
Foreword

Jeff Langr has written a very interesting Java book in Agile Java: Crafting
Code with Test-Driven Development. Its purpose is to teach new program-
mers the Java language, and to do so in the context of the best development
approach that he and I know—namely Test-Driven Development (TDD). It’s
an undertaking of great potential value, and Jeff has done it nicely. It’s my
pleasure to provide this foreword and to recommend this book.

Agile Java isn’t just for rank beginners. It’s also a good book for bringing
experienced programmers new to the Java language up to speed. It won’t
replace a certification manual or one of those huge books of “Everything
Java.” That’s not its point. The point of Agile Java is to get you up to speed.
Better yet, you come up to speed using TDD, which will serve you well in
future learning and in your day-to-day work.

The book starts right off with object-oriented concepts and ideas. It helps if
you know a bit about objects when you step in, but if you don’t, hang on and
you should pick up the basic ideas as you go along. Furthermore, every step of
the way you’ll be using the Test-Driven Development technique. If you haven’t
tried TDD, it may seem a bit odd at the beginning, but if you’re like most of us
who have given it a fair try, it will become a frequently-used tool in your kit.

If you already have Java and JUnit set up on your machine, dig right in. If
not, be sure to use the “Setting Up” chapter to get your system correctly con-
figured before moving on to the real examples. Once you can compile and
run a simple Java program on your machine, you’re ready to go.

Jeff asks you to type in the tests and example code, and I would echo that
request. The TDD discipline is one that is learned by doing and practicing,
not just by reading. You need to develop your own sense of the rhythm of
development. Besides, typing in the examples from any programming book is
the best way to learn what it has to offer.

In Agile Java, Jeff helps you build pieces of two applications. One of these
relates to a student information system, the other focuses on playing chess. By
the time you have worked through all the chapters, Jeff has introduced you to
the basics of Java. Perhaps more importantly, you have met some of the most
important deep capabilities, including interfaces, polymorphism, mock
objects, reflection, multi-threading, and generics.

I found that Lesson 10, regarding the mathematical features of Java, particu-
larly brought out the way I like to use tests as part of my learning of a new fea-

xxi

fm01.qxd 1/20/05 7:55 AM Page xxi

FOREWORDxxii

ture of a language or library. It’s easy to read about something like BigDecimal
and think, “I get it.” For a while, I might even really get it. But when I encode
my learning as tests, two things happen: First, I learn things about the topic
that I would have missed if just reading about it. Writing the code pounds ideas
into my thick head a bit better than just reading. Second, the tests record what
I’ve learned as well as my thought process as I learned it. Because I’ve devel-
oped the habit of saving all my test cases, I can refer back to them and quickly
refresh my memory. Often I’ll even put a book and page reference into the tests
as a comment, in case I want to go back later and dig out more.

Lesson 11, regarding I/O, includes a nice example of something I’m not
very familiar with. Since I don’t work in Java much, and most of the lan-
guages I commonly use don’t have an equivalent, I’m not familiar with nested
classes. Jeff gives a good example of when we would be well-advised to use
nested classes, and shows how to use and test them.

As I write this foreword, I’m really getting into the book, because Jeff is tak-
ing me where I’ve not gone before. I like that. Lesson 12 is about Mock Objects,
and the first example is one that we agile software developers encounter often:
How can we deal in our incremental development with an external API that is
fairly well defined but isn’t available yet? Jeff shows us how to do this by defin-
ing the interface—from the documentation if necessary—and then by building a
Mock Object that represents our understanding of what the API will do when
we finally get it. Writing tests against our Mock Object gives us tests that we can
use to ensure that the API does what we expect when we finally get the real
code. An excellent addition to your bag of tricks!

Jeff is an educator, and a darn good one. Jeff wants us to think, and to
work! He knows that if you and I are ready to learn, we have to practice: we
have to do the work. His chapters have exercises. We are well-advised to
think about all of them, and to do the ones that cover topics we aren’t famil-
iar with. That’s how we’ll really hammer these ideas into our heads. Read and
study his examples, type them in to drill them into your mind, and then fol-
low his lead as you work the interesting examples. You’ll be glad you did.

Agile Java: Crafting Code with Test-Driven Development offers you at least
three benefits: You’ll learn things about Java that you probably didn’t know,
even if you’re not an absolute beginner. You’ll learn how to use test-driven
development in a wide range of cases, including some in which you’d probably
find difficult to invent on your own. And, through building up your skill,
you’ll add this valuable technique to your professional bag of tricks.

I enjoyed the book and found it valuable. I think you will, too. Enjoy!
Ron Jeffries

www.XProgramming.com
Pinckney, Michigan
November 2, 2004

fm01.qxd 1/20/05 7:55 AM Page xxii

