Chapter 3

EXPECTATION-
MAXIMIZATION
THEORY

3.1 Introduction

Learning networks are commonly categorized in terms of supervised and unsuper-
vised networks. In unsupervised learning, the training set consists of input training
patterns only. In contrast, in supervised learning networks, the training data consist
of many pairs of input/output patterns. Therefore, the learning process can benefit
greatly from the teacher’s assistance. In fact, the amount of adjustment of the up-
dating coeflicients often depends on the difference between the desired teacher value
and the actual response. As demonstrated in Chapter 5, many supervised learning
models have been found to be promising for biometric authentication; their imple-
mentation often hinges on an effective data-clustering scheme, which is perhaps the
most critical component in unsupervised learning methods. This chapter addresses
a data-clustering algorithm, called the expectation-maximization (EM) algorithm,
when complete or partial information of observed data is made available.

3.1.1 K-Means and VQ algorithms

An effective data-clustering algorithm is known as K-means [85], which is very sim-
ilar to another clustering scheme known as the vector quantization (VQ) algorithm
[118]. Both methods classify data patterns based on the nearest-neighbor criterion.

Verbally, the problem is to cluster a given data set X = {z;;t =1,...,T} into
K groups, each represented by its centroid denoted by x),j =1,..., K. The task
is (1) to determine the K centroids {u™, ... n¥)} and (2) to assign each
pattern z; to one of the centroids. The nearest-neighbor rule assigns a pattern = to
the class associated with its nearest centroid, say pu(".

Mathematically speaking, one denotes the centroid associated with x; as pq,
where p; € {,u(l), p®, . ,,u(K)}. Then the objective of the K-means algorithm is
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to minimize the following sum of squared errors:
E(X) :Z||It*ﬂt||27 (3.1.1)
t

where || - || is the Euclidean norm.

Let X} denote the set of data patterns associated with the k-th cluster with
the centroid p(*) and Nj, denotes the number of patterns in the cluster X}, where
k=1,...,K. The learning rule of the K-means algorithm consists of the following
two basic steps.

1. Determine the membership of a data pattern:

x € X if ||X—p,k||<HX—Mj|| Vj;’ék' (3.1.2)

2. Updating the representation of the cluster: In a clustering process, the inclu-
sion (or removal) of a new pattern in a cluster (or from a cluster) affects the
representation (e.g., the centroid or variance) of the cluster. Therefore, the
centroid should be updated based on the new membership:

1
= ﬁjxgg. (3.1.3)

Sometimes, the variance of the data cluster is also of great interest (e.g., in Gaussian
mixture models). In this case, the variance can be computed as

% = Jéjx;(x—uj)(x—uj)? (3.0.4)

3.1.2 Gaussian Mixture Model

The EM scheme can be seen as a generalized version of K-means clustering. The
main difference hinges on the notion of a hard-versus-soft membership. A hard
membership is adopted in the K-means algorithm, (i.e., a data pattern is assigned
to one cluster only). This is not the case with the EM algorithm, where a soft mem-
bership is adopted, (i.e., the membership of each data pattern can be distributed
over multiple clusters).

The necessity of using a distributed (i.e., soft) membership is the most con-
spicuous for a Gaussian mixture model (GMM). Given a set of N-independent and
identically distributed patterns X () = {x;;t = 1,2,..., N} associated with class w;,
the likelihood function p(x:|w;) for class w; is a mixture of Gaussian distributions;

that is,
R

p(x¢|wi) = Z P(O©,i|wi)p(xt|wi, Ori), (3.1.5)

r=1



52 Expectation-Maximization Theory  Chapter 3

where ©,.; represents the parameters of the r-th mixture component; R is the total
number of mixture components; p(x¢|wi, ©y;) = N (X; pr)i, Xrp;) is the probability
density function of the 7-th component; and P(©,;|w;) is the prior probability of
the r-th component. Typically, N'(x; p,);, 3r);) is a Gaussian distribution with mean
Hr|; and covariance X,

In short, the output of a GMM is the weighted sum of R-component densi-
ties. The training of GMMSs can be formulated as a maximum likelihood problem,
where the mean vectors {,|; }, covariance matrices {¥,;}, and mixture coefficients
{P(O,ilw:)} are often estimated by the iterative EM algorithm—the main topic of
the current chapter.

3.1.3 Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm is an ideal candidate for solving pa-
rameter estimation problems for the GMM or other neural networks. In particular,
EM is applicable to problems, where the observable data provide only partial infor-
mation or where some data are “missing”—see Figure 3.1(a). Another important
class of parameter estimation that can be addressed by EM involves a mixture-of-
experts—see Figure 3.1(b). In this class of problems, there are two categories of
unknown parameters: one pertaining to the membership function of an expert (or
cluster) and the other consisting of the unknown parameters defining individual
experts. Let’s use a Gaussian mixture model shown in Figure 3.1(b) as an example,
where 7(7) denotes the prior probability of expert j and where ¢\ = {u(j ), Z(j)}
denotes the parameters (mean and variance) of the expert. This chapter explains
why the EM method can serve as a powerful tool for estimating these parameters.
It also demonstrates how the EM algorithm can be applied to data clustering.

The EM algorithm is a very general parameter estimation method in that it
is applicable to many statistical models, for example, mixture-of-experts (MOE),
Gaussian mixture models (GMMs), and vector quantization (VQ). Figure 3.2 de-
picts the relationship among EM, MOE, GMM, and VQ. In particular, the figure
highlights the fact that VQ is a special case of GMM, which in turn is a special case
of the more general mixture-of-experts. More important, EM is applicable to all of
these models.

The classic EM algorithm can be dated back to Dempster, Laird, and Rubin’s
paper in 1977 [74]. Tt is a special kind of quasi-Newton algorithm with a searching
direction having a positive projection on the gradient of log-likelihood. Each EM
iteration consists of two steps—Estimation (E) and Maximization (M). The M-
step maximizes a likelihood function that is refined in each iteration by the E-step.
Interested readers can refer to the references [74, 168,297, 350]

One important feature of the EM algorithm is that it can be applied to prob-
lems in which observed data provide “partial” information only or when artificially
introducing some information (referred to as “hidden”-state information hereafter)
can greatly simplify the parameter estimation process. Figure 3.3 illustrates the
concept of hidden and partial data. In Figure 3.3(a), all data (z; to z7) are known.
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L(X|0)

X

(a)

Figure 3.1. Parameter estimation by EM. (a) EM for general missing data
problems, where 6 is the nonstructural parameters to be estimated and Z is the
set of missing data. (b) EM for hidden-state problems in which the parameter 0
can be divided into two groups: {7V} and {¢)}3_;, where 1) represents
the prior probability of the j-th expert and ¢(j ) defines the density function asso-
ciated with the j-th expert.

Missing Data

and Partial Data
Problems

Figure 3.2. Diagram depicting the relationship among EM, MOE, GMM, VQ
and the class of problems known as missing- and partial-data problems.

Let’s assume that there are two clusters in the observed data. Although all data
constituting the two clusters are observable, one does not know exactly to which
cluster each of these data belongs. Lacking this hidden membership information re-
sults in a complicated parameter estimation procedure. The estimation procedure,
however, can be greatly simplified if this membership information is assumed to be
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known. For example, if the cluster identities of 21 to z7 in Figure 3.3(a) were known,
finding the cluster means is reduced to computing the mean of individual clusters
separately. Figure 3.3(b) illustrates the idea of partial data. Unlike Figure 3.3(a),
the partial-data problem in Figure 3.3(b) contains uncertain data y because y can
be equal to 5.0 or 6.0. As a result, the true value of y is unobservable whereas those
of x1 to x4 are observable. The EM algorithm can solve this partial-data problem
effectively by computing the expected value of y. Figure 3.3(c) illustrates the case
in which cluster membership information is hidden and only partial information is
available. The problem can be viewed as a generalization of the problems in Figure
3.3(a) and Figure 3.3(b). A new type of EM called doubly-stochastic EM is derived
in Section 3.4 to address this kind of general problem. Numerical solutions for the
problems in Figure 3.3 are provided in later sections.

The concepts of hidden and partial data have been applied to many scientific
and engineering applications. For instance, in digital communication, the receiver
receives a sequence consisting of +1’s and —1’s without knowing which bit in the
sequence is a +1 and which bit is a —1. In such cases, the state of each bit constitutes
the missing information. In biometric applications, a MOE is typically applied to
model the features of an individual. Each expert is designed to model some of
the user-specific features. In such cases, the contribution of individual experts
constitutes the hidden information.

EM has been shown to have favorable convergence properties, automatical sat-
isfaction of constraints, and fast convergence. The next section explains the tradi-
tional approach to deriving the EM algorithm and proving its convergence property.
Section 3.3 covers the interpretion the EM algorithm as the maximization of two
quantities: the entropy and the expectation of complete-data likelihood. Then, the
K-means algorithm and the EM algorithm are compared. The conditions under
which the EM algorithm is reduced to the K-means are also explained. The discus-
sion in Section 3.4 generalizes the EM algorithm described in Sections 3.2 and 3.3
to problems with partial-data and hidden-state. We refer to this new type of EM
as the doubly stochastic EM. Finally, the chapter is concluded in Section 3.5.

3.2 Traditional Derivation of EM

Each EM iteration is composed of two steps—Estimation (E) and Maximization
(M). The M-step maximizes a likelihood function that is further refined in each
iteration by the E-step. This section derives the traditional EM and establishes its
convergence property.

3.2.1 General Analysis

The following notations are adopted.

e X = {z; € RP;t = 1,...,T} is the observation sequence, where T is the
number of observations and D is the dimensionality of x;.
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Example 1: Hidden-State Problem
@ @ @ @ L @ L

1’1:1 1’2:2 333:3 .T4:4 565:6 l’@:? l‘7:8

Example 2: Partial-Data Problem

1 2 3 4 5 6
@ @ @ @
1’121 552:2 12323 $4=4
y = 5.00r 6.0
(b)
Example 3: Doubly-Stochastic
(Partial-Data and Hidden-State)
1 2 3 4 5 6 1 12 13 14 15 16
z1 = {1 or 2} x3 = {4 or 5} x4 = {11 or 12} \ z6 = {15 or 16}

xo = {3 or 4} x5 = {13 or 14}

()

Figure 3.3. One-dimensional example illustrating the concept of (a) hidden-
state, (b) partial-data, and (c) combined partial-data and hidden-state. In (a) the
information regarding the cluster membership of x; is hidden; in (b) y is partial
in that its exact value is unknown; and in (c) data z; provide partial information
only because none of their exact values are known. The cluster membership
information is also hidden.
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C= {C(l), e ,C(‘])} is the set of cluster mixture labels, where .J is the number
of mixture components.

Z ={z € C;t =1,...,T} is the set of missing data (specifying the hidden-
state information).

0 = {H(j);j = 1,...,J} is the set of unknown parameters that define the
density function for approximating the true probability density of X.

09 = {7 $()} where 7(9) denotes the prior probability of the j-th com-
ponent density and ¢) defines the j-th component density.

Note that the combination of observations X and the “hidden-states” Z constitute
the complete-data. The likelihood of the complete-data is instrumental in accor-
dance with the EM formulation.

To facilitate the derivation, define

L(X|0,)) = log p(X|6,) (3.2.1)

as the log-likelihood of the incomplete-data given the current estimate 6,,, where
n represents the iteration index; also, define p(Z, X1|0,) as the completed data
likelihood. According to probability theory,! p(X|6,,) can be expressed as
p(Z, X|0n)
X0,) = =———=~- 3.2.2
Using Eq. 3.2.1 and Eq. 3.2.2, one can write the incomplete-data log-likelihood as
follows:

L(X]605)

log p(X|0,,)

log p(X10,)] > P(Z|X,6,) (since Y, P(Z|X,0,) = 1)
A

= Y _P(Z|X,0,)logp(X]|6,)

p(Z,X|0,,)

P(Z|X,0,) (as a result of Eq. 3.2.2)

A

= Y P(Z|X,0,)log
Z

= Y P(Z|X,6,)logp(Z,X|0,) — Y P(Z|X,0,)log P(Z| X, 6,)
Z Z

= Ez{logp(Z,X|0,)|X,60,}
— Ez{log P(Z|X,6,)|X,0,} (by definition of expectation)

where E{} denotes expectation with respect to Z. Thus, denote

Q(0105) = Ez{logp(Z, X[0)|X, 0} (3.2.4)

1Hereafter, a capital P denotes probabilities and a lowercase p denotes density functions.
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and
R(8]6,) = —Ez{log P(Z]X,0)|X.6,), (3.2.5)

where R(616,,) is an entropy term representing the difference between the incomplete-
data likelihood and the expectation of the completed-data likelihood. Interpretation
of R(0]6,) and its role in the EM algorithm is discussed further in Section 3.3.

3.2.2 Convergence Property of EM

The following demonstrates why the EM algorithm has a general convergence prop-
erty. The basic idea is via Jensen’s inequality. More precisely, it can be shown that
if the @Q-function in Eq. 3.2.4 is improved in each iteration (in the M-step), then so
will be the likelihood function L.

The proof of convergence begins with the observation of the following relation-
ship:

L(X|0) = log p(X|¢) = log {ZP(Z“X'@)} = log {ZP(Z|X’ 9")5((?))((?)} '
Z z o

(3.2.6)
Using Eq. 3.2.6 and Jensen’s inequality, this is obtained:

L(X]6) = logp(X)
o {Z PEIX, emm}
A »rvn

= log {EZ [§é§|§|ﬁe)) n} } (by definition of expectation)
p(Z,X|0) .. )

>

> FEy {log [P(Z|X 0 X, 0, (by Jensen’s inequality)

p(Z,X|0) . .
ZZ: P(Z|X,0,)log [P(Z|X,9n) (by definition of expectation)

> P(Z|X,6,)logp(Z, X|0) = > P(Z|X,6,)log P(Z|X,6,)
Z

Z
Q(0]6) + R(616x). (3.2.7)

In the M-step of the n-th iteration, 8* is selected according to

0" = argmgxx@(ﬁwn). (3.2.8)

This means one can always choose a 6* at iteration n such that

Q070n) > Q(6,]60,). (3.2.9)
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Note that this equation constitutes a sufficient condition to ensure the convergence
property of the EM algorithm because, according to Egs. 3.2.3, 3.2.7, and 3.2.9

L(X1]0%) = Q(67]05) + R(00n)
> Q(0n]0n) + R(0,]0n)
= L(X|0,).
Instead of directly maximizing L(X|6), the EM algorithm divides the optimization
problem into two subproblems: Expectation and Maximization.
In each EM iteration, the E-step computes Q(6|6,,) using a set of presumed

model parameters 6,,. The M-step determines the value of 6 (say 6*) that maximizes
Q(0]60,,); that is,

0" = méaxz P(Z|X,0,)logp(Z, X|6). (3.2.10)
A
This results in (see Problem 8)
.. P(ZX,0,
p(Z,X|07) = M. (3.2.11)
A

Dividing the optimization into two interdependent steps is most useful if opti-
mizing Q(06,,) is simpler than that of L(X|6,). Figure 3.4 illustrates how the E-
and M-steps interplay to obtain a maximum-likelihood solution. The next section
explains how to compute Q(0|6,,) in the E-step and how to maximize Q(6]6,,) in
the M-step.

Generalized EM

In case 6* in Eq. 3.2.8 is difficult to attain, the EM approach is still applicable if
one can improve Q(6|6,,) in each M-step (e.g., by gradient ascent). The algorithm is
known as generalized EM. Although convergence of generalized EM is slower than
that of the standard EM, it offers a more general and flexible framework for dividing
the optimization process into the EM steps.

3.2.3 Complete-Data Likelihood

EM begins with an optimization of a likelihood function, which may be consider-
ably simplified if a set of “missing” or “hidden” data is assumed to be known. The
following demonstrates that computing the expectation of the complete-data like-
lihood in the E-step can be accomplished by finding the expectation of the missing
or hidden data.

If X = {ay;t =1,...,T} contains T statistically independent vectors and Z =
{zs €C;t=1,...,T}, where z; = CY) means that the j-th mixture generates z,
then one can write p(Z, X1|0) as

T
p(Z, X|0) = [ [ p(z1, 2:6).

t=1
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Set n =0
Initialize 6
Set Q(6olf_1) = —oo
N
Y

E-step:
Compute Q(06,,)

M-step:
Compute 6* = arg max Q(0)6,)

l

n=n+1 9n+1:9*

N Q(enh

)f
Q(en‘gnfl) S

Y

6 : maximum-likelihood estimate

: termination threshold
¢ Onr = Onga

Figure 3.4. The flow of the EM algorithm.

Now, a set of indicator variables is introduced to indicate the status of the hidden-
states:? .
A={Y =1, Jandt=1,... T}

where .
() _ Gy _ J 1 if x; is generated by mixture C'7,
0" = 0(2,C) = { 0 otherwise.
Since for each t only one of the terms in {5§j);j =1,...,J} is equal to one and all

of the others are equal to 0, one can express p(Z, X|0) as follows:

T J
p(Z,X10) = ] 67 p(xe. 210)

t=1j=1

2For illustration simplicity, assume that the missing data is in discrete form or the hidden data
is the cluster membership.
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Hence, the completed-data likelihood is given by

T J
logp(Z, X|0) = Z 36 p(x, 60 = 119)

=1

Zam 07 = 1,0)P(6Y) = 110)

J
log ¢ 3~ 6t p(ae|o”) = 1,69 P37 = 1)

Jj=1

M= I M’ﬂ
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5(j) log [p(xt|zt =cb), qb(j))w(j)] , (3.2.12)

o~
Il

_
~
I

—

where 70) is the mixing coefﬁcient of the j-th mlxture Eq. 3.2.12 uses the fact that

P09 =1,0) = p(z:|69 = 1,40)) and P(6Y) = 1]0) = 7). Moreover, because
there is only one non-zero term inside the summation Z
from the log function without affecting the result.

i—1, one can extract 5,53)

E-Step. Taking the expectations of Eq. 3.2.12 and using the defintions in Eq. 3.2.4,
one obtains

Q(9|9n) = EZ{logp(Za X|0)|Xa 071}

T J
= 3 B ke, 0} og [pailo = 1,60)2 0] (32.13)
t=1 j=1
Then, define ‘
hD (z,) = E{6D|zy,0,} = POV = 1|2,,6,)

(4)

and denote w7’ as the j-th mixture coefficient at iteration n. Using the Bayes

theorem, one can express h' )(mt) as

WD (z,) = PO = 1|z,,6,)
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a0y = 1,0,)P(6)") = 1]6,,)
p(e[0y,)
a0y = 1,09 P57 = 1/0,)
p(mt\ﬁn)
o plaley?) =1, 07
O e = 1,6 e )

(3.2.14)

The E-step determines the best guess of the membership function hy) (2+). Once
the probability Y )(xt) are computed for each ¢ and j, Q(0]0,,) can be considered
as a function of #. In the M-step of each iteration, this function is maximized to
obtain the best value of § (denoted as 6*). In most cases, the M-step is substan-
tially simplified if h,(f )(xt) are known. Therefore, the E-step can be viewed as a
preparation step for the M-step.

3.2.4 EM for GMMs

To better illustrate the EM steps, a simple example applying EM to Gaussian
mixture models (GMMs) is presented next. The most common forms for the mixture
density are the radial basis functions (RBFs) or the more general elliptical basis
functions (EBFs). In the latter case, the component density p(nct|67£j ) = 1, W)
is a Gaussian distribution, with the model parameter of the j-th cluster ¢() =
{p9) x.0)} consisting of a mean vector and a full-rank covariance matrix.

Assume a Gaussian mixture model:

0 = {W(j),,u(j),Z(j);j =1,...,J},

where 709, 109 and £() denote, respectively, the mixture coefficient, mean vector,
covariance matrix of the j-th component density. The GMM'’s output is given by

J
pladf) = > 7Wp(]o”) =1,6D), (3.2.15)

j=1

where

. . D N 1 . N .
(a8 = 1,¢19)) = (2m)~ % |20)] %exp{—z)(xt—ﬂwnT(z(”) Hay — u)

(3.2.16)
is the j-th Gaussian density of the GMM. A closer look at Egs. 3.2.15 and 3.2.16
reveals that the GMM parameters 6 can be divided into two groups: one containing
7)s and another containing (¥)s and Z(j )s. The former indicates the importance
of individual mixture densities via the prior probabilities 7(/)s, whereas the latter
is commonly regarded as the kernel parameter defining the form of the mixture
density. Unlike other optimization techniques (e.g., gradient descent) in which
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unknown parameters can be arranged in any order, the EM approach effectively
makes use of the structural relationship among the unknown parameters to simplify
the optimization process.

After the initialization of 6y, the EM iteration is as follows:

e FE-step. In the n-th iteration, compute h%j) (z¢) for each j and t using Egs. 3.2.14
and 3.2.16. This is followed by the M-step described next.

o M-step. Maximize Q(6]6,) with respect to 6 to find 6*. Replace 6, by 6*.
Then, increment n by 1 and repeat the E-step until convergence.

To determine u*)*, set % = 0, which gives
T (k)
OL Dy P (@) Ty (3.2.17)

_ (@)ze
S i (@)

To determine ¥(F)* | set 8%(29(‘,?)") = 0, which gives

S _ 23:1 hslk)(l‘t)(xt _ ,u(k)*)(xt _ N(k)*)T 5918
= Ay . (3.2.18)
> im1 hn (@)

To determine 7*)*, maximize Q(66,,) with respect to 7(¥) subject to the constraint
S 7)1, which gi
T =1, which gives

k)*

T
1
k) — 7 Z h%k) (z4). (3.2.19)
t=1
The detailed derivations of Eq. 3.2.17 to Eq. 3.2.19 are as follows:
9Q010n) _ N~y (g0 0 ,
T J
. 1 P ) .
= h) () A ' p(xt|5t(J) =1,¢W)
;7:21 p(mt|(5§J) =1,¢) o)
1 I P
= —— (4) [ T/vy()\—1,. G (s2(j)\—1
= X gt {0 )
4 (u(j))T(Z(J’))flﬂ(j) _ x?(z(j))flﬂ(j)}
T
1 .
= —5 Z hglk) (,’L‘t) {(0 — (Z(k))_lxt + (Z(k)>_1/j/(k) + ((E(k))_l)TM(k)
t=1

—(=) )Ty |

T
= " A (EW) T () ) =0
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(e _ St Wit (1)
S b ()

To determine XF)* k=1,...,J, let A(%) = (Z(k))_1 and set 8%5{0(‘5)”) =0, that is,

— (3.2.20)

2Q(00, rJ.o 9 ‘ |
% - Zzhg)(xt)mlog {p(xt|5t(J) = 1’¢(J))}

T J 4 P
= Z Z hgf)(l“t) IA k)
j=

1 . 1 . . ,
{2 0 log |A(])‘ _ = 0 (¢ — M(J))TA(J)(xt _ M(j))}
T

1 0 0
= 5 20 M) { g 0B = gy (e — )T A o )}

1 9|Ak
0 B e

Zh,(f)(mt) { A(lk)| |A(’“)|(A(’“))—1 — (2 — u(k))(!Et _ M(k))T}
T
= %Z PP @) {(AD) 7! = (@ — i) (@ = )T h =0 (3:221)

S M @) = p®) e — )"
E?:l thk) (.’L’t)

Note that Eq. 3.2.21 makes use of the identity % = |A]A™!, where A is a sym-

metric matrix. Note also that one can replace u*) by p(®)* in Eq. 3.2.20 to obtain
Eq. 3.2.18.

To determine 7("), 7 = 1,...,.J, maximize Q(f|f,,) with respect to 7(") subject to
the constraint ijl 7\ = 1. More specifically, maximize the function f(\, 70)) =

016,,)+ X\ 11_ () —1) where )\ is the Lagrange multiplier. Setting AT _ 0
Q( i1 grang P

or(r)
results in
2Q(016,)

a”]'['(r)

— (AW~ = nk)x (3.2.22)

+A=0 (3.2.23)
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log 7

Zh(r) (24)

— (¥ = ZM’ ). (3.2.24)

Summing both size of Eq. 3.2.24 from » = 1 to J, one has

T J
AY a0 = =N R () (3.2.25)

r=1 t=1r=1

T J T
= A=-> > @) =-> 1=-T. (3.2.26)

t=1r=1 t=1
Substituting Eq. 3.2.26 into Eq. 3.2.24 results in

T
Z AR (). (3.2.27)

Complexity of EM. Let T denote the number of patterns, J the number of mix-
tures, and D the feature dimension, then the following is a rough estimation of the
computation complexity of using EM to train a GMM:

o E-step. O(TJD + TJ) for each epoch.
o M-step. O(2TJD) for each epoch.

Numerical Example 1. This example uses the data in Figure 3.3(a) as the observed
data. Assume that when EM begins, n = 0 and

1 2
0o = {m" Au oD (o}
= {0.5,{0,1},0.5,{9,1}}.
Therefore, one has
1 ”Eiie 3ae—n)? /(o)
hy (ae) =
Zk:l %e—%(xt—u(’”)z/(% )2
eo_%g“2
= —pr e (3.2.28)
and ( 2
— 3 (z4—9
W () = ——2— . (3.2.29)

e2%® 4 em3(@—9)?
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Table 3.1. Values of héj )(xt) in Example 1

Pattern Index (¢) | Pattern (z;) h(()l)(xt) h(()Q) (x¢)
1 1 1 0
2 2 1 0
3 3 1 0
4 4 1 0
5 6 0 1
6 7 0 1
7 8 0 1

Table 3.2. Values of Q(]6,), n) and (09))? in the course of EM iterations.
Data shown in Figure 3.3(a) were used as the observed data.

Iteration (n) || Q(6]6,) MS) (07(11))2 ug) (0'7(L2))2
0 -00 0 1 9 1
-43.71 2.50 1.25 6.99 0.70
-25.11 2.51 1.29 7.00 0.68
-25.11 2.51 1.30 7.00 0.67
-25.10 2.52 1.30 7.00 0.67
-25.10 2.52 1.30 7.00 0.67

T W N =

Substituting X = {1,2,3,4,6,7,8} into Egs. 3.2.28 and 3.2.29, Table 3.1 is obtained.
Substituting héj)(xt) in Table 3.1 into Eqs. 3.2.17 through 3.2.19 results in

61 = {0.57,{2.50,1.12},0.43, {6.99,0.83} }.
Then, continue the algorithm by computing Q(6]6,)—that is, hgj )(xt)—which are
then substituted into Egs. 3.2.17 through 3.2.19 to obtain ;. Figure 3.5 depicts
the movement of the component density functions specified by ;) and o) during
the EM iterations, and Table 3.2 lists the numerical values of Q(6|6,,) and 6, for
the first five iterations. It is obvious that the algorithm converges quickly in this
example.

3.3 An Entropy Interpretation

The previous section has shown that the EM algorithm is a powerful tool in es-
timating the parameters of finite-mixture models. This is achieved by iteratively
maximizing the expectation of the model’s completed-data likelihood function. The
model’s parameters, however, can also be obtained by maximizing an incomplete-
data likelihood function, leading to an entropy interpretation of the EM algorithm.
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Iteration n=0

p(x)
o
Il

Iteration n=1

p(x)
o
Il

Iteration n=2

p(x)
o
Il

Figure 3.5. Movement of the component density function specified by ,u(j ) and
(0)? for the first two EM iterations.

3.3.1 Incomplete-Data Likelihood

The optimal estimates are obtained by maximizing

T
> " log p(a+|6)
t=1

T J j () _ ()
o mp(a|oy = 1,019))
= log p(x:|0). 3.3.1
> Gl gp(1]6) (3.3.1)

t=1

L(X|0)

Define ' 4 _
7T(J)p(ggt‘(;t(ﬂ) =1,
p(x¢|0)

such that >, 70 =1 and p(z,]0) = > @D p(2,]67) = 1,¢1)).3 Eq. 3.3.1 becomes

h9) (z,) =

T J
L(X|6) = ZZh(]) (2¢)log p(x+]0)

t=1 j=1

3Note that h(9) (:ct) equals the probability of z; belonging to the j-th cluster, given z¢ and the
model—that is, h(7) (z¢) = Pr(xz¢ € j-th cluster|z¢, 0); it can be considered a “fuzzy” membership
function.
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I
M=
Mk

h9) (ay) {logp(xt|9) — log {W(j)p(xt|5§j) - 1,¢(j))}

-
Il
-
.
Il
-

+1og[ p(ae]6? = 1, ¢0) )}}

I
[M]=
MK

A9 (1) { ~ 1og hD (z4) + log [xPp(als? = 1,69))] }

t=1j=1
= h9) (z,) log ) + th T 10gp(xt|(5 =1,¢)
t,j
—Zh (z¢) loghm(ajt)
= Q+R,

where the first two terms correspond to the @-term in Eq. 3.2.4 and the second
terms corresponds to the R-term in Eq. 3.2.5. This means the maximization of L
can be accomplished by maximizing the completed-data likelihood @, as well as
maximizing an entropy term R.

Now, define s(z, pU)) = 1ogp(act|5£j) = 1,¢6Y9) so that the likelihood L(X|0)
can be expressed as:

L(X|0) = Zh(J) x¢)log h9) (z, +Zh(3) ) log 0 +Zh(1) 24)s(2¢, 919)).
t,j t,j t,J
(3.3.2)
In Eq. 3.3.2, the following three terms have different interpretations:

e The first term can be interpreted as the entropy term, which helps induce the
membership’s fuzziness.

e The second term represents the prior information. For each sample x;, this
term grasps the influence (prior probability) of its neighboring clusters; the
larger the prior probability, the larger the influence.

e The third term is the observable-data term, where s(x;, ")) represents the
influence of the observable data x; on the total likelihood L.

3.3.2 Simulated Annealing

To control the inference of the entropy terms and the prior information on the total
likelihood, one can introduce a temperature parameter op similar to simulated
annealing; that is,

L(X|0) = 7JTZh (z¢) logh(]) () O’TZhj) (z¢) logﬂ(J)

2%

+Zh (2¢)sY) (24, o). (3.3.3)
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Maximization of

LX[0)=> L = Y |—or Y _ h9(z)loghP (z¢) + o7 Yy h9(2;)logn)
- - - -

J J

+> h9 (@y)s(xy, 0 (3.3.4)

can be reformulated as the maximization of L; under the constraint that
> hD (@) —1=0.
J

This is achieved by introducing a Lagrange multiplier A such that

L=Li+ MY n9D () -1
J
= —orp Z R (2,)1log B9 (2) + o Z R (z4) log 79) + Z R (24)s(2, p9))

J J J

A Do h9 () 1 (3.3.5)

.0
J

is to be maximized. To solve this constrained optimization problem, one needs to
apply two different kinds of derivatives, as shown here:

1. 8,1(?7)%“) = 0, which means that

. K@) _ .
—oplog h) () — ZEE) 0w w ) © s 6D) + A =0

h(])(xt)

that is,

h(j)(xt) — aﬂ-(j)es(mt,d)(j))/dT’ (3.3.6)
2
where a = e°r
2. % = 0, which means that

> h9(@y) —1=0. (3.3.7)

J
Plugging Eq. 3.3.6 into Eq. 3.3.7 results in

-1

a = Z 7-‘-(j)es(ﬂﬁt1¢7(J'))/CTT
J

(3.3.8)
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Hence, the optimal membership (Eq. 3.3.6) for each data is

() S(Wt,¢(j))/UT
) __me
W) = S et o (3.3.9)

It is interesting to note that both Eqs. 3.3.9 and 3.2.14 have the same “marginal-
ized” form. They can be connected by observing that p(z,[6¢) = 1,61)) o
es(@0:¢) /o1 in the case of mixture-of-experts. As an additional bonus, such a con-
nection leads to a claim that the expectation of hidden-states (Eq. 3.2.14) provides
an optimal membership estimation.

The role of o can be illustrated by Figure 3.6. For simplicity, only two clusters
are considered and both 7(*) and 7 are initialized to 0.5 before the EM iterations
begin. Refer to Figure 3.6(a), where the temperature op is extremely high, there
exists a major ambiguity between clusters 1 and 2 (i.e., they have almost equivalent
probability). This is because according to Eq. 3.3.9, h(j)(xt) ~ 0.5 at the first
few EM iterations when o — oo. When o decreases during the course of EM
iterations, such ambiguity becomes more resolved—cf. Figure 3.6(b). Finally, when
or approaches zero, a total “certainty” is reached: the probability that either cluster
1 or 2 will approach 100%—cf. Figure 3.6(c). This can be explained by rewriting
Eq. 3.3.9 in the following form (for the case J =2 and j = 2):

7T(2) es(mt 1¢(2))/UT
2D es@edD/or) 1 7@ es@id®)/or)
52 s(er ) for—s(a0.6 ) forr
= —T—5 @ — o . (3.3.10)
]_+L1)es(1t’¢ )/ or—s(ze,¢M) /o

7

h(z) (th) =

In Eq. 3.3.10, when o7 — 0 and s(2s,¢®) > s(xs, M), h?(z;) ~ 1.0, and
M (x;) ~ 0.0. This means that z; is closer to cluster 2 than to cluster 1. Simi-
larly, h®(z;) ~ 0.0 and h()(z;) ~ 1.0 when s(z¢, ) < s(z;, #M). Therefore,
Eq. 3.3.10 suggests that when o — 0, there is a hard-decision clustering (i.e., with
cluster probabilities equal to either 1 or 0). This demonstrates that o plays the
same role as the temperature parameter in the simulated annealing method. It is
a common practice to use annealing temperature schedules to force a more certain
classification (i.e., starting with a higher or and then gradually decreasing or to a
lower value as iterations progress).

3.3.3 EM Ilterations

Next, the optimization formulation described in Section 3.2 is slightly modified (but
causes no net effect). The EM problem can be expressed as one that maximizes L
with respect to both (1) the model parameters § = {#1)V5} and (2) the member-
ship function {h)(z,),Vt and j}. The interplay of these two sets of variables can
hopefully induce a bootstrapping effect facilitating the convergence process. The
list that follows further elaborates on this.
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op Large

M1 2 x
At the beginning of the EM algorithm, o is set to a large value.

or Small
| |
I I
M1 2 x
After several iterations, or is decreased.
op — 0
| |
I I
H1 2 x

After many iterations, o is set very close to zero.

Figure 3.6. This figure demonstrates how the temperature or can be applied
to control the convergence of the EM algorithm.



Section 3.3.  An Entropy Interpretation 71

e In the E-step, while fixing the model parameter § = {6Y) V¥j}, one can
find the best cluster probability h¥)(z;) to optimize L with the constraint
25:1 hU)(x;) = 1, which gave Eq. 3.3.9.

e In the M-step, one searches for the best model parameter § = {#\9),V;} that
optimizes L, while fixing the cluster probability hU)(z;),Vt and j.

3.3.4 Special Case: GMM
When 6 defines a GMM, s(xy, #9)) becomes

; D 1 - 1 . N1 )
s(xy, p0)) = — log2r —  log 20| — 5 (@t — pONT(BON) " (@ — p@)). (3.3.11)

Ignoring terms independent of A7) (), u), £U) and 71, the likelihood function
in Eq. 3.3.2 can be rewritten as:

L(X|0) = — Z R () log hD) (z,) + Z R () log w7 —

t,j t,j
. 1 ) 1 ) - )
>0 () {210g|2<” + 5@ = =) (@ —M}'
t,j
(3.3.12)

Note that the maximization of Eq. 3.3.12 with respect to 6 leads to the same max-
imum likelihood estimtates as shown in Section 3.2.4.

For RBF- and EBF-type likelihood functions, the parameters that maximize
s(z¢,9)) can be obtained analytically (see Section 3.2.4), which simplifies the
optimization process. On the other hand, if a linear model (e.g. LBF) is chosen to
parameterize the likelihood, an iterative method is needed to achieve the optimal
solutions in the M-step. In other words, the EM algorithm becomes a double-loop
optimization known as the generalized EM. For example, Jordan and Jacobs [168]
applied a Fisher scoring method called iteratively reweighted least squares (IRLS)
to train the LBF mixture-of-experts network.

3.3.5 K-Means versus EM

K-means [85] and VQ [118] are often used interchangeably: They classify input
patterns based on the nearest-neighbor rule. The task is to cluster a given data
set X = {ay;t =1,...,T} into K groups, each represented by its centroid denoted
by p9),j = 1,..., K. The nearest-neighbor rule assigns a pattern z to the class
associated with its nearest centroid, say u(?). K-means and VQ have simple learning
rules and the classification scheme is straightforward. In Eq. 3.3.12, when h\)(z;)
implements a hard-decision scheme—that is, h¥)(z;) = 1 for the members only,
otherwise h)(z;) = 0—and XU) = ¢ Vj, where c is a constant and I is an
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Table 3.3. Learning algorithms as a result of optimizing Fq. 3.3.12 using different
kernel types and decision types. RBF and EBF stand for radial basis functions
and elliptical basis functions, respectively. Note that EM types of learning occur
whenever the decisions in h9)(z;) are soft.

Kernel Type £ ‘ h(9) (2¢) ‘ Learning Algorithm
RBF Diagonal Hard K-means with Euclidean distance
Soft EM with Euclidean distance
EBF Nondiagonal, Hard K-means with Mahalanobis distance
symmetric Soft EM with Mahalanobis distance

identity matrix, the maximization of Eq. 3.3.12 reduces to the minimization of

K
E(h,X) = 323" 00 ()l — nO). (3.3.13)
t =1

Therefore, the K-means algorithm aims to minimize the sum of squared error with
K clusters.

The EM scheme can be seen as a generalized version of K-means clustering.
In other words, K-means clustering is a special case of the EM scheme (cf. Figure
3.2). Table 3.3 summarizes the kinds of learning algorithms that the EM formulation
Eq. 3.3.12 can produce.

3.4 Doubly-Stochastic EM

This section presents an EM-based algorithm for problems that possesses partial
data with multiple clusters. The algorithm is referred to as as a doubly-stochastic
EM. To facilitate the derivation, adopt the following notations:

o X ={x; e RP;t=1,...,T} is a sequence of partial-data.
o 7 ={z€C;t=1,...,T} is the set of hidden-states.
o C= {C(l), e ,C(J)}, where J is the number of hidden-states.

o T = {4 ... 4} is the set of values that z; can attain, where K is the
number of possible values for ;.

Also define two sets of indicator variables as:

# [ lifz, =~®
t 71 0 otherwise
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and .
59 — 1if 2, = CYW)
0 otherwise.

Using these notations and those defined in Section 3.2, Q(6|6,,) can be written as

Q(010,) = E{logp(X,Z|0,T)|X,T,0,}

T
=F {log Hp(act,ztw,xt € F)‘X,F,Gn}

t=1

T J K
= F Zzzﬂ(k)§(J)logpxt7zt\9 xtg{"){pg

t=1 j=1 k=1

E {ﬁf’”éﬁ”

T € 1",9”} log p(z: = A ) 2y = C(j)|xt el,b)

Pz = 'y(k),zt = C(j)|:ct elb,)-
log p(zy = 4 ®), 2, =CW|z, €T, 0)
T J K
= Zzzp(xt =AWz =CD z, €T,0,)P(z = CV|z, €T,6,) -
log [p(a:t =Mz, €T, 2z, =CYD 0)P(z, = CD|ay €T, 0)
T J K . .
DB I U CADCHE

log [p(xt =Bz, €T, 2, =CY), gb(j))ﬂ(j)] : (3.4.1)

5
Il
-
<
Il
-
S
Il
-

where _ _
g5 () = P(xy =Pz = CY) 2, € T,0,,) and

hglj) (J?t) = P(Zt = C(j)ll't S F, Gn)
If ¢ defines a GMM-—that is, § = {z0), ), 2} 7_ —then

T J K
—D =3 1 . N ]
QUOI0.) = 3> > (e 32| Zexp{—Q(v(’“)—uS))T(ES)) 1(v(k)—u5$))}-

t=1 j=1k=1
D,
h) (x4 { 5 g(2m) —710g|2}(])|
%( (V) _ )T (50)1 (5 ®) —u(j))—l—logw(j)}.
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3.4.1 Singly-Stochastic Single-Cluster with Partial Data

This section demonstrates how the general formulation in Eq. 3.4.1 can be applied to
problems with a single cluster and partially observable data. Referring to Example
2 shown in Figure 3.3(b), let X = {x1, 22,23, 24,3y} = {1,2,3,4,{5 or 6}} be the
observed data, where y = {5 or 6} is the observation with missing information. The
information is missing because the exact value of y is unknown. Also let z € T,
where I' = {y()), 42} = {5 6}, be the missing information. Since there is one
cluster only and z; to x4 are certain, define 0 = {u, 0%}, set 71 = 1.0 and write
Eq. 3.4.1 as

4 1 1
QO16,) = 5575 68 (@)Y (1) log pla|6)

t=1 j—1 k=1
1 2
YD g )hG (y) logp(y = vy € T, 6)
j=1k=
4 2
= logp(xil0) + Y _ Py =vM|y € T,6,)logpy =My €T, 0).
t=1 k=1

(3.4.2)

Note that the discrete density p(y = v*)|y € T, §) can be interpreted as the product
of density p(y = y*)|y € T') and the functional value of p(y|0) at y = y*), as shown
in Figure 3.7.

Assume that at the start of the iterations, n = 0 and 6y = {uo, 08} = {0,1}.
Then, Eq. 3.4.2 becomes

4
Q(060) = > logp(w|0) + Py =5y € T,6) log p(y = 5|y € T, 0)

t=1
+P(y =6ly € I',0p) logp(y = 6|y € T, 0)

4 N2
:Const.—410ga—z(t ) —

t=1 20
N _ (5-ng)?
e 200 N2
V2mog (5 ,U,) +10 ol —
1 _ (5—pg)? (6—pg)? 202 S
Voo T Ve ©
0 0
1 _(Gfuoz)2
e 200 N2
V2mog (6 ,U,) +10 ol —
_ (5-pg)? (6—pg)? 202 8
21 e 2002 + 21 e 2002
V2mog V4Too

4

(t —w)? e /2 (5—p)?
= Const. —4logo — Z 202 \emrioan 952 +logo
t=1
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p(ylfo) = e /2,
where 0y = {uo, 00} = {0,1}

p(y|y € {5a G}a 90)
_ ad(y—5)+bS(y—6)
- a+b

p(yly € {5,6}) ‘

— 1 (5(y —5) +3(y — 6)) / 513 y
P(y =5|y € {5,6},60) = 2%
56 y Py =6ly € {5,6},00) = 225

Note: Given y € {5,6}, y has non-zero probability only when y =5 or y = 6.

Figure 3.7. The relationship between p(y|6o), p(yly € T), p(yly € I',6p), and
Py =~M]y €T,6y), where T = {5,6}.

e /2 (6 — p)?
o (6_25/2 + 6_36/2) { 202 JFIOgU] . (3.4.3)

In the M-step, compute 61 according to

01 = arg max Q(6160).

The next iteration replaces 6y in Eq. 3.4.3 with 6; to compute Q(6]61). The pro-
cedure continues until convergence. Table 3.4 shows the value of u and o2 in the
course of EM iterations when their initial values are yo = 0 and o2 = 1. Figure 3.8
depicts the movement of the Gaussian density function specified by p and o2 during
the EM iterations.

3.4.2 Doubly-Stochastic (Partial-Data and Hidden-State) Problem

Here, the single-dimension example shown in Figure 3.9 is used to illustrate the
application of Eq. 3.4.1 to problems with partial-data and hidden-states. Review
the following definitions:

o X ={x1,29,...,%6,Y1, Y2} is the available data with certain {x1,..., 26} and
uncertain {y1, y2} observations.
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Table 3.4. Values of u and ¢ in the course of EM iterations. Data shown in
Figure 3.3(b) were used for the EM iterations.

Iteration (n) || Q(0|6,) ] o?
0 —oo | 0.00 | 1.00

1 —29.12 | 3.00 | 7.02

2 —4.57 | 3.08 | 8.62

3 —4.64 | 3.09 | 8.69

4

5

—4.64 | 3.09 | 8.69
—4.64 | 3.09 | 8.69

o 7 ={z,29,...,26,21, 24}, where z; and z; € C is the set of hidden-states.

o'y = {751),79)} ={5,6} and 'y = {fyél),fyf)} = {8.9,9.1} such that y; € '
and yo € I's are the values attainable by y; and ys, respectively.

e J=2and K =2.
Using the preceding notations results in

2

6
E {lognp(zt7$t|9) H p(ze, ylye € Ft’aa)‘X7F17F270n}

t=1 t'=1

6
E{Zlogp(zt,xtlﬁ)

t=1

X,F1,F2,9n}

2
+E {Z logp(zt’7yt"yt' S Ft’ae)‘X7F17F279n}

t'=1

6 2
Z ZE {(5t(j)\xt, Hn} log p(zt, x+|0)

~
I

—
<
Il

—_
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0.15f Iteration n=0 7

011 b

p(x)

0.05F 4

Iteration n=1

0.04 Iteration n=2 i

p(x)

Figure 3.8. Movement of a Gaussian density function during the EM iterations.
The density function is to fit the data containing a single cluster with partially
observable data.

P(zp = C(j)|yt’ el'y,0,)
1og [p(yer =12 = €9,y € T, )P0 =€) }6)]

2
S 1 @) log [plar]z0 = €9, 6P)r ]

1j=1

I
NE

o
Il

2 2 2
Z ZZP Yrr = %(/k)|2t’ = C(j)dlt' € Ft/aen)hg)(yt’)

1 k=1

1j
10g|: ( t’ = ')/t )|Zt/ C(j),yt, & Ft’,¢(]))W(J):|

I
NE
Mm

h9) () log [p(xtlzt =cU, d,(j))ﬁ(j)}

~
Il

1

2 2 2
NN g ()b ()

t'=1j=1 k=1

1j
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1 2 3 4 5 6 7 8 89 91
® ® @ ® @ ® x

1 =1 220=2 23=3 24 =4 x5 =5 16 =

y1 =5 or 6 y2 = 8.9 or 9.1

Figure 3.9. Single-dimension example illustrating the idea of hidden-states and
partial-data.

-log [p(yt/ = %(fk)|zt’ = C(j)a Yy € 'y, ¢(j))7r(j)} ) (3.4.4)

where g(k’j) = P(yp = yt(,k)|zt/ =CY) y, €Ty, 0,) is the posterior probability that

(k) given that y, is generated by cluster C7). Note that when the

values of y; and yo are certain (e.g., it is known that y; = 5, and ’yél) and '752)
become so close that we can consider y2 = 9), then K =1 and I'1y = {11} = {5}

and I'y = {72} = {9}. In such cases, the second term of Eq. 3.4.4 becomes

ye is equal to v,

2 2
Z ZP(yt' =y lev = CY yy € Ft’aen)h(j)(yt’)
j=1

t'=1j=

log [ (yr = yor|2e = C9 gy € T, ¢<j>)7r(j>}
2 2 - ‘ .
=S D (e log[ (g |20 :co)@(a))ﬁm} . (3.45)
t'=1j5=1

Replacing the second term of Eq. 3.4.4 by Eq. 3.4.5 and seting z7 = y; and xg = y»
results in

8 2
QO10n) = > D" P () og [plaelz = €9, p)x 0] |

t=1 j=1

which is the @Q-function of a GMM without partially unknown data with all observ-
able data being certain.

3.5 Concluding Remarks

This chapter has detailed the algorithmic and convergence property of the EM al-
gorithm. The standard EM has also been extended to a more general form called
doubly-stochastic EM. A number of numerical examples were given to explain the
algorithm’s operation. The following summarizes the EM algorithm:
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e EM offers an option of “soft” classification.

e EM offers a “soft pruning” mechanism. It is important because features with
low probability should not be allowed to unduly influence the training of class
parameters.

e EM naturally accommodates model-based clustering formulation.
e EM allows incorporation of prior information.

e EM training algorithm yields probabilistic parameters that are instrumental
for media fusion. For linear-media fusion, EM plays a role in training the
weights on the fusion layer. This will be elaborated on in subsequent chapters.

Problems

1. Assume that you are given a set of one-dimensional data X = {0,1,2,3,4,3,4,5}.
Find two cluster centers using

(a) the K-means algorithm
(b) the EM algorithm

You may assume that the initial cluster centers are 0 and 5.

2. Compute the solutions of the single-cluster partial-data problem in Example 2
of Figure 3.3 with the following initial conditions:

0o = {po, 05} = {~1,0.5}

3. In each iteration of the EM algorithm, the maximum-likelihood estimates of
an M-center GMM are given by

h; b
xeX xex N X)
e x () ox — ) (o — i)

2xex (%) ’

new _
e =

Where 1d 1d 1d
__ mpi (g, T3
- M (e} o o ’
Zkzl ledpk (X|leda Ejld)
X is the set of observed samples. {71';?“, G Z;‘d}jﬂil are the maximum like-
lihood estimates of the last EM iteration, and

1 1 . .

pi (x|, 35) = (2m)% 2| ® exp{_Q(x_“;'ld)T(E;ld) 1(X_M'ld)}'
T) 2 °

J

hj(x)

State the condition in which the EM algorithm reduces to the K-means algo-
rithm.
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4. You are given a set X = {x3,...,xr} of T unlabeled samples drawn indepen-
dently from a population whose density function is approximated by a GMM
of the form

p(x) =~ p(x|6) = Zﬂ'Jp x|6;),

where 6 = {0;}}2, = {u;,%;}}L, are the means and covariance matrices of
the component densities {p(x|6;)}}L,. Assume that 7; are known, 6; and
0;(i # j) are functionally independent, and x; are statistically independent.

T
(a) Show that the log-likelihood function is L(X|0) = > log p(x¢|6).
=1

(b) Show that the maximum-likelihood estimate 0, that maximizes L satisfies
the conditions

ZP 7T1|Xt7 logp(xt\é’) 1=1,..., M,

where P(m;|xs,0) = p(x¢|0;)7; /p(x¢]f) is the posterior probability that
the i-th cluster generates x;.

(c) Hence, show that if {Zj}jM:l are known, the maximum-likelihood esti-
mate fi;, ¢t =1,..., M are given by

T
A D1 Pl xe, )Xt
i = .
Zt:l (7Ti|xt7 )
(d) Hence, state the conditions where the equation in Problem 4c reduces

to the K-means algorithm. State also the condition where the K-means
algorithm and the equation in Problem 4c give similar solutions.

5. Based on the normal distribution
1 1 _ NT—17= N
- G R AT

in D-dimensions, show that the mean vector and covariance matrix that max-
imize the log-likelihood function

—

p(Z; i, 2

L(X; i, %) = logp(X; fi, %) = log || p(# 4, %)
are, respectively, given by

- 1 - - 1 2= 7
p=gp D Tand =5 (@ - )@ - p)T,
reX reX
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where X is a set of samples drawn from the population with distribution
p(@; i1, %), N is the number of samples in X, and T denotes matrix transpose.

Hint: Use the derivatives

2(#g) =, L (z TAy)—Ay g (@ TAx) AZ+ ATz,

where A is a symmetric matrix.

6. Let p(x|¥) = N(u,X) be a D-dimensional Gaussian density function with
mean vector p and covariance matrix ¥. Show that if x4 is known and ¥ is
unknown, the maximum-likelihood estimate for X is given by

| X
Z xp, — ) (xp — )7
k=1

7. LBF-Type EM Methods: The fitness criterion for an RBF-type EM is deter-
mined by the closeness of a cluster member to a designated centroid of the
cluster. As to its LBF-type counterpart, the fitness criterion hinges on the
closeness of a subset of data to a linear plane (more exactly, hyperplane). In
an exact fit, an ideal hyperplane is prescribed by a system of linear equations:
Ax; + b = 0, where x; is a data point on the plane. When the data are
approximated by the hyperplane, then the following fitness function

| Ax; + b|?

should approach zero. Sometimes, the data distribution can be better repre-
sented by more than one hyperplane. In a multiplane model, the data can
be effectively represented by say N hyperplanes, which may be derived by
minimizing the following LBF fitness function:

K
=33 h (x,)[| Ax¢ + b))%, (3.5.1)
t

Jj=1

where h(9)(x;) is the membership probability satisfying > ; RO (x;) = 1. If
hU)(x,;) implements a hard-decision scheme, then h¥)(x;) = 1 for the cluster
members only, otherwise h)(x;) = 0.

(a) Compare the LBF-based formulation in Eq. 3.5.1 with the RBF-based
formulation in Eq. 3.3.13.

(b) Modify an RBF-based EM Matlab code so that it may be applicable to
either RBF-based or LBF-based representation.
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8.

10.

11.

The following is a useful optimization formulation for the derivation of many
EM algorithms. Given N known positive values u,, where n = 1,... N.
The problem is to determine the unknown parameters w, to maximize the
criterion function

N
Z Uy, logwy, (3.5.2)
n=1

under the constraints w, > 0 and 25:1 wy, = 1.

(a) Provide a mathematical proof that the optimal parameters have a closed-

form solution:
Unp

N
Zn:l Un,

Hints: refer to Egs. 3.2.23 through 3.2.26.

for n=1,...,N.

Wy =

(b) As an application example of the EM formulation in Eq. 3.2.10, what are
the parameters corresponding to the known positive values u,, and the
unknown positive values w,. Hence, provide a physical meaning of the
criterion function in Eq. 3.5.2.

As a numerical example of the preceding problem, given u; = 3, us = 4, and
ug = 5, and denote x = uy, y = ug, and 1 — x — y = ug, the criterion function
can then be expressed as

3log(xz) + 4log(y) + 5log(l —z —y).

(a) Write a simple Matlab program to plot the criterion function over the
admissible space 0 < x, 0 < y, and = + y < 1 (verify this range!).

(b) Show numerically that the maximum value occurs at z = i and z = %

Suppose that someone is going to train a GMM by the EM algorithm. Let T’
denote the number of patterns, M the number of mixtures, and D the feature
dimension. Show that the orders of computational complexity (in terms of
multiplications) for each epoch in the E-step is O(TM D + T M) and that in
the M-step is O(2T'M D).

Assume that you are given the following observed data distribution:
r1=1,20 =223 =4,24 =8, and z5 = 9.

Assume also that when EM begins, n = 0 and

1 1 1 2 2 2
0o = {m80, (a0 o, 72, (0}
{0.5,{1,1},0.5,{9,1}} .
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12.

13.

14.

(a) Derive
(1)
T o= (we—n®)?/ (o))
oV
(k) E)ya
2 T —l(xt—lf«(k))2/(0'( ))2
20 _e— 32\ Tt 0
=1 k)
2k o

h$D (x,) =

- . 2
In a similar manner, derive h(() )(a:t).

(b) Substituting X = {1,2,4,8,9} into your derivation to obtain the corre-
sponding membership values.

(¢) Substitute the derived membership values into Egs. 3.2.17 through 3.2.19,
and compute the values of the new parameters 6.

(d) To do more iterations, one can continue the algorithm by computing
Q(6]61), which can again be substituted into Egs. 3.2.17 through 3.2.19
to obtain . Perform the iterative process until it converges.

It is difficult to provide any definitive assurance on the convergence of the
EM algorithm to a global optimal solution. This is especially true when the
data vector space has a very high dimension. Fortunately, for many inherently
offline applications, there is no pressure to produce results in realtime speed.
For such applications, the adoption of a user interface to pinpoint a reasonable
initial estimate could prove helpful. To facilitate a visualization-based user
interface, it is important to project from the original ¢-space (via a discrimi-
nant axis) to a two-dimensional (or three-dimensional) a-space [367, 370] (see
Figure 2.7). Create a Matlab program to execute the following steps:

(a) Project the data set onto a reduced-dimensional z-space, via say PCA.

(b) Select initial cluster centers in the z-space by user’s pinpoint. Based
on the user-pinpointed membership, perform the EM algorithm in the
x-space.

(¢) Calculate the values of AIC and MDL to select the number of clusters
(see the next problem).

(d) Trace the membership information back to the t-space, and use the mem-
bership function as the initial condition and further fine-tune the GMM
clustering by the EM algorithm in the ¢-space.

One of the most important factors in data clustering is to select the proper
number of clusters. Two prominent criteria for such selections are AIC and
MDL [5,314]. From the literature, find out the differences between AIC and
MDL criteria. Do you have a preference and why?

Given a set of observed data X, develop Matlab code so that the estimated
probability density p(x) can be represented in terms of a set of means and
variances.
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15. Use Matlab to create a three-component Gaussian mixture distribution with
different means and variances for each Gaussian component. Ensure that
there is some overlap among the distributions.

(a) Use 2-mean, 3-mean, and K-mean algorithms to cluster the data.

(b) Compute the likelihood of the true parameters (means and variances
that define the three Gaussian components) and the likelihood of your
estimates. Which of your estimates is closest to the true distribution in
the maximum-likelihood sense?

(c) Compute the symmetric divergence between the true Gaussian distribu-
tions and your estimates. Hint: Given two Gaussian distributions A;
and Ay with mean vectors p; and py and covariance matrices ; and
Yk, their symmetric divergence is

D(AJHAk) = %t?‘ {(Ej)_lflk + (Ek)_lEj - 2]}

+%(l‘a‘ — )" [(BR) 7+ ()7 (i — ),

where I is an identity matrix.
(d) Repeat (a), (b), and (c) with the EM clustering algorithm.
16. Use Matlab to create a mixture density function with three Gaussian compo-
nent densities. The prior probabilities should be as follows:
(a) P(wy) =0.2, P(wy) =0.3, and P(w3) = 0.5.
(b) P(w1) =0.1, P(wz) = 0.1, and P(w3) = 0.8
Use 2-mean, 3-mean, and 4-mean V(Q algorithms. Compute the likelihood

between the data distribution and your estimate. Repeat the problem with
the EM clustering algorithm.





