and PHP will all be
supported. You’re going to learn a whole lot about application development with Apache Derby
from this book.

555255_CH01_p001-024.indd 24 9/28/05 10:10:33 AM

