A%
% ‘ é AEP.book Page 21 Friday, September 30, 2005 1:11 PM

*

Chapter 3

An Agile Approach

“A good plan violently executed now is better
than a perfect plan executed next week.”

—General George S. Patton

Although it started years before, the agile movement officially began with the
creation of the Agile Manifesto in February 2001 (Beck et al.). This manifesto
was written and signed by seventeen “lightweight methodologists,” as they were
called at the time. Their document both gave a name to how they were develop-
ing software and provided a list of value statements. The authors of the Agile
Manifesto wrote that they value

o Individuals and interactions over processes and tools
+ Working software over comprehensive documentation
+ Customer collaboration over contract negotiation

¢ Responding to change over following a plan

Agile teams value individuals and interactions over processes and tools be-
cause they know that a well-functioning team of great individuals with mediocre
tools will always outperform a dysfunctional team of mediocre individuals with
great tools and processes. Great software is made by great individuals, and as an
industry we have tried too long with too little success to define a development
process that relegates individuals to replaceable cogs in the machinery. Agile

21

%

i




A%
% ‘ é AEP.book Page 22 Friday, September 30, 2005 1:11 PM

*

22 |

Chapter 3 An Agile Approach

processes acknowledge the unique strengths (and weaknesses) of individuals and
capitalize on these rather than attempting to make everyone homogeneous.

Agile teams value working software over comprehensive documentation be-
cause it leads them to have a stable, incrementally enhanced version of the prod-
uct at the end of each iteration. This makes it possible to collect early, frequent
feedback on both the product and the process. As the developed software grows
each iteration, it can be shown to likely or actual users. Feedback from these us-
ers is fed back into the development process to make sure that the team is always
working on the highest-valued features and that those features will satisfy user
expectations.

Customer collaboration is valued over contract negotiation because agile
teams would like all parties to the project to be working toward the same set of
goals. Contract negotiation sometimes sets the development team and the
project customer at odds right from the start. I enjoy playing most games, and
when my oldest daughter was four, I bought her a “cooperative game” because it
looked like a game she’d enjoy and because I had no idea how a cooperative game
could be fun. In the game I bought her, a princess is placed under a spell, and
players need to remove obstacles (a moat, a locked door, and so on) that are be-
tween them and the princess. Players take turns, as in most games, but the goal
is to remove obstacles collaboratively and save the princess. All players win, or
all players lose. The game is surprisingly fun, and we’d like software teams and
customers to approach projects with this same attitude of collaboration and
shared goals. Yes, contracts are often necessary but the terms and details in a
contract can exert great influence on whether the different parties are set on a
collaborative or a competitive effort.

Agile teams value responding to change over following a plan because their
ultimate focus is on delivering as much value as possible to the project’s cus-
tomer and users. For all but the simplest projects, it is impossible for users to
know every detail of every feature they want. It is inevitable that users will come
up with new ideas, and almost as inevitable that they will decide that some fea-
tures desired today will become lower priorities tomorrow. To an agile team, a
plan is one view of the future, but many views are possible. As a team gains
knowledge and experience, they will factor these into the plan. Perhaps the team
is progressing faster or slower than initially expected; perhaps users like one set
of features more than expected but don’t like another feature that was initially
considered critical.

With the four value statements of the Agile Manifesto in mind, in this chap-
ter we consider what it means to have an agile approach to a project, as well as
what it means to have an agile approach to estimating and planning.

%

i




A%
% é AEP.book Page 23 Friday, September 30, 2005 1:11 PM

An Aqgile Team Works As One | 23

An Agile Approach to Projects

With an understanding of the four primary agile value statements, we can turn
our attention to what an agile team looks like in practice. Taken collectively, the
four value statements lead to software development processes that are highly it-
erative and incremental and that deliver coded and tested software at the end of
each iteration. The following sections cover some of the main ways in which ag-
ile teams work, including that they:

+ Work as one team
Work in short iterations
Deliver something each iteration

*
*
« Focus on business priorities
*

Inspect and adapt

An Agile Team Works As One

Critical to the success of a project is that all project participants view themselves
as one team aimed at a common goal. There is no room for a “throw it over the
wall” mentality on an agile project. Analysts do not throw requirements over the
wall to designers. Designers and architects do not throw designs over a wall to
coders; coders do not throw half-tested code over a wall to testers. A successful
agile team must have a we’re-all-in-this-together mindset. Although an agile
team should work together as one whole team, there are a number of specific
roles on the team. It is worth identifying and clarifying those roles that play a
part in agile estimating and planning.

The first role is the product owner. The primary duties of the product owner
include making sure that all team members are pursuing a common vision for
the project, establishing priorities so that the highest-valued functionality is al-
ways being worked on, and making decisions that lead to a good return on the
investment in the project. In commercial software development, the product
owner is often someone from the marketing or product management side of the
company. When developing software for internal use, the product owner may in-
stead be a user, the users’ manager, an analyst, or the person funding the project.

A second role is that of cusfomer. The customer is the person who has made
the decision to fund the project or to buy the software. On a project developing
software for internal use, the customer is usually a representative from another
group or division. On such projects, the product owner and customer roles are
often combined. For a commercially distributed product, the customer will be

4~ 4




A%
% ‘ é AEP.book Page 24 Friday, September 30, 2005 1:11 PM

*

24 |

Chapter 3 An Agile Approach

the person who buys the software. In either case, the customer may or may not
be a user of the software, which is, of course, another important role.

Another role worth highlighting is that of developer. 1 use developer very
generally to refer to anyone developing software. That includes programmers,
testers, analysts, database engineers, usability experts, technical writers, archi-
tects, designers, and so on. Using this definition, even the product owner may be
thought of as a developer on many projects.

A final role is the project manager. As described by Highsmith (2004a), the
role of the project manager changes on agile projects. Agile project managers fo-
cus more on leadership than on management. On some agile projects, the per-
son fufilling the role of project manager will also act in another role, often as a
developer but occasionally as a product owner.

An Agile Team Works in Short Iterations

On an agile project there is no grand delineation of phases—no up-front require-
ments phase followed by analysis followed by architectural design and so on. De-
pending upon the actual agile process you select or define, you may put a very
short design, modeling, or other phase at the front end of the project. But once
the project has begun in earnest, all work (analysis, design, coding, testing, and
so on) happens concurrently within each iteration.

Iterations are fimeboxed, meaning they finish on time even if functionality
is dropped. Timeboxes are often very short. Most agile teams work in iterations
two to four weeks long, but some teams maintain their agility with iterations of
up to three months. Most teams settle upon a relatively consistent iteration
length. Some, however, choose the appropriate length for an iteration at the
start of each iteration.

An Agile Team Delivers Something Each Iteration

More crucial than the specific iteration length chosen by a team is that during
the iteration they transform one or more imprecise requirements statements
into coded, tested, and potentially shippable software. Of course, many teams
will not deliver the results of every iteration to their users; the goal is simply that
they could. This means that teams make progress by adding one or more small
features in each iteration but that each added feature is coded, tested, and of re-
leaseable quality.

It is essential that the product be brought to this potentially shippable state
by the end of each iteration. Practically, this does not mean a team must do

%

i




A%
% é AEP.book Page 25 Friday, September 30, 2005 1:11 PM

*

An Aqgile Team Focuses on Business Priorities

absolutely everything necessary to release, because they often won’t release each
iteration. For example, I work with one team that requires two months of mean
time between failure (MTBF) testing before releasing their product, which in-
cludes both hardware and software. They cannot shorten those two months, as it
is contractually required by their client, and that amount of time is often neces-
sary to check for hardware failures. This team works in four-week iterations, and
apart from running this two-month MTBF test, their product is at a truly releas-
able state at the end of each iteration.

Because a single iteration does not usually provide sufficient time to com-
plete enough new functionality to satisfy user or customer desires, the broader
concept of a release is introduced. A release comprises one or more (usually
more) iterations that build upon one another to complete a set of related func-
tionality. Although iterations are most commonly two to four weeks, a release is
typically two to six months. For example, in an investment management system,
one release may include all of the functionality related to buying and selling mu-
tual funds and money market funds. This may take six two-week iterations to
complete (roughly three months). A second release may add stock and bond
trading and take four additional two-week iterations. Releases may occur at vary-
ing intervals. A first release may take six months to be developed. It may be fol-
lowed by another release three months later, and so on.

An Agile Team Focuses on Business Priorities

Agile teams demonstrate a commitment to business priorities in two ways. First,
they deliver features in the order specified by the product owner, who is expected
to prioritize and combine features into a release that optimizes the return on the
organization’s investment in the project. To achieve this, a release plan is created
based on the team’s capabilities and a prioritized list of desired new features. For
the product owner to have the most flexibility in prioritizing, features must be
written so as to minimize the technical dependencies among them. It is difficult
for a product owner to prioritize features into a release plan if the selection of
one feature requires the prior development of three others. A team is unlikely to
achieve a goal of absolutely no dependencies; however, keeping dependencies at
a minimum is often quite feasible.

Second, agile teams focus on completing and delivering user-valued features
rather than on completing isolated tasks (that eventually combine into a user-
valued feature). One of the best ways to do this is to work with user stories,
which are a lightweight technique for expressing software requirements (Cohn
2004). A user story is a brief description of functionality as viewed by a user or
customer of the system. User stories are free-form, and there is no mandatory

%

ﬁ




A%
% ‘ é AEP.book Page 26 Friday, September 30, 2005 1:11 PM

*

26 |

Chapter 3 An Agile Approach

syntax. However, it can be useful to think of a story generally fitting this form:
“As a <type of user>, I want <capability> so that <business value>.” With this
template as an example, you may have the story “As a book buyer, I want to
search for a book by ISBN so that I can find the right book quickly.”

User stories are lightweight because the work to gather and document them
is not all done up front. Rather than writing a lengthy requirements specifica-
tion, agile teams have found it better to pursue a just-in-time requirements ap-
proach. Typically this begins with a short description of a user story being
handwritten on a note card or perhaps typed into a computer for larger or dis-
tributed teams. The story card is just the beginning, though, and each user story
is accompanied by as many conversations between the developers and the prod-
uct owner as needed. These conversations happen as often as needed and include
whoever is necessary. Written documentation may continue to exist when a
story-based requirements approach is used. However, the focus is shifted dra-
matically from written to verbal communication.

An Agile Team Inspects and Adapts

The plan created at the start of any project is not a guarantee of what will occur.
In fact, it is only a point-in-time guess. Many things will conspire to invalidate
the plan—project personnel may come or go, technologies will work better or
worse than expected, users will change their minds, competitors may force us to
respond differently or more rapidly, and so on. Agile teams view every such
change as presenting both the opportunity and need to update the plan to better
reflect the reality of the current situation.

At the start of each new iteration, an agile team incorporates all new knowl-
edge gained in the preceding iteration and adapts accordingly. If a team has
learned something that is likely to affect the accuracy or value of the plan, they
adjust the plan. The accuracy of the plan may be affected by the team’s discover-
ing they have over- or underestimated their rate of progress. Or they may dis-
cover that a certain type of work is more time consuming than previously
thought.

The value of the plan may be altered by knowledge the product owner has
gained about the desires of likely users. Perhaps, based on feedback from seeing
the software from an earlier iteration, the product owner has learned that users
would like to see more of one type of feature and that they don’t value another
feature as much as was previously thought. The value of the plan could be in-
creased in this case by moving more of the desired features into the release at the
expense of some of the lesser-valued features.

%

i




”
% ‘ é AEP.book Page 27 Friday, September 30, 2005 1:11 PM é ‘

An Aqgile Approach to Planning | 27

None of this is to say that agile teams take an ad hoc view of changing prior-
ities. Priorities do tend to be relatively stable from one iteration to the next.
However, the opportunity to alter priorities between iterations is a powerful con-
tributor to the ability to maximize the return on the project investment.

An Agile Approach to Planning

Estimating and planning the development of a new product is a daunting task
made more difficult by our misconceptions about projects. Macomber (2004)
points out that we should not view a project solely as the execution of a series of
steps. Instead, it is important that we view a project as rapidly and reliably gen-
erating a flow of useful new capabilities and new knowledge. The new capabilities
are delivered in the product; the new knowledge is used to make the product the
best that it can be.

On an agile project, we use this flow of new capabilities and knowledge to
guide the ongoing work. The new knowledge generated by the project may be
about the product or the project. New product knowledge helps us know more
about what the product should be. New project knowledge is information about
the team, the technologies in use, the risks, and so on.

We frequently fail to acknowledge and plan for this new knowledge. Failing
to plan to acquire new knowledge leads to plans built on the assumption that we
know everything necessary to create an accurate plan. In the world of software
development, that is rarely, if ever, the case. Ward Cunningham has said that “it’s
more planning what you want to learn, not what it [the product] will be in the
end” (Van Schooenderwoert 2004).

I often equate the traditional view of a project as running a 10-kilometer
race. You know exactly how far away the finish line is, and your goal is to reach
it as quickly as possible. On an an agile project, we don’t know exactly where the
finish line is, but we often know we need to get to it or as close as we can by a
known date. An agile project is more like a timed race than a 10-kilometer race:
run as far as possible in sixty minutes. In this way, the agile project team knows
when they will finish but not what they will deliver. When we acknowledge that
the result is both somewhat unknown as well as unknowable in advance, plan-
ning becomes a process of setting and revising goals that lead to a longer-term
objective.




A%
% é AEP.book Page 28 Friday, September 30, 2005 1:11 PM

*

28 |

Chapter 3 An Agile Approach

Multiple Levels of Planning

When setting and revising goals, it is important to remember that we cannot see
past the horizon and that the accuracy of a plan decreases rapidly the further we
attempt to plan beyond where we can see. Suppose you are standing on a small
boat and that your eyes are nine feet above the water. The distance to the horizon
in this case is slightly over four miles.! If you are planning a twenty-mile trip,
you should plan on looking ahead at least five times, once every four miles. Be-
cause you cannot see past the horizon, you need to look up occasionally and ad-
just your plan.

A project is at risk if its planning extends well beyond the planner’s horizon
and does not include time for the planner to raise her head, look at the new ho-
rizon, and make adjustments. A progressive elaboration of the plan is needed.
Agile teams achieve this by planning at three distinct horizons. The three hori-
zons are the release, the iteration, and the current day. The relationships among
these (and other) planning horizons are illustrated in the planning onion of
Figure 3.1.

Strategy

Portfolio
Product

Release

Figure 3.1 The planning onion. Agile teams plan at least at the release, iteration,
and day levels.

Most agile teams are concerned only with the three innermost levels of the
planning onion. Release planning considers the user stories or themes that will
be developed for a new release of a product or system. The goal of release

1. To calculate the distance to the horizon in miles, multiply the square root of the height
of your eyes by 1.35.

%

ﬁ



A%
% ‘ é AEP.book Page 29 Friday, September 30, 2005 1:11 PM

*

Condlitions of Satisfaction

planning is to determine an appropriate answer to the questions of scope, sched-
ule, and resources for a project. Release planning occurs at the start of a project
but is not an isolated effort. A good release plan is updated throughout the
project (usually at the start of each iteration) so that it always reflects the cur-
rent expectations about what will be included in the release.

At the next level is iteration planning, which is conducted at the start of each
iteration. Based on the work accomplished in the just-finished iteration, the
product owner identifies high-priority work the team should address in the new
iteration. Because we are looking at a closer horizon than with release planning,
the components of the iteration plan can be smaller. During iteration planning,
we talk about the tasks that will be needed to transform a feature request into
working and tested software.

Finally, there is daily planning. Most agile teams use some form of daily
stand-up meeting to coordinate work and synchronize daily efforts. Although it
may seem excessive to consider this planning in the formal sense, teams defi-
nitely make, assess, and revise their plans during these meetings. During their
daily meetings, teams constrain the planning horizon to be no further away than
the next day, when they will meet again. Because of this, they focus on the plan-
ning of tasks and on coordinating the individual activities that lead up to the
completion of a task.

By planning across these three time horizons—release, iteration, and day—
agile teams focus on what is visible and important to the plan they are creating.

Outside the concern of most individual agile teams (and this book) are prod-
uct, portfolio, and strategic planning. Product planning involves a product
owner’s looking further ahead than the immediate release and planning for the
evolution of the released product or system. Portfolio planning involves the se-
lection of the products that will best implement a vision established through an
organization’s strategic planning.

Conditions of Satisfaction

Every project is initiated with a set of objectives. Your current project may be to
create the world’s best word processor. Creating the world’s best word processor,
however, will typically be only one objective for this project. There will almost
certainly be additional objectives regarding schedule, budget, and quality. These
objectives can be thought of as the the customer or product owner’s conditions
of satisfaction—that is, the criteria that will be used to gauge the success of the
project.

%

i




A%
% ‘ é AEP.book Page 30 Friday, September 30, 2005 1:11 PM

*

30 |

Chapter 3 An Agile Approach

Way back when I was in high school and assigned to write a paper about a
book such as Moby Dick, 1 would always ask the teacher how long the paper had
to be. She’d respond something like “Five pages,” and then I knew her primary
condition of satisfaction. There were, of course, a number of additional, unwrit-
ten conditions of satisfaction, such as that the paper would be well written, my
own work, in English, and so on.

At the start of release planning, the team and product owner collaboratively
explore the product owner’s conditions of satisfaction. These include the usual
items—scope, schedule, budget, and quality—although agile teams typically
prefer to treat quality as non-negotiable. The team and product owner look for
ways to meet all of the conditions of satisfaction. The product owner may, for ex-
ample, be equally satisfied with a release in five months that includes one set of
user stories as with a release a month later that includes additonal user stories.

Sometimes, however, all of the product owner’s conditions of satisfaction
cannot be met. The team can build the world’s best word processor, but they can-
not build it by next month. When no feasible solution can be found, the condi-
tions of satisfaction must change. Because of this, release planning and
exploration of the product owner’s conditions of satisfaction are highly iterative,
as illustrated in Figure 3.2.

Once a release plan covering approximately the next three to six months is
established, it is used as input into the planning of the first iteration. Just as re-
lease planning began with consideration of the product owner’s conditions of
satisfaction, so does iteration planning. For an iteration, the product owner’s
conditions of satisfaction are typically the features she’d like developed next and
some high-level tests about each feature.

As an example, consider a travel site that includes the user story “As a user, I
want to be able to cancel a reservation.” In discussing this story with the product
owner, the developers learn that her conditions of satisfaction for this story
include

« A user who cancels more than twenty-four hours in advance gets a complete
refund.

« A user who cancels less than twenty-four hours in advance is refunded all
but a ©25 cancellation fee.

« A cancellation code is displayed on the site and is emailed to the user.
Like release planning, iteration planning is iterative. The product owner and

the team discuss various ways of best meeting the conditions of satisfaction for
the iteration.

%

i




A%
% é AEP.book Page 31 Friday, September 30, 2005 1:11 PM

*

Summary

Release /

Conditions of
satisfaction
(user stories,
budget, schedule)

\ Release
Feedback

planning

Iteration \ 4 /

Conditions of Feedback
satisfaction
(user stories,
acceptance tests)

s

Figure 3.2 Conditions of satisfaction drive both release and iteration planning.

Product
increment

Iteration
planning

Development

Feedback loops are shown in Figure 3.2 from the resulting new product in-
crement back into the conditions-of-satisfaction boxes at the start of both re-
lease and iteration planning. Based on their experience developing the product
increment during the iteration, the team may have gained knowledge or experi-
ence that affects planning at one or more of these levels. Similarly, showing the
product increment to existing or likely users may generate new knowledge that
would cause changes to the plans. An agile team will incorporate these changes
into their plans to the extent that they lead to a higher-value product.

Summary

Agile teams work together as a team but include roles filled by specific individu-
als. First is the product owner, who is responsible for the product vision and for
prioritizing features the team will work on. Next is the customer, who is the

%

|31

—

ﬁ

*



A%
% ‘ é AEP.book Page 32 Friday, September 30, 2005 1:11 PM

*

32 |

Chapter 3 An Agile Approach

person paying for the project or purchasing the software once it’s available. Us-
ers, developers, and managers are other roles on an agile project.

Agile teams work in short, timeboxed iterations that deliver a working prod-
uct by the end of each iteration. The features developed in these iterations are se-
lected based on the priority to the business. This ensures that the most
important features are developed first. User stories are a common way for agile
teams to express user needs. Agile teams understand that a plan can rapidly be-
come out of date. Because of this, they adapt their plans as appropriate.

Projects should be viewed as rapidly and reliably generating a flow of useful
new capabilities and new knowledge, rather than as just the execution of a series
of steps. Projects generate two types of new knowledge: knowledge about the
product and knowledge about the project. Each is useful in refining a product
plan toward achieving the most value for the organization.

Agile teams use three levels of planning: release planning, iteration plan-
ning, and daily planning. The release plan looks ahead for the duration of the re-
lease—typically, three to six months. An iteration plan looks ahead only the
duration of one iteration—typically, two to four weeks. A daily plan is the result
of team member commitments made to each other in a daily stand-up meeting.

Understanding the product owner’s conditions of satisfaction is critical in
both release and iteration planning. During release planning, the whole team
identifies a way of meeting the conditions of satisfaction for the release, which
include scope, schedule, and resources. To achieve this, the product owner may
need to relax one or more of her conditions of satisfaction. A similar process oc-
curs during iteration planning, when the conditions of satisfaction are the new
features that will be implemented and the high-level test cases that demonstrate
the features were implemented correctly.

Discussion Questions

1. How would working as a unified whole team have affected your current or
last project?

2. What are the conditions of satisfaction on your current project? Do all
project stakeholders and participants agree on all of them? What risks are
there to proceeding on a project that does not have agreement on all condi-
tions of satisfaction?

3. Why are budget and schedule listed in Figure 3.2 as conditions of satisfac-
tion to be considered during release planning but not during iteration
planning?

%

i






