Index

A

Additive White Gaussian Noise ..163
Additive White Gaussian Noise channel ..260
ad-hoc ..446; 463; 471; 474
admission control ..464; 475–476; 479
 distributed admission control ..476
Aloha ..398; 464
 Multi-Code Spread Slotted Aloha ..470
 slotted Aloha ..464
ARQ ..See Automatic Repeat on reQuest
 Automatic Repeat on reQuest ..481
AWGN ..See Additive White Gaussian Noise
 AWGN channel ..See Additive White Gaussian Noise channel

B

bandwidth ..See energy bandwidth
 base-band ..5; 15; 17; 27
 base-station ..463; 479
 Bessel function ..81
 best effort ..475; 479
 Binary Phase Shift Keying ..36
 bit duration ..See bit interval
 bit interval ..30; 38
 Bluetooth ..460; 471–472
 Bluetooth interponet interference ..483
 BPSK ..See Binary Phase Shift Keying
 BTMA ..See Busy Tone Multiple Access
 Busy Tone Multiple Access ..468
 Dual Busy Tone Multiple Access ..469
 Receiver Initiated BTMA ..470

C

Carrier Sensing Multiple Access ..464–465
 Carrier Sensing Multiple Access with Collision Avoidance ..466–467; 474
 CDMA ..See Code Division Multiple Access
 cellular network ..463; 475
 centralized wireless network ..475
 chip interval ..See chip time
 chip time ..28; 36
 code assignment strategy ..471
 common code ..471; 481
 receiver code ..471
 transmitter code ..471; 481
 Code Division Multiple Access ..368
 Frequency-Hopping CDMA ..472
 random CDMA access ..470
 code spectrum ..125; 127
 code-repetition coder ..27; 36; 38
 coherent demodulator ..166
 common channel ..481
 congestion ..475
 connectivity ..461
 continuous transmission ..1
 control channel ..481
 correlation receiver ..449
 Cramer-Rao lower bound ..429
 CRC ..See Cyclic Redundancy Code
 cross-layer design ..460
 CSMA ..See Carrier Sensing Multiple Access
 CSMA-CA ..See Carrier Sensing Multiple Access with Collision Avoidance
 Cyclic Redundancy Code ..464
D
Data Link Control...............................460
DBTMA See Busy Tone Multiple Access
delay ...461
delay ...479–480
delay spread ..275; 282
DFT See Discrete Fourier Transform
DFWMAC See Distributed Foundation
Wireless Medium Access Control
Digital Audio Broadcasting155
Direct-Sequence
Direct Sequence code38
Direct-Sequence Spread Spectrum ..26;
36
Direct-Sequence UWB26; 124; 382
spectrum of Direct-Sequence UWB
...125–126
Discrete Fourier Transform42; 146
discrete-time channel model276
Distributed Foundation Wireless Medium
Access Control466
distributed positioning482
dither ...30
time dither26
dithering ...See dither
DLC.............. See Data Link Control
DSSS See Direct-Sequence (Direct-
Sequence Spread Spectrum)
DS-SS-UWB See Direct-Sequence
(Direct-Sequence Spread Spectrum)
DS-UWB See Direct-Sequence UWB

E
early-late gate synchronizer426
Effective Isotropic Radiated Power ...157
EIRP spectral density158
EGC See Equal Gain combining
EIRP See Effective Isotropic Radiated
Power
emission mask3; 157–158; 162; 195
FCC indoor emission mask159
energy bandwidth1–2
minimum bandwidth3; 26
percent bandwidth3
relative bandwidth3
Energy Spectral Density2; 5
Equal Gain Combining...............296
ESD See Energy Spectral Density
exposed terminal465–467

F
fair access ...See fairness
fairness ..461; 478
Weighted Fair Queueing algorithm 478
FAMA See Floor Acquisition Multiple
Access
Fast Fourier Transform17
Inverse FFT69
FCFS See First Come First Served
FDMA .See Frequency Division Multiple
Access
FEC See Forward Error Correction
FFT See Fast Fourier Transform
FH See Frequency-Hopping
FH-CDMA ... See Code Division Multiple
Access (Frequency-Hopping CDMA)
FH-SS See Frequency-Hopping
(Frequency-Hopping Spread
Spectrum)
field strength157–158
First Come First Served478
Floor Acquisition Multiple Access466
Forward Error Correction481
fractional energy bandwidth2; 26
free-space attenuation164
free-space propagation164
Frequency Division Multiple Access ..368
Frequency-Hopping
Frequency-Hopping Spread Spectrum
...27

G
Gaussian pulse169; 188
combination of Gaussian pulses ...196–197
differentiation of Gaussian pulse ..190–191
second derivative of Gaussian pulse32–33; 108; 126; 188
Global Positioning System421; 444
differential GPS451
GPS........See Global Positioning System

H
hard decision.................................259; 269
Hermite pulse189; 202
hidden terminal...........................465–467
HIPERLAN/2155
Hop-TERRAIN443; 451

I
IDFT......See Discrete Fourier Transform
IEEE 802.11a..................................155
IEEE 802.11b460; 466–467
IEEE 802.15.3460; 471; 473–474; 491
IEEE 802.15.4 vi; 463
IEEE 802.15.SG3a channel model242; 277; 282
impulse response of the IEEE model ..278
IEEE 802.15.TG3a . 27; 40; 43; 145; 147; 152; 470
IFFT............See Fast Fourier Transform
Impulse Radio..................................26
pulsed transmission1–2
Industrial Scientific and Medical radio bands460
instantaneous energy1–2
Inter Symbol Interference41
interconnection475
Inverse Discrete Fourier Transform......See Discrete Fourier Transform
IR..................See Impulse Radio
IR-UWBSee Impulse Radio
ISI...............See Inter Symbol Interference
ISM........See Industrial Scientific and Medical radio bands

J
jitter ..480
clock jitter311
time jitter243

L
Large Current Radiator antenna......187
LCR antenna. See Large Current Radiator antenna
Least Square Error200; 435; 437
Line of Sight propagation243; 275
link budget..................................162
localization421
LOS propagation . See Line of Sight propagation
LSE..................See Least Square Error

M
MA..................See Multiple Access
MAC............See Medium Access Control
MACA............See Multiple Access with Collision Avoidance
MACA-BI............See MACA-By Invitation
MACA-By Invitation..................483
MACAW ..483
MAGiC world421; 446
MAP detector See Maximum A Posteriori detector
master..........................See master-slave
master-slave472
matched filter................................166
Maximal Ratio Combining296
Maximum A Posteriori detector166
Maximum Likelihood166
Maximum Likelihood estimator245
mb..........................See measured bandwidth
MB..........................See Multi-Band
MC-CDMA........See Multi-Carrier Code Division Multiple Access
measured bandwidth...........158; 160
Medium Access Control
MAC architecture462
MAC domain471–472; 474
MAC functions460
MAC organization464
MAC protocol461
Index

MAC-ProtocolDataUnit 482
time sharing464
modulating signals for PPM
generic periodic74; 87–88
random74; 98
sinusoidal74; 77
monocycle187
MRCSee Maximal Ratio Combining
Multi User Interference ... 242; 368; 375;
380; 382; 398
Multi-Band27; 40; 147; 369
Multi-Band OFDM.............See OFDM
Multi-Carrier Code Division Multiple
Access26; 369
multi-channel470–471; 481
multi-codeSee multi-channel
multi-hop
multi-hop connections462
multi-path gain
total multi-path gain274
multi-path UWB radio channel...273; 320
Multi Access368
Multi Access with Collision
Avoidance466; 469
multi-user communication ..368

N
natural sampling73
NAVSee Network Allocation Vector
near-far479
network462
distributed network architecture vi; 463
network architecture461
network module461–462
network scalability475
network topology461
Network Allocation Vector467
Network Simulator461
NLOS propagation See Non Line of Sight
propagation
noise figure163; 166
noise temperature163
Non Line of Sight propagation ...243; 275

O
OMNeT++461
optimum detector166; 245
optimum receiver166
optimum receiver for 2PAM253
optimum receiver for 2PAM-DS ...254
optimum receiver for MPAM , 255–256
optimum receiver for multi-pulse
signals258
optimum receiver for non-orthogonal
2PPM250
optimum receiver for orthogonal
2PPM246–247
optimum receiver for orthogonal
2PPM-TH248
optimum receiver for orthogonal
MPPM251
optimum receiver for orthogonal
MPPM-TH252
optimum receiver for the AWGN
channel244; 266
Orthogonal Frequency Division
Multiplexing26; 41; 43; 174
cyclic prefix41; 146
guard interval41; 43; 69; 146
Multi-Band OFDM43
OFDM modulator42
OFDM symbol duration41; 147
spectrum of OFDM145; 147–148
outage probability480
out-of-band signaling464; 468

P
packet collision398
packet error probability482
packet loss480
packet scheduling464; 478
PAMSee Pulse Amplitude Modulation
PAM-DS-UWB38; 40
PAM-TH-UWB30; 131; 134
spectrum of PAM-TH-UWB ...132; 137
PDPSee Power Delay Profile
piconetSee Power Delay Profile
piconet controller472
index

piconet topology474–475
PN See Pseudo Noise code
PNC See piconet controller
polling ...472
positioning ..421; 446
absolute positioning421; 424; 443
geographical positioning .See absolute positioning
hyperbolic positioning433; 452
node-centered positioning421–422
relative positioning421; 424
spherical positioning421; 442
positioning protocol
anchor-based protocol442–443
anchor-free protocol442
power control464; 478–479
Power Delay Profile276
Power Spectral Density13; 27
PPM See Pulse Position Modulation
PPM-TH-UWB30; 105; 108
spectrum of PPM-TH-UWB107
PPS See Precise Positioning System
PRake See RAKE receiver
Precise Positioning System442
Probability of Bit Error166; 480
Probability of Symbol Error166
PSD See Power Spectral Density
PSD of OFDM See Orthogonal Frequency Division Multiplexing (spectrum of OFDM)
PSD of PAM-TH-UWB See PAM-TH-UWB
Pseudo Noise code26; 28
Pseudo Noise binary-valued sequence
...36
Pseudo random code........... See Pseudo Noise code
Pulse Amplitude Modulation26; 38; 166–168
PAM modulator36
pulse collision 376; 381; 398; 401; 404
Pulse Position Modulation26; 31; 167–168
analog PPM73
PPM modulator28
pulse shaper27; 36; 187; 195
QoS See Quality of Service
QoS parameters480
QPSK See Quadrature Phase Shift Keying
Quadrature Phase Shift Keying43
Quality of Service464; 475; 479
R
radio access point462–463
Radio Frequencies27
RF notch filter40; 145
RAKE receiver 242; 296; 300
Partial RAKE299
Selective RAKE299
random access464
ranging ..421; 425
ranging handshake protocol428
Received Signal Strength Indicator ...425
relaying ..474
resource446
RF See Radio Frequencies
root mean square delay spread . See delay spread
Round Robin478
routing442; 464; 461–462
RSSI See Received Signal Strength Indicator
S
Saleh-Valenzuela channel model......277
scatternet472
scheduled access464; 472
SD See Selection Diversity
Selection Diversity296
self-organizing See ad-hoc
Self-Positioning Algorithm444
sensor network See ad-hoc
SGA See Standard Gaussian Approximation
shape factor32; 188–189
Signal to Interference noise Ratio....378
Signal to Noise Ratio163
Index

SIR See Signal to Interference noise Ratio 503
slave............................ See master-slave
SNR See Signal to Noise Ratio 258; 269
soft decision................................ 258; 269
SPA....... See Self-Positioning Algorithm
SPS See Standard Positioning System
SRake See RAKE receiver
Standard Gaussian Approximation369; 374; 383–384; 404
limit of SGA 383; 391
Standard Positioning System 442
standard temperature 163
synchronization 243; 310; 312
packet synchronization 310
signal acquisition 310; 313
tracking 311; 313
tracking errors 243
system margin........................... 165
system throughput See throughput

T

TDMA See Time Division Multiple Access
temporal diversity 296
text recognition 450
TH.......................... See Time-Hopping
TH code See Time Hopping code
thermal noise 163; 242
THMA See Time Hopping Multiple Access
throughput 461; 465; 476
TH-UWB See Time-Hopping UWB
Time Division Multiple Access 368
Time Hopping code 31
pseudo random TH code 31
Time Hopping Multiple Access 369
PAM-THMA 379
PPM-THMA 371
Time Of Arrival 425; 444; 447
Time-Hopping UWB 26
timing error 311
TOA.......................... See Time of Arrival
traffic classes 479
transmission coder 27; 36

U

Ultra Wide Band 1
broadband 9
narrowband 9
wideband 9
uniform sampling 73
UWB applications vi; 463
UWB network 460