
737

15
The UFS File System

The UFS file system is the general-purpose, disk-based file system that is
shipped with Solaris today and has been the default file system since early ver-
sions of SunOS 4.x. For over 20 years, UFS has undergone extensive changes to
keep pace with the performance, security, and reliability requirements of today’s
modern enterprise applications.

15.1 UFS Development History

The original version of UFS is derived from the Berkeley Fast File System (FFS)
work from BSD UNIX, architected by Marshall Kirk McKusick and Bill Joy in the
mid 1980s. The Berkeley FFS was the second major file system available for UNIX
and was a leap forward from the original System V file system. The System V file
system was lightweight and simple but had significant shortcomings: poor perfor-
mance, unreliability, and lack of functionality.

During the development of Sun OS 2.0, a file-system-independent interface was
introduced to support concurrent, different file systems within an operating sys-
tem instance. This interface, today known as the vnode/vfs interface, is the mech-
anism that all file systems use to interface with the file-related system calls. (The
vnode/vfs architecture is discussed further in Section 14.6.) UFS was modified so
that it could be used within this new vnode/vfs framework and since has been the
focus of much of the file system development effort in Solaris.

A second major overhaul for UFS came about at the time of SunOS 4.0, when
the virtual memory (VM) system was redeveloped to use the vnode as the core of

Updated by Frank Batschulat, Shawn Debnath, Sarah Jelinek,
Dworkin Muller, and Karen Rochford

solarisinternals.book Page 737 Thursday, June 15, 2006 1:27 PM

738 Chapter 15 The UFS File System

virtual memory operations. The new VM system implemented the concept of vir-
tual file caching—a departure from the traditional physical file cache (known as
the “buffer cache” in previous versions of UNIX). The old buffer cache was layered
under the file systems and was responsible for caching physical blocks from the file
system to the storage device. The new model is layered above the file systems and
allows the VM system to act as a cache for files rather than blocks. The new sys-
tem caches page-sized pieces of files, whereby the file and a particular offset are
cached as pages of memory. From this point forward, the buffer cache was used
only for file system metadata, and the VM system implemented the file system
caching. The introduction of the virtual file caching affected file systems in many
ways and required significant changes to the vnode interface. At that point, UFS
was substantially modified to support the new vnode and VM interfaces.

The third major change to UFS came about in Solaris 2.4 in the year 1994 with
the introduction of file system metadata logging in an effort to provide better reli-
ability and faster reboot times after a system crash or outage. The first versions of
logging were introduced with the unbundled Online: DiskSuite 3.0 software pack-
age, the precursor to Solstice DiskSuite (SDS) product and the Solaris Volume
Manager (SVM) as it is known today. Solaris 7 saw the integration of logging into
UFS, and after six years of development, Solaris 10 shipped with logging turned on
by default. Table 15.1 summarizes the major UFS development milestones.

Table 15.1 UNIX File System Evolution

1984 SunOS 1.0 FFS from 4.2 BSD.

1985 SunOS 2.0 UFS rearchitected to support vnodes/vfs.

1988 SunOS 4.0 UFS integrated with new VM virtual file cache.

1991 SunOS 4.1 I/O clustering added to allow extentlike performance.

1992 SunOS 4.1 1TB file system and ability to grow UFS file systems with
Online: Disk Suite 1.0.

1992 Solaris 2.0 1TB file system support included in base Solaris.

1994 Solaris 2.4 Metadata logging option with Online: DiskSuite 3.0.

1995 Solaris 2.5 Access Control Lists.

1995 Solaris 2.6 Large file support allows 1TB files.
Direct I/O uncached access added.

1998 Solaris 7 Metadata logging integrated into base Solaris UFS.

2002 Solaris 9 File System Snapshots
Extended Attributes

2003 Solaris 9 Update 4 Multi-terabyte UFS support was added.

2004 Solaris 10 and
Solaris 9 Update 7

Logging on by default in UFS.

solarisinternals.book Page 738 Thursday, June 15, 2006 1:27 PM

15.2 UFS ON-DISK FORMAT 739

15.2 UFS On-Disk Format

UFS is built around the concept of a disk’s geometry, which is described as the
number of sectors in a track, the location of the head, and the number of tracks.
UFS uses a hybrid block allocation strategy that allocates full blocks or smaller
parts of the block called fragments. A block is a set of contigous fragments start-
ing on a particular boundary. This boundary is determined by the size of a frag-
ment and the number of fragments that constitute a block. For example, fragment
32 and block 32 both relate to the same physical location on disk. Although the
next fragment on disk is 33 followed by 34, 35, 36, 37 and so on, the next block is
at 40, which begins on fragment 40. This is true in the case of 8-Kbyte block size
and 1-Kbyte fragment size, where 8 fragments constitutes a file system block.

15.2.1 On-Disk UFS Inodes

In UFS, all information pertaining to a file is stored in a special file index node
called the inode (except for the name of the file, which is stored in the directory).
There are two types of inodes: in-core and on-disk. The on-disk inodes, as the name
implies, reside on disk, whereas the in-core inode is created only when a particu-
lar file is opened for reading or writing.

The on-disk inode is represented by struct icommon. It occupies exactly 128
bytes on disk and can also be found embedded in the in-core inode structure, as
shown in Figure 15.1.

Figure 15.1 Embedded On-Disk in In-Core Inode

ic_smode

struct icommon

ic_nlink
ic_suid
ic_sgid
...

i_ic

struct ufsvfs

struct inode

i_ufsvfs

solarisinternals.book Page 739 Thursday, June 15, 2006 1:27 PM

740 Chapter 15 The UFS File System

The structure of icommon looks like this.

Most of the fields are self-explaining, but a couple of them need a bit of help:

� ic_smode. Indicates the type of inode. There are primarily four main types
of inode: zero, special node (IFCHR, IFBLK, IFIFO, IFSOCK), symbolic link
(IFLNK), a directory (IFDIR), a file (IFREG), or an extended metadata inode
(IFSHAD, IFATTRDIR). Type zero indicates that the inode is not in use and
ic_nlink should be zero, unless logging’s reclaim_needed flag is set. With
the special nodes, no data blocks are associated. They are used for character
and block devices, pipes and sockets. The type file indicates where this inode
is a directory, a regular file, a shadow inode, or an extended attribute directory.

� ic_nlink. Refers to the number of links to a file, that is, the number of
names in the namespace that correspond to a specific file identifier. A regu-
lar file will have link count of 1 because only one name in the namespace cor-
responds to that particular file identifier. A directory link count has the value

struct icommon {
 o_mode_t ic_smode; /* 0: mode and type of file */
 short ic_nlink; /* 2: number of links to file */
 o_uid_t ic_suid; /* 4: owner's user id */
 o_gid_t ic_sgid; /* 6: owner's group id */
 u_offset_t ic_lsize; /* 8: number of bytes in file */
#ifdef _KERNEL
 struct timeval32 ic_atime; /* 16: time last accessed */
 struct timeval32 ic_mtime; /* 24: time last modified */
 struct timeval32 ic_ctime; /* 32: last time inode changed */
#else
 time32_t ic_atime; /* 16: time last accessed */
 int32_t ic_atspare;
 time32_t ic_mtime; /* 24: time last modified */
 int32_t ic_mtspare;
 time32_t ic_ctime; /* 32: last time inode changed */
 int32_t ic_ctspare;
#endif
 daddr32_t ic_db[NDADDR]; /* 40: disk block addresses */
 daddr32_t ic_ib[NIADDR]; /* 88: indirect blocks */
 int32_t ic_flags; /* 100: cflags */
 int32_t ic_blocks; /* 104: 512 byte blocks actually held */
 int32_t ic_gen; /* 108: generation number */
 int32_t ic_shadow; /* 112: shadow inode */
 uid_t ic_uid; /* 116: long EFT version of uid */
 gid_t ic_gid; /* 120: long EFT version of gid */
 uint32_t ic_oeftflag; /* 124: extended attr directory ino, 0 = none */
};

See usr/src/uts/common/sys/fs/ufs_inode.h

solarisinternals.book Page 740 Thursday, June 15, 2006 1:27 PM

15.2 UFS ON-DISK FORMAT 741

2 by default: one is the name of the directory itself, and the other is the “.”
entry within the directory. Any subdirectory within a directory causes the
link count to be incremented by 1 because of the “..” entry. The limit is 32,767
and hence, the limit for the number of subdirectories is 32,765 and also the
total number of links. The “..” entry counts against the parent directory only.

� ic_db. Is an array that holds 12 pointers to data blocks. These are called the
direct blocks. On a system with block size of 8192 bytes or 8 Kbytes, these can
accommodate up to 98,304 bytes or 96 Kbytes. If the file consists entirely of
direct blocks, then the last block for the file (not the last ic_db entry) may
contain fragments. Note that if the file size exceeds the capacity of the ic_db
array, then the block list for the file must consist entirely of full-sized file sys-
tem blocks.

� ic_ib. Is a small array of only three pointers but allows a file to be up to one
terabyte. How does this work? Well, the first entry in ic_ib points to a block
that stores 2048 block addresses. A file with a single indirect block can accom-
modate up to 8192 * (12 + 2048) bytes or 16 Mbytes. If more storage is required,
another level of indirection is added and the second indirect block is used.

The second entry in ic_ib points to 2048 block addresses, and each of
those 2048 entries points to another block containing 2048 entries that finally
point to the data blocks. With two levels of indirection, a file can accommo-
date up to 8192 * 12 + 2048 + (2048 * 2048) bytes, or 32 Gbytes. A third level
of indirection permits the file to be 8192 * 12 + 2048 + (2048 * 2048) + (2048 *
2048 * 2048) = 70,403,120,791,552 bytes long or—yes, you guessed it—64 Tbytes!
However, since all addresses must be addressable as fragments, that is, a
31-bit count, the maximum is 2TB (2^31 * 1KB). Multi-terrabyte UFS
(MTBUFS) enables 16TB filesystem sizes by enforcing the minimum frag
size to be 8K, which gives you 2^31 * 2^10 * 8k, or 16 TB.

Figure 15.2 illustrates the layout.

� ic_shadow. If non-zero, contains the number of an inode providing shadow
metadata (usually, this data would be ACLs).

� ic_oeftflag. If non-zero, contains the number of an inode of type
IFATTRDIR, which is a directory containing extended attribute files.

solarisinternals.book Page 741 Thursday, June 15, 2006 1:27 PM

742 Chapter 15 The UFS File System

15.2.2 UFS Directories

The file name information and hierarchy information that constitute the directory
structure of UFS are stored in directories. Each directory stores a list of file names
and the inode number for each file; this information (stored in struct direct)
allows the directory structure to relate file names to real disk files.

Figure 15.2 UFS Block Layout

ic_db

.

.
2048

.
.

12
.

.

.
2048

.

.

.
2048

.

.

.
2048

.

0

1

2

ic_ib

direct blocks single indirect blocks

.

.
2048

.

double indirect blocks

.

.
2048

.

.

.
2048

.

.

.
2048

.

.

.
2048

.

.

.
2048

.

= disk data block
tr

ip
le

in
d

ir
ec

t
bl

oc
ks

solarisinternals.book Page 742 Thursday, June 15, 2006 1:27 PM

15.2 UFS ON-DISK FORMAT 743

The directory itself is stored in a file as a series of chunks, which are groups of
the directory entries. Earlier file systems like the System V file system had a fixed
directory record length, which meant that a lot of space would be wasted if provision
was made for long file names. In the UFS, each directory entry can be of variable
length, thus providing a mechanism for long file names without a lot of wasted
space. UFS file names can be up to 255 characters long.

The group of directory chunks that constitute a directory is stored as a special
type of file. The notion of a directory as a type of file allows UFS to implement a
hierarchical directory structure: Directories can contain files that are directories.
For example, the root directory has a name, “/”, and an inode number, 2, which
holds a chunk of directory entries holding a number of files and directories. One of
these directory entries, named etc, is another directory containing more files and
directories. For traversal up and down the file system, the chdir system call opens
the directory file in question and then sets the current working directory to point
to the new directory file. Figure 15.3 illustrates the directory hierarchy.

Each directory contains two special files. The file named “.” is a link to the direc-
tory itself; the file named “..” is a link to the parent directory. Thus, a change of
directory to .. leads to the parent directory.

Now let’s switch gears and see what the on-disk structures for directories look
like.

The contents of a directory are broken up into DIRBLKSIZ chunks, also known
as dirblks. Each of these contains one or more direct structures. DIRBLKSIZ was
chosen to be the same as the size of a disk sector so that modifications to directory
entries could be done atomically on the assumption that a sector write either com-

Figure 15.3 UNIX Directory Hierarchy

solarisinternals.book Page 743 Thursday, June 15, 2006 1:27 PM

744 Chapter 15 The UFS File System

pletes successfully or fails (which can no longer be guaranteed with the advance-
ment of cached hard drives).

Each directory entry is stored in a structure called direct that contains the
inode number (d_ino), the length of the entry (d_reclen), the length of the name
(d_namelen), and a null-terminated string for the name itself (d_name).

d_reclen includes the space consumed by all the fields in a directory entry,
including d_name’s trailing null character. This facilitates directory entry deletion
because when an entry is deleted, if it is not the first entry in the current direc-
tory, the entry before it is grown to include the deleted one, that is, d_reclen is
incremented to account for the size of the next entry. The procedure is relatively
inexpensive and helps keep internal fragmentation down. Figure 15.4 illustrates
the concept of directory deletion.

15.2.3 UFS Hard Links

There is one inode for each file on disk; however, with hard links, each file can
have multiple file names. With hard links, file names in multiple directories point
to the same on-disk inode. The inode reference count field reflects the number of
hard links to the inode. Figure 15.5 illustrates inode 1423 describing a file; two
separate directory entries with different names both point to the same inode num-
ber. Note that the reference count, refcnt, has been incremented to 2.

#define DIRBLKSIZ DEV_BSIZE
#define MAXNAMLEN 255

struct direct {
 uint32_t d_ino; /* inode number of entry */
 ushort_t d_reclen; /* length of this record */
 ushort_t d_namlen; /* length of string in d_name */
 char d_name[MAXNAMLEN + 1]; /* name must be no longer than this */
};

See usr/src/uts/common/sys/fs/ufs_fsdir.h

Figure 15.4 Deletion of a Directory Entry

solarisinternals.book Page 744 Thursday, June 15, 2006 1:27 PM

15.2 UFS ON-DISK FORMAT 745

15.2.4 Shadow Inodes

UFS allows storage of additional per-inode data through the use of shadow inodes.
The implementation of a shadow inode is generic enough to permit storage of any
arbitrary data. All that is needed are a tag to identify the data and functions to
convert the appropriate data structures from on-disk to in-core, and vice versa. As
of this writing (2005), only two data types are defined: FSD_ACL for identification
of ACLs and FSD_DFACL for default ACLs. Only one shadow inode is permitted per
inode today, and as a result both ACLs and default ACLs are stored in the same
shadow inode.

The way a shadow inode is laid out on disk is quite simple (see Figure 15.6). All
the entries for the shadow inode contain one header that includes the type of data
and the length of the whole record, data + header. Entries are then simply concate-
nated and stored to disk as a separate inode with the inode’s ic_smode set to
ISHAD. The parent’s ic_shadow is then updated to point to this shadow inode.

Figure 15.5 UFS Links

typedef struct ufs_fsd {
 int fsd_type; /* type of data */
 int fsd_size; /* size in bytes of ufs_fsd and data */
 char fsd_data[1]; /* data */
} ufs_fsd_t;

See usr/src/uts/common/sys/fs/ufs_acl.h

Figure 15.6 On-Disk Shadow Inode Layout

solarisinternals.book Page 745 Thursday, June 15, 2006 1:27 PM

746 Chapter 15 The UFS File System

15.2.5 The Boot Block

Figure 15.7 illustrates the UFS layout discussed in this section. At the start of the
file system is the boot block. This is a spare sector reserved for the boot program
when UFS is used as a root file system. At boot time, the boot firmware loads the
first sector from the boot device and then starts executing code residing in that
block. The firmware boot is file system independent, which means that the boot
firmware has no knowledge about the file system. We rely on code in the file system
boot block to mount the root file system. When the system starts, the UFS boot
block is loaded and executed, which, in turn, mounts the UFS root file system. The
boot program then passes control to a larger kernel loader, in /platform/
sun4[mud]/ufsboot, to load the UNIX kernel.

The boot program is loaded onto the first sector of the file system at install time
with the installboot(1M) command. The 512-byte install boot image resides
in /usr/platform/sun4[mud]/lib/fs/ufs/bootblk in the platform-depen-
dent directories.

Figure 15.7 UFS Layout

Boot Block

Superblock

Cylinder
Group

Data Block

Data Block

Data Block

Data Block

Boot Block

Superblock

Cylinder
Group

Data Block

Data Block

Data Block

Data Block

Inodes contain disk block
address pointers.

Disk addresses are 31-bit units of file
system fragments. The address is
limited to 2^31 x 1k for the default file
system configuration, yielding a
maximum file size of 1TB.

solarisinternals.book Page 746 Thursday, June 15, 2006 1:27 PM

15.2 UFS ON-DISK FORMAT 747

15.2.6 The Superblock

The superblock contains all the information about the geometry and layout of the file
system and is critical to the file system state. As a safety precaution, the superblock
is replicated across the file system with each cylinder group so that the file system is
not crippled if the superblock becomes corrupted. It is initially created by mkfs and
updated by tunefs and mkfs (in case a file system is grown). The primary super-
block starts at an offset of 8192 bytes into the partition slice and occupies one file
system block (usually 8192 bytes, but can be 4096 bytes on x86 architectures). The
superblock contains a variety of information, including the location of each cylinder
group and a summary list of available free blocks. The major information in the
superblock that identifies the file system geometry is listed below.

� fs_sblkno. Address of superblock in file system; defaults to block number 16.

� fs_cblkno. Offset of the first cylinder block in the file system.

� fs_iblkno. Offset of the first inode blocks in the file system.

� fs_dblkno. Offset of the first data blocks after the first cylinder group.

� fs_cgoffset. Cylinder group offset in the cylinder.

� fs_cgmask. Mask to obtain physical starting fragment number of the cylin-
der group.

� fs_time. Last time written.

� fs_size. Number of blocks in the file system.

� fs_dsize. Number of data blocks the in file system.

� fs_ncg. Number of cylinder groups.

� fs_cpg. Number of cylinders in a cylinder group.

� fs_ipg. Number of inodes in a cylinder group.

� fs_fpg. Number of fragments (including metadata) in a cylinder group.

� fs_bsize. Size of basic blocks in the file system.

� fs_fsize. Size of fragmented blocks in the file system.

� fs_frag. Number of fragments in a block in the file system.

� fs_magic. A magic number to validate the superblock.

The file system configuration parameters also reside in the superblock. The file
system parameters include some of the following, which are configured at the time
the file system is constructed. You can tune the parameters later with the tunefs
command.

� fs_minfree. Minimum percentage of free blocks.

solarisinternals.book Page 747 Thursday, June 15, 2006 1:27 PM

748 Chapter 15 The UFS File System

� fs_rotdelay. Number of milliseconds of rotational delay between sequen-
tial blocks. The rotational delay was used to implement block interleaving
when the operating system could not keep up with reading contiguous blocks.
Since this is no longer an issue, fs_rotdelay defaults to zero.

� fs_rps. Disk revolutions per second.

� fs_maxcontig. Maximum number of contiguous blocks, controls the num-
ber of read-ahead blocks.

� fs_maxbpg. Maximum number of data blocks per cylinder group.

� fs_optim. Optimization preference, space, or time.

And here are the significant logging related fields in the superblock:

� fs_rolled. Determines whether any data in the log still needs to be rolled
back to the file system.

� fs_si. Indicates whether logging summary information is up to date or
whether it needs to be recalculated from cylinder groups.

� fs_clean. Is set to FS_LOG for logging file system.

� fs_logbno. Is the disk block number of logging metadata.

� fs_reclaim: Is set to indicate if the reclaim thread is running or needs to
be run.

See struct fs in usr/src/uts/common/sys/fs/ufs_fs.h for the complete
superblock structure definition

15.2.7 The Cylinder Group

The cylinder group is made up of several logically distinct parts. At logical offset
zero into the cylinder group is a backup copy of the file system’s superblock. Fol-
lowing that, we have the cylinder group structure, the blktot array (indicating
how many full blocks are available), the blks array (representing the full-sized
blocks that are free in each rotational position), inode bitmap (marking which
inodes are in use), and finally, the bitmap of which fragments are free. Next in the
layout is the array of inodes whose size varies according to the number of inodes in
a cylinder group (on-disk inode size is restricted to 128 bytes). And finally, the rest
of the cylinder group is filled by the data blocks.

Figure 15.8 illustrates the layout.

solarisinternals.book Page 748 Thursday, June 15, 2006 1:27 PM

15.2 UFS ON-DISK FORMAT 749

The last cylinder group in a file system may be incomplete because the number
of cylinders in a disk drive is usually not exactly rounded up to the cylinder
groups. In this case, we simply reduce the number of data blocks available in the
last cylinder group; however, the metadata portion of the cylinder group stays the
same throughout the file system. The cg_ncyl and cg_nblk fields of the cylinder
group structure guide us to the size so that we don’t accidentally go out of bounds.

15.2.8 Summary of UFS Architecture

Figure 15.9 puts it all together.

Figure 15.8 Logical Layout of a Cylinder Group

/*
 * Cylinder group block for a file system.
 *
 * Writable fields in the cylinder group are protected by the associated
 * super block lock fs->fs_lock.
 */
#define CG_MAGIC 0x090255
struct cg {
 uint32_t cg_link; /* NOT USED linked list of cyl groups */
 int32_t cg_magic; /* magic number */
 time32_t cg_time; /* time last written */
 int32_t cg_cgx; /* we are the cgx'th cylinder group */
 short cg_ncyl; /* number of cyl's this cg */
 short cg_niblk; /* number of inode blocks this cg */
 int32_t cg_ndblk; /* number of data blocks this cg */
 struct csum cg_cs; /* cylinder summary information */
 int32_t cg_rotor; /* position of last used block */
 int32_t cg_frotor; /* position of last used frag */
 int32_t cg_irotor; /* position of last used inode */
 int32_t cg_frsum[MAXFRAG]; /* counts of available frags */
 int32_t cg_btotoff; /* (int32_t)block totals per cylinder */
 int32_t cg_boff; /* (short) free block positions */
 int32_t cg_iusedoff; /* (char) used inode map */
 int32_t cg_freeoff; /* (uchar_t) free block map */
 int32_t cg_nextfreeoff; /* (uchar_t) next available space */
 int32_t cg_sparecon[16]; /* reserved for future use */
 uchar_t cg_space[1]; /* space for cylinder group maps */
/* actually longer */
};

See usr/src/uts/common/sys/fs/ufs_fs.h

solarisinternals.book Page 749 Thursday, June 15, 2006 1:27 PM

750 Chapter 15 The UFS File System

Figure 15.9 The UFS File System

Directory Name
Lookup Cache

Block I/O Subsystem

VM File Segment

Device Driver Interface

driver (seg_map)

Directory Structures

Metadata (Inode)
Cache

_pagecreate()

getpage()

bread()/bwrite()

read()

direction

write()

pagelookup()

pageexists()

bmap_read()

sd ssd

bdev_strategy()bdev_strategy()

bmap_write()

getpage()/

putpage()

file/offset

maps file into
kernel address
space

VM System

read/writes
vnode pages to/from

disk

disk addr
mapping

to

pvn_readdone()
pvn_writedone()

pvn_readkluster()

Direct/
Indirect
Blocks

_getmap()
_release()

Cached I/O (BUFHWM) Noncached I/O

o
p
e
n
(
)

c
l
o
s
e
(
)

m
k
d
i
r
(
)

r
m
d
i
r
(
)

r
e
n
a
m
e
(
)

l
i
n
k
(
)

u
n
l
i
n
k
(
)

s
e
e
k
(
)

f
s
y
n
c
(
)

i
o
c
t
l
(
)

c
r
e
a
t
(
)

block map

bdev_strategy()

Directory
Implementation

putpage()

bdev_strategy()

solarisinternals.book Page 750 Thursday, June 15, 2006 1:27 PM

15.3 THE UFS INODE 751

15.3 The UFS Inode

The inode (Index Node) is UFS’s internal descriptor for a file. Each file system has
two forms of an inode: the on-disk inode and the in-core (in-memory) inode. The
on-disk inode resides on the physical medium and represents the on-disk format
and layout of the file.

15.3.1 In-Core UFS Inodes

The in-core inode, as you may have guessed, resides in memory and contains the
file-system-dependent information, free-list pointers, hash anchors, kernel locks
(covered in UFS locking below), and inode state.

typedef struct inode {
 struct inode *i_chain[2]; /* must be first */
 struct inode *i_freef; /* free list forward - must be before i_ic */
 struct inode *i_freeb; /* free list back - must be before i_ic */
 struct icommon i_ic; /* Must be here */
 struct vnode *i_vnode; /* vnode associated with this inode */
 struct vnode *i_devvp; /* vnode for block I/O */
 dev_t i_dev; /* device where inode resides */
 ino_t i_number; /* i number, 1-to-1 with device address */
 off_t i_diroff; /* offset in dir, where we found last entry */
 /* just a hint - no locking needed */
 struct ufsvfs *i_ufsvfs; /* incore fs associated with inode */
 struct dquot *i_dquot; /* quota structure controlling this file */
 krwlock_t i_rwlock; /* serializes write/setattr requests */
 krwlock_t i_contents; /* protects (most of) inode contents */
 kmutex_t i_tlock; /* protects time fields, i_flag */
 offset_t i_nextr; /* */
 /* next byte read offset (read-ahead) */
 /* No lock required */
 /* */
 uint_t i_flag; /* inode flags */
 uint_t i_seq; /* modification sequence number */
 boolean_t i_cachedir; /* Cache this directory on next lookup */
 /* - no locking needed */
 long i_mapcnt; /* mappings to file pages */
 int *i_map; /* block list for the corresponding file */
 dev_t i_rdev; /* INCORE rdev from i_oldrdev by ufs_iget */
 size_t i_delaylen; /* delayed writes, units=bytes */
 offset_t i_delayoff; /* where we started delaying */
 offset_t i_nextrio; /* where to start the next clust */
 long i_writes; /* number of outstanding bytes in write q */
 kcondvar_t i_wrcv; /* sleep/wakeup for write throttle */
 offset_t i_doff; /* dinode byte offset in file system */
 si_t *i_ufs_acl; /* pointer to acl entry */
 dcanchor_t i_danchor; /* directory cache anchor */
 kthread_t *i_writer; /* thread which is in window in wrip() */
} inode_t;

See usr/src/uts/common/sys/fs/ufs_inode.h

solarisinternals.book Page 751 Thursday, June 15, 2006 1:27 PM

752 Chapter 15 The UFS File System

New with Solaris 10, an inode sequence number was added to the in-core inode
structure to support NFSv3 and NFSv4 detection of atomic changes to the inode.
Two caveats with this new value: i_seq must be updated if i_ctime and i_mtime
are changed; the value of i_seq is only guaranteed to be persistent while the
inode is active.

15.3.2 Inode Cache

When the last reference to a vnode is released, the vop_inactive() routine for
the file system is called. (See vnode reference counts in Section 14.6.8.) UFS uses
vop_inactive() to free the inode when it is no longer required. If we were to
destroy each vnode when the last reference to a vnode is relinquished, we would
throw away all the data relating to that vnode, including all the file pages cached
in the page cache. This practice could mean that if a file is closed and then
reopened, none of the file data that was cached would be available after the sec-
ond open and would need to be reread from disk. To remedy the situation, UFS
caches all unused inodes in its global cache.

The UFS inode cache contains an entry for every open inode in the system. It
also attempts to keep as many closed inodes as possible so that inactive inodes/
vnodes and associated pages are around in memory for possible reuse. This is a
global cache and not a per-file system cache, and that unfortunately leads to sev-
eral performance issues.

The inode cache consists of several disconnected queues or chains, and each
queue is linked with the inode’s i_forw and i_backw pointers (see Figure 15.10).
Starting with Solaris 10, hashing of inode entries is done with the inode number
(because of recent devfs changes) rather than with the inode number and the
device number (Solaris 9 and earlier). These queues are managed according to
least recently used (LRU) scheme.

An inode free list is also maintained within the cache which is built upon the
i_freef and i_freeb pointers. These enable the free list to span several hash
chains. If an inode is not on the free list, then the i_freef and i_freeb values
point back to the inode itself.

Inodes on the free list can be part of two separate queues:

� Idle queue. Holds the idle or unreferenced inodes (where the v_count
equals 1, t and the i_nlink is greater than 0). This queue is managed by the
global file system idle thread, which frees entries, starting at the head. When
new entries are added, ufs_inactive() adds an inode to the head if the
inode has no associated pages; otherwise, the inode is added to the tail. This
ensures that pages are retained longer in memory for possible reuse—the
frees are done starting at the head.

solarisinternals.book Page 752 Thursday, June 15, 2006 1:27 PM

15.3 THE UFS INODE 753

Starting with Solaris 10, the idle queue architecture was reorganized into
two separate hash queues: ufs_useful_iq and ufs_junk_iq. If an inode
has pages associated with it (vn_has_cached_data(vnode)) or is a fast
symbolic link (i_flag and IFASTSYMLNK), then it is attached to the useful
idle queue. All other inodes are attached to the junk idle queue instead.
These queues are not used for searching but only for grouping geographically
local inodes for faster updates and fewer disk seeks upon reuse. Entries from
the junk idle queue are destroyed first when ufs_idle_free() is invoked
by the UFS idle thread so that cached pages pertaining to entries in the
ufs_useful_iq idle queue stay in memory longer.

The idle thread is adjusted to run when there are 25% of ufs_ninode
entries on the idle queue. When it runs, it gives back half of the idle queue
until the queue falls below the low water mark of ufs_q->uq_lowat. Inodes
on the junk queue get destroyed first. Figure 15.11 illustrates the process.

Figure 15.10 UFS Inode Hash Queues

solarisinternals.book Page 753 Thursday, June 15, 2006 1:27 PM

754 Chapter 15 The UFS File System

� Delete queue. Is active if UFS logging is enabled and consists of inodes that
are unlinked or deleted (v_count equals 1 and i_nlink is less than or equal
to 0). This queue is a performance enhancer for file systems with logging
turned on and observing heavy deletion activity. The delete queue is handled
by the per-file system delete thread, which queues the inodes to be deleted by
the ufs_delete() thread. This significantly boosts response times for
removal of large amounts of data. If logging is not enabled, ufs_delete()
is called immediately. ufs_delete() calls VN_RELE() after it has finished
processing, which causes the inode to once again be processed by ufs_
inactive, which this time puts it on the idle queue. While on the delete
queue, the inode’s i_freef and i_freeb point to the inode itself since the
inodes are not free yet.

15.3.3 Block Allocation

The UFS file system is block based where each file is represented by a set of fixed
sized units of disk space, indexed by a tree of physical-meta-data blocks.

15.3.3.1 Layout Policy

UFS uses block sizes of 4 and 8 Kbytes, which provides significantly higher perfor-
mance than the 512-byte blocks used in the System V file system. The downside of
larger blocks was that when partially allocated blocks were created, several kilo-

Figure 15.11 UFS Idle Queue

ufs_inactive()

inodes with pages
inodes without pages

UFS idle queue (tail)

(head)

free inode resources

queue size target is
ufs_ninode / 4

UFS idle thread wakes up when
queue size is ufs_ninode / 4 and
frees 1/2 of queue.

solarisinternals.book Page 754 Thursday, June 15, 2006 1:27 PM

15.3 THE UFS INODE 755

bytes of disk space for each partly filled file system block was wasted. To overcome
this disadvantage, UFS uses the notion of file system fragments. Fragments allow
a single block to be broken up into 2, 4, or 8 fragments when necessary (4 Kbytes, 2
Kbytes or 1 Kbyte, respectively).

UFS block allocation tries to prevent excessive disk seeking by attempting to co-
locate inodes within a directory and by attempting to co-locate a file’s inode and its
data blocks. When possible, all the inodes in a directory are allocated in the same
cylinder group. This scheme helps reduce disk seeking when directories are tra-
versed; for example, executing a simple ls -l of a directory will access all the
inodes in that directory. If all the inodes reside in the same cylinder group, most of
the data are cached after the first few files are accessed. A directory is placed in a
cylinder group different from that of its parent.

Blocks are allocated to a file sequentially, starting with the first 96 Kbytes (the
first 12 direct blocks), skipping to the next cylinder group and allocating blocks up
to the limit set by the file system parameter maxbpg (maximum-blocks-per-cylin-
der-group). After that, blocks are allocated from the next available cylinder group.

 By default, on a file system greater than 1 Gbyte, the algorithm allocates 96
Kbytes in the first cylinder group, 16 Mbytes in the next available cylinder group,
16 Mbytes from the next, and so on. The maximum cylinder group size is 54
Mbytes, and the allocation algorithm allows only one-third of that space to be allo-
cated to each section of a single file when it is extended. The maxbpg parameter is
set to 2,048 8-Kbyte blocks by default at the time the file system is created. It is
also tunable but can only be tuned downward since the maximum cylinder group
size is 16-Mybte allocation per cylinder group.

Selection of a new cylinder group for the next segment of a file is governed by a
rotor and free-space algorithm. A per-file-system allocation rotor points to one of
the cylinder groups; each time new disk space is allocated, it starts with the cylin-
der group pointed to by the rotor. If the cylinder group has less than average free
space, then it is skipped and the next cylinder group is tried. This algorithm
makes the file system attempt to balance the allocation across the cylinder groups.

Figure 15.12 shows the default allocation that is used if a file is created on a
large UFS. The first 96 Kbytes of file 1 are allocated from the first cylinder group.
Then, allocation skips to the second cylinder group and another 16 Mbytes of file 1
are allocated, and so on. When another file is created, we can see that it consumes
the holes in the allocated blocks alongside file 1. There is room for a third file to do
the same.

The actual on-disk layout will not be quite as simple as the example shown but
does reflect the allocation policies discussed. We can use an add-on tool, filestat,
to view the on-disk layout of a file, as shown below.

solarisinternals.book Page 755 Thursday, June 15, 2006 1:27 PM

756 Chapter 15 The UFS File System

The filestat output shows that the first segment of the file occupies 192 (512-
byte) blocks, followed by the next 16 Mbytes, which start in a different cylinder
group. This particular file system was not empty when the file was created, which
is why the next cylinder group chosen is a long way from the first.

We can observe the file system parameters of an existing file system with the
fstyp command. The fstyp command simply dumps the superblock information
for the file, revealing all the cylinder group and allocation information. The follow-
ing example shows the output for a 4-Gbyte file system with default parameters.

sol8# /usr/local/bin/filestat testfile
Inodes per cyl group: 128
Inodes per block: 64
Cylinder Group no: 0
Cylinder Group blk: 64
File System Block Size: 8192
Block Size: 512
Number of 512b Blocks: 262288

Start Block End Block Length (512 byte Blocks)
----------- ----------- ------------------------
 144 -> 335 192
 400 -> 33167 32768
 110800 -> 143567 32768
 221264 -> 221343 80
 221216 -> 221263 48
 221456 -> 254095 32640
 331856 -> 331999 144
 331808 -> 331855 48
 332112 -> 364687 32576
 442448 -> 442655 208
 442400 -> 442447 48
 442768 -> 475279 32512

Figure 15.12 Default File Allocation in 16-Mbyte Groups

C
yl

in
de

r G
ro

up

C
yl

in
de

r G
ro

up

54 MB 62 MB 78 MB 110 MB

file1
file1 file1

file2
file2

file3
file3

C
yl

in
de

r G
ro

up

solarisinternals.book Page 756 Thursday, June 15, 2006 1:27 PM

15.3 THE UFS INODE 757

We can see that the file system has 8,247,421 blocks and has 167 cylinder groups
spaced evenly at 6,272 (51-Mbyte) intervals. The maximum blocks to allocate for
each group is set to the default of 2,048 8-Kbyte, 16 Mbytes.

The UFS-specific version of the fstyp command dumps the superblock of a UFS
file system, as shown below.

sol8# fstyp -v /dev/vx/dsk/homevol |more
ufs
magic 11954 format dynamic time Sat Mar 6 18:19:59 1999
sblkno 16 cblkno 24 iblkno 32 dblkno 800
sbsize 2048 cgsize 8192 cgoffset 32 cgmask 0xffffffe0
ncg 167 size 8378368 blocks 8247421
bsize 8192 shift 13 mask 0xffffe000
fsize 1024 shift 10 mask 0xfffffc00
frag 8 shift 3 fsbtodb 1
minfree 1% maxbpg 2048 optim time
maxcontig 32 rotdelay 0ms rps 120
csaddr 800 cssize 3072 shift 9 mask 0xfffffe00
ntrak 32 nsect 64 spc 2048 ncyl 8182
cpg 49 bpg 6272 fpg 50176 ipg 6144
nindir 2048 inopb 64 nspf 2
nbfree 176719 ndir 10241 nifree 956753 nffree 21495
cgrotor 152 fmod 0 ronly 0 logbno 0

sol8# fstyp -v /dev/vx/dsk/homevol |more
ufs
magic 11954 format dynamic time Sat Mar 6 18:19:59 1999
sblkno 16 cblkno 24 iblkno 32 dblkno 800
sbsize 2048 cgsize 8192 cgoffset 32 cgmask 0xffffffe0
ncg 167 size 8378368 blocks 8247421
bsize 8192 shift 13 mask 0xffffe000
fsize 1024 shift 10 mask 0xfffffc00
frag 8 shift 3 fsbtodb 1
minfree 1% maxbpg 2048 optim time
maxcontig 32 rotdelay 0ms rps 120
csaddr 800 cssize 3072 shift 9 mask 0xfffffe00
ntrak 32 nsect 64 spc 2048 ncyl 8182
cpg 49 bpg 6272 fpg 50176 ipg 6144
nindir 2048 inopb 64 nspf 2
nbfree 176719 ndir 10241 nifree 956753 nffree 21495
cgrotor 152 fmod 0 ronly 0 logbno 0
fs_reclaim is not set
file system state is valid, fsclean is 0
blocks available in each rotational position
cylinder number 0:
 position 0: 0 4 8 12 16 20 24 28 32 36 40 44
 48 52 56 60 64 68 72 76 80 84 88 92
 96 100 104 108 112 116 120 124
 position 2: 1 5 9 13 17 21 25 29 33 37 41 45
 49 53 57 61 65 69 73 77 81 85 89 93
 97 101 105 109 113 117 121 125
 position 4: 2 6 10 14 18 22 26 30 34 38 42 46
 50 54 58 62 66 70 74 78 82 86 90 94
 98 102 106 110 114 118 122 126
 position 6: 3 7 11 15 19 23 27 31 35 39 43 47
 51 55 59 63 67 71 75 79 83 87 91 95
 99 103 107 111 115 119 123 127

continues

solarisinternals.book Page 757 Thursday, June 15, 2006 1:27 PM

758 Chapter 15 The UFS File System

15.3.3.2 Mapping Files to Disk Blocks

At the heart of a disk-based file system are the block map algorithms, which imple-
ment the on-disk file system format. These algorithms map UFS file and offsets
pairs into disk addresses on the underlying storage. For UFS, two main func-
tions—bmap_read() and bmap_write()—implement the on-disk format. Calling
these functions has the following results:

� bmap_read() queries the file system as to which physical disk sector a file
block resides on; that is, requests a lookup of the direct/indirect blocks that
contain the disk address(es) of the required blocks.

� bmap_write() allocates, with the aid of helper functions, new disk blocks
when extending or allocating blocks for a file.

The bmap_read() function reads file system block addresses. It accepts an
inode and offset as input arguments, and a pointer to a disk address and contigu-
ity length as output arguments.

The file system uses the bmap_read() algorithm to locate the physical blocks
for the file being read. The bmap_read() function searches through the direct,
indirect, and double-indirect blocks of the inode to locate the disk address of the
disk blocks that map to the supplied offset. The function also searches forward
from the offset, looking for disk blocks that continue to map contiguous portions of

cs[].cs_(nbfree,ndir,nifree,nffree):
 (23,26,5708,102) (142,26,5724,244) (87,20,5725,132) (390,69,5737,80)
 (72,87,5815,148) (3,87,5761,110) (267,87,5784,4) (0,66,5434,4)
 (217,46,5606,94) (537,87,5789,70) (0,87,5901,68) (0,87,5752,20)
.
.
cylinders in last group 48
blocks in last group 6144

cg 0:
magic 90255 tell 6000 time Sat Feb 27 22:53:11 1999
cgx 0 ncyl 49 niblk 6144 ndblk 50176
nbfree 23 ndir 26 nifree 5708 nffree 102
rotor 1224 irotor 144 frotor 1224
frsum 7 7 3 1 1 0 9
sum of frsum: 102
iused: 0-143, 145-436
free: 1224-1295, 1304-1311, 1328-1343, 4054-4055, 4126-4127, 4446-4447, 4455, 4637-
4638,

int
bmap_read(struct inode *ip, u_offset_t off, daddr_t *dap, int *lenp)

See usr/src/uts/common/fs/ufs/ufs_bmap.c

solarisinternals.book Page 758 Thursday, June 15, 2006 1:27 PM

15.3 THE UFS INODE 759

the inode, and returns the length of the contiguous segment (in blocks) in the
length pointer argument. The length and the file system block clustering parame-
ters are used within the file system as bounds for clustering contiguous blocks to
provide better performance by reading larger parts of a file from disk at a time.
See ufs_getpage_ra(), defined in usr/src/uts/common/fs/ufs_vnops.c,
for more information on read-aheads.

The bmap_write() function allocates file space in the file system when a file is
extended or a file with holes has blocks written for the first time and is responsible
for storing the allocated block information in the inode. bmap_write() traverses
the block free lists, using the rotor algorithm (discussed in Section 15.3.3), and
updates the local, direct, and indirect blocks in the inode for the file being extended.
bmap_write calls several helper functions to facilitate the allocation of blocks.

int
bmap_write(struct inode *ip, u_offset_t off, int size,
 int alloc_only, struct cred *cr);

See usr/src/uts/common/fs/ufs/ufs_bmap.c

daddr_t blkpref(struct inode *ip, daddr_t lbn, int indx, daddr32_t *bap)

Guides bmap_write in selecting the next desired block in the file. Sets the policy as
described in Section 15.3.3.1.

int realloccg(struct inode *ip, daddr_t bprev, daddr_t bpref, int osize, int nsize,
 daddr_t *bnp, cred_t *cr)

Re-allocates a fragment to a bigger size. The number and size of the old block size is
specified and the allocator attempts to extend the original block. Failing that, the
regular block allocator is called to obtain an appropriate block.

int alloc(struct inode *ip, daddr_t bpref, int size, daddr_t *bnp, cred_t *cr)

Allocates a block in the file system. The size of the block is specified which is a mul-
tiple of (fs_fsize <= fs_bsize). If a preference (usually obtained from blkpref()) is
specified, the allocator will try to allocate the requested block. If that fails, a
rotationally optimal block in the same cylinder is found. Failing that a block in the
same cylinder group is searched for. And in case that fails, the allocator quadratically
rehashes into other cylinder groups (see hashalloc() in uts/common/fs/ufs/ufs_alloc.c)
to locate an available block. If no preference is given, a block in the same cylinder is
found, and failing that the allocator quadratically searches other cylinder groups for
one.

See uts/common/fs/ufs/ufs_alloc.c

static void ufs_undo_allocation(inode_t *ip,
 int block_count,
 struct ufs_allocated_block table[],
 int inode_sector_adjust)

In the case of an error, bmap_write() will call ufs_undo_allocation to free any blocks
which were used during the allocation process.

See uts/common/fs/ufs/ufs_bmap.c

solarisinternals.book Page 759 Thursday, June 15, 2006 1:27 PM

760 Chapter 15 The UFS File System

15.3.3.3 Reading and Writing UFS Blocks

A file system read calls bmap_read() to find the location of the underlying physi-
cal blocks for the file being read. UFS then calls the device driver’s strategy rou-
tine for the device containing the file system to initiate the read operation by
calling bdev_strategy().

A file system write operation that extends a file first calls bmap_write() to
allocate the new blocks and then calls bmap_read() to obtain the block location
for the write. UFS then calls the device driver’s strategy routine, by means of
bdev_strategy(), to initiate the file write.

15.3.3.4 Buffering Block Metadata

The block map functions access metadata (single, double and triple indirect blocks)
on the device media through the buffer cache, using the bread_common() and
bwrite_common() buffered block I/O kernel functions. The block I/O functions
read and write device blocks in 512-byte chunks, and they cache physical disk
blocks in the block buffer cache (note: this cache is different from the page cache,
used for file data). The UFS file system requires 1 Mbyte of metadata for every 2
Gbytes of file space. This relationship can be used as a rule to calculate the size of
the block buffer cache, set by the bufhwm kernel parameter.

15.3.4 Methods to Read and Write UFS Files

Files can be read or written in two ways: by the read() or write() system calls
or by mapped file I/O. The read() and write() system calls call the file system’s
ufs_read() and ufs_write() method. These methods map files into the kernel’s
address space and then use the file system’s ufs_getpage() and ufs_putpage()
methods to transfer data to and from the physical media.

15.3.4.1 ufs_read()

An example of the steps taken by a UFS read system call is shown in Figure 15.13.
A read system call invokes the file-system-dependent read function, which turns
the read request into a series of vop_getpage() calls by mapping the file into the
kernel’s address space with the seg_kpm driver (through the seg_map driver), as
described in Section 14.7.

The ufs_read method calls into the seg_map driver to locate a virtual address
in the kernel address space for the file and offset requested with the segmap_
getmapflt() function. The seg_map driver determines whether it already has a
mapping for the requested offset by looking into its hashed list of mapping slots.
Once a slot is located or created, an address for the page is located. segmap then
calls back into the file system with ufs_getpage() to soft-initiate a page fault to

solarisinternals.book Page 760 Thursday, June 15, 2006 1:27 PM

15.3 THE UFS INODE 761

Figure 15.13 ufs_read()

read(myfile, 16384)

16K of heap space
in process

User Process Address Space Kernel Address Space

read() ufs_read

1. ufs_read asks seg_map

16K of file in
kernel address
space

3a. If seg_map finds the pages

6. The file system copies the 16K of
file data from the kernel
address space to user
address space.

2. seg_map checks to see if

for a kernel mapping for
the requested range.

the requested range already
has a known address in the
seg_kpm segment.

then it simply returns the
address.

3b. If seg_map does not find
that address, then
it creates a slot and then
calls vop_getpage to bring in
the pages.

4. The page cache is checked to
see if it has the requested pages.

5a. If vop_getpage finds the
pages in page cache, then it
simply returns to seg_map.

5b. If vop_getpage does not
have the pages, then it asks
ufs_bmap for the disk address
of the pages and brings them
in from storage.

7. seg_map releases the
virtual address space onto its
free list.

solarisinternals.book Page 761 Thursday, June 15, 2006 1:27 PM

762 Chapter 15 The UFS File System

read in the page at the virtual address of the seg_map slot. The page fault is initiated
while we are still in the segmap_getmap() routine, by a call to segmap_fault().
That function in turn calls back into the file system with ufs_getpage(), which calls
out file system’s _getpage(). If not, then a slot is created and ufs_getpage() is
called to read in the pages.

The ufs_getpage() routine brings the requested range of the file (vnode, off-
set, and length) from disk into the virtual address, and the length is passed into
the ufs_getpage() function. The ufs_getpage() function locates the file’s
blocks (through the block map functions discussed in Section 15.3.3.2) and reads
them by calling the underlying device’s strategy routine.

Once the page is read by the file system, the requested range is copied back to
the user by the uiomove() function. The file system then releases the slot associ-
ated with that block of the file by using the segmap_release() function. At this
point, the slot is not removed from the segment, because we may need the same
file and offset later (effectively caching the virtual address location); instead, it is
added to a seg_map free list so that it can be reclaimed or reused later.

15.3.4.2 ufs_write()

Writing to the file system is performed similarly, although it is more complex
because of some of the file system write performance enhancements, such as
delayed writes and write clustering. Writing to the file system follows the steps
shown in Figure 15.14.

The write system call calls the file-system-independent write, which in our
example calls ufs_write(). UFS breaks the write into 8-Kbyte chunks and then
processes each chunk. For each 8-Kbyte chunk, the following steps are performed.

1. UFS asks the segmap driver for an 8-Kbyte mapping of the file in the ker-
nel’s virtual address space. The page for the file and offset is mapped here so
that the data can be copied in and then written out with paged I/O.

2. If the file is being extended or a new page is being created within a hole of a
file, then a call is made to the segmap_pagecreate function to create and
lock the new pages. Next, a call is made segmap_pageunlock() to unlock
the pages that were locked during the page_create.

3. If the write is to a whole file system block, then a new zeroed page is created
with segmap_pagecreate(). In the case of a partial block write, the block
must first be read in so that the partial block contents can be replaced.

4. The new page is returned, locked, to UFS. The buffer that is passed into the
write system call is copied from user address space into kernel address space.

5. The ufs_write throttle first checks to see if too many bytes are outstanding
for this file as a result of previous delayed writes. If more than the kernel

solarisinternals.book Page 762 Thursday, June 15, 2006 1:27 PM

15.3 THE UFS INODE 763

Figure 15.14 ufs_write()

write(myfile, 16384)

16K of heap space
in process

User Process Address Space Kernel Address Space

write() ufs_write()

1. UFS write maps the file
into kernel address space
via seg_map.

16K of file in
kernel address
space

3. UFS copies the 16K of
file data from the user
address space to kernel
address space.

4. UFS then releases the
16K of kernel address space
onto the seg_map free
list. At this point, seg_map
calls ufs_putpage to write
the data out.

5a. ufs_putpage puts the
page into a cluster. If the
cluster is full (cluster size
is determined by maxcontig),
then ufs_putpage pushes the cluster;
otherwise, it leaves the page
there for a delayed write.

5b. ufs_putpage writes
the page to disk (waits

Async
Write

Sync
Write

6. segmap_release
returns control to
the caller.

for I/O to complete).

2. UFS write throttle: If there
are more than ufs_HW bytes
outstanding, then the write
is throttled.

solarisinternals.book Page 763 Thursday, June 15, 2006 1:27 PM

764 Chapter 15 The UFS File System

parameter ufs_HW bytes are outstanding, the write is put to sleep until the
amount of outstanding bytes drops below the kernel parameter ufs_LW.

The file system calls the seg_map driver to map in the portion of the file we are
going to write. The data is copied from the process’s user address space into the
kernel address space allocated by seg_map, and seg_map is then called to release
the address space containing the dirty pages to be written. This is when the real
work of write starts, because seg_map calls ufs_putpage() when it realizes
there are dirty pages in the address space it is releasing.

15.4 Access Control in UFS

The traditional UNIX File System provides a simple file access scheme based on
users, groups, and world, whereby each file is assigned an owner and a UNIX
group, and then is assigned a bitmap of permissions for user, group, and world, as
illustrated in Figure 15.15.

This scheme is flexible when file access permissions align with users and groups
of users, but it does not provide a mechanism to assign access to lists of users that
do not coincide with a UNIX group. For example, if we want to give read access to
file 1 to Mark and Chuck, and then read access to file 2 to Chuck and Barb, then
we would need to create two UNIX groups, and Chuck would need to switch groups
with the chgrp command to gain access to either file.

To overcome this drawback, some operating systems use an access control list
(ACL), whereby lists of users with different permissions can be assigned to a file.
Solaris introduced the notion of access control lists in the B1 secure version,
known as Trusted Solaris, in 1993. Trusted Solaris ACLs were later integrated
with the commercial Solaris version in 1995 with Solaris 2.5.

Figure 15.15 Traditional File Access Scheme

solarisinternals.book Page 764 Thursday, June 15, 2006 1:27 PM

15.4 ACCESS CONTROL IN UFS 765

With Solaris ACLs, administrators can assign a list of UNIX user IDs and
groups to a file by using the setfacl command and can review the ACLs by using
the getfacl command, as shown below.

For example, we can assign access to a file for a specific user by using the setfacl
command. Note that the UNIX permissions on the file now contain a +, signifying
that an access control list is assigned to this file.

Multiple users and groups can be assigned to a file, offering a flexible mecha-
nism for assigning access rights. ACLs can be assigned to directories as well. Note
that unlike the case with some other operating systems, access control lists are not
inherited from a parent, so a new directory created under a directory with an ACL
will not have an ACL assigned by default.

ACLs are divided into three parts: on-disk, in-core, and user level. On-disk for-
mat is used to represent the ACL data that is stored in the file’s shadow inode, in-
core structure is used by UFS internally, and the user-level format is used by the
system to present data to the requester.

The ufs_acl structure defines an ACL entry that is encapsulated in the ufs_fsd
structure and then stored on disk in a shadow inode. Refer to Section 15.2.4 for
more information on shadow inode storage.

setfacl -m user:jon:rw- memtool.c
getfacl memtool.c

file: memtool.c
owner: rmc
group: staff
user::r--
user:jon:rw- #effective:r--
group::r-- #effective:r--
mask:r--
other:r--

ls -l memtool.c
-r--r--r--+ 1 rmc staff 638 Mar 30 11:32 memtool.c

/*
 * On-disk UFS ACL structure
 */
typedef struct ufs_acl {
 union {
 uint32_t acl_next; /* Pad for old structure */
 ushort_t acl_tag; /* Entry type */
 } acl_un;
 o_mode_t acl_perm; /* Permission bits */
 uid_t acl_who; /* User or group ID */
} ufs_acl_t;

See usr/src/uts/common/sys/fs/ufs_acl.h

solarisinternals.book Page 765 Thursday, June 15, 2006 1:27 PM

766 Chapter 15 The UFS File System

The in-core format consists of the ufs_ic_acl structure and the in-core ACL
mask (ufs_aclmask) structure.

When ACL data is exchanged to and from the application, a struct acl relays
the permission bits, user or group ID, and the type of ACL.

The following routines are available in UFS to manipulate ACLs.

/*
 * In-core UFS ACL structure
 */
typedef struct ufs_ic_acl {
 struct ufs_ic_acl *acl_ic_next; /* Next ACL for this inode */
 o_mode_t acl_ic_perm; /* Permission bits */
 uid_t acl_ic_who; /* User or group ID */
} ufs_ic_acl_t;

/*
 * In-core ACL mask
 */
typedef struct ufs_aclmask {
 short acl_ismask; /* Is mask defined? */
 o_mode_t acl_maskbits; /* Permission mask */
} ufs_aclmask_t;

See usr/src/uts/common/sys/fs/ufs_acl.h

typedef struct acl {
 int a_type; /* the type of ACL entry */
 uid_t a_id; /* the entry in -uid or gid */
 o_mode_t a_perm; /* the permission field */
} aclent_t;

See usr/src/uuts/common/sys/acl.h

static int
ufs_setsecattr(struct vnode *vp, vsecattr_t *vsap, int flag, struct cred *cr)

Used primarily for updates to ACLs. The structure vsecattr is converted to ufs_acl for
in-core storage of ACLs. All file mode changes are updated via this routine.

static int
ufs_getsecattr(struct vnode *vp, vsecattr_t *vsap, int flag,struct cred *cr)

If ACL data is present, it is converted to vsecattr. Otherwise a new entry is created
from the mode bits and returned.

int
ufs_acl_access(struct inode *ip, int mode, cred_t *cr)

Checks the inode’s ACLs to see if access of type mode is allowed.

int
ufs_acl_get(struct inode *ip, vsecattr_t *vsap, int flag, cred_t *cr)

Called by ufs_getsecattr() to obtain ACL information.

continues

solarisinternals.book Page 766 Thursday, June 15, 2006 1:27 PM

15.5 EXTENDED ATTRIBUTES IN UFS 767

15.5 Extended Attributes in UFS

In Solaris 9, a new interface was added to UFS for the storage of attributes.
Rather than ACLs, which added a shadow inode to each file for permission stor-
age; extended attributes adds a directory inode to each file (see struct icommon).
This directory is not part of the regular file system name space, rather it is in its
own dimension and is attached to ours via a worm-hole of function calls, such as
openat(2) and attropen(3C).

An excellent discussion of extended attributes can be found in fsattr(5). This
interface exists to support any extra attributes desired for files - this may be to
support files from other file systems that require the storing of non-UFS
attributes. Other uses will be discovered over time.
The following demonstration should get to the point quickly. Here we create an
innocuous file, tardis.txt, and copy (yes, copy) several other files into its extended
attribute name space, purely as a demonstration.

int
ufs_acl_set(struct inode *ip, vsecattr_t *vsap, int flag, cred_t *cr)

Called by ufs_setsecattr() to set the inode’s ACL information.

si_t *
ufs_acl_cp(si_t *sp)

Copies ACL information from one shadow inode into a new created shadow inode.

int
ufs_acl_setattr(struct inode *ip, struct vattr *vap, cred_t *cr)

Sets the inode’s ACL attributes.

usr/src/uuts/common/fs/ufs/ufs_acl.c

$ date > tardis.txt
$ ls -l tardis.txt
-rw-r--r-- 1 user1 other 29 Apr 3 10:46 tardis.txt

$ runat tardis.txt cp /etc/motd /etc/group /usr/bin/ksh .
$ runat tardis.txt ls -l
total 352
-rw-r--r-- 1 user1 other 286 Apr 3 10:47 group
-r-xr-xr-x 1 user1 other 171396 Apr 3 10:47 ksh
-rw-r--r-- 1 user1 other 55 Apr 3 10:47 motd

$ ls -l tardis.txt
-rw-r--r-- 1 user1 other 29 Apr 3 10:46 tardis.txt
$ ls -@ tardis.txt
-rw-r--r--@ 1 user1 other 29 Apr 3 10:46 tardis.txt
$
$ du -ks tardis.txt
184 tardis.txt

solarisinternals.book Page 767 Thursday, June 15, 2006 1:27 PM

768 Chapter 15 The UFS File System

The runat tardis.txt ls -l command is listing the contents of the extended
attribute name space associated with tardis.txt, which now contains a copy of
three files. Note that the final ls -l tardis.txt doesn't show any difference
unless the -@ option is used (displaying "@" in the same place where files with
ACLs display "+"). The -@ option is new to ls(1), cp(1), tar(1) and cpio(1).
The find(1) command has a -xattr option to find files that have extended
attributes. The demonstration also shows that du is extended attribute aware.

Copying the ksh file was deliberate, as it allows us to journey to another world:

Those security minded readers may imagine many entertaining abuses of
extended attributes at this point. The can be turned off if needed, in Solaris 10 a
-noxattr UFS mount option was added.

15.6 Locking in UFS

UFS uses two basic types of locks: kmutex_t and krwlock_t. The workings of
these synchronization primitives is covered in Chapter 17. UFS locks can be
divided into eight categories:

� Inode locks

� Queue locks

� ACL locks

� VNODE locks

� VFS locks

� VOP_RWLOCK

� ufs_iuniqtime_lock

� Logging locks

$ runat tardis.txt ./ksh
cannot access parent directories
$ ls -la
total 33136
drwxr-xr-x 2 user1 other 180 Apr 3 10:47 .
-rw-r--r-- 1 user1 other 16777245 Apr 3 10:52 ..
-rw-r--r-- 1 user1 other 286 Apr 3 10:47 group
-r-xr-xr-x 1 user1 other 171396 Apr 3 10:47 ksh
-rw-r--r-- 1 user1 other 55 Apr 3 10:47 motd
$ pwd
cannot access parent directories
$ cd ..
./ksh: ..: not a directory
$ exit

solarisinternals.book Page 768 Thursday, June 15, 2006 1:27 PM

15.6 LOCKING IN UFS 769

15.6.1 UFS Lock Descriptions

Tables 15.2 through 15.9 describe the UFS locks in more detail.

Table 15.2 Inode Locks

Name Type Description

i_rwlock krwlock_t • Serializes write requests. Allows reads to
proceed in parallel. Serializes directory
reads and updates.

• Does not protect inode fields.
• Indirectly protects block lists since it serial-

izes allocations/deallocations in UFS.
• Must be taken before starting UFS logging

transactions if operating on a file; other-
wise, taken after starting logging transac-
tion.

i_contents krwlock_t • Protects most fields in the inode.
• When held as a writer, protects all the fields

protected by the i_tlock.

i_tlock kmutex_t • When held with the i_contents reader
lock, protects the following inode fields:
i_utime, i_ctime, i_mtime, i_flag,
i_delayoff, i_delaylen, i_nextrio,
i_writes, i_writer, i_mapcnt.

• Also used as mutex for write throttling in
UFS.

• i_contents and i_tlock held together
allows parallelism in updates.

i_hlock kmutex_t • Inode hash lock.

Table 15.3 Inode Queue Locks

Name Type Description

ufs_scan_lock kmutex_t • Synchronizes ufs_scan_inodes threads
• ufs_update(), ufs_sync(), ufs_
scan_inodes().

• Needed because of global inode list.

ufs_q->uq_mutex krwlock_t • Protects the two inode idle queues ufs_
junk_iq and ufs_useful_iq.

continues

solarisinternals.book Page 769 Thursday, June 15, 2006 1:27 PM

770 Chapter 15 The UFS File System

ufs_hlock kmutex_t • Used by the hlock thread. For more infor-
mation, see man lockfs(1M), hardlock
section.

ih_lock kmutex_t • Protects the inode hash. The inode hash is
global, per system, not per file system.

Table 15.4 Quota Queue Locks

Name Type Description

dq_cachelock kmutex_t • Protects the quota cache list. Prerequisite
before taking the dquot.dq_lock.

dq_freelock kmutex_t • Protects the free quota list.

dq_rwlock krwlock_t • Protects the entire quota subsystem.
• Taken as writer when the quota subsystem

is initialized. Taken as reader when we do not
want entire quota subsystem to be quiesced.

• As writer, allows updates to quota-related
fields in the ufsvfs structure. Also pro-
tects the dquot file as writer to allow quota
updates.

• As reader, allows reads from the quota-
related fields in the ufsvfs structure.

dqout.dq_lock kmutex_t • Gives exclusive access to dquot struct.

Table 15.5 VNODE Locks

Name Type Description

v_lock kmutex_t • Protects the vnode fields. Also used by VN_
HOLD/VN_RELE.

Table 15.6 ACL Locks

Name Type Description

s_lock krwlock_t • Protects the in-core shadow inode structure.

Table 15.3 Inode Queue Locks (continued)

Name Type Description

solarisinternals.book Page 770 Thursday, June 15, 2006 1:27 PM

15.6 LOCKING IN UFS 771

Table 15.7 VFS Locks

Name Type Description

vfs_lock kmutex_t • Locks contents of file system and cylinder
groups. Also protects fields of the vfs_dio.

vfs_dqrwlock krwlock_t • Manages quota subsystem quiescence.
• If held as writer, UFS quota subsystem may

be experiencing changes in quotas,
enabling/disabling of quotas, setting new
quota limits.

• Protects d_quot structure. This structure
keeps track of all the enabled quotas per
file system.

• Important note: UFS shadow inodes that
are used to hold ACL data and extended
attribute directories are not counted
against user quotas. Thus, this lock is not
held for updates to these.

• Reader held for this lock indicates to quota
subsystem that major changes should not
be occurring during that time.

• Held when the i_contents writer lock is
held, as described above, signifying that
changes are occurring that affect user
quotas.

• Since UFS quotas can be enabled/disabled
on the fly, this lock must be taken in all
appropriate situations. It is not sufficient to
check if the UFS quota subsystem is
enabled before taking the lock.

ufsvfs_mutex kmutex_t • Protects access to the list that links all UFS
file system instances.

• Updates lists as a part of the mount
operation.

• Allows synchronization of all UFS file
systems.

solarisinternals.book Page 771 Thursday, June 15, 2006 1:27 PM

772 Chapter 15 The UFS File System

15.6.2 Inode Lock Ordering

Now that we are all familiar with the several different types of locks available in
UFS, let us put them in order as if we were to work on an inode. Lock ordering is
critical, and any mistake will more than likely cause the system to deadlock, and
may end up panicking it!

Figure 15.16 give us a quick overview of lock ordering specific to the inode.

Table 15.8 VOP_RWLOCK or ufs_rwlock

Name Type Description

ufs_rwlock() function • Prevents concurrent reads and writes to a
file.

• Used by NFS when calling a VOP_READDIR,
to prevent directory contents from changing.

• NFS uses this lock to get attributes before
and after a read or write to disable another
operation from modifying the file.

Table 15.9 Logging Locks

Name Type Description

mtm_lock kmutex_t • Protects mtm_taskq_sync_count (keeps
track of the number of pending top_
issue_sync requests) field in mt_map_t.

mtm_mutex kmutex_t • Protects all the fields in the mt_map_t
structure except mtm_mapext and mtm_
refcnt.

mtm_rwlock krwlock_t • Protects agenext_mapentry field.

un_log_mutex kmutex_t • Allows one write to the log at a time. Part
of ml_unit_t structure (in-core log data
structure).

un_state_mutex kmutex_t • Allows one log state update at a time.

Figure 15.16 Inode Lock Ordering Precedence

solarisinternals.book Page 772 Thursday, June 15, 2006 1:27 PM

15.6 LOCKING IN UFS 773

15.6.3 UFS Lockfs Protocol

Along with basic inode locking, UFS also provides a mechanism to quiesce a file
system for file system locking and for the forced unmounting of a file system. All
VOPs (vnode operations) in UFS are required to follow the UFS lock protocol with
ufs_lockfs_begin() and ufs_lockfs_end(), although the following func-
tions purposely do not adhere to the tradition:

� ufs_close

� ufs_putpage

� ufs_inactive

� ufs_addmap

� ufs_delmap

� ufs_rwlock

� ufs_rwunlock

� ufs_poll

The basic principle here is that UFS supports various file system lock states
(see list below) and each vnode operation must initiate the protocol by calling ufs_
lockfs_begin() with an appropriate lock mask (a lock that this operation might
grab while it is being processed) and end the protocol by calling ufs_lockfs_end
before it returns. This way, UFS knows exactly how many vnode operations are in
progress for the given file system by incrementing and decrementing the ul_vnops_
cnt variable in the file-system-dependent ulockfs structure. If the file system is
hard-locked, the thread gets an EIO error. If the file system is error-locked, then
the thread is blocked.

Here are the file system locks and their actions.

� Write lock. Suspends writes that would modify the file system. Access times
are not kept while a file system is write-locked.

� Name lock. Suspends accesses that could change or remove existing directo-
ries entries.

� Delete lock. Suspends access that could remove directory entries.

� Hard lock. Returns an error upon every access to the locked file system and
cannot be unlocked. Hard-locked file systems can be unmounted. Hard lock
supports forcible unmount.

� Error lock. Blocks all local access to the file system and returns EWOULDBLOCK
on all remote access. File systems are error-locked by UFS upon detection of

solarisinternals.book Page 773 Thursday, June 15, 2006 1:27 PM

774 Chapter 15 The UFS File System

internal inconsistency. They can only be unlocked after successful repair by
fsck, which is usually done automatically. Error-locked file systems can be
unmounted. Once the file system becomes clean, it can be upgraded to a
hard lock.

� Soft lock. Quiesces a file system.

� Unlock. Awakens suspended accesses, releases existing locks, and flushes
the file system.

While a vnode operation is being executed in UFS, a call can be made to another
vnode function on the same UFS or a different UFS. This is called recursive VOP.
The per-file system vnode operation counter is not incremented or decremented
during recursive calls.

Here is the basic ordering to initiate and complete the lock protocol when oper-
ating on an inode in UFS.

When working with directories, you need to make one minor change. i_rwlock
is acquired after the logging transaction is initialized, and i_rwlock is released
before the transaction is ended. Here are the steps.

1) Acquire i_rwlock (from the vnode layer in most cases).
2) Begin the UFS lock protocol by calling ufs_lockfs_begin().
3) Open UFS logging transactions if necessary now.
4) Acquire inode and quota locks (vfs_dqrwlock, i_contents, i_tlock, ...).
5) [work on inode]
6) Drop inode and quota locks (i_tlock, i_contents, vfs_dqrwlock, ...).
7) Close logging transactions.
8) End the UFS lock protocol by calling ufs_lockfs_end().
9) Release i_rwlock.

1) Begin the UFS lock protocol by calling ufs_lockfs_begin().
2) Open UFS logging transactions if necessary now.
3) Acquire i_rwlock.
4) Acquire inode and quota locks (vfs_dqrwlock, i_contents, i_tlock, ...).
5) [work on inode]
6) Drop inode and quota locks (i_tlock, i_contents, vfs_dqrwlock, ...).
7) Release i_rwlock.
8) Close logging transactions.
9) End the UFS lock protocol by calling ufs_lockfs_end().

solarisinternals.book Page 774 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 775

15.7 Logging

Important criteria for commercial systems are reliability and availability, both of
which may be compromised if the file system does not provide the required level of
robustness. We have become familiar with the term journaling to mean just one
thing, but, in fact, file system logging can be implemented in several ways. The
three most common forms of journaling are

� Metadata logging. Logs only file system structure changes

� File and metadata logging. Logs all changes to the file system

� Log-structured file system. Is an entire file system implemented as a log

The most common form of file system logging is metadata logging, and this is
what UFS implements. When a file system makes changes to its on-disk struc-
ture, it uses several disconnected synchronous writes to make the changes. If an
outage occurs halfway through an operation, the state of the file system is
unknown, and the whole file system must be checked for consistency. For exam-
ple, if the file is being extended the free block bitmap must be updated to mark the
newly allocated block as no longer free. The inode block list must also be updated
to indicate that the allocated block is owned by the file. If an outage occurs after
the block is allocated, but before the inode is updated, file system inconsistency
occurs.

A metadata logging file system such as UFS has an on-disk, cyclic, append-only
log area that it can use to record the state of each disk transaction. Before any on-
disk structures are changed, an intent-to-change record is written to the log. The
directory structure is then updated, and when complete, the log entry is marked
complete. Since every change to the file system structure is in the log, we can
check the consistency of the file system by looking in the log, and we need not do a
full file system scan. At mount time, if an intent-to-change entry is found but not
marked complete the changes will not be applied to the file system. Figure 15.17
illustrates how metadata logging works.

Logging was first introduced in UFS in Solaris 2.4; it has come a long way since
then, to being turned on by default in Solaris 10. Enabling logging turns the file
system into a transaction-based file system. Either the entire transaction is applied
or it is completely discarded. Logging is on by default in Solaris 10; however, it can
be manually turned on by mount(1M) -o logging (using the _FIOLOGENABLE
ioctl). Logging is not compatible with Solaris Logical Volume Manager (SVM)
translogging, and attempt to turn on logging on a UFS file system that resides on
an SVM will fail.

solarisinternals.book Page 775 Thursday, June 15, 2006 1:27 PM

776 Chapter 15 The UFS File System

15.7.1 On-Disk Log Data Structures

The on-disk log is allocated from contiguous blocks where possible, and are only
allocated as full sized file system blocks, no fragments are allowed. The initial pool
of blocks is allocated when logging is first enabled on a file system, and blocks are
not freed until logging is disabled. UFS uses these blocks for its own metadata and
for times when it needs to store file system changes that have not yet been applied
to the file system. This space on the file system is known as the “on disk” log, or log
for short. It requires approximately 1 Mbyte per 1 Gbyte of file system space. The
default minimum size for the log is 1 Mbyte, and the default maximum log size is
64 Mybtes. Figure 15.18 illustrates the on-disk log layout.

The file system superblock contains the block number where the main on-disk
logging structure (extent_block_t) resides. This is defined by the extent_
block structure. Note that the extent_block structure and all the accompany-
ing extent structures fit within a file system block.

Figure 15.17 File System Metadata Logging

typedef struct extent_block {
 uint32_t type; /* Set to LUFS_EXTENTS to identify */
 /* structure on disk. */
 int32_t chksum; /* Checksum over entire block. */
 uint32_t nextents; /* Size of extents array. */
 uint32_t nbytes; /* # bytes mapped by extent_block. */
 uint32_t nextbno; /* blkno of next extent_block. */
 extent_t extents[1];
} extent_block_t;

See usr/src/uts/common/sys/fs/ufs_log.h

1

2

3

Log is updated
to indicate start
of transaction.

File system
is modified.

Log transaction
is marked complete
and deleted.

LOG DATA

solarisinternals.book Page 776 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 777

The extent_block structure describes logging metadata and is the main data
structure used to find the on-disk log. It is followed by a series of extents that con-
tain the physical block number for on-disk logging segments. The number of
extents present for the file system is described by the nextents field in the
extent_block structure.

Only the first extent structure is allowed to contain a ml_odunit structure
(simplified: metadata logging on-disk unit structure).

Figure 15.18 On-Disk Log Data Structure Layout

typedef struct extent {
 uint32_t lbno; /* Logical block # within the space */
 uint32_t pbno; /* Physical block number of extent. */
 /* in disk blocks for non-MTB ufs */
 /* in frags for MTB ufs */
 uint32_t nbno; /* # blocks in this extent */
} extent_t;

See usr/src/uts/common/sys/fs/ufs_log.h

solarisinternals.book Page 777 Thursday, June 15, 2006 1:27 PM

778 Chapter 15 The UFS File System

The values in the ml_odunit_t structure represent the location, usage and
state of the on-disk log. The contents in the on-disk log consist of delta structures,
which define the changes, followed by the actual changes themselves. Each 512
byte disk block of the on-disk log will contain a sect_trailer at the end of the
block. This sect_trailer is used to identify the disk block as containing valid
deltas. The *_lof fields reference the byte offset in the logical on-disk layout and
not the physical on-the-disk contents.

typedef struct ml_odunit {
 uint32_t od_version; /* version number */
 uint32_t od_badlog; /* is the log okay? */
 uint32_t od_unused1;

 /*
 * Important constants
 */
 uint32_t od_maxtransfer; /* max transfer in bytes */
 uint32_t od_devbsize; /* device bsize */
 int32_t od_bol_lof; /* byte offset to begin of log */
 int32_t od_eol_lof; /* byte offset to end of log */

 /*
 * The disk space is split into state and circular log
 */
 uint32_t od_requestsize; /* size requested by user */
 uint32_t od_statesize; /* size of state area in bytes */
 uint32_t od_logsize; /* size of log area in bytes */
 int32_t od_statebno; /* first block of state area */
 int32_t od_unused2;

 /*
 * Head and tail of log
 */
 int32_t od_head_lof; /* byte offset of head */
 uint32_t od_head_ident; /* head sector id # */
 int32_t od_tail_lof; /* byte offset of tail */
 uint32_t od_tail_ident; /* tail sector id # */
 uint32_t od_chksum; /* checksum to verify ondisk contents */

 /*
 * Used for error recovery
 */
 uint32_t od_head_tid; /* used for logscan; set at sethead */

 /*
 * Debug bits
 */
 int32_t od_debug;

 /*
 * Misc
 */
 struct timeval od_timestamp; /* time of last state change */
} ml_odunit_t;

See usr/src/uts/common/sys/fs/ufs_log.h

solarisinternals.book Page 778 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 779

15.7.2 In-Core Log Data Structures

Figure 15.19 illustrates the data structures for in-core logging.

struct delta {
 int64_t d_mof; /* byte offset on device to start writing */
 /* delta */
 int32_t d_nb; /* # bytes in the delta */
 delta_t d_typ; /* Type of delta. Defined in ufs_trans.h */
};

See usr/src/uts/common/sys/fs/ufs_log.h

typedef struct sect_trailer {
 uint32_t st_tid; /* transaction id */
 uint32_t st_ident; /* unique sector id */
} sect_trailer_t;

See usr/src/uts/common/sys/fs/ufs_log.h

Figure 15.19 In-Core Log Data Structure Layout

solarisinternals.book Page 779 Thursday, June 15, 2006 1:27 PM

780 Chapter 15 The UFS File System

ml_unit_t is the main in-core logging structure. There is only one per file sys-
tem, and it contains all logging information or pointers to all logging data struc-
tures for the file system. The un_ondisk field contains an in-memory replica of
the on-disk ml_odunit structure.

mt_map_t tracks all the deltas for the file system. At least three mt_map_t
structures are defined:

� deltamap. Tracks all deltas for currently active transactions. When a file
system transaction completes, all deltas from the delta map are written to the
log map and all the entries are then removed from the delta map.

typedef struct ml_unit {
 struct ml_unit *un_next; /* next incore log */
 int un_flags; /* Incore state */
 buf_t *un_bp; /* contains memory for un_ondisk */
 struct ufsvfs *un_ufsvfs; /* backpointer to ufsvfs */
 dev_t un_dev; /* for convenience */
 ic_extent_block_t *un_ebp; /* block of extents */
 size_t un_nbeb; /* # bytes used by *un_ebp */
 struct mt_map *un_deltamap; /* deltamap */
 struct mt_map *un_logmap; /* logmap includes moby trans stuff */
 struct mt_map *un_matamap; /* optional - matamap */

 /*
 * Used for managing transactions
 */
 uint32_t un_maxresv; /* maximum reservable space */
 uint32_t un_resv; /* reserved byte count for this trans */
 uint32_t un_resv_wantin; /* reserved byte count for next trans */

 /*
 * Used during logscan
 */
 uint32_t un_tid;

 /*
 * Read/Write Buffers
 */
 cirbuf_t un_rdbuf; /* read buffer space */
 cirbuf_t un_wrbuf; /* write buffer space */

 /*
 * Ondisk state
 */
 ml_odunit_t un_ondisk; /* ondisk log information */

 /*
 * locks
 */
 kmutex_t un_log_mutex; /* allows one log write at a time */
 kmutex_t un_state_mutex; /* only 1 state update at a time */
} ml_unit_t;

See usr/src/uts/common/sys/fs/ufs_log.h

solarisinternals.book Page 780 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 781

� logmap. Tracks all committed deltas from completed transactions, not yet
applied to the file system.

� matamap. Is the debug map for delta verification.

See usr/src/uts/common/sys/fs/ufs_log.h for the definition of mt_map
structure

The mapentry structure defines changes to filesystem metadata. All existing
mapentries for a given mt_map are linked into the mt_amp at the mtm_next and
mtm_prev fields. The mtm_hash field of the mt_map is a hash list of all the mapen-
tries, hashed according to the master byte offset of the delta on the file system and
the MAPBLOCKSIZE. For example, the MTM_HASH macro determines the hash list in
which a mapentry for the offset mof (where mtm_nhash is the total number of
hash lists for the map). The default size used for MAPBLOCKSIZE is 8192 bytes, the
hash size for the delta map is 512 bytes, and the hash size for the log map is 2048
bytes.

 struct mapentry {
 /*
 * doubly linked list of all mapentries in map -- MUST BE FIRST
 */
 mapentry_t *me_next;
 mapentry_t *me_prev;

 mapentry_t *me_hash;
 mapentry_t *me_agenext;
 mapentry_t *me_cancel;
 crb_t *me_crb;
 int (*me_func)();
 ulong_t me_arg;
 ulong_t me_age;
 struct delta me_delta;
 uint32_t me_tid;
 off_t me_lof;
 ushort_t me_flags;
};

See usr/src/uts/common/sys/fs/ufs_log.h

#define MAP_INDEX(mof, mtm) \
 (((mof) >> MAPBLOCKSHIFT) & (mtm->mtm_nhash-1))
#define MAP_HASH(mof, mtm) \
 ((mtm)->mtm_hash + MAP_INDEX((mof), (mtm)))

See usr/src/uts/common/sys/fs/ufs_log.h

solarisinternals.book Page 781 Thursday, June 15, 2006 1:27 PM

782 Chapter 15 The UFS File System

A canceled mapentry with the ME_CANCEL bit set in the me_flags field is a
special type of mapentry. This type of mapentry is basically a place holder for free
blocks and fragments. It can also represent an old mapentry that is no longer
valid due to a new mapentry for the same offset. Freed blocks and fragments are
not eligible for reallocation until all deltas have been written to the on-disk log.
Any attempt to allocate a block or fragment in which a corresponding canceled
mapentry exists in the logmap, results in the allocation of a different block or
fragment.

The crb_t, or cache roll buffer, caches blocks that exist within the same disk-
block. It is merely a performance enhancement when information is rolled back to
the file system. It helps reduce reads and writes that can occur while writing com-
pleted transactions deltas to the file system. It also acts as a performance enhance-
ment on read hits of deltas.

UFS logging maintains private buf_t structures used for reading and writing of
the on-disk log. These buf_t structures are managed through cirbuf_t struc-
tures. Each file system will have 2 cirbuf_t structures. One is used to manage
log reads, and one to manage log writes.

15.7.3 Summary Information

Summary information is critical to maintaining the state of the file system. Sum-
mary information includes counts of directories, free blocks, free fragments, and
free inodes. These bits of information exist in each cylinder group and are valid

typedef struct crb {
 int64_t c_mof; /* master file offset of buffer */
 caddr_t c_buf; /* pointer to cached roll buffer */
 uint32_t c_nb; /* size of buffer */
 ushort_t c_refcnt; /* reference count on crb */
 uchar_t c_invalid; /* crb should not be used */
} crb_t;

See sys/fs/ufs_log.h

typedef struct cirbuf {
 buf_t *cb_bp; /* buf's with space in circular buf */
 buf_t *cb_dirty; /* filling this buffer for log write */
 buf_t *cb_free; /* free bufs list */
 caddr_t cb_va; /* address of circular buffer */
 size_t cb_nb; /* size of circular buffer */
 krwlock_t cb_rwlock; /* r/w lock to protect list mgmt. */
} cirbuf_t;

See sys/fs/ufs_log.h

solarisinternals.book Page 782 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 783

only for that respective cylinder group. All cylinder group summary information is
totaled; these numbers are kept in the fs_cstotal field of the superblock. A copy
of all the cylinder group’s summary information is also kept in a buffer pointed to
from the file system superblock’s fs_csp field. Also kept on disk for redundancy is
a copy of the fs_csp buffer, whose block address is stored in the fs_csaddr field
of the file system superblock.

All cylinder group information can be determined from reading the cylinder
groups, as opposed to reading them from fs_csaddr blocks on disk. Hence,
updates to fs_csaddr are logged only for large file systems (in which the total
number of cylinder groups exceeds ufs_ncg_log, which defaults to 10,000). If a
file system isn’t logging deltas to the fs_csaddr area, then the ufsvfs->vfs_
nolog_si is set to 1 and instead marks the fs_csaddr area as bad by setting the
superblock’s fs_si field to FS_SI_BAD. However, these changes are brought up to
date when an unmount or a log roll takes place.

15.7.4 Transactions

A transaction is defined as a file system operation that modifies file system metat-
data. A group of these file system transactions is known as a moby transaction.

Logging transactions are divided into two types:

� Synchronous file system transactions are those that are committed and
written to the log as soon as the file system transaction ends.

� Asynchronous file system transactions are those for which the file sys-
tem transactions are committed and written to the on-disk log after closure of
the moby transaction. In this case the file system transaction may complete,
but the metadata that it modified is not written to the log and not considered
commited until the moby transaction has been completed.

So what exactly are committed transactions? Well, they are transactions whose
deltas (unit changes to the file system) have been moved from the delta map to the
log map and written to the on-disk log.

There are four steps involved in logging metadata changes of a file system
transaction:

1. Reserve space in the log.

2. Begin a file system transaction.

3. Enter deltas in the delta map for all the metadata changes.

4. End the file system transaction.

solarisinternals.book Page 783 Thursday, June 15, 2006 1:27 PM

784 Chapter 15 The UFS File System

15.7.4.1 Reserving Space in the Log

A file system transaction that is to log metadata changes should first reserve space
in the log. This prevents hangs if the on-disk log is full. A file system transaction
that is part of the current moby transaction can not complete if there isn't enough
log space to log the deltas. Log space can not be reclaimed until the current moby
transation completes and is committed. And the current moby transaction can't
complete until all file system transaction in the current moby transaction com-
plete. Thus reserving space in the log must be done by the file system transaction
when it enters the current moby transation. If there is not enough log space avail-
able, the file system transaction will wait until sufficient log space becomes avail-
able, before entereing the the current moby transaction.

The amount of space reserved in the log for write and truncation vary, depend-
ing on the size of the operation. The macro TRANS_WRITE_RESV estimates how
much log space is needed for the operation.

All other file system transactions have a constant transaction size, and UFS has
predefined macros for these operations:

#define TRANS_WRITE_RESV(ip, uiop, ulp, resvp, residp) \
 if ((TRANS_ISTRANS(ip->i_ufsvfs) != NULL) && (ulp != NULL)) \
 ufs_trans_write_resv(ip, uiop, resvp, residp);

See sys/fs/ufs_trans.h

/*
 * size calculations
 */
#define TOP_CREATE_SIZE(IP) \
 (ACLSIZE(IP) + SIZECG(IP) + DIRSIZE(IP) + INODESIZE)
#define TOP_REMOVE_SIZE(IP) \
 DIRSIZE(IP) + SIZECG(IP) + INODESIZE + SIZESB
#define TOP_LINK_SIZE(IP) \
 DIRSIZE(IP) + INODESIZE
#define TOP_RENAME_SIZE(IP) \
 DIRSIZE(IP) + DIRSIZE(IP) + SIZECG(IP)
#define TOP_MKDIR_SIZE(IP) \
 DIRSIZE(IP) + INODESIZE + DIRSIZE(IP) + INODESIZE + FRAGSIZE(IP) + \
 SIZECG(IP) + ACLSIZE(IP)
#define TOP_SYMLINK_SIZE(IP) \
 DIRSIZE((IP)) + INODESIZE + INODESIZE + SIZECG(IP)
#define TOP_GETPAGE_SIZE(IP) \
 ALLOCSIZE + ALLOCSIZE + ALLOCSIZE + INODESIZE + SIZECG(IP)
#define TOP_SYNCIP_SIZE INODESIZE
#define TOP_READ_SIZE INODESIZE
#define TOP_RMDIR_SIZE (SIZESB + (INODESIZE * 2) + SIZEDIR)
#define TOP_SETQUOTA_SIZE(FS) ((FS)->fs_bsize << 2)
#define TOP_QUOTA_SIZE (QUOTASIZE)
#define TOP_SETSECATTR_SIZE(IP) (MAXACLSIZE)
#define TOP_IUPDAT_SIZE(IP) INODESIZE + SIZECG(IP)
#define TOP_SBUPDATE_SIZE (SIZESB)

continues

solarisinternals.book Page 784 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 785

15.7.4.2 Starting Transactions

Starting a transaction simply means that the transaction has successfully entered
the current moby transaction. As a result, once started, the moby will not end until
all active file system transactions have completed. A moby transaction can accom-
modate both synchronous and asynchronous transactions. Most file system trans-
actions in UFS are asynchronous; however, a synchronous transaction occurs if
any of the following are true:

� If the file system is mounted syncdir

� If a fsync() system call is executed

� If DSYNC or O_SYNC open modes are set on reads and writes

� If RSYNC is set on reads

� During an unmount of a file system

A transaction can be started with one of the following macros:

� TRANS_BEGIN_ASYNC—Enters a file system transaction into the current
moby transaction. Once the file system transaction ends, the moby transac-
tion may still be active and hence the changes the file system transaction has
made have not yet been committed.

� TRANS_BEGIN_SYNC. Enters a file system transaction into the current moby
transaction with the requirement that the completion of the file system trans-
action forces a completion and commitment of the moby transaction. All file
system transactions that have occurred within the moby transaction are also
considered as committed.

#define TOP_SBWRITE_SIZE (SIZESB)
#define TOP_PUTPAGE_SIZE(IP) (INODESIZE + SIZECG(IP))
#define TOP_SETATTR_SIZE(IP) (SIZECG(IP) + INODESIZE + QUOTASIZE + \
 ACLSIZE(IP))
#define TOP_IFREE_SIZE(IP) (SIZECG(IP) + INODESIZE + QUOTASIZE)
#define TOP_MOUNT_SIZE (SIZESB)
#define TOP_COMMIT_SIZE (0)
sys/fs/ufs_trans.h

#define TRANS_BEGIN_ASYNC(ufsvfsp, vid, vsize)\
{\
 if (TRANS_ISTRANS(ufsvfsp))\
 (void) top_begin_async(ufsvfsp, vid, vsize, 0); \
}

See sys/fs/ufs_trans.h

solarisinternals.book Page 785 Thursday, June 15, 2006 1:27 PM

786 Chapter 15 The UFS File System

� TRANS_BEGIN_CSYNC. Does a TRANS_BEGIN_SYNC if the mount option
syncdir is set; otherwise, does a TRANS_BEGIN_ASYNC.

� TRANS_TRY_BEGIN_ASYNC and TRANS_TRY_BEGIN_CSYNC. Try to enter the
file system transaction into the moby transaction. If the result would cause
the thread to block, then do not block and return EWOULDBLOCK instead. This
macro is used in cases where the calling thread must not block.

15.7.4.3 Ending the Transaction

Once all metadata changes have been completed, the transaction must be ended.
This is accomplished by calling one of the following macros:

� TRANS_END_CSYNC. Calls TRANS_END_ASYNC or TRANS_END_SYNC, depend-
ing on which type of file system transaction was initially started.

� TRANS_END_ASYNC. Ends an asynchronous file system transaction. If, at this
point, the log is getting full, (the number of mapentries in the logmap is
greater than the global variable logmap_maxnme_async) committed deltas

#define TRANS_BEGIN_SYNC(ufsvfsp, vid, vsize, error)\
{\
 if (TRANS_ISTRANS(ufsvfsp)) { \
 error = 0; \
 top_begin_sync(ufsvfsp, vid, vsize, &error); \
 } \
}

See sys/fs/ufs_trans.h

#define TRANS_TRY_BEGIN_ASYNC(ufsvfsp, vid, vsize, err)\
{\
 if (TRANS_ISTRANS(ufsvfsp))\
 err = top_begin_async(ufsvfsp, vid, vsize, 1); \
 else\
 err = 0; \
}

#define TRANS_TRY_BEGIN_CSYNC(ufsvfsp, issync, vid, vsize, error)\
{\
 if (TRANS_ISTRANS(ufsvfsp)) {\
 if (ufsvfsp->vfs_syncdir) {\
 ASSERT(vsize); \
 top_begin_sync(ufsvfsp, vid, vsize, &error); \
 ASSERT(error == 0); \
 issync = 1; \
 } else {\
 error = top_begin_async(ufsvfsp, vid, vsize, 1); \
 issync = 0; \
 }\
 }\
}

See usr/src/uts/common/sys/fs/ufs_trans.h

solarisinternals.book Page 786 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 787

in the log will be applied to the file system and removed from the log. This is
known as “rolling the log” and is done in by a seperate thread.

� TRANS_END_SYNC. Closes and commits the current moby transaction, and
writes all deltas to the on-disk log. A new moby transaction is then started.

15.7.5 Rolling the Log

Occasionally, the data in the log needs to be written back to the file system, a pro-
cedure called log rolling. Log rolling occurs for the following reasons:

� To update the on-disk file system with committed metadata deltas

� To free space in the log for new deltas

� To roll the entire log to disk at unmount

� To partially roll the on-disk log when it is getting full

� To completely roll the log with the _FIOFFS ioctl (file system flush)

� To partially roll the log every 5 seconds when no new deltas exist in the log

� To roll some deltas when the log map is getting full (that is, when logmap
has more than logmap_maxnme mapentries, by default, 1536)

The actual rolling of the log is handled by the log roll thread, which executes the
trans_roll() function found in usr/src/uts/common/fs/lufs_thread.c.
The trans_roll() function preallocates a number of rollbuf_t structures (based
on LUFS_DEFAULT_NUM_ROLL_BUF = 16, LUFS_DEFAULT_MIN_ROLL_BUFS = 4,
LUFS_DEFAULT_MAX_ROLL_BUFS = 64) to handle rolling deltas from the log to the
file system.

#define TRANS_END_ASYNC(ufsvfsp, vid, vsize)\
{\
 if (TRANS_ISTRANS(ufsvfsp))\
 top_end_async(ufsvfsp, vid, vsize); \
}

See usr/src/uts/common/sys/fs/ufs_trans.h

#define TRANS_END_SYNC(ufsvfsp, error, vid, vsize)\
{\
 if (TRANS_ISTRANS(ufsvfsp))\
 top_end_sync(ufsvfsp, &error, vid, vsize); \
}

See usr/src/uts/common/sys/fs/ufs_trans.h

solarisinternals.book Page 787 Thursday, June 15, 2006 1:27 PM

788 Chapter 15 The UFS File System

Along with allocating memory for the rollbuf_t structures, trans_roll also
allocates MAPBLOCKSIZE * lufs_num_roll_bufs bytes to be used by rollbuf_t’s
buf_t structure stored in rb_bh. These rollbuf_t’s are populated according to
information found in the rollable mapentries of the logmap. All rollable mapen-
tries will be rolled starting from the logmap’s un_head_lof offset, and continuing
until an unrollable mapentry is found. Once a rollable mapentry is found, all other
rollable mapentries within the same MAPBLOCKSIZE segment on the file system
device are located and mapped by the same rollbuf structure.

If all mapentries mapped by a rollbuf have the same cache roll buffer (crb),
then this crb maps the on-disk block and buffer containing the deltas for the roll-
buf ’s buf_t. Otherwise, the rollbuf ’s buf_t uses MAPBLOCKSIZE bytes of kernel
memory allocated by the trans_roll thread to do the transfer. The buf_t reads
the MAPBLOCKSIZE bytes on the file system device into the rollbuf buffer. The
deltas defined by each mapentry overlap the old data read into the rollbuf
buffer. This buffer is then writen to the file system device.

If the rollbufs contain holes, these rollbufs may have to issue more than one
write to disk to complete writing the deltas. To asynchronously write these deltas,
the rollbuf ’s buf_t structure is cloned for each additional write required for the
given rollbuf. These cloned buf_t structures are linked into the rollbuf ’s buf_t
structure at the b_list field. All writes defined by the rollbuf ’s buf_t structures
and any clone buf_t structures are issued asynchronously.

The trans_roll() thread waits for all these writes to complete. If any fail, a
warning is printed to the console and the log is marked as LDL_ERROR in the log-
map->un_flags field. If the roll completes successfully, all corresponding mapen-
tries are completely removed from the log map. The head of the log map is then
adjusted to reflect this change, as illustrated in Figure 15.20.

typedef uint16_t rbsecmap_t;
typedef struct rollbuf {
 buf_t rb_bh; /* roll buffer header */
 struct rollbuf *rb_next; /* link for mof ordered roll bufs */
 crb_t *rb_crb; /* cached roll buffer to roll */
 mapentry_t *rb_age; /* age list */
 rbsecmap_t rb_secmap; /* sector map */
} rollbuf_t;

See usr/src/uts/common/sys/fs/ufs_log.h

Figure 15.20 Adjustment of Head of Log Map

Mapentries written to log

Old head of log
(un_head_lof)

New head of log
(un_head_lof)

Tail of log
(un_tail_lof)

Mapentries still in log

solarisinternals.book Page 788 Thursday, June 15, 2006 1:27 PM

15.7 LOGGING 789

15.7.6 Redirecting Reads and Writes to the Log

When the UFS module is loaded, the global variable bio_lufs_strategy is set to
point to the lufs_strategy() function. As a result, bread_common() and
bwrite_common() functions redirect reads and writes to the bio_lufs_strategy
(if it exists and if logging is enabled). lufs_strategy() then determines if the I/O
request is a read or a write and dispatches to either lufs_read_strategy() or
lufs_write_strategy(). These functions are responsible for resolving the read/
write request from and to the log. In some instances in UFS, the functions lufs_
read_strategy() and lufs_write_strategy() are called directly, bypassing
the bio_lufs_strategy() code path.

15.7.6.1 lufs_read_strategy() Behavior

The lufs_read_strategy() function is called for reading metadata in the log.
Mapentries already in the log map that correspond to the requested byte range are
linked in the me_agenext list and have the ME_AGE bit set to indicate that they
are in use. If the bytes being read are not defined in a logmap mapentry, the data
is read from the file system as normal. Otherwise, lufs_read_strategy() then
calls ldl_read() to read the data from the log.

The function ldl_read() can get the requested data from a variety of sources:

� A cache roll buffer

� The write buffer originally used to write this data to the log (mlunit->
un_wrbuf)

� The buffer previously used to read this data from the log (mlunit->
un_rdbuf)

� The on-disk log itself

15.7.6.2 lufs_write_strategy() Behavior

The lufs_write_strategy() function writes deltas defined by mapentries from
the delta map to the log map if any exist. It does so by calling logmap_add() or
logmap_add_buf(). logmap_add_buf() is used when crb buffers are being
used, otherwise logmap_add() is used. These function in turn call ldl_write()
to actually write the data to log.

The function ldl_write() always writes data into the the memory buffer of
the buf_t contained in the write cirbuf_t structure. Hence, requested writes
may or may not always actually be written to the physical on-disk log. Writes to
the physical on-disk log occur when the log rolls the tail around back to the head,
the write buf_t buffer is full, or a commit record is written.

solarisinternals.book Page 789 Thursday, June 15, 2006 1:27 PM

790 Chapter 15 The UFS File System

15.7.7 Failure Recovery

An important aspect of file system logging is the ability to recover gracefully after
an abnormal operating system halt. When the operating system is restarted and
the file system remounted, the logging implementation will complete any out-
standing operations by replaying the commited log transactions. The on-disk log is
read and any commited deltas found are populated into the logmap as committed
logmap mapentries. The roll thread will then write these to the file system and
remove the mapentries from the logmap. All uncommitted deltas found in the
ondisk log will be discarded.

15.7.7.1 Reclaim Thread

A system panic can leave inodes in a partially deleted state. This panic can be
caused by an interrupted delete thread (refer to Section 15.3.2 for more informa-
tion on the delete thread) in which ufs_delete() never finished processing the
inode. The sole purpose of the UFS reclaim thread (ufs_thread_reclaim() in
usr/src/uts/common/fs/ufs/ufs_thread.c) is to clean up the inodes left in
this state. This thread is started if the superblock’s fs_reclaim field has either
FS_RECLAIM or FS_RECLAIMING flags set, indicating that freed inodes exist or
that the reclaim thread was previously running.

The reclaim thread reads each on-disk inode from the file system device, check-
ing for inodes whose i_nlink is zero and i_mode isn’t zero. This situation signi-
fies that ufs_delete() never finished processing these inodes. The thread simply
calls VN_RELE() for every inode in the file system. If the node was partially
deleted, the VN_RELE() forces the inode to go through ufs_inactive(), which in
turn queues the inode in the vfs_delete queue to be processed later by the delete
thread.

15.8 MDB Reference

Table 15.10 UFS MDB Reference

dcmd or walker Description

dcmd acl Given an inode, display its in core acl's

dcmd cg Display a summarized cylinder group structure

dcmd inode Display summarized inode_t
continues

solarisinternals.book Page 790 Thursday, June 15, 2006 1:27 PM

15.8 MDB REFERENCE 791

dcmd inode_cache Search/display inodes from inode cache

dcmd mapentry Dumps ufslog mapentry

dcmd mapstats Dumps ufslog stats

walk acl Given an inode, walk chains of in core acl's

walk cg Walk cg's in bio buffer cache

walk inode_cache Walk inode cache

walk_ufslogmap Walk the log map

walk ufs_inode_cache Walk the ufs_inode_cache cache

Table 15.10 UFS MDB Reference (continued)

dcmd or walker Description

solarisinternals.book Page 791 Thursday, June 15, 2006 1:27 PM

