
Assertions

535

Lesson 15

Assertions and Annotations

J2SE 5.0 introduced a new facility known as annotations. Annotations are a
metaprogramming facility that allow you to mark code with arbitrarily de-
fined tags. The tags (generally) have no meaning to the Java compiler or run-
time itself. Instead, other tools can interpret these tags. Examples of tools for
which annotations might be useful include IDEs, testing tools, profiling tools,
and code-generation tools.

In this lesson you will begin to build a testing tool, similar to JUnit, based
upon Java’s annotation capabilities. The testing tool, like JUnit, will need to
allow developers to specify assertions. Instead of coding assertion methods,
you will learn to use Java’s built-in assertion capability.

You will learn about:

• assertions

• annotations and annotation types

• retention policies for annotations

• annotation targets

• member-value pairs

• default values for annotation members

• allowable annotation member types

• package annotations

• compatibility considerations for annotations

Assertions

You have been using assert methods defined as part of the JUnit API. These
assert methods, defined in junit.framework.Assert, throw an AssertionFailed-
Error when appropriate.

5945ch15.qxd_SR 1/12/05 2:24 PM Page 535

Java supports a similar assertion feature that you can turn on or off using
a VM flag. An assertion statement begins with the keyword assert. It is fol-
lowed by a conditional; if the conditional fails, Java throws a RuntimeExcep-
tion of type AssertionError. You can optionally supply a message to store in
the AssertionError by following the conditional with a colon and the String
message. An example:

assert name != null : "name is required";

Without the message:

assert name != null;

Assertions are disabled by default. When assertions are disabled, the VM ig-
nores assert statements. This prevents assert statements from adversely affect-
ing application performance. To turn assertions on:

java -ea MainClass

or, more explicitly:

java -enableassertions MainClass

Both of these statements will enable assertions for all your code but not
for the Java library classes. You can turn assertions off using -da or -disable-
assertions. To turn assertions on or off for system classes, use -enablesystemasser-
tions (or -esa) or -disablesystemassertions (or -dsa).

Java allows you to enable or disable assertions at a more granular level.
You can turn assertions on or off for any individual class, any package and
all its subpackages, or the default package.

For example, you might want to enable assertions for all but one class in a
package:

java -ea:sis.studentinfo... -da:sis.studentinfo.Session SisApplication

The example shown will enable assertions for all classes in sis.studentinfo
with the exception of Session. The ellipses means that Java will additionally
enable assertions for any subpackages of sis.studentinfo, such as sis.studentinfo
.ui. You represent the default package with just the ellipses.

Assertions are disabled/enabled in the order in which they appear on the
java command line, from left to right.

ASSERTIONS AND ANNOTATIONS536

Assertions

5945ch15.qxd_SR 1/12/05 2:24 PM Page 536

The assert Statement vs. JUnit Assert Methods

JUnit was built in advance of the Java assertion mechanism, which Sun intro-
duced in J2SE version 1.4. Today, JUnit could be rewritten to use the asser-
tion mechanism. But since use of JUnit is very entrenched, such a JUnit
rewrite would be a major undertaking for many shops. Also, the junit.frame-
work.Assert methods supplied by JUnit are slightly more expressive. The
assertEquals methods automatically provide an improved failure message.

When doing test-driven development, you will always need an assertion-
based framework. The use of tests in TDD is analogous to design by contract
(referred to as the subcontracting principle in Lesson 6). The assertions pro-
vide the preconditions, postconditions, and invariants. If you are not doing
TDD, you might choose to bolster the quality of your system by introducing
assert statements directly in the production code.

Sun recommends against using assertions as safeguards against application
failure. For example, one potential use would be to check parameters of public

methods, failing if client code passes a null reference. The downside is that the
application may no longer work properly if you turn off assertions. For simi-
lar reasons, Sun recommends that you do not include code in assertions that
produces side effects (i.e., code that alters system state).

Nothing prohibits you from doing so, however. If you have control over
how your application is executed (and you should), then you can ensure that
the application is always initiated with assertions enabled properly.

The chief value of Java’s assert keyword would seem to be as a debugging
aid. Well-placed assert statements can alert you to problems at their source.
Suppose someone calls a method with a null reference. Without a protective
assertion, you might not receive a NullPointerException until well later in the
execution, far from the point where the reference was set. Debugging in this
situation can be very time consuming.

You also could use assertions to help build a TDD tool in place of JUnit.
In the exercise in this chapter, you will use assertions to begin building such a
framework.

Annotations

You have already seen some examples of built-in annotations that Java sup-
ports. In Lesson 2 you learned how you can mark a method as @deprecated,
meaning that the method is slated for eventual removal from the public inter-
face of a class. The @deprecated annotation is technically not part of the Java

ANNOTATIONS 537

Annotations

5945ch15.qxd_SR 1/12/05 2:24 PM Page 537

language. Instead, it is a tag that the compiler can interpret and use as a basis
for printing a warning message if appropriate.1

You have also seen examples of javadoc tags, annotations that you embed
in javadoc comments and that you can use to generate Java API documenta-
tion web pages. The javadoc.exe program reads through your Java source
files, parsing and interpreting the javadoc tags for inclusion in the web out-
put.

Also, in Lesson 9, you learned how you could use the @Override tag to indi-
cate that you believed you were overriding a superclass method.

You can also build your own annotation tags for whatever purpose you
might find useful. For example, you might want the ability to mark methods
with change comments:

@modified("JJL", "12-Feb-2005")
public void cancelReservation() {

// ...
}

Subsequently, you could build a tool (possibly an Eclipse plug-in) that
would allow you to view at a glance all the change comments, perhaps sorted
by initials.

You could achieve equivalent results by insisting that developers provide
structured comments that adhere to a standard format. You could then write
code to parse through the source file, looking for these comments. However, the
support in Java for custom annotation types provides significant advantages.

First, Java validates annotations at compile time. It is not possible to in-
troduce a misspelled or incorrectly formatted annotation. Second, instead of
having to write parse code, you can use reflection capabilities to quickly
gather annotation information. Third, you can restrict annotations so that
they apply to a specific kind of Java element. For example, you can insist that
the @modified tag applies only to methods.

Building a Testing Tool

In this lesson, you will build a testing tool similar to JUnit. I’ll refer
to this tool as TestRunner, since that will be the primary class re-
sponsible for executing the tests. The tool will be text-based. You

will be able to execute it from Ant. Technically, you don’t have to build a

ASSERTIONS AND ANNOTATIONS538

Building a
Testing Tool

1@deprecated existed in the Java language from its early days and long before Sun intro-
duced formalized annotations support. But it works just like any other compiler-level
annotation type.

5945ch15.qxd_SR 1/12/05 2:24 PM Page 538

testing tool using TDD, because it’s not intended to be production code. But
there’s nothing that says you can’t write tests. We will.

JUnit requires a test class to extend from the class junit.framework.Test-
Case. In TestRunner you will use a different mechanism than inheritance:
You will use Java annotations to mark a class as a test class.

Getting started is the toughest part, but using Ant can help. You can set up
an Ant target to represent the user interface for the test. If not all of the tests
pass, you can set things up so that the Ant build fails, in which case you will
see a “BUILD FAILED” message. Otherwise you will see a “BUILD SUC-
CESSFUL” message.

TestRunnerTest

The first test in TestRunnerTest, singleMethodTest, goes up against a secondary class
SingleMethodTest defined in the same source file. SingleMethodTest provides a
single empty test method that should result in a pass, as it would in JUnit.

So far you need no annotations. You pass a reference to the test class,
TestRunnerTest.class, to an instance of TestRunner. TestRunner can assume
that this parameter is a test class containing only test methods.

To generate test failures, you will use the assert facility in Java, described in
the first part of this lesson. Remember that you must enable assertions when
executing the Java VM; otherwise, Java will ignore them.

Here is TestRunnerTest.

package sis.testing;

import java.util.*;
import java.lang.reflect.*;

public class TestRunnerTest {
public void singleMethodTest() {

TestRunner runner = new TestRunner(SingleMethodTest.class);

Set<Method> testMethods = runner.getTestMethods();
assert 1 == testMethods.size() : "expected single test method";

Iterator<Method> it = testMethods.iterator();
Method method = it.next();

final String testMethodName = "testA";
assert testMethodName.equals(method.getName()) :

"expected " + testMethodName + " as test method";
runner.run();
assert 1 == runner.passed() : "expected 1 pass";
assert 0 == runner.failed() : "expected no failures";

}

TESTRUNNERTEST 539

TestRunnerTest

5945ch15.qxd_SR 1/12/05 2:24 PM Page 539

public void multipleMethodTest() {
TestRunner runner = new TestRunner(MultipleMethodTest.class);
runner.run();

assert 2 == runner.passed() : "expected 2 pass";
assert 0 == runner.failed() : "expected no failures";

Set<Method> testMethods = runner.getTestMethods();
assert 2 == testMethods.size() : "expected single test method";

Set<String> methodNames = new HashSet<String>();
for (Method method: testMethods)

methodNames.add(method.getName());

final String testMethodNameA = "testA";
final String testMethodNameB = "testB";

assert methodNames.contains(testMethodNameA):
"expected " + testMethodNameA + " as test method";

assert methodNames.contains(testMethodNameB):
"expected " + testMethodNameB + " as test method";

}
}

class SingleMethodTest {
public void testA() {}

}

class MultipleMethodTest {
public void testA() {}
public void testB() {}

}

The second test, multipleMethodTest, is a bit of a mess. To create it, I dupli-
cated the first test and modified some of the details. It screams out for refac-
toring. The problem is that as soon as you extract a common utility method
in TestRunnerTest, the TestRunner class will assume it’s a test method and at-
tempt to execute it. The solution will be to introduce an annotation that you
can use to mark and distinguish test methods.

TestRunner

First, let’s go over the initial implementation of TestRunner.

package sis.testing;

import java.util.*;
import java.lang.reflect.*;

ASSERTIONS AND ANNOTATIONS540

TestRunner

5945ch15.qxd_SR 1/12/05 2:24 PM Page 540

class TestRunner {
private Class testClass;
private int failed = 0;
private Set<Method> testMethods = null;

public static void main(String[] args) throws Exception {
TestRunner runner = new TestRunner(args[0]);
runner.run();
System.out.println(

"passed: " + runner.passed() + " failed: " + runner.failed());
if (runner.failed() > 0)

System.exit(1);
}

public TestRunner(Class testClass) {
this.testClass = testClass;

}
public TestRunner(String className) throws Exception {

this(Class.forName(className));
}

public Set<Method> getTestMethods() {
if (testMethods == null)

loadTestMethods();
return testMethods;

}

private void loadTestMethods() {
testMethods = new HashSet<Method>();
for (Method method: testClass.getDeclaredMethods())

testMethods.add(method);
}

public void run() {
for (Method method: getTestMethods())

run(method);
}

private void run(Method method) {
try {

Object testObject = testClass.newInstance();
method.invoke(testObject, new Object[] {})2;

}
catch (InvocationTargetException e) {

Throwable cause = e.getCause();
if (cause instanceof AssertionError)

System.out.println(cause.getMessage());
else

e.printStackTrace();
failed++;

TESTRUNNER 541

TestRunner

2You can use the slightly-more-succinct idiom new Object[0] in place of new Object[] {}.

5945ch15.qxd_SR 1/12/05 2:24 PM Page 541

}
catch (Throwable t) {

t.printStackTrace();
failed++;

}
}

public int passed() {
return testMethods.size() - failed;

}

public int failed() {
return failed;

}
}

If you’re having a bit of trouble understanding the run(Method) method, refer
to Lesson 12 for a discussion of reflection. The basic flow in the run method is:

• Create a new instance of the test class. This step assumes a no-argu-
ment constructor is available in the test class.

• invoke the method (passed in as a parameter) using the new test class in-
stance and an empty parameter list.

• If the invoke message send fails, extract the cause from the thrown Invo-
cationTargetException; the cause should normally be an AssertionError.
Java throws an AssertionError when an assert statement fails.

TestRunner supplies two constructors. One takes a Class object and for
now will be used from TestRunnerTest only. The second constructor takes a
class name String and loads the corresponding class using Class.forName. You
call this constructor from the main method, which provides a bit of user inter-
face for displaying test results.

The main method in turn gets the class name from the Ant target:

<target name="runAllTests" depends="build" description="run all tests">
<java classname="sis.testing.TestRunner" failonerror="true" fork="true">
<classpath refid="classpath" />
<jvmarg value="-enableassertions"/>
<arg value="sis.testing.TestRunnerTest" />

</java>
</target>

There are a few interesting things in the runAllTests target:

• You specify failonerror="true" in the java task. If running a Java application
returns a nonzero value, Ant considers the execution to have resulted in
an error. The build script terminates on an error. Using the System.exit

ASSERTIONS AND ANNOTATIONS542

TestRunner

5945ch15.qxd_SR 1/12/05 2:24 PM Page 542

command (see the main method in TestRunner) allows you to terminate
an application immediately and return the value passed as a parameter
to it.

• You specify fork="true" in the java task. This means that the Java applica-
tion executes as a separate process from the Java process in which Ant
executes. The pitfall of not forking is that the Ant build process itself
will crash if the Java application crashes.

• You pass the test name to TestRunner using a nested arg element.

• You pass the argument enableassertions to the Java VM using a nested
jvmarg element.

The @TestMethod Annotation

In order to be able to refactor tests, you must be able to mark the test meth-
ods so that other newly extracted methods are not considered tests. The
@TestMethod annotation precedes the method signature for each method you
want to designate as a test. Annotate the two test methods (singleMethodTest and
multipleMethodTest) in TestRunnerTest with @TestMethod. Also annotate the three
additional test methods in the miniclasses (SingleMethodTest and Multiple-
MethodTest) used by the TestRunnerTest tests.

package sis.testing;

import java.util.*;
import java.lang.reflect.*;

public class TestRunnerTest {
private TestRunner runner;
private static final String methodNameA = "testA";
private static final String methodNameB = "testB";

@TestMethod
public void singleMethodTest() {

runTests(SingleMethodTest.class);
verifyTests(methodNameA);

}

@TestMethod
public void multipleMethodTest() {

runTests(MultipleMethodTest.class);
verifyTests(methodNameA, methodNameB);

}

THE @TESTMETHOD ANNOTATION 543

The
@TestMethod
Annotation

5945ch15.qxd_SR 1/12/05 2:24 PM Page 543

private void runTests(Class testClass) {
runner = new TestRunner(testClass);
runner.run();

}

private void verifyTests(String... expectedTestMethodNames) {
verifyNumberOfTests(expectedTestMethodNames);
verifyMethodNames(expectedTestMethodNames);
verifyCounts(expectedTestMethodNames);

}

private void verifyCounts(String... testMethodNames) {
assert testMethodNames.length == runner.passed() :

"expected " + testMethodNames.length + " passed";
assert 0 == runner.failed() : "expected no failures";

}

private void verifyNumberOfTests(String... testMethodNames) {
assert testMethodNames.length == runner.getTestMethods().size() :

"expected " + testMethodNames.length + " test method(s)";
}

private void verifyMethodNames(String... testMethodNames) {
Set<String> actualMethodNames = getTestMethodNames();
for (String methodName: testMethodNames)

assert actualMethodNames.contains(methodName):
"expected " + methodName + " as test method";

}

private Set<String> getTestMethodNames() {
Set<String> methodNames = new HashSet<String>();
for (Method method: runner.getTestMethods())

methodNames.add(method.getName());
return methodNames;

}
}

class SingleMethodTest {
@TestMethod public void testA() {}

}

class MultipleMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}

}

The @TestMethod annotation may appear after any method modifiers such as
public or static. The annotation must appear before the signature of the
method (which starts with the return type of the method).

To declare the @TestMethod annotation type, you create what looks a lot like
an interface declaration:

ASSERTIONS AND ANNOTATIONS544

The
@TestMethod

Annotation

5945ch15.qxd_SR 1/12/05 2:24 PM Page 544

package sis.testing;
public @interface TestMethod {}

The only difference between an interface declaration and an annotation
type declaration is that you put an “at” sign (@) before the keyword interface
in an interface declaration. There can be space between @ and interface, but the
convention is to abut the two.

The code will now compile and you can execute your tests, but you will
see at least one IllegalAccessException stack trace. The code in TestRunner
still treats every method as a test method, including the private methods you
just extracted. The reflection code in TestRunner is unable to invoke these
private methods. It’s time to introduce code in TestRunner to look for the
@TestMethod annotations:

private void loadTestMethods() {
testMethods = new HashSet<Method>();
for (Method method: testClass.getDeclaredMethods())

if (method.isAnnotationPresent(TestMethod.class))
testMethods.add(method);

}

One line of code is all it takes. You send the message isAnnotationPresent to
the Method object, passing in the type (TestMethod.class) of the annota-
tion. If isAnnotationPresent returns true, you add the Method object to the list of
tests.

Now the test executes but returns improper results:

runAllTests:
[java] passed: 0 failed: 0

You’re expecting to see two passed tests but no tests are registered—the
isAnnotationPresent method is always returning false.

Retention

The java.lang.annotations package includes a meta-annotation type named
@Retention. You use meta-annotations to annotate other annotation type decla-
rations. Specifically, you use the @Retention annotation to tell the Java compiler
how long to retain annotation information. There are three choices, summa-
rized in Table 15.1.

As explained by the table, if you don’t specify an @Retention annotation, the
default behavior means that you probably won’t be able to extract informa-

RETENTION 545

Retention

5945ch15.qxd_SR 1/12/05 2:24 PM Page 545

tion on the annotation at runtime.3 An example of RetentionPolicy.CLASS is the
@Override annotation discussed in Lesson 9.

You will have the most need for RetentionPolicy.RUNTIME so that tools such as
your TestRunner will be able to extract annotation information from their
target classes. If you build tools that work directly with source code (for ex-
ample, a plug-in for an IDE such as Eclipse), you can use RetentionPolicy.SOURCE
to avoid unnecessarily storing annotation information in the class files. An
example use might be an @Todo annotation used to mark sections of code that
need attention.

To get reflection code to recognize @TestMethod annotations, you must modify
the annotation type declaration:

package sis.testing;

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
public @interface TestMethod {}

Your two TestRunnerTest tests should now pass:

runAllTests:
[java] passed: 2 failed: 0

Annotation Targets

You have designed the @TestMethod annotation to be used by developers to mark
test methods. Annotations can modify many other element types: types
(classes, interfaces, and enums), fields, parameters, constructors, local vari-

ASSERTIONS AND ANNOTATIONS546

Annotation
Targets

Table 15.1 Annotation Retention Policies

RetentionPolicy enum Annotation Disposition

RetentionPolicy.SOURCE Discarded at compile time

RetentionPolicy.CLASS (default) Stored in the class file; can be discarded by the

VM at runtime

RetentionPolicy.RUNTIME Stored in the class file; retained by the VM at

runtime

3The VM may choose to retain this information.

5945ch15.qxd_SR 1/12/05 2:24 PM Page 546

ables, and packages. By default, you may use an annotation to modify any el-
ement. You can also choose to constrain an annotation type to modify one
and only one element type. To do so, you supply an @Target meta-annotation
on your annotation type declaration.

Since you didn’t specify an @Target meta-annotation for @TestMethod, a devel-
oper could use the tag to modify any element, such as a field. Generally no
harm would be done, but a developer could mark a field by accident, think-
ing that he or she marked a method. The test method would be ignored until
someone noticed the mistake. Adding an @Target to an annotation type is one
more step toward helping a developer at compile time instead of making him
or her decipher later troubles.

Add the appropriate @Target meta-annotation to @TestMethod:

package sis.testing;

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface TestMethod {}

The parameter to @Target must be an ElementType enum, defined in
java.lang.annotation. This enum supplies constants corresponding to the ele-
ment types that an annotation type can modify: TYPE, FIELD, METHOD, PARAMETER,
CONSTRUCTOR, LOCAL_VARIABLE, ANNOTATION_TYPE, and PACKAGE. There are special considera-
tions for annotations with a target of ElementType.PACKAGE. See the section Pack-
age Annotations later in this lesson for more information.

To demonstrate what @Target does for your annotation types, modify
TestRunnerTest. Instead of marking a method with @TestMethod, mark a field
instead:

// ...
public class TestRunnerTest {

private @TestMethod TestRunner runner;

@TestMethod
public void singleMethodTest() {
// ...

When you compile, you should see an error similar to the following:

annotation type not applicable to this kind of declaration
private @TestMethod TestRunner runner;

^

Remove the extraneous annotation, recompile, and rerun your tests.

ANNOTATION TARGETS 547

Annotation
Targets

5945ch15.qxd_SR 1/12/05 2:24 PM Page 547

Skipping Test Methods

From time to time, you may want to bypass the execution of certain
test methods. Suppose you have a handful of failing methods. You
might want to concentrate on getting a green bar on one failed

method at a time before moving on to the next. The failure of the other test
methods serves as a distraction. You want to “turn them off.”

In JUnit, you can skip a method by either commenting it out or by renam-
ing the method so that its signature does not represent a test method signa-
ture. An easy way to skip a test method is to precede its name with an X. For
example, you could rename testCreate to XtestCreate. JUnit looks for methods
whose names start with the word test, so it will not find XtestCreate.

You do not want to make a habit of commenting out tests. It is poor prac-
tice to leave methods commented out for any duration longer than your cur-
rent programming session. You should avoid checking in code with
commented-out tests. Other developers won’t understand your intent. My
first inclination when I see commented-out code, particularly test code, is to
delete it.

Commenting out test methods is risky. It is easy to forget that you have
commented out tests. It can also be difficult to find the tests that are com-
mented out. It would be nice if JUnit could warn you that you’ve left tests
commented out.

A similar problem exists for your new TestRunner class. The simplest way
of bypassing a test would be to remove its @TestMethod annotation. The problem
with doing that is the same as the problem with commenting out a test. It’s
easy to “lose” a test in a system with any significant number of tests.

For this exercise, you will make the necessary modifications to TestRunner
to ignore designated methods. You will create a new annotation type, @Ignore,
and change code in TestRunner to recognize this annotation. The @Ignore an-
notation will allow developers to supply a parameter with a text description
of why the test is being skipped. You will modify TestRunner to print these
descriptions.

Modifying TestRunner

Add a new test method, ignoreMethodTest, to TestRunnerTest. It will go up
against a new test class, IgnoreMethodTest, which contains three methods
marked with @TestMethod. One of the test methods (testC) is additionally marked
@Ignore. You must verify that this test method is not executed.

ASSERTIONS AND ANNOTATIONS548

Modifying
TestRunner

5945ch15.qxd_SR 1/12/05 2:24 PM Page 548

package sis.testing;

import java.util.*;
import java.lang.reflect.*;

public class TestRunnerTest {
private TestRunner runner;
// ...
@TestMethod
public void ignoreMethodTest() {

runTests(IgnoreMethodTest.class);
verifyTests(methodNameA, methodNameB);

}
// ...

}

// ...
class IgnoreMethodTest {

@TestMethod public void testA() {}
@TestMethod public void testB() {}

@Ignore
@TestMethod public void testC() {}

}

The @Ignore annotation declaration looks a lot like the @TestMethod declara-
tion.

package sis.testing;

import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Ignore {}

To get your tests to pass, make the following modification to TestRunner.

package sis.testing;

import java.util.*;
import java.lang.reflect.*;

class TestRunner {
...
private void loadTestMethods() {

testMethods = new HashSet<Method>();
for (Method method: testClass.getDeclaredMethods())

if (method.isAnnotationPresent(TestMethod.class) &&
!method.isAnnotationPresent(Ignore.class))
testMethods.add(method);

}
...

}

MODIFYING TESTRUNNER 549

Modifying
TestRunner

5945ch15.qxd_SR 1/12/05 2:24 PM Page 549

Single-Value Annotations

The @Ignore annotation is a marker annotation—it marks whether a
method should be ignored or not. You merely need to test for the
presence of the annotation using isAnnotationPresent. Now you need de-

velopers to supply a reason for ignoring a test. You will modify the @Ignore an-
notation to take a reason String as a parameter.

To support a single parameter in an annotation type, you supply a mem-
ber method named value with an appropriate return type and no parameters.
Annotation type member methods cannot take any parameters.

package sis.testing;

import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Ignore {

String value();
}

Mark one of the methods in IgnoreMethodTest with just @Ignore. Do not
supply any parameters:

class IgnoreMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}
@Ignore()

@TestMethod public void testC() {}
}

Note that @Ignore is a shortcut for @Ignore().
When you compile, you will see an error message:

annotation testing.Ignore is missing value
@Ignore
^

The compiler uses the corresponding annotation type declaration to ensure
that you supplied the proper number of parameters.

Change the test target class, IgnoreMethodTest, to supply a reason with
the @Ignore annotation.

public class TestRunnerTest {
public static final String IGNORE_REASON1 = "because";
// ...

}
class IgnoreMethodTest {

@TestMethod public void testA() {}

ASSERTIONS AND ANNOTATIONS550

Single-Value
Annotations

5945ch15.qxd_SR 1/12/05 2:24 PM Page 550

@TestMethod public void testB() {}
@Ignore(TestRunnerTest.IGNORE_REASON1)

@TestMethod public void testC() {}
}

Rerun your tests. They pass, so you haven’t broken anything. But you also
want the ability to print a list of the ignored methods. Modify the test ac-
cordingly:

@TestMethod
public void ignoreMethodTest() {

runTests(IgnoreMethodTest.class);
verifyTests(methodNameA, methodNameB);
assertIgnoreReasons();

}

private void assertIgnoreReasons() {
Map<Method, Ignore> ignoredMethods = runner.getIgnoredMethods();
Map.Entry<Method, Ignore> entry = getSoleEntry(ignoredMethods);
assert "testC".equals(entry.getKey().getName()):

"unexpected ignore method: " + entry.getKey();
Ignore ignore = entry.getValue();
assert IGNORE_REASON1.equals(ignore.value());

}

private <K, V> Map.Entry<K, V> getSoleEntry(Map<K, V> map) {
assert 1 == map.size(): "expected one entry";
Iterator<Map.Entry<K, V>> it = map.entrySet().iterator();
return it.next();

}

You return the ignored methods as a collection of mappings between Method
objects and the “ignored reason” string. Since you expect there to be only one ig-
nored method, you can introduce the utility method getSoleEntry to extract the sin-
gle Method key from the Map. In my excitement over figuring out how to use
generics (see Lesson 14), I’ve gone a little overboard here and made getSoleEntry
into a generic method that you could use for any collection. There’s no reason
you couldn’t code it specifically to the key and value types of the map.

Now make the necessary changes to TestRunner to get it to store the ig-
nored methods for later extraction:

package sis.testing;

import java.util.*;
import java.lang.reflect.*;

class TestRunner {
// ...
private Map<Method, Ignore> ignoredMethods = null;
// ...

SINGLE-VALUE ANNOTATIONS 551

Single-Value
Annotations

5945ch15.qxd_SR 1/12/05 2:24 PM Page 551

private void loadTestMethods() {
testMethods = new HashSet<Method>();
ignoredMethods = new HashMap<Method, Ignore>();
for (Method method: testClass.getDeclaredMethods()) {

if (method.isAnnotationPresent(TestMethod.class))
if (method.isAnnotationPresent(Ignore.class)) {

Ignore ignore = method.getAnnotation(Ignore.class);
ignoredMethods.put(method, ignore);

}
else

testMethods.add(method);
}

}

public Map<Method, Ignore> getIgnoredMethods() {
return ignoredMethods;

}
// ...

}

You can send the getAnnotation method to any element that can be anno-
tated, passing it the annotation type name (Ignore.class here). The getAnnotation
method returns an annotation type reference to the actual annotation object.
Once you have the annotation object reference (ignore), you can send mes-
sages to it that are defined in the annotation type interface.

You can now modify the text user interface to display the ignored methods.

A TestRunner User Interface Class

At this point, the main method is no longer a couple of simple hacked-out
lines. It’s time to move this to a separate class responsible for presenting the
user interface.

Since TestRunner is a utility for test purposes, as I mentioned earlier, tests
aren’t absolutely required. For the small bit of nonproduction user interface
code you’ll write for the test runner, you shouldn’t feel compelled to test first.
You’re more than welcome to do so, but I’m not going to here.

The following listing shows a refactored user interface class that prints out
ignored methods. About the only thing interesting in it is the “clever” way I re-
turn the number of failed tests in the System.exit call. Why? Why not? It’s more
succinct than an if statement, it doesn’t obfuscate the code, and it returns addi-
tional information that the build script or operating system could use.

package sis.testing;

import java.lang.reflect.*;
import java.util.*;

ASSERTIONS AND ANNOTATIONS552

A TestRunner
User Interface

Class

5945ch15.qxd_SR 1/12/05 2:24 PM Page 552

public class TestRunnerUI {
private TestRunner runner;

public static void main(String[] args) throws Exception {
TestRunnerUI ui = new TestRunnerUI(args[0]);
ui.run();
System.exit(ui.getNumberOfFailedTests());

}

public TestRunnerUI(String testClassName) throws Exception {
runner = new TestRunner(testClassName);

}

public void run() {
runner.run();
showResults();
showIgnoredMethods();

}

public int getNumberOfFailedTests() {
return runner.failed();

}

private void showResults() {
System.out.println(

"passed: " + runner.passed() +
" failed: " + runner.failed());

}

private void showIgnoredMethods() {
if (runner.getIgnoredMethods().isEmpty())

return;

System.out.println("\nIgnored Methods");
for (Map.Entry<Method, Ignore> entry:

runner.getIgnoredMethods().entrySet()) {
Ignore ignore = entry.getValue();
System.out.println(entry.getKey() + ": " + ignore.value());

}
}

}

Array Parameters

You want to allow developers to provide multiple separate reason
strings. To do so, you can specify String[] as the return type for the
annotation type member value. An @Ignore annotation can then contain

multiple reasons by using a construct that looks similar to an array initializer:

ARRAY PARAMETERS 553

Array
Parameters

5945ch15.qxd_SR 1/12/05 2:24 PM Page 553

@Ignore({"why", "just because"})

Here’s the updated annotation type declaration:

package sis.testing;

import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Ignore {

String[] value();
}

If you only need to supply a single string for an annotation type member
with a return type of String[], Java allows you to eliminate the array-style ini-
tialization. These annotations for the current definition of @Ignore are equivalent:

@Ignore("why")
@Ignore({"why"})

You will need to modify TestRunnerTest to support the change to Ignore.

package sis.testing;

import java.util.*;
import java.lang.reflect.*;

public class TestRunnerTest {
public static final String IGNORE_REASON1 = "because";
public static final String IGNORE_REASON2 = "why not";
...

@TestMethod
public void ignoreMethodTest() {

runTests(IgnoreMethodTest.class);
verifyTests(methodNameA, methodNameB);
assertIgnoreReasons();

}

private void assertIgnoreReasons() {
Map<Method, Ignore> ignoredMethods = runner.getIgnoredMethods();
Map.Entry<Method, Ignore> entry = getSoleEntry(ignoredMethods);
assert "testC".equals(entry.getKey().getName()):

"unexpected ignore method: " + entry.getKey();
Ignore ignore = entry.getValue();
String[] ignoreReasons = ignore.value();
assert 2 == ignoreReasons.length;
assert IGNORE_REASON1.equals(ignoreReasons[0]);
assert IGNORE_REASON2.equals(ignoreReasons[1]);

}
...

}

ASSERTIONS AND ANNOTATIONS554

Array
Parameters

5945ch15.qxd_SR 1/12/05 2:24 PM Page 554

class SingleMethodTest {
@TestMethod public void testA() {}

}

class MultipleMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}

}

class IgnoreMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}

@Ignore({TestRunnerTest.IGNORE_REASON1,
TestRunnerTest.IGNORE_REASON2})

@TestMethod public void testC() {}
}

Multiple Parameter Annotations

You may want annotations to support multiple parameters. As an
example, suppose you want developers to add their initials when ig-
noring a test method. A proper annotation might be:

@Ignore(reasons={"just because", "and why not"}, initials="jjl")

Now that you have more than one annotation parameter, you must supply
member-value pairs. Each member-value pair includes the member name,
which must match an annotation type member, followed by the equals (=)
sign, followed by the constant value for the member.

The second member-value pair in the above example has initials as a mem-
ber name and "jjl" as its value. In order to support this annotation, you must
modify the @Ignore annotation type declaration to include initials as an addi-
tional member. You must also rename the value member to reasons. Each key
in an annotation member-value pair must match a member name in the an-
notation type declaration.

package sis.testing;

import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Ignore {

String[] reasons();
String initials();

}

MULTIPLE PARAMETER ANNOTATIONS 555

Multiple
Parameter
Annotations

5945ch15.qxd_SR 1/12/05 2:24 PM Page 555

You can specify member-value pairs in any order within an annotation.
The order need not match the member order of the annotation type declara-
tion.

Here are the corresponding modifications to TestRunnerTest:

package sis.testing;
// ...
public class TestRunnerTest {

// ...
public static final String IGNORE_INITIALS = "jjl";
// ...
private void assertIgnoreReasons() {

Map<Method, Ignore> ignoredMethods = runner.getIgnoredMethods();
Map.Entry<Method, Ignore> entry = getSoleEntry(ignoredMethods);
assert "testC".equals(entry.getKey().getName()):

"unexpected ignore method: " + entry.getKey();
Ignore ignore = entry.getValue();
String[] ignoreReasons = ignore.reasons();
assert 2 == ignoreReasons.length;
assert IGNORE_REASON1.equals(ignoreReasons[0]);
assert IGNORE_REASON2.equals(ignoreReasons[1]);
assert IGNORE_INITIALS.equals(ignore.initials());

}
// ...

}

class IgnoreMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}

@Ignore(
reasons={TestRunnerTest.IGNORE_REASON1,
TestRunnerTest.IGNORE_REASON2},
initials=TestRunnerTest.IGNORE_INITIALS)

@TestMethod public void testC() {}
}

You do not need to make modifications to TestRunner. You will need to
make a small modification to TestRunnerUI to extract the reasons and ini-
tials properly from the Ignore object.

private void showIgnoredMethods() {
if (runner.getIgnoredMethods().isEmpty())

return;

System.out.println("\nIgnored Methods");
for (Map.Entry<Method, Ignore> entry:

runner.getIgnoredMethods().entrySet()) {
Ignore ignore = entry.getValue();
System.out.printf("%s: %s (by %s)",

entry.getKey(),

ASSERTIONS AND ANNOTATIONS556

Multiple
Parameter

Annotations

5945ch15.qxd_SR 1/12/05 2:24 PM Page 556

Arrays.toString(ignore.reasons()),
ignore.initials());

}
}

Default Values

The reason for ignoring a test method is likely to be the same most
of the time. Most often, you will want to temporarily comment out a
test while fixing other broken tests. Supplying a reason each time can

be onerous, so you would like to have a default ignore reason. Here’s how
you might reflect this need in a TestRunner test:

@TestMethod
public void ignoreWithDefaultReason() {

runTests(DefaultIgnoreMethodTest.class);
verifyTests(methodNameA, methodNameB);
Map<Method, Ignore> ignoredMethods = runner.getIgnoredMethods();
Map.Entry<Method, Ignore> entry = getSoleEntry(ignoredMethods);
Ignore ignore = entry.getValue();
assert TestRunner.DEFAULT_IGNORE_REASON.

equals(ignore.reasons()[0]);
}

class DefaultIgnoreMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}
@Ignore(initials=TestRunnerTest.IGNORE_INITIALS)

@TestMethod public void testC() {}
}

You will need to define the constant DEFAULT_IGNORE_REASON in the TestRunner
class to be whatever string you desire:

class TestRunner {
public static final String DEFAULT_IGNORE_REASON =

"temporarily commenting out";
// ...

You can supply a default value on any annotation type member. The de-
fault must be a constant at compile time. The new definition of @Ignore in-
cludes a default value on the reasons member. Note use of the keyword default
to separate the member signature from the default value.

package sis.testing;

import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)

DEFAULT VALUES 557

Default Values

5945ch15.qxd_SR 1/12/05 2:24 PM Page 557

public @interface Ignore {
String[] reasons() default TestRunner.DEFAULT_IGNORE_REASON;
String initials();

}

Additional Return Types and Complex
Annotation Types

In addition to String and String[], an annotation value can be a primitive, an
enum, a Class reference, an annotation type itself, or an array of any of these
types.

The following test (in TestRunnerTest) sets up the requirement for an
@Ignore annotation to include a date. The Date type will be an annotation; its
members each return an int value.

@TestMethod
public void dateTest() {

runTests(IgnoreDateTest.class);
Map<Method, Ignore> ignoredMethods = runner.getIgnoredMethods();
Map.Entry<Method, Ignore> entry = getSoleEntry(ignoredMethods);
Ignore ignore = entry.getValue();
sis.testing.Date date = ignore.date();
assert 1 == date.month();
assert 2 == date.day();
assert 2005 == date.year();

}

class IgnoreDateTest {
@Ignore(

initials=TestRunnerTest.IGNORE_INITIALS,
date=@Date(month=1, day=2, year=2005))

@TestMethod public void testC() {}
}

The annotation in IgnoreDateTest is known as a complex annotation—an
annotation that includes another annotation. @Ignore includes a member, date,
whose value is another annotation, @Date.

The definition of the sis.testing.Date annotation type:

package sis.testing;

public @interface Date {
int month();
int day();
int year();

}

ASSERTIONS AND ANNOTATIONS558

Additional
Return Types
and Complex

Annotation Types

5945ch15.qxd_SR 1/12/05 2:24 PM Page 558

The @Ignore annotation type can now define a date member that returns a
testing.Date instance:

package sis.testing;

import java.lang.annotation.*;

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface Ignore {

String[] reasons() default TestRunner.DEFAULT_IGNORE_REASON;
String initials();
Date date();

}

Since the Date annotation type is only used as part of another annotation,
it does not need to specify a retention or a target.

You may not declare a recursive annotation type—that is, an annotation
type member with the same return type as the annotation itself.

To get your tests to compile and pass, you’ll also need to modify
IgnoreMethodTest and DefaultIgnoreMethodTest:

class IgnoreMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}

@Ignore(
reasons={TestRunnerTest.IGNORE_REASON1,

TestRunnerTest.IGNORE_REASON2},
initials=TestRunnerTest.IGNORE_INITIALS,
date=@Date(month=1, day=2, year=2005))

@TestMethod public void testC() {}
}

class DefaultIgnoreMethodTest {
@TestMethod public void testA() {}
@TestMethod public void testB() {}
@Ignore(initials=TestRunnerTest.IGNORE_INITIALS,

date=@Date(month=1, day=2, year=2005))
@TestMethod public void testC() {}

}

Package Annotations

Suppose you want the ability to designate packages as testing
packages. Further, you want your testing tool to run “performance-
related” tests separately from other tests. In order to accomplish this,

PACKAGE ANNOTATIONS 559

Package
Annotations

5945ch15.qxd_SR 1/12/05 2:24 PM Page 559

you can create an annotation whose target is a package. A test for this anno-
tation:4

@TestMethod
public void packageAnnotations() {

Package pkg = this.getClass().getPackage();
TestPackage testPackage = pkg.getAnnotation(TestPackage.class);
assert testPackage.isPerformance();

}

You extract annotation information from the Package object like you
would from any other element object. You can obtain a Package object by
sending the message getPackage to any Class object.

The annotation declaration is straightforward:

package sis.testing;

import java.lang.annotation.*;

@Target(ElementType.PACKAGE)
@Retention(RetentionPolicy.RUNTIME)
public @interface TestPackage {

boolean isPerformance() default false;
}

However, the question is, Where does a package annotation go? Would it
go before the package statement in every source file that belongs to the pack-
age? Or before just one of them? Or is it stored elsewhere?

Java limits you to at most one annotated package statement per package.
This means that you can’t just place an annotation before the package state-
ment in an arbitrary source file.

The answer depends on which compiler you are using. Sun recommends a
specific scheme that is based on a file system. Other compiler vendors may
choose a different scheme. They may have to if the compile environment is
not based on a file system.

The Sun scheme requires you to create a source file named package-
info.java in the source directory that corresponds to the package you want to
annotate. Sun’s Java compiler reads this pseudo–source file but produces no
visible class files as output. (In fact, it is not possible to include a hyphen [-]
in a class name.) This file should include any package annotations, followed
by the appropriate package statement. You should not include anything else in
package-info.java.

Here’s what package-info.java might look like in the sis.testing package:

@TestPackage(isPerformance=true) package sis.testing;

ASSERTIONS AND ANNOTATIONS560

Package
Annotations

4Note use of the variable name pkg, since package is a keyword.

5945ch15.qxd_SR 1/12/05 2:24 PM Page 560

Compatibility Considerations

Sun has, as much as possible, designed the annotations facility to support
changes to an annotation with minimal impact on existing code. This section
goes through the various modification scenarios and explains the impact of
each kind of change to an annotation type.

When you add a new member to an annotation type, provide a default if
possible. Using a default will allow code to continue to use the compiled an-
notation type without issue. But this can cause a problem if you try to access
the new member. Suppose you access the new member from an annotation
compiled using the annotation type declaration without the new member. If
no default exists on the new member, this will generate an exception.

If you remove an annotation type member, you will obviously cause errors
on recompilation of any likewise annotated sources. However, any existing
class files that use the modified annotation type will work fine until their
sources are recompiled.

Avoid removing defaults, changing the return type, or removing target ele-
ments with existing annotation types. These actions all have the potential to
generate exceptions.

If you change the retention type, the behavior is generally what you would
expect. For example, if you change from RUNTIME to CLASS, the annotation is no
longer readable at runtime.

When in doubt, write a test to demonstrate the behavior!

Additional Notes on Annotations

• An annotation with no target can modify any Java element.

• In an annotation type declaration, the only parameterized type that you
can return is the Class type.

• The @Documented meta-annotation type lets you declare an annotation type
to be included in the published API generated by tools such as javadoc.

• The @Inherited meta-annotation type means that an annotation type is in-
herited by all subclasses. It will be returned if you send getAnnotation to a
method or class object but not if you send getDeclaredAnnotations.

• You cannot use null as an annotation value.

ADDITIONAL NOTES ON ANNOTATIONS 561

Additional
Notes on
Annotations

5945ch15.qxd_SR 1/12/05 2:24 PM Page 561

• You can modify an element only once with a given annotation. For ex-
ample, you cannot supply two @Ignore annotations for a test method.

• In order to internally support annotation types, Sun modified the Ar-
rays class to include implementations of toString and hashCode for Arrays.

Summary

Annotations are a powerful facility that can help structure the notes you put
into your code. One of the examples that is touted the most is the ability to
annotate interface declarations so that tools can generate code from the perti-
nent methods.

The chief downside of using annotations is that you make your code de-
pendent upon an annotation type when your code uses it. Changes to the an-
notation type declaration could negatively impact your code, although Sun
has built in some facilities to help maintain binary compatibility. You also
must have the annotation type class file present in order to compile. This
should not be surprising: An annotation type is effectively an interface type.

Again, the rule of thumb is to use annotation types prudently. An annota-
tion type is an interface and should represent a stable abstraction. As with
any interface, ensure that you have carefully considered the implications of
introducing an annotation type into your system. A worst-case scenario,
where you needed to make dramatic changes to an annotation type, would
involve a massive search and replace5 followed by a compile.

Exercises

1. Using the RingTest and Ring classes from the previous lesson, intro-
duce an assert into the add method that rejects a null argument. Make
sure you write a test! Don’t forget to enable assertions before running
your tests.

ASSERTIONS AND ANNOTATIONS562

Exercises

5For the time being, IDEs might not provide sophisticated support for manipulating
and navigating annotations. You may need to resort to search and replace (or com-
pile, identify, and replace) to effect a major change. Integrated IDE support for anno-
tations should emerge quickly. The support in IDEA is already at a level I would
consider acceptable.

5945ch15.qxd_SR 1/12/05 2:24 PM Page 562

2. Create an annotation @Dump. This annotation can be applied to any
field in a class. Then create a ToStringer class which, when passed an
object, will spit out a dump of each field that has been marked for use
in the toString method.

3. Modify the dump annotation to allow for sorting the fields by adding
an optional order parameter. The order should be a positive integer. If a
field is not annotated, it should appear last in the list of fields.

4. Add another parameter for dump called quote, which should be a
boolean indicating whether or not to surround the value with quotes.
This is useful for objects whose toString representation might be empty
or have leading or trailing spaces.

5. Add an outputMethod field to the @Dump annotation. This specifies the
method for toStringer to use in order to get a printable representation
of the field. Its value should default to toString. This is useful for when
you have an object with a toString representation you cannot change,
such as an object of a system class type.

6. Change the outputMethod annotation to outputMethods and have it support a
String array of method names. The ToString code should construct a
printable representation of the object by calling each of these method
names in order and concatenating the results. Separate each result
with a single space. (You might consider adding another annotation to
designate the separator character.)

EXERCISES 563

Exercises

5945ch15.qxd_SR 1/12/05 2:24 PM Page 563

5945ch15.qxd_SR 1/12/05 2:24 PM Page 564

