
Cross-Platform GUI Programming
with wxWidgets

Smart_FMf.qxd 6/10/05 1:52 PM Page i

BRUCE PERENS ’ OPEN SOURCE SERIES
http://www.phptr.com/perens

Java™ Application Development on Linux®
Carl Albing and Michael Schwarz

C++ GUI Programming with Qt 3
Jasmin Blanchette and Mark Summerfield

Managing Linux Systems with Webmin: System Administration and Module Development
Jamie Cameron

The Linux Book
David Elboth

Understanding the Linux Virtual Memory Manager
Mel Gorman

PHP 5 Power Programming
Andi Gutmans, Stig Bakken, and Derick Rethans

Linux® Quick Fix Notebook
Peter Harrison

Linux Desk Reference, Second Edition
Scott Hawkins

Implementing CIFS: The Common Internet File System
Christopher Hertel

Open Source Security Tools: A Practical Guide to Security Applications
Tony Howlett

Apache Jakarta CommonsReusable Java™ Components
Will Iverson

Embedded Software Development with eCos
Anthony Massa

Rapid Application Development with Mozilla
Nigel McFarlane

Subversion Version Control: Using the Subversion Version Control System in Development
Projects

William Nagel
Linux Assembly Language Programming

Bob Neveln
Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQL,
PHP, and ACID

Rafeeq Ur Rehman
Cross-Platform GUI Programming with wxWidgets

Julian Smart and Kevin Hock with Stefan Csomor
Samba-3 by Example: Practical Exercises to Successful Deployment

John H. Terpstra
The Official Samba-3 HOWTO and Reference Guide

 John H. Terpstra and Jelmer R. Vernooij, Editors
Real World Linux Security, Second Edition

Bob Toxen

Smart_FMf.qxd 6/10/05 1:52 PM Page ii

Cross-Platform GUI Programming
with wxWidgets

Julian Smart and Kevin Hock
with Stefan Csomor

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris
Madrid • Capetown • Sydney • Tokyo • Singapore • Mexico City

Smart_FMf.qxd 6/10/05 1:52 PM Page iii

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari Enabled icon on the cover of your favorite technology book means the book is
available through Safari Bookshelf. When you buy this book, you get free access to the
online edition for 45 days. Safari Bookshelf is an electronic reference library that lets you
easily search thousands of technical books, find code samples, download chapters, and
access technical information when ever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

•Go to http://www.awprofessional.com/safarienabled
•Complete the brief registration form
•Enter the coupon code 33G2-XGSI-ZFYZ-D7IV-B9HE

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-
service@safaribooksonline.com.

Visit us on the Web: www.phptr.com

Library of Congress Catalog Number: 2005924108

Copyright © 2006 Pearson Education, Inc.

Printed in the United States of America.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

ISBN 0-13-147381-6

Text printed in the United States on recycled paper at R.R. Donnelley & Sons in Crawfordsville, Indiana.
First printing, July 2005

Smart_FMf.qxd 6/10/05 1:52 PM Page iv

Smart_FMf.qxd 6/10/05 1:52 PM Page v

Smart_FMf.qxd 6/10/05 1:52 PM Page vi

Foreword by Mitch Kapor .xxiii

Preface .xxv

Acknowledgments .xxxiii

About the Authors .xxxv

1 Introduction .1
What Is wxWidgets? .1
Why Use wxWidgets? .2
A Brief History of wxWidgets .5
The wxWidgets Community .6
wxWidgets and Object-Oriented Programming .7
License Considerations .7
The wxWidgets Architecture .8

wxMSW .8
wxGTK .8
wxX11 .9
wxMotif .10
wxMac .10
wxCocoa .10
wxWinCE .10
wxPalmOS .12
wxOS2 .12
wxMGL .12
Internal Organization . 12

Summary .13

2 Getting Started .15
A Small wxWidgets Sample .15
The Application Class .16

Contents

vii

Smart_FMf.qxd 6/10/05 1:52 PM Page vii

The Frame Class .17
The Event Handlers .18
The Frame Constructor .19
The Whole Program .20
Compiling and Running the Program .22
Program Flow .23
Summary .23

3 Event Handling .25
Event-Driven Programming .25
Event Tables and Handlers .26
Skipping Events .29
Pluggable Event Handlers .29
Dynamic Event Handlers .30
Window Identifiers .31
Defining Custom Events .34
Summary .37

4 Window Basics .39
Anatomy of a Window .39

The Concept of a Window .40
Client and Non-Client Areas .40
Scrollbars .41
Caret and Cursor .41
Top-Level Windows .41
Coordinate System .41
Painting .41
Color and Font .42
Window Variant .42
Sizing .42
Input .42
Idle Time Processing and UI Updates .42
Window Creation and Deletion .43
Window Styles .44

A Quick Guide to the Window Classes .44
Base Window Classes .45
Top-Level Windows .45
Container Windows .45
Non-Static Controls .45
Static Controls .46
Menus .46
Control Bars .46

Base Window Classes .46
wxWindow .47

wxWindow Styles .47
wxWindow Events .49

viii Contents

Smart_FMf.qxd 6/10/05 1:52 PM Page viii

wxWindow Member Functions .50
wxControl .54

wxControlWithItems .54
wxControlWithItems Member Functions .54

Top-Level Windows .55
wxFrame .55

wxFrame Styles .58
wxFrame Events .59
wxFrame Member Functions .60
Non-Rectangular Frames .61
Mini-Frames .63

wxMDIParentFrame .63
wxMDIParentFrame Styles .64
wxMDIParentFrame Member Functions .65

wxMDIChildFrame .65
wxMDIChildFrame Styles .65
wxMDIChildFrame Member Functions .66

wxDialog .66
wxDialog Styles .69
wxDialog Events .70
wxDialog Member Functions .71

wxPopupWindow .71
Container Windows .72

wxPanel .72
wxPanel Styles .72
wxPanel Member Functions .72

wxNotebook .72
Notebook Theme Management .74
wxNotebook Styles .74
wxNotebook Events .75
wxNotebook Member Functions .75
Alternatives to wxNotebook .76

wxScrolledWindow .76
wxScrolledWindow Styles .78
wxScrolledWindow Events .78
wxScrolledWindow Member Functions .79
Scrolling Without Using wxScrolledWindow .80

wxSplitterWindow .81
wxSplitterWindow Styles .83
wxSplitterWindow Events .83
wxSplitterWindow Member Functions .84
Sizing Issues with wxSplitterWindow .84
Alternatives to wxSplitterWindow .85

Non-Static Controls .86
wxButton .86

Contents ix

Smart_FMf.qxd 6/10/05 1:52 PM Page ix

wxButton Styles .86
wxButton Events .87
wxButton Member Functions .87

wxButton Labels .87
wxBitmapButton .89

wxBitmapButton Styles .90
wxBitmapButton Events .90
wxBitmapButton Member Functions .90

wxChoice .90
wxChoice Styles .91
wxChoice Events .91
wxChoice Member Functions .91

wxComboBox .91
wxComboBox Styles .92
wxComboBox Events .93
wxComboBox Member Functions .93

wxCheckBox .93
wxCheckBox Styles .94
wxCheckBox Events .95
wxCheckBox Member Functions .95

wxListBox and wxCheckListBox .95
wxListBox and wxCheckListBox Styles .97
wxListBox and wxCheckListBox Events .97
wxListBox Member Functions .98
wxCheckListBox Member Functions .98

wxRadioBox .98
wxRadioBox Styles .99
wxRadioBox Events .100
wxRadioBox Member Functions .100

wxRadioButton .100
wxRadioButton Styles .101
wxRadioButton Events .101
wxRadioButton Member Functions .101

wxScrollBar .101
wxScrollBar Styles .102
wxScrollBar Events .102
wxScrollBar Member Functions .103

wxSpinButton .103
wxSpinButton Styles .104
wxSpinButton Events .104
wxSpinButton Member Functions .104

wxSpinCtrl .104
wxSpinCtrl Styles .105
wxSpinCtrl Events .105
wxSpinCtrl Member Functions .106

wxSlider .106

x Contents

Smart_FMf.qxd 6/10/05 1:52 PM Page x

wxSlider Styles .106
wxSlider Events .107
wxSlider Member Functions .107

wxTextCtrl .107
wxTextCtrl Styles .109
wxTextCtrl Events .110
wxTextCtrl Member Functions .110

wxToggleButton .111
wxToggleButton Styles .112
wxToggleButton Events .112
wxToggleButton Member Functions .112

Static Controls .112
wxGauge .112

wxGauge Styles .113
wxGauge Events .113
wxGauge Member Functions .113

wxStaticText .113
wxStaticText Styles .114
wxStaticText Member Functions .114

wxStaticBitmap .114
wxStaticBitmap Styles .115
wxStaticBitmap Member Functions .115

wxStaticLine .115
wxStaticLine Styles .115
wxStaticLine Member Functions .116

wxStaticBox .116
wxStaticBox Styles .116
wxStaticBox Member Functions .116

Menus .116
wxMenu .117

wxMenu Events .118
wxMenu Member Functions .120

Control Bars .122
wxMenuBar .122

wxMenuBar Styles .123
wxMenuBar Events .123
wxMenuBar Member Functions .123

wxToolBar .124
Tool Bitmap Colors Under Windows .125
wxToolBar Styles .126
wxToolBar Events .126
wxToolBar Member Functions .127

wxStatusBar .128
wxStatusBar Styles .129
wxStatusBar Events .129
wxStatusBar Member Functions .129

Summary .130

Contents xi

Smart_FMf.qxd 6/10/05 1:52 PM Page xi

xii Contents

5 Drawing and Printing .31
Understanding Device Contexts .131

Available Device Contexts .132
Drawing on Windows with wxClientDC .133
Erasing Window Backgrounds .134
Drawing on Windows with wxPaintDC .135
Drawing on Bitmaps with wxMemoryDC .138
Creating Metafiles with wxMetafileDC .138
Accessing the Screen with wxScreenDC .139
Printing with wxPrinterDC and wxPostScriptDC 139

Drawing Tools .140
wxColour .141
wxPen .142
wxBrush .143
wxFont .145
wxPalette .147

Device Context Drawing Functions .148
Drawing Text .150
Drawing Lines and Shapes .152
Drawing Splines .156
Drawing Bitmaps .157
Filling Arbitrary Areas .159
Logical Functions .159

Using the Printing Framework .161
More on wxPrintout .163
Scaling for Printing and Previewing .165
Printing under Unix with GTK+ .167

3D Graphics with wxGLCanvas .168
Summary .170

6 Handling Input .171
Mouse Input .171

Handling Button and Motion Events .173
Handling Mouse Wheel Events .174

Handling Keyboard Events .175
An Example Character Event Handler .178
Key Code Translation .179
Modifier Key Variations .179
Accelerators .180

Handling Joystick Events .181
wxJoystick Events .183
wxJoystickEvent Member Functions .184
wxJoystick Member Functions .184

Summary .185

Smart_FMf.qxd 6/10/05 1:52 PM Page xii

7 Window Layout Using Sizers .187
Layout Basics .187
Sizers .188

Common Features of Sizers .190
Programming with Sizers .192

Programming with wxBoxSizer .193
Programming with wxStaticBoxSizer .196
Programming with wxGridSizer .197
Programming with wxFlexGridSizer .198
Programming with wxGridBagSizer .200

Further Layout Issues .201
Dialog Units .202
Platform-Adaptive Layouts .202
Dynamic Layouts .204

Summary .204

8 Using Standard Dialogs .205
Informative Dialogs .205

wxMessageDialog .205
wxMessageDialog Example .207
wxMessageBox .207

wxProgressDialog .208
wxProgressDialog Example .209
wxBusyInfo .210

wxBusyInfo Example .210
wxShowTip .210

wxShowTip Example .211
File and Directory Dialogs .212

wxFileDialog .212
wxFileDialog Styles .214
wxFileDialog Functions .215
wxFileDialog Example .215

wxDirDialog .216
wxDirDialog Functions .218
wxDirDialog Example .218

Choice and Selection Dialogs .218
wxColourDialog .218

wxColourData Functions .221
wxColourDialog Example .221

wxFontDialog .221
wxFontData Functions .223
Font Selector Example .224

wxSingleChoiceDialog .224
wxSingleChoiceDialog Example .225

Contents xiii

Smart_FMf.qxd 6/10/05 1:52 PM Page xiii

wxMultiChoiceDialog .225
wxMultiChoiceDialog Example .226

Entry Dialogs .227
wxNumberEntryDialog .227

wxNumberEntryDialog Example .227
wxTextEntryDialog and wxPasswordEntryDialog227

wxTextEntryDialog Example .228
wxFindReplaceDialog .228

Handling Events from the Dialog .229
wxFindDialogEvent Functions .230
Passing Data to the Dialog .230
wxFindReplaceData Functions .230
Find and Replace Example .231

Printing Dialogs .232
wxPageSetupDialog .232

wxPageSetupData Functions .235
wxPageSetupDialog Example .235

wxPrintDialog .235
wxPrintDialogData Functions .238
wxPrintDialog Example .238

Summary .239

9 Writing Custom Dialogs .241
Steps in Creating a Custom Dialog .241
An Example: PersonalRecordDialog .242

Deriving a New Class .243
Designing Data Storage .243
Coding the Controls and Layout .244
Data Transfer and Validation .247
Handling Events .249
Handling UI Updates .250
Adding Help .251

Tooltips .251
Context-Sensitive Help .251
Online Help .252

The Complete Class .253
Invoking the Dialog .253

Adapting Dialogs for Small Devices .254
Further Considerations in Dialog Design .255

Keyboard Navigation .255
Data and UI Separation .256
Layout .256
Aesthetics .257
Alternatives to Dialogs .257

xiv Contents

Smart_FMf.qxd 6/10/05 1:52 PM Page xiv

Contents xv

Using wxWidgets Resource Files .257
Loading Resources .258
Using Binary and Embedded Resource Files .259
Translating Resources .261
The XRC Format .261
Writing Resource Handlers .262
Foreign Controls .263

Summary .264

10 Programming with Images .265
Image Classes in wxWidgets .265
Programming with wxBitmap .267

Creating a wxBitmap .268
Setting a wxMask .269
The XPM Format .270
Drawing with Bitmaps .271
Packaging Bitmap Resources .272

Programming with wxIcon .272
Creating a wxIcon .273
Using wxIcon .274
Associating an Icon with an Application .274

Programming with wxCursor .275
Creating a wxCursor .276
Using wxCursor .278
Using wxSetCursorEvent .278

Programming with wxImage .279
Loading and Saving Images .280
Transparency .282
Transformations .284
Color Reduction .284
Manipulating wxImage Data Directly .285

Image Lists and Icon Bundles .285
Customizing Art in wxWidgets .288
Summary .290

11 Clipboard and Drag and Drop .291
Data Objects .291

Data Source Duties .292
Data Target Duties .292

Using the Clipboard .293
Implementing Drag and Drop .294

Implementing a Drag Source .294
1. Preparation .295
2. Drag Start .295

Smart_FMf.qxd 6/10/05 1:52 PM Page xv

3. Dragging .295
4. Processing the Result .296

Implementing a Drop Target .297
1. Initialization .297
2. Dragging .298
3. Drop .298

Using Standard Drop Targets .298
Creating a Custom Drop Target .299
More on wxDataObject .300

Deriving from wxDataObject .301
The wxWidgets Drag and Drop Sample .302

Drag and Drop Helpers in wxWidgets .311
wxTreeCtrl .311
wxListCtrl .312
wxDragImage .313

Summary .316

12 Advanced Window Classes .317
wxTreeCtrl .317

wxTreeCtrl Styles .319
wxTreeCtrl Events .320
wxTreeCtrl Member Functions .321

wxListCtrl .322
wxListCtrl Styles .323
wxListCtrl Events .324
wxListItem .325
wxListCtrl Member Functions .327
Using wxListCtrl .329
Virtual List Controls .330

wxWizard .331
wxWizard Events .331
wxWizard Member Functions .332
wxWizard Example .332

wxHtmlWindow .338
wxHtmlWindow Styles .341
wxHtmlWindow Member Functions .342
Embedding Windows in HTML Pages .343
HTML Printing .344

wxGrid .346
The wxGrid System of Classes .348
wxGrid Events .349
wxGrid Member Functions .350

Functions for Creation, Deletion, and Data Retrieval 350
Presentation Functions .351
Functions for Setting and Getting wxGrid Metrics 352

xvi Contents

Smart_FMf.qxd 6/10/05 1:52 PM Page xvi

Contents xvii

Selection and Cursor Functions .352
Miscellaneous wxGrid Functions .353

wxTaskBarIcon .354
wxTaskBarIcon Events .358
wxTaskBarIcon Member Functions .358

Writing Your Own Controls .359
The Custom Control Declaration .360
Adding DoGetBestSize .362
Defining a New Event Class .363
Displaying Information on the Control .363
Handling Input .364
Defining Default Event Handlers .364
Implementing Validators .365
Implementing Resource Handlers .367
Determining Control Appearance .367
A More Complex Example: wxThumbnailCtrl .369

Summary .371

13 Data Structure Classes .373
Why Not STL? .373
Strings .374

Using wxString .374
wxString, Characters, and String Literals .375
Basic wxString to C Pointer Conversions .375
Standard C String Functions .376
Converting to and from Numbers .377
wxStringTokenizer .378
wxRegEx .379

wxArray .379
Array Types .379
wxArrayString .380
Array Construction, Destruction, and Memory Management 381
Array Sample Code .381

wxList and wxNode .383
wxHashMap .385
Storing and Processing Dates and Times .387

wxDateTime .388
wxDateTime Constructors and Modifiers .388
wxDateTime Accessors .388
Getting the Current Time .389
Parsing and Formatting Dates .389
Date Comparisons .389
Date Arithmetic .389

Helper Data Structures .391
wxObject .391

Smart_FMf.qxd 6/10/05 1:52 PM Page xvii

wxLongLong .392
wxPoint and wxRealPoint .392
wxRect .392
wxRegion .393
wxSize .394
wxVariant .394

Summary .395

14 Files and Streams .397
File Classes and Functions .397

wxFile and wxFFile .397
wxTextFile .399
wxTempFile .400
wxDir .400
wxFileName .401
File Functions .402

Stream Classes .403
File Streams .403
Memory and String Streams .405
Reading and Writing Data Types .405
Socket Streams .406
Filter Streams .407
Zip Streams .407
Virtual File Systems .408

Summary .411

15 Memory Management, Debugging, and Error Checking 413
Memory Management Basics .413

Creating and Deleting Window Objects .413
Creating and Copying Drawing Objects .415
Initializing Your Application Object .415
Cleaning Up Your Application .416

Detecting Memory Leaks and Other Errors .416
Facilities for Defensive Programming .418
Error Reporting .419

wxMessageOutput Versus wxLog .423
Providing Run-Time Type Information .424
Using wxModule .426
Loading Dynamic Libraries .427
Exception Handling .428
Debugging Tips .429

Debugging X11 Errors .429
Simplify the Problem .430
Debugging a Release Build .430

Summary .431

xviii Contents

Smart_FMf.qxd 6/10/05 1:52 PM Page xviii

16 Writing International Applications .433
Introduction to Internationalization .433
Providing Translations .434

poEdit .434
Step-by-Step Guide to Using Message Catalogs .435
Using wxLocale .437

Character Encodings and Unicode .438
Converting Data .439
wxEncodingConverter .440
wxCSConv (wxMBConv) .440
Converting Outside of a Temporary Buffer .441
Help Files .442

Numbers and Dates .443
Other Media .443
A Simple Sample .444
Summary .446

17 Writing Multithreaded Applications .447
When to Use Threads, and When Not To .447
Using wxThread .448

Creation .449
Specifying Stack Size .450
Specifying Priority .450

Starting the Thread .450
How to Pause a Thread or Wait for an External Condition 450
Termination .451

Synchronization Objects .451
wxMutex .451
Deadlocks .452
wxCriticalSection .453
wxCondition .453

wxCondition Example .453
wxSemaphore .456

The wxWidgets Thread Sample .456
Alternatives to Multithreading .457

Using wxTimer .457
Idle Time Processing .459
Yielding .460

Summary .460

18 Programming with wxSocket .463
Socket Classes and Functionality Overview .464
Introduction to Sockets and Basic Socket Processing 464

The Client .465
The Server .466

Contents xix

Smart_FMf.qxd 6/10/05 1:52 PM Page xix

xx Contents

Connecting to a Server .467
Socket Addresses .468
Socket Clients .468

Socket Events .469
Socket Event Types .469
wxSocketEvent Major Member Functions .469
Using Socket Events .470

Socket Status and Error Notifications .470
Sending and Receiving Socket Data .471

Reading .471
Writing .472

Creating a Server .472
wxSocketServer Major Member Functions .472
Handling a New Connection Event .472

Socket Event Recap .473
Socket Flags .473

Blocking and Non-Blocking Sockets in wxWidgets 474
The Impossible Socket Combination .475

How Flags Affect Socket Behavior .475
Using wxSocket as a Standard Socket .476

Using Socket Streams .476
File Sending Thread .477
File Receiving Thread .478

Alternatives to wxSocket .479
Summary .480

19 Working with Documents and Views .481
Document/View Basics .481

Step 1: Choose an Interface Style .483
Step 2: Create and Use Frame Classes .483
Step 3: Define Your Document and View Classes 486
Step 4: Define Your Window Classes .495
Step 5: Use wxDocManager and wxDocTemplate 497

Other Document/View Capabilities .500
Standard Identifiers .500
Printing and Previewing .500
File History .500
Explicit Document Creation .501

Strategies for Implementing Undo/Redo .501
Summary .503

20 Perfecting Your Application .505
Single Instance or Multiple Instances? .506
Modifying Event Handling .510
Reducing Flicker .512

Smart_FMf.qxd 6/10/05 1:52 PM Page xx

Contents xxi

Implementing Online Help .513
Using a Help Controller .515
Extended wxWidgets HTML Help .517
Authoring Help .518
Other Ways to Provide Help .519
Context-Sensitive Help and Tooltips .520
Menu Help .521

Parsing the Command Line .521
Storing Application Resources .523

Reducing the Number of Data Files .523
Finding the Application Path .524

Invoking Other Applications .525
Running an Application .525
Launching Documents .525
Redirecting Process Input and Output .527

Managing Application Settings .529
Storing Settings .530
Editing Settings .531

Application Installation .532
Installation on Windows .532
Installation on Linux .534

Shared Library Issues on Linux .535
Installation on Mac OS X .535

Following UI Design Guidelines .538
Standard Buttons .538
Menus .538
Icons .539
Fonts and Colors .539
Application Termination Behavior .539
Further Reading .540

Summary .540

A Installing wxWidgets .543

B Building Your Own wxWidgets Applications .559

C Creating Applications with DialogBlocks .575

D Other Features in wxWidgets .585

E Third-Party Tools for wxWidgets .593

F wxWidgets Application Showcase .601

G Using the CD-ROM .611

Smart_FMf.qxd 6/10/05 1:52 PM Page xxi

xxii Contents

H How wxWidgets Processes Events .613

I Event Classes and Macros .617

J Code Listings .627

K Porting from MFC .643

Glossary .657

Index .663

Smart_FMf.qxd 6/10/05 1:52 PM Page xxii

It's a pleasure to introduce you to Cross-Platform GUI Programming with
wxWidgets, the first book on wxWidgets since it was originally released more than
a decade ago.

wxWidgets is a first-class, open source response to the need for portability
in an increasingly heterogeneous computing world. Being tied to specific hard-
ware or a single operating system is often undesirable and sometimes impermis-
sible, hence the well-understood need for cross-platform GUI frameworks. Given
the long life of open source products and the often-transient nature of proprietary
solutions, developers are wise to base their applications on an infrastructure that
is going to survive long-term, as wxWidgets has and will continue to do.

wxWidgets combines countless years’ worth of hard-earned wisdom con-
tributed by developers worldwide, abstracting functionality and finding solu-
tions for platform-specific issues. You, the developer, are protected both from
shifts in computing trends and from the intricacies and frustrations of each
platform’s native API.

Becoming a wxWidgets user is an invitation into a community that spans
individuals, startups, government organizations, large companies, and open
source projects. When you contribute, you are forging a connection between
yourself and a community that is broadly representative of the reach of infor-
mation technology in the 21st century. wxWidgets-based applications may be
found not just in the software industry but also in medicine, archaeology,
physics, astronomy, processor manufacturing, education, geological exploration,
the transport industry, space exploration, and many other fields as well.

"Chandler," the Personal Information Manager now under development at
the Open Source Applications Foundation, uses wxWidgets to run under Windows,
Mac OS X, and Linux. Some of our developers have become active contributors to
the wxWidgets project, following the virtuous circle of open source development.

We look forward to having you join us in the ever-growing community of
developers using wxWidgets, and I personally wish you all the best with your
wxWidgets projects.

Mitch Kapor, Chair
OSAF
June 2005 xxiii

Foreword

Smart_FMf.qxd 6/10/05 1:52 PM Page xxiii

Smart_FMf.qxd 6/10/05 1:52 PM Page xxiv

Preface

WHO THIS BOOK IS FOR

This book is a guide to using wxWidgets, an open-source construction kit for
writing sophisticated C++ applications targeting a variety of platforms,
including Windows, Linux, Mac OS X, and Pocket PC. With help from this
book, a competent programmer can create multi-platform applications with
confidence. Developers already familiar with wxWidgets should also find it
useful for brushing up their knowledge.

This book is accessible to developers with a variety of experience and
backgrounds. You may come from a Windows or Unix perspective; you may
previously have experience in MFC, OWL, Win32, Mac OS, Motif, or console-
mode Unix programming. Or perhaps you have come from a different career
entirely and are looking for a way to get up to speed on multiple platforms.
The book can’t specifically cover the details of the C++ language, but it’s com-
mon for people to successfully learn C++ and wxWidgets at the same time, and
the straightforward nature of the wxWidgets API makes this process easier.
The reader does not need to know more advanced C++ techniques like tem-
plates, streams, and exceptions. However, wxWidgets does not prevent you
from using these techniques.

Managers will find the book useful in discovering what wxWidgets can
do for them, particularly in Chapter 1, “Introduction.” The combination of the
book and the resources on the accompanying CD-ROM will give your staff all
they need for getting started on cross-platform programming projects. You’ll
see how wxWidgets puts tools of tremendous power into your hands, with ben-
efits that include:

� Cost savings from writing code once that will compile on Windows,
Unix, Mac OS X, and other platforms.

� Customer satisfaction from delivering stable, fast, attractive applica-
tions with a native look and feel.

xxv

Smart_FMf.qxd 6/10/05 1:52 PM Page xxv

xxvi Preface

� Increased productivity from the wide variety of classes that
wxWidgets provides, both for creating great GUIs and for general appli-
cation development.

� Increased market share due to support for platforms you may not have
previously considered, and the ability to internationalize your applica-
tions.

� Support from a large, active wxWidgets community that answers ques-
tions helpfully and provides prompt bug fixing. The sample of third-party
add-ons listed in Appendix E, “Third-Party Tools for wxWidgets,” is evi-
dence of a thriving ecosystem.

� Access to the source for enhancement and trouble-shooting.

This is a guide to writing wxWidgets application with C++, but you can use a
variety of other languages such as Python, Perl, a BASIC variant, Lua, Eiffel,
JavaScript, Java, Ruby, Haskell, and C#. Some of these bindings are more
advanced than others. For more information, please see Appendix E and the
wxWidgets web site at http://www.wxwidgets.org.

We focus on three popular desktop platforms: Microsoft Windows, Linux
using GTK+, and Mac OS X. However, most of the book also applies to other
platforms supported by wxWidgets. In particular, wxWidgets can be used with
most Unix variants.

THE CD-ROM

The CD-ROM contains example code from the book, the wxWidgets 2.6 distri-
bution for Windows, Linux, Mac OS X, and other platforms, and several tools
to help you use wxWidgets, including the translation tool poEdit. For Windows
users, we supply three free compilers you can use with wxWidgets: MinGW,
Digital Mars C++, and OpenWatcom C++.

In addition, we provide you with DialogBlocks Personal Edition, a sophis-
ticated rapid application development (RAD) tool for you to create complex
windows with very little manual coding. You can use it to compile and run
samples that accompany the book as well as to create your own applications
for personal use, and it also provides convenient access to the wxWidgets ref-
erence manual.

Updates to the book and CD-ROM can be obtained from this site:
http://www.wxwidgets.org/book

HOW TO USE THIS BOOK

It’s advisable to read at least Chapters 1 through 10 in order, but you can skip
to other chapters if you need to complete a particular task. If you haven’t
installed wxWidgets before, you may want to look at Appendix A, “Installing

Smart_FMf.qxd 6/10/05 1:52 PM Page xxvi

wxWidgets,” early on. MFC programmers will find it useful to read Appendix
K, “Porting from MFC,” as a point of reference.

Because this book is not a complete API reference, you’ll find it useful to
keep the wxWidgets reference manual open. The reference manual is available
in a number of formats, including Windows HTML Help and PDF, and it
should be in your wxWidgets distribution; if not, it can be downloaded from
the wxWidgets web site. You can also refer to the many samples in the
wxWidgets distribution to supplement the examples given in this book.

Note that the book is intended to be used in conjunction with wxWidgets
2.6 or later. The majority of the book will apply to earlier versions, but be
aware that some functionality will be missing, and in a small number of cases,
the behavior may be different. In particular, sizer behavior changed somewhat
between 2.4 and 2.5. For details, please see the topic “Changes Since 2.4.x” in
the wxWidgets reference manual.

CONVENTIONS

For code examples, we mostly follow the wxWidgets style guidelines, for
example:

� Words within class names and functions have an initial capital, for exam-
ple MyFunkyClass.

� The m_ prefix denotes a member variable, s_ denotes a static variable, g_
denotes a global variable; local variables generally start with a lowercase
letter, for example textCtrl.
You can find more about the wxWidgets style guidelines at http://www.

wxwidgets.org/standard.htm.
Sometimes we’ll also use comments that can be parsed by the documen-

tation tool Doxygen, such as:

/*! A class description
*/

/// A function description

Classes, functions, identifiers, variables, and standard wxWidgets objects
are marked with a teletype font in the text. User interface commands, such as
menu and button labels, are marked in italics.

Preface xxvii

Smart_FMf.qxd 6/10/05 1:52 PM Page xxvii

xxviii Preface

CHAPTER SUMMARY

Chapter 1: Introduction

What is wxWidgets, and why use it? A brief history; the wxWidgets commu-
nity; the license; wxWidgets ports and architecture explained.

Chapter 2: Getting Started

A small wxWidgets sample: the application class; the main window; the event
table; an outline of program flow.

Chapter 3: Event Handling

Event tables and handlers; how a button click is processed; skipping events;
pluggable and dynamic event handlers; defining custom events; window iden-
tifiers.

Chapter 4: Window Basics

The main features of a window explained; a quick guide to the commonest
window classes; base window classes such as wxWindow; top-level windows; con-
tainer windows; non-static controls; static controls; menus; control bars.

Chapter 5: Drawing and Printing

Device context principles; the main device context classes described; buffered
drawing; drawing tools; device context drawing functions; using the printing
framework; 3D graphics with wxGLCanvas.

Chapter 6: Handling Input

Handling mouse and mouse wheel events; handling keyboard events; key-
codes; modifier key variations; accelerators; handling joystick events.

Chapter 7: Window Layout Using Sizers

Layout basics; sizers introduced; common features of sizers; programming
with sizers. Further layout issues: dialog units; platform-adaptive layouts;
dynamic layouts.

Smart_FMf.qxd 6/10/05 1:52 PM Page xxviii

Preface xxix

Chapter 8: Using Standard Dialogs

Informative dialogs such as wxMessageBox and wxProgressDialog; file and direc-
tory dialogs such as wxFileDialog; choice and selection dialogs such as
wxColourDialog and wxFontDialog; entry dialogs such as wxTextEntryDialog and
wxFindReplaceDialog; printing dialogs: wxPageSetupDialog and wxPrintDialog.

Chapter 9: Writing Custom Dialogs

Steps in creating a custom dialog; an example: PersonalRecordDialog; deriving
a new class; designing data storage; coding the controls and layout; data trans-
fer and validation; handling events; handling UI updates; adding help; adapt-
ing dialogs for small devices; further considerations in dialog design; using
wxWidgets resource files; loading resources; using binary and embedded
resource files; translating resources; the XRC format; writing resource han-
dlers; foreign controls.

Chapter 10: Programming with Images

Image classes in wxWidgets; programming with wxBitmap; programming with
wxIcon; programming with wxCursor; programming with wxImage; image lists
and icon bundles; customizing wxWidgets graphics with wxArtProvider.

Chapter 11: Clipboard and Drag and Drop

Data objects; data source duties; data target duties; using the clipboard;
implementing drag and drop; implementing a drag source; implementing a
drop target; using standard drop targets; creating a custom drop target; more
on wxDataObject; drag and drop helpers in wxWidgets.

Chapter 12: Advanced Window Classes

wxTreeCtrl; wxListCtrl; wxWizard; wxHtmlWindow; wxGrid; wxTaskBarIcon; writing
your own controls; the control declaration; defining a new event class; display-
ing information; handling input; defining default event handlers; implement-
ing validators; implementing resource handlers; determining control
appearance.

Chapter 13: Data Structure Classes

Why not STL? wxString; wxStringTokenizer; wxRegEx; wxArray; wxList; wxHashMap;
wxDateTime; wxObject; wxLongLong; wxPoint and wxRealPoint; wxRect; wxRegion;
wxSize; wxVariant.

Smart_FMf.qxd 6/10/05 1:52 PM Page xxix

xxx Preface

Chapter 14: Files and Streams

wxFile and wxFFile; wxTextFile; wxTempFile; wxDir; wxFileName; file functions; file
streams; memory and string streams; data streams; socket streams; filter
streams; zip streams; virtual file systems.

Chapter 15: Memory Management, Debugging, and Error Checking

Creating and deleting window objects; creating and copying drawing objects;
initializing your application object; cleaning up your application; detecting
memory leaks and other errors; facilities for defensive programming; error
reporting; providing run-time type information; using wxModule; loading
dynamic libraries; exception handling; debugging tips.

Chapter 16: Writing International Applications

Introduction to internationalization; providing translations; using message
catalogs; using wxLocale; character encodings and Unicode; converting data;
help files; numbers and dates; other media; an example.

Chapter 17: Writing Multithreaded Applications

When to use threads, and when not to; using wxThread; thread creation; start-
ing the thread; how to pause a thread or wait for an external condition; termi-
nation; synchronization objects; wxMutex; deadlocks; wxCriticalSection;
wxCondition; wxSemaphore; the wxWidgets thread sample; alternatives to multi-
threading: wxTimer, idle time processing, and yielding.

Chapter 18: Programming with wxSocket

Socket classes and functionality overview; introduction to sockets and basic socket
processing; connecting to a server; socket events; socket status and error noti-
fications; sending and receiving socket data; creating a server; socket event
recap; socket flags; blocking and non-blocking sockets in wxWidgets; how flags
affect socket behavior; using wxSocket as a standard socket; using socket
streams; alternatives to wxSocket.

Chapter 19: Working with Documents and Views

Document/view basics; choosing an interface style; creating and using frame
classes; defining your document and view classes; defining your window
classes; using wxDocManager and wxDocTemplate; other document/view capabili-
ties; standard identifiers; printing and previewing; file history; explicit docu-
ment creation; strategies for implementing undo/redo.

Smart_FMf.qxd 6/10/05 1:52 PM Page xxx

Preface xxxi

Chapter 20: Perfecting Your Application

Single instance versus multiple instances; modifying event handling; reducing
flicker; using a help controller; extended wxWidgets HTML help; authoring
help; other ways to provide help; parsing the command line; storing applica-
tion resources; invoking other applications; launching documents; redirecting
process input and output; managing application settings; application installa-
tion on Windows, Linux and Mac OS X; following UI design guidelines.

Appendix A: Installing wxWidgets

Downloading and unpacking wxWidgets; configuration/build options;
Windows—Microsoft Visual Studio and VC++ command-line; Windows—
Borland C++; Windows—MinGW with and without MSYS; Unix/Linux and
Mac OS X—GCC; customizing setup.h; rebuilding after updating wxWidgets
files; using contrib libraries.

Appendix B: Building Your Own wxWidgets Applications

Windows—Microsoft Visual Studio; Linux—KDevelop; Mac OS X—Xcode;
makefiles; cross-platform builds using Bakefile; wxWidgets symbols and head-
ers; using wx-config.

Appendix C: Creating Applications with DialogBlocks

What is DialogBlocks? Installing and upgrading DialogBlocks; the
DialogBlocks interface; the sample project; compiling the sample; creating a
new project; creating a dialog; creating a frame; creating an application object;
debugging your application.

Appendix D: Other Features in wxWidgets

Further window classes; ODBC classes; MIME types manager; network func-
tionality; multimedia classes; embedded web browsers; accessibility; OLE
automation; renderer classes; event loops.

Appendix E:Third-Party Tools for wxWidgets

Language bindings such as wxPython and wxPerl; tools such as wxDesigner,
DialogBlocks and poEdit; add-on libraries such as wxMozilla, wxCURL,
wxPropertyGrid.

Smart_FMf.qxd 6/10/05 1:52 PM Page xxxi

xxxii Preface

Appendix F: wxWidgets Application Showcase

Descriptions of notable wxWidgets applications, such as AOL Communicator
and Audacity.

Appendix G: Using the CD-ROM

Browsing the CD-ROM; the CD-ROM contents.

Appendix H: How wxWidgets Processes Events

An illustrated description of how event processing works.

Appendix I: Event Classes and Macros

A summary of the important event classes and macros.

Appendix J: Code Listings

Code listings for the PersonalRecordDialog and the wxWizard examples.

Appendix K: Porting from MFC

General observations; application initialization; message maps; converting
dialogs and other resources; documents and views; printing; string handling
and translation; database access; configurable control bars; equivalent func-
tionality by macros and classes.

Smart_FMf.qxd 6/10/05 1:52 PM Page xxxii

Acknowledgments

wxWidgets owes its success to the hard work of many talented people. We
would like to thank them all, with special consideration for that essential
support network: our long-suffering families and partners. wxWidgets sup-
porters and contributors include the following (apologies for any uninten-
tional omissions):

Yiorgos Adamopoulos, Jamshid Afshar, Alejandro Aguilar-Sierra, Patrick
Albert, Bruneau Babet, Mitchell Baker, Mattia Barbon, Nerijus Baliunas,
Karsten Ballueder, Jonathan Bayer, Michael Bedward, Kai Bendorf, Yura
Bidus, Jorgen Bodde, Borland, Keith Gary Boyce, Chris Breeze, Sylvain
Bougnoux, Wade Brainerd, Pete Britton, Ian Brown, C. Buckley, Doug Card,
Marco Cavallini, Dmitri Chubraev, Robin Corbet, Cecil Coupe, Stefan Csomor,
Andrew Davison, Gilles Depeyrot, Duane Doran, Neil Dudman, Robin Dunn,
Hermann Dunkel, Jos van Eijndhoven, Chris Elliott, David Elliott, David
Falkinder, Rob Farnum, Joel Farley, Tom Felici, Thomas Fettig, Matthew Flatt,
Pasquale Foggia, Josep Fortiana, Todd Fries, Dominic Gallagher, Roger
Gammans, Guillermo Rodriguez Garcia, Brian Gavin, Wolfram Gloger,
Aleksandras Gluchovas, Markus Greither, Norbert Grotz, Stephane Gully,
Stefan Gunter, Bill Hale, Patrick Halke, Stefan Hammes, Guillaume Helle,
Harco de Hilster, Kevin Hock, Cord Hockemeyer, Klaas Holwerda, Markus
Holzem, Ove Kaaven, Mitch Kapor, Matt Kimball, Hajo Kirchoff, Olaf Klein,
Jacob Jansen, Leif Jensen, Mark Johnson, Bart Jourquin, John Labenski,
Guilhem Lavaux, Ron Lee, Hans Van Leemputten, Peter Lenhard, Jan
Lessner, Nicholas Liebmann, Torsten Liermann, Per Lindqvist, Jesse
Lovelace, Tatu Männistö, Lindsay Mathieson, Scott Maxwell, Bob Mitchell,
Thomas Myers, Oliver Niedung, Stefan Neis, Ryan Norton, Robert O'Connor,
Jeffrey Ollie, Kevin Ollivier, William Osborne, Hernan Otero, Ian Perrigo,
Timothy Peters, Giordano Pezzoli, Harri Pasanen, Thomaso Paoletti, Garrett
Potts, Robert Rae, Marcel Rasche, Mart Raudsepp, Andy Robinson, Robert
Roebling, Alec Ross, Gunnar Roth, Thomas Runge, Tom Ryan, Dino
Scaringella, Jobst Schmalenbach, Dimitri Schoolwerth, Arthur Seaton, Paul
Shirley, Wlodzimierz Skiba, John Skiff, Vaclav Slavik, Brian Smith, Neil

xxxiii

Smart_FMf.qxd 6/10/05 1:52 PM Page xxxiii

Smith, Stein Somers, Petr Smilauer, Kari Systä, George Tasker, Austin Tate,
Arthur Tetzlaff-Deas, Paul Thiessen, Jonathan Tonberg, Jyrki Tuomi, Janos
Vegh, Andrea Venturoli, David Webster, Michael Wetherell, Otto Wyss, Vadim
Zeitlin, Xiaokun Zhu, Zbigniew Zagórski, Edward Zimmermann. Thanks also
to Dotsrc.org and SourceForge for hosting project services.

Thanks are due in particular to Vadim Zeitlin, Vaclav Slavik, Robert
Roebling, Stefan Csomor, and Robin Dunn for permission to adapt some of
their contributions to the wxWidgets reference manual.

Special thanks go to Stefan Csomor who contributed Chapter 16 and
Chapter 17, and to Kevin Ollivier who wrote the Bakefile tutorial in Appendix B.
We would also like to thank Mitch Kapor for writing the foreword.

We are very grateful to Mark Taub for his patience and advice through-
out. A big thank you goes to Marita Allwood, Harriet Smart, Antonia Smart,
Clayton Hock, and Ethel Hock for all their love, support, and encouragement.
A debt is also owed to all those who have reviewed and suggested improve-
ments to the book, including: Stefan Csomor, Dimitri Schoolwerth, Robin
Dunn, Carl Godkin, Bob Paddock, Chris Elliott, Michalis Kabrianis, Marc-
Andre Lureau, Jonas Karlsson, Arnout Engelen, Erik van der Wal, Greg
Smith, and Alexander Stigsen.

Finally, we hope that you enjoy reading this book and, most importantly,
have fun using wxWidgets to build great-looking, multi-platform applications!

Julian Smart and Kevin Hock
June 2005

xxxiv Acknowledgments

Smart_FMf.qxd 6/10/05 1:52 PM Page xxxiv

About the Authors

Julian Smart has degrees from the University of St. Andrews and the
University of Dundee. After working on model-based reasoning at the Scottish
Crop Research Institute, he moved to the Artificial Intelligence Applications
Institute at the University of Edinburgh, where he founded the wxWidgets
project in 1992. Since starting Anthemion Software in 1996, Julian has been
helping other companies deploy wxWidgets, and he sells tools for program-
mers, including DialogBlocks and HelpBlocks. He has worked as a consultant
for various companies including Borland and was a member of Red Hat's eCos
team, writing GUI tools to support the embedded operating system. In 2004,
Julian and his wife Harriet launched a consumer product for fiction writers
called Writer’s Café, written with wxWidgets. Julian and Harriet live in
Edinburgh with their daughter Toni.

Kevin Hock has degrees from Miami University (Oxford, Ohio) in Computer
Science and Accounting and has taught courses at Miami in both Java and
client-server systems. In 2002, he started work on an instant messaging sys-
tem and founded BitWise Communications, LLC, in 2003, offering both profes-
sional and personal instant messaging. During the course of developing
BitWise using wxWidgets, Kevin became a wxWidgets developer and has pro-
vided enhancements to all platforms. Kevin lives in Oxford, Ohio.

Stefan Csomor is director and owner of Advanced Concepts AG, a company
that specializes in cross-platform development and consulting. In addition to
being a qualified medical doctor, he has more than 15 years of experience in
object-oriented programming and has been writing software for 25 years.
Stefan is the main author of the Mac OS port of wxWidgets.

xxxi

Smart_FMf.qxd 6/10/05 1:52 PM Page xxxv

Smart_FMf.qxd 6/10/05 1:52 PM Page xxxvi

C H A P T E R 1

Introduction

In this chapter, we answer a few basic questions about what wxWidgets is and
what sets it apart from other solutions. We outline the project’s history, how
the wxWidgets community works, how wxWidgets is licensed, and an overview
of the architecture and available parts.

WHAT IS WXWIDGETS?

wxWidgets is a programmer’s toolkit for writing desktop or mobile applica-
tions with graphical user interfaces (GUIs). It’s a framework, in the sense that
it does a lot of the housekeeping work and provides default application behav-
ior. The wxWidgets library contains a large number of classes and methods for
the programmer to use and customize. Applications typically show windows
containing standard controls, possibly drawing specialized images and graph-
ics and responding to input from the mouse, keyboard, or other sources. They
may also communicate with other processes or drive other programs. In other
words, wxWidgets makes it relatively easy for the programmer to write an
application that does all the usual things modern applications do.

While wxWidgets is often labeled a GUI development toolkit, it is in fact
much more than that and has features that are useful for many aspects of
application development. This has to be the case because all of a wxWidgets
application needs to be portable to different platforms, not just the GUI part.
wxWidgets provides classes for files and streams, multiple threads, applica-
tion settings, interprocess communication, online help, database access, and
much more.

1

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 1

WHY USE WXWIDGETS?

One area where wxWidgets differs from many other frameworks, such as MFC
or OWL, is its multi-platform nature. wxWidgets has an Application
Programming Interface (API) that is the same, or very nearly the same, on all
supported platforms. This means that you can write an application on
Windows, for example, and with very few changes (if any) recompile it on
Linux or Mac OS X. This has a huge cost benefit compared with completely
rewriting an application for each platform, and it also means that you do not
need to learn a different API for each platform. Furthermore, it helps to
future-proof your applications. As the computing landscape changes,
wxWidgets changes with it, allowing your application to be ported to the latest
and greatest systems supporting the newest features.

Another distinguishing feature is that wxWidgets provides a native look
and feel. Some frameworks use the same widget code running on all platforms,
perhaps with a theme makeover to simulate each platform’s native appear-
ance. By contrast, wxWidgets uses the native widgets wherever possible (and
its own widget set in other cases) so that not only does the application look
native on the major platforms, but it actually is native. This is incredibly
important for user acceptance because even small, almost imperceptible dif-
ferences in the way an application behaves, compared with the platform stan-
dard, can create an alienating experience for the user. To illustrate, Figure 1-1
shows a wxWidgets application called StoryLines, a tool to help fiction writers
plot their stories, running on Windows XP.

2 Introduction Chapter 1

Figure 1-1 StoryLines on Windows

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 2

It’s recognizably a Windows application, with GUI elements such as tabs,
scrollbars, and drop-down lists conforming to the current Windows theme.
Similarly, Figure 1-2 shows StoryLines as a Mac OS X application, with the
expected Aqua look and feel. There is no menu bar attached to the StoryLines
window because it follows the Mac OS convention of showing the current win-
dow’s menu bar at the top of the screen.

Why Use wxWidgets? 3

Finally, Figure 1-3 shows StoryLines as a GTK+ application running on
Red Hat Linux.

Why not just use Java? While Java is great for web-based applications,
it’s not always the best choice for the desktop. In general, C++-based applica-
tions using wxWidgets are faster, have a more native look and feel, and are
easier to install because they don’t rely on the presence of the Java virtual
machine. C++ also allows greater access to low-level functionality and is eas-
ier to integrate with existing C and C++ code. For all these reasons, very few of
the popular desktop applications that you use today are built with Java.
wxWidgets allows you to deliver the high-performance, native applications
that your users expect.

Figure 1-2 StoryLines on Mac OS X

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 3

4 Introduction Chapter 1

wxWidgets is an open source project. Naturally, this means that it costs
nothing to use wxWidgets (unless you feel like generously donating to the
project!), but it also has important philosophical and strategic significance.
Open source software has a habit of outlasting its proprietary equivalents. As
a developer using wxWidgets, you know that the code you rely on will never
disappear. You can always fix any problems yourself by changing the source
code. It can also be a lot more fun to take part in an open source community
than trying to get hold of corporate support staff. Participants in open source
projects tend to be there because they love what they’re doing and can’t wait to
share their knowledge, whereas corporate support staff members are not
always so idealistically motivated. When you use wxWidgets, you tap into an
astonishing talent pool, with contributors from a wide range of backgrounds.
Many aspects of application development that you might otherwise have to
laboriously code yourself have been encapsulated by these developers in easy-
to-use classes that you can plug into your code. An active user community will
assist you on the mailing lists, and you’ll enjoy discussions not only about
wxWidgets but often other matters close to the hearts of both experienced and
inexperienced developers as well. Perhaps one day you’ll join in the success of
wxWidgets and become a contributor yourself!

wxWidgets has wide industry support, or to use a popular buzzword,
mindshare. The list of users includes AOL, AMD, CALTECH, Lockheed
Martin, NASA, the Open Source Applications Foundation, Xerox, and many

Figure 1-3 StoryLines on Linux

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 4

others. wxWidgets encompasses the whole spectrum of users, from single
developer software outfits to large corporations, from computer science depart-
ments to medical research groups, and from ecological research to the telecom-
munications industry. It’s also used by a myriad of open source projects, such
as the Audacity audio editor and the pgAdmin III database design and man-
agement system.

People use wxWidgets for many different reasons, whether simply as an
elegant MFC replacement on a single platform, or to allow them to move
easily from (say) Microsoft Windows to Unix and Mac OS X. wxWidgets is
addressing the challenges of mobile platforms, too, with ports for embedded
Linux, Microsoft Pocket PC, and (soon) Palm OS.

A BRIEF HISTORY OF WXWIDGETS

The wxWidgets project started life in 1992 when Julian Smart was working at
the University of Edinburgh on a diagramming tool called Hardy. He didn’t
want to choose between deploying it either on Sun workstations or PCs, so he
decided to use a cross-platform framework. Because the range of existing
cross-platform frameworks was limited, and the department didn’t have a
budget for it anyway, there was little choice but to write his own. The univer-
sity gave him permission to upload wxWidgets 1.0 to the department’s FTP
site in September 1992, and other developers began to use the code. Initially,
wxWidgets targeted XView and MFC 1.0; Borland C++ users complained
about the requirement for MFC, so it was rewritten to use pure Win32.
Because XView was giving way to Motif, a Motif port quickly followed.

Over time, a small but enthusiastic community of wxWidgets users was
established and a mailing list created. Contributions and fixes were sent in,
including an Xt port by Markus Holzem. wxWidgets gradually picked up more
and more users from all over the world: individuals, academics, government
departments, and—most gratifying of all—corporate users who found that
wxWidgets offered a better product and better support than the commercial
products they had looked at or used.

In 1997, a new wxWidgets 2 API was designed with help from Markus
Holzem. Wolfram Gloger suggested that wxWidgets should be ported to GTK+,
the up-and-coming widget set being adopted for the GNOME desktop environ-
ment. Robert Roebling became the lead developer for wxGTK, which is now
the main Unix/Linux port of wxWidgets. In 1998, the Windows and GTK+
ports were merged and put under CVS control. Vadim Zeitlin joined the proj-
ect to contribute huge amounts of design and code, and Stefan Csomor started
a Mac OS port, also in 1998.

1999 saw the addition of Vaclav Slavik’s impressive wxHTML classes
and the HTML-based help viewer. In 2000, SciTech, Inc. sponsored initial
development of wxUniversal, wxWidgets’s own set of widgets for use on platforms

A Brief History of wxWidgets 5

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 5

that have no widget set of their own. wxUniversal was first used in SciTech’s
port to MGL, their low-level graphics layer.

In 2002, Julian Smart and Robert Roebling added the wxX11 port using
the wxUniversal widgets. Requiring only Unix and X11, wxX11 is suitable for
any Unix environment and can be used in fairly low-spec systems.

In July 2003, wxWidgets started running on Windows CE, and Robert
Roebling demonstrated wxGTK applications running on the GPE embedded
Linux platform.

In 2004, wxWidgets was renamed from the original moniker “wxWindows,”
after objections from Microsoft based on its Windows trademark.

Also during 2004, Stefan Csomor and a host of other contributors completely
revamped wxMac for OS X, significantly improving the appearance and function-
ality of OS X applications. A port using Cocoa was also steadily improved, led by
David Elliot, and William Osborne won our challenge to deliver an embryonic
Palm OS 6 port that supports the wxWidgets “minimal” sample. Version 2.6 was
released in April 2005, incorporating major improvements to all ports.

Future plans for wxWidgets include

� A package management tool, to make it easier to integrate third-party
components

� Improved support for embedded applications
� Alternative event handling mechanisms
� Enhanced controls, such as a combined tree and list control
� wxHTML 2, with full web capabilities on all platforms
� Further compatibility with standards such as STL
� A full Palm OS port

THE WXWIDGETS COMMUNITY

The wxWidgets community is a vibrant one, with two mailing lists: wx-users
(for users) and wx-dev (for contributors). The web site has news, articles, and
links to releases, and there is also the wxWidgets “Wiki,” a set of web pages
where everyone can add information. A forum is also available for developers
and users alike. Here’s a list of the web addresses for these resources:

� http://www.wxwidgets.org: the wxWidgets home page
� http://lists.wxwidgets.org: the mailing list archives
� http://wiki.wxwidgets.org: the wxWidgets Wiki
� http://www.wxforum.org: the wxWidgets forum

As with most open source projects, wxWidgets is developed using a CVS
repository, a source management system that keeps track of code history. In
order to prevent a chaotic free-for-all, a small number of developers have write

6 Introduction Chapter 1

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 6

access to CVS, and others can contribute by posting bug reports and patches
(currently handled by SourceForge’s trackers). Development occurs on two
main branches: the “stable” branch, where only binary-compatible bug fixes
are allowed, and the “development” branch (CVS head). So-called stable
releases are even-numbered (for example, 2.4.x) and development releases are
odd-numbered (for example, 2.5.x). Users can wait for new releases or down-
load the source from the appropriate branch by anonymous CVS.

Decisions about API changes and other technical issues are made by con-
sensus, usually by discussion on the wx-dev list. As well as the main wxWidgets
community, many projects have spun off and enjoy their own communities—
for example wxPython and wxPerl (see Appendix E, “Third-Party Tools for
wxWidgets”).

WXWIDGETS AND OBJECT-ORIENTED PROGRAMMING

Like all modern GUI frameworks, wxWidgets benefits from heavy use of object-
oriented programming concepts. Each window is represented as a C++ object;
these objects have well-defined behavior, and can receive and react to events.
What the user sees is the visual manifestation of this interacting system of
objects. Your job as a developer is to orchestrate these objects’ collective behavior,
a task made easier by the default behaviors that wxWidgets implements for you.

Of course, it’s no coincidence that object-oriented programming and GUIs
mesh well—they grew up together. The object-oriented language Smalltalk
designed by Alan Kay and others in the 1970s was an important milestone in
GUI history, making innovations in user interface technology as well as lan-
guage design, and although wxWidgets uses a different language and API, the
principles employed are broadly the same.

LICENSE CONSIDERATIONS

The wxWidgets license (officially, the “wxWindows License” for legal and his-
torical reasons) is L-GPL with an exception clause. You can read the license
files in detail on the web site or in the docs directory of the distribution, but in
summary, you can use wxWidgets for commercial or free software with no roy-
alty charge. You can link statically or dynamically to the wxWidgets library. If
you make changes to the wxWidgets source code, you are obliged to make these
freely available. You do not have to make your own source code or object files
available. Please also consult the licenses for the optional subordinate
libraries that are distributed with wxWidgets, such as the PNG and JPEG
libraries.

The source code that accompanies this book is provided under the
wxWindows License.

License Considerations 7

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 7

THE WXWIDGETS ARCHITECTURE

Table 1-1 shows the four conceptual layers: the wxWidgets public API, each
major port, the platform API used by that port, and finally the underlying
operating system.

8 Introduction Chapter 1

Table 1-1 wxWidgets Ports

wxWidgets API

wxWidgets Port

wxMSW wxGTK wxX11 wxMotif wxMac wxCocoa wxOS2 wxPalmOS wxMGL

Platform API

Win32 GTK+ Xlib Motif/
Lesstif

Carbon Cocoa PM Palm OS
Protein APIs

MGL

Operating System

Windows/
Windows

CE

Unix/Linux Mac OS 9/
Mac OS X

Mac OS X OS/2 Palm OS Unix/
DOS

The following are the main wxWidgets ports that exist at the time of
writing.

wxMSW

This port compiles and runs on all 32-bit and 64-bit variants of the Microsoft
Windows operating system, including Windows 95, Windows 98, Windows ME,
Windows NT, Windows 2000, Windows XP and Windows 2003. It can also be
compiled to use Winelib under Linux, and has a configuration that works on
Windows CE (see “wxWinCE”). wxMSW can be configured to use the
wxUniversal widgets instead of the regular Win32 ones.

wxGTK

wxWidgets for GTK+ can use versions 1.x or 2.x of the GTK+ widget set, on
any Unix variant that supports X11 and GTK+ (for example, Linux, Solaris,
HP-UX, IRIX, FreeBSD, OpenBSD, AIX, and others). It can also run on embed-
ded platforms with sufficient resources—for example, under the GPE Palmtop
Environment (see Figure 1-4). wxGTK is the recommended port for Unix-
based systems.

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 8

The wxWidgets Architecture 9

Figure 1-4 The wxWidgets “Life!” demo under GPE on an iPAQ PDA

wxX11

wxWidgets for X11 uses the wxUniversal widget set and runs directly on Xlib
with no native widget set. This makes the port suitable for embedded systems,
but it can also be used for desktop applications where it is undesirable to link
with GTK+. This is supported on any Unix system running X11. wxX11 is not
as mature as the wxGTK port. Figure 1-5 shows the Life! demo compiled under
wxX11 and running on Familiar Linux / TinyX on an iPAQ PDA.

Figure 1-5 The wxWidgets “Life!” demo running on embedded wxX11

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 9

wxMotif

This port can use Motif, OpenMotif, or Lesstif on most Unix systems. Sun
Microsystems is putting its weight behind GNOME and GTK+, so Motif is no
longer an attractive option for most developers and users.

wxMac

wxMac targets Mac OS 9 (from 9.1 upwards) and Mac OS X (from 10.2.8
upwards). For Mac OS 9 builds, you need the Metrowerks CodeWarrior tools,
and for Mac OS X, you can use either Metrowerks CodeWarrior or Apple tools.
When using Apple’s tools, you should use Xcode 1.5 or higher, or—if you are
just using command line tools—GCC 3.3 or higher.

wxCocoa

A port in progress, this targets the Cocoa API of Mac OS X. Although the func-
tionality of Carbon and Cocoa is similar, this port has the potential for sup-
porting GNUStep running on platforms other than a Mac.

wxWinCE

The Windows CE port encompasses various SDKs based on the Windows CE
platform, including Pocket PC and Smartphone. The bulk of this port consists
of the wxMSW Win32 port, with some omissions and additions for the smaller
platform. Figure 1-6 shows the wxWidgets Life! demo running on the Pocket
PC 2003 emulator. Figure 1-7 shows four screens from the wxWidgets dialog
demo running on Smartphone 2003 with a 176 × 220 pixel display. User inter-
face adaptations done by wxWidgets for this restricted platform include con-
structing a nested menu in place of the usual menu bar because Smartphone
only supports two menu buttons. Some additional application hints are
required, such as calling SetLeftMenu and SetRightMenu instead of adding con-
ventional OK and Cancel buttons to a dialog.

10 Introduction Chapter 1

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 10

The wxWidgets Architecture 11

Figure 1-6 The wxWidgets “Life!” demo on Pocket PC 2003

Figure 1-7 The wxWidgets “dialogs” demo on Smartphone 2003

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 11

12 Introduction Chapter 1

Figure 1-8 A wxWidgets sample under Palm OS 6

wxPalmOS

This is a port to Palm OS 6 (Cobalt). At the time of writing, the port is in its
infancy but can be used to compile and run a simple sample in the Palm OS 6
simulator (see Figure 1-8).

wxOS2

wxOS2 is a Presentation Manager port for OS/2 or eComStation.

wxMGL

This port targets the MGL low-level graphics layer from SciTech Software,
Inc., and uses the wxUniversal widget set.

Internal Organization

Internally, the wxWidgets code base is broadly separated into six layers:

1. Common code is used in all ports. It includes data structure classes,
run-time type information, and the base classes, such as wxWindowBase,
which are used to factor out code common to all implementations of a
class.

2. Generic code implements advanced widgets independently of any plat-
form, allowing emulation of controls and other functionality not present
on a given platform. wxWizard and wxCalendarCtrl are examples of generic
controls.

3. wxUniversal is a set of basic widgets for those platforms that do not
have their own native widget set, such as bare X11 and MGL.

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 12

4. Platform-specific code implements classes using native functionality.
An example of platform-specific code is the wxMSW implementation of
wxTextCtrl wrapping the Win32 edit control.

5. Contributed code exists in a separate hierarchy named contrib and
includes non-essential but useful classes such as wxStyledTextCtrl.

6. Third-party code comprises libraries that were developed independ-
ently of wxWidgets but are used to implement important features.
Examples of third-party code include the JPEG, Zlib, PNG, and Expat
libraries.

Each port takes what it needs from these layers to implement the wxWidgets
API.

How does wxWidgets know which classes to use when you’re compiling
your application? When you include a wxWidgets header file, such as
wx/textctrl.h, you’re actually including a platform-specific file such as
wx/msw/textctrl.h, due to directives in wx/textctrl.h that conditionally include
the appropriate declarations. You then link your application against a library
that has been compiled with suitable settings for the platform in question. You
can have several configurations available at once, in particular Debug and
Release versions, and you can normally link either statically or dynamically to
the wxWidgets code. If you want, you can disable components in a wxWidgets
build, or make choices such as Unicode versus ANSI, by editing the file setup.h
or using configure options depending on compiler. For more details, please see
Appendix A, “Installing wxWidgets.”

Note that although wxWidgets is a wrapper around each native API, you
are not prevented from writing platform-specific code in that native API if you
need to, although this is seldom necessary.

SUMMARY

In this chapter, we’ve established what wxWidgets is, described a little of its
history, summarized the available ports, and taken a brief look at how the
library is organized internally.

In the next chapter, “Getting Started,” we will look at some sample code
and get a feeling for what it’s like to write a wxWidgets application.

Summary 13

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 13

Smart_Ch01f.qxd 6/10/05 11:13 AM Page 14

C H A P T E R 2

Getting Started

In this chapter, we’ll get a feel for the structure of a simple wxWidgets pro-
gram, using a tiny sample. We’ll look at where and how a wxWidgets applica-
tion starts and ends, how to show the main window, and how to react to
commands from the user. Following the wxWidgets philosophy of keeping
things nice and simple, that’s all we’re going to cover in this chapter. You may
also want to refer to Appendix A, “Installing wxWidgets.”

A SMALL WXWIDGETS SAMPLE

Figure 2-1 shows what our sample looks like under Windows.

15

Figure 2-1 Minimal sample under Windows

The minimal wxWidgets application shows a main window (a wxFrame)
with a menu bar and status bar. The menus allow you to show an “about box”
or quit the program. Not exactly a killer app, but it’s enough to show some of
the basic principles of wxWidgets—and to reassure you that you can start sim-
ple and work your way up to a complete application as your confidence and
expertise grow.

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 15

16 Getting Started Chapter 2

THE APPLICATION CLASS

Every wxWidgets application defines an application class deriving from wxApp.
There is only one instance of it, and this instance represents the running
application. At the very least, your class should define an OnInit function that
will be called when wxWidgets is ready to start running your code (equivalent
to main or WinMain when writing a C or Win32 application).

Here is the smallest application class declaration you can sensibly write:

// Declare the application class
class MyApp : public wxApp
{
public:

// Called on application startup
virtual bool OnInit();

};

The implementation of OnInit usually creates at least one window, interprets
any command-line arguments, sets up data for the application, and performs
any other initialization tasks required for the application. If the function
returns true, wxWidgets starts the event loop that processes user input and
runs event handlers as necessary. If the function returns false, wxWidgets
will clean up its internal structures, and the application will terminate.

A simple implementation of OnInit might look like this:

bool MyApp::OnInit()
{

// Create the main application window
MyFrame *frame = new MyFrame(wxT(“Minimal wxWidgets App”));

// Show it
frame->Show(true);

// Start the event loop
return true;

}

This creates an instance of our new class MyFrame (we’ll define this class
shortly), shows it, and returns true to start the event loop. Unlike child win-
dows, top-level windows such as frames and dialogs need to be shown explic-
itly after creation.

The frame title is passed to the constructor wrapped in the wxT() macro.
You’ll see this used a lot in wxWidgets samples and in the library code itself—
it converts string and character literals to the appropriate type to allow the
application to be compiled in Unicode mode. This macro is also known by the
alias _T(). There is no run-time performance penalty for using it. (You’ll also
see the underscore macro _() used to enclose strings, which tells wxWidgets to
translate the string. See Chapter 16, “Writing International Applications,” for
more details.)

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 16

Where is the code that creates the instance of MyApp? wxWidgets does this
internally, but you still need to tell wxWidgets what kind of object to create. So
you need to add a macro in your implementation file:

// Give wxWidgets the means to create a MyApp object
IMPLEMENT_APP(MyApp)

Without specifying the class, wxWidgets would not know how to create a new
application object. This macro also inserts code that checks that the applica-
tion and library were compiled using the same build configuration, allowing
wxWidgets to report accidental mismatches that might later cause a hard-to-
debug run-time failure.

When wxWidgets creates a MyApp object, it assigns the result to the global
variable wxTheApp. You can use this in your application, but it would be more
convenient if you didn’t have to cast the wxApp pointer to MyApp. By inserting
this macro after your application class declaration:

// Implements MyApp& wxGetApp()
DECLARE_APP(MyApp)

you can then call the function wxGetApp, which returns a reference to the MyApp
object.

Tip

Even if you don’t use DECLARE_APP, you can still use the variable wxTheApp
to call wxApp functions. This will avoid the need to include your specific
application header. It can be useful within code (such as a library) that
doesn’t know about specific application classes, and to save compilation
time.

THE FRAME CLASS

Let’s look at the frame class MyFrame. A frame is a top-level window that con-
tains other windows, and usually has a title bar and menu bar. Here’s our sim-
ple frame class declaration that we will put after the declaration of MyApp:

// Declare our main frame class
class MyFrame : public wxFrame
{
public:

// Constructor
MyFrame(const wxString& title);

// Event handlers

The Frame Class 17

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 17

18 Getting Started Chapter 2

void OnQuit(wxCommandEvent& event);
void OnAbout(wxCommandEvent& event);

private:
// This class handles events
DECLARE_EVENT_TABLE()

};

Our frame class has a constructor, two event handlers to link menu commands
to C++ code, and a macro to tell wxWidgets that this class handles events.

THE EVENT HANDLERS

As you may have noticed, the event handler functions in MyFrame are not vir-
tual and should not be virtual. How, then, are they called? The answer lies in
the event table, as follows.

// Event table for MyFrame
BEGIN_EVENT_TABLE(MyFrame, wxFrame)

EVT_MENU(wxID_ABOUT, MyFrame::OnAbout)
EVT_MENU(wxID_EXIT, MyFrame::OnQuit)

END_EVENT_TABLE()

An event table, placed in a class’s implementation file, tells wxWidgets how
events coming from the user or from other sources are routed to member func-
tions.

With the event table shown previously, mouse clicks on menu items with
the identifiers wxID_EXIT and wxID_ABOUT are routed to the functions
MyFrame::OnQuit and MyFrame::OnAbout, respectively. EVT_MENU is just one of
many event table macros you can use to tell wxWidgets what kind of event
should be routed to what function. The identifiers used here are predefined by
wxWidgets, but you will often define your own identifiers, using enums, con-
sts, or preprocessor defines.

This kind of event table is a static way of routing events, and cannot be
changed at runtime. In the next chapter, we’ll describe how to set up dynamic
event handlers.

While we’re dealing with event tables, let’s see the two functions we’re
using as event handlers.

void MyFrame::OnAbout(wxCommandEvent& event)
{

wxString msg;
msg.Printf(wxT(“Hello and welcome to %s”),

wxVERSION_STRING);

wxMessageBox(msg, wxT(“About Minimal”),
wxOK | wxICON_INFORMATION, this);

}

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 18

void MyFrame::OnQuit(wxCommandEvent& event)
{

// Destroy the frame
Close();

}

MyFrame::OnAbout shows a message box when the user clicks on the About
menu item. wxMessageBox takes a message, a caption, a combination of styles,
and a parent window.

MyFrame::OnQuit is called when the user clicks on the Quit menu item,
thanks to the event table. It calls Close to destroy the frame, triggering the
shutdown of the application, because there are no other frames. In fact, Close
doesn’t directly destroy the frame—it generates a wxEVT_CLOSE_WINDOW event, and
the default handler for this event destroys the frame using wxWindow::Destroy.

There’s another way the frame can be closed and the application shut
down—the user can click on the close button on the frame, or select Close from
the system (or window manager) menu. How does OnQuit get called in this
case? Well, it doesn’t—instead, wxWidgets sends a wxEVT_CLOSE_WINDOW event to
the frame via Close (as used in OnQuit). wxWidgets handles this event by
default and destroys the window. Your application can override this behavior
and provide its own event handler—for example, if you want to ask the user
for confirmation before closing. For more details, please see Chapter 4,
“Window Basics.”

This sample doesn’t need it, but most applications should provide an
OnExit function in its application class to clean up data structures before
quitting. Note that this function is only called if OnInit returns true.

THE FRAME CONSTRUCTOR

Finally, we have the frame constructor, which implements the frame icon, a
menu bar, and a status bar.

#include “mondrian.xpm”

MyFrame::MyFrame(const wxString& title)
: wxFrame(NULL, wxID_ANY, title)

{
// Set the frame icon
SetIcon(wxIcon(mondrian_xpm));

// Create a menu bar
wxMenu *fileMenu = new wxMenu;

// The “About” item should be in the help menu
wxMenu *helpMenu = new wxMenu;
helpMenu->Append(wxID_ABOUT, wxT(“&About...\tF1”),

wxT(“Show about dialog”));

fileMenu->Append(wxID_EXIT, wxT(“E&xit\tAlt-X”),
wxT(“Quit this program”));

The Frame Constructor 19

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 19

20 Getting Started Chapter 2

// Now append the freshly created menu to the menu bar...
wxMenuBar *menuBar = new wxMenuBar();
menuBar->Append(fileMenu, wxT(“&File”));
menuBar->Append(helpMenu, wxT(“&Help”));

// ... and attach this menu bar to the frame
SetMenuBar(menuBar);

// Create a status bar just for fun
CreateStatusBar(2);
SetStatusText(wxT(“Welcome to wxWidgets!”));

}

This constructor calls the base constructor with the parent window (none,
hence NULL), window identifier, and title. The identifier argument is wxID_ANY,
which tells wxWidgets to generate an identifier itself. The base constructor
creates the actual window associated with the C++ instance—another way to
achieve this is to call the default constructor of the base class, and then explic-
itly call wxFrame::Create from within the MyFrame constructor.

Small bitmaps and icons can be implemented using the XPM format on
all platforms. XPM files have valid C++ syntax and so can be included as
shown previously; the SetIcon line creates an icon on the stack using the C++
variable mondrian_xpm defined in mondrian.xpm, and associates it with the
frame.

The menu bar is created next. Menu items are added using the identifier
(such as the standard identifier wxID_ABOUT), the label to be displayed, and a
help string to be shown on the status bar. Within each label, a mnemonic letter
is marked by a preceding ampersand, and an accelerator is preceded by the
tab character (\t). A mnemonic is the letter a user presses to highlight a par-
ticular item when the menu is displayed. An accelerator is a key combination
(such as Alt+X) that can be used to perform that action without showing the
menu at all.

The last thing that the constructor does is to create a status bar with two
fields at the bottom of the frame and set the first field to the string “Welcome
to wxWidgets!”

THE WHOLE PROGRAM

It’s worth putting together the bits so you can see what the whole program
looks like. Normally, you’d have a separate header file and implementation
file, but for such a simple program, we can put it all in the same file.

Listing 2-1 The Complete Example

// Name: minimal.cpp
// Purpose: Minimal wxWidgets sample
// Author: Julian Smart

#include “wx/wx.h”

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 20

// Declare the application class
class MyApp : public wxApp
{
public:

// Called on application startup
virtual bool OnInit();

};

// Declare our main frame class
class MyFrame : public wxFrame
{
public:

// Constructor
MyFrame(const wxString& title);

// Event handlers
void OnQuit(wxCommandEvent& event);
void OnAbout(wxCommandEvent& event);

private:
// This class handles events
DECLARE_EVENT_TABLE()

};

// Implements MyApp& GetApp()
DECLARE_APP(MyApp)

// Give wxWidgets the means to create a MyApp object
IMPLEMENT_APP(MyApp)

// Initialize the application
bool MyApp::OnInit()
{

// Create the main application window
MyFrame *frame = new MyFrame(wxT(“Minimal wxWidgets App”));

// Show it
frame->Show(true);

// Start the event loop
return true;

}

// Event table for MyFrame
BEGIN_EVENT_TABLE(MyFrame, wxFrame)

EVT_MENU(wxID_ABOUT, MyFrame::OnAbout)
EVT_MENU(wxID_EXIT, MyFrame::OnQuit)

END_EVENT_TABLE()

void MyFrame::OnAbout(wxCommandEvent& event)
{

wxString msg;
msg.Printf(wxT(“Hello and welcome to %s”),

wxVERSION_STRING);

The Whole Program 21

(continues)

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 21

22 Getting Started Chapter 2

Listing 2-1 (continued)

wxMessageBox(msg, wxT(“About Minimal”),
wxOK | wxICON_INFORMATION, this);

}

void MyFrame::OnQuit(wxCommandEvent& event)
{

// Destroy the frame
Close();

}

#include “mondrian.xpm”

MyFrame::MyFrame(const wxString& title)
: wxFrame(NULL, wxID_ANY, title)

{
// Set the frame icon
SetIcon(wxIcon(mondrian_xpm));

// Create a menu bar
wxMenu *fileMenu = new wxMenu;

// The “About” item should be in the help menu
wxMenu *helpMenu = new wxMenu;
helpMenu->Append(wxID_ABOUT, wxT(“&About...\tF1”),

wxT(“Show about dialog”));

fileMenu->Append(wxID_EXIT, wxT(“E&xit\tAlt-X”),
wxT(“Quit this program”));

// Now append the freshly created menu to the menu bar...
wxMenuBar *menuBar = new wxMenuBar();
menuBar->Append(fileMenu, wxT(“&File”));
menuBar->Append(helpMenu, wxT(“&Help”));

// ... and attach this menu bar to the frame
SetMenuBar(menuBar);

// Create a status bar just for fun
CreateStatusBar(2);
SetStatusText(wxT(“Welcome to wxWidgets!”));

}

COMPILING AND RUNNING THE PROGRAM

The sample can be found on the accompanying CD-ROM in examples/chap02,
which you should copy to a folder on your hard drive for compiling. Because
it’s not possible to provide makefiles that work “out of the box” with every
reader’s software environment, we provide a DialogBlocks project file with
configurations for most platforms and compilers. See Appendix C, “Creating
Applications with DialogBlocks,” for help with configuring DialogBlocks for
your compiler. We also cover compiling wxWidgets applications in detail in
Appendix B, “Building Your Own wxWidgets Applications.”

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 22

Install wxWidgets and DialogBlocks from the accompanying CD-ROM.
On Windows, you should install one or more of the compilers provided on the
CD-ROM if you do not already own a suitable compiler. After setting your
wxWidgets and compiler paths in the DialogBlocks Paths settings page, open
the file examples/chap02/minimal.pjd. Select a suitable configuration for your
compiler and platform such as MinGW Debug or VC++ Debug (Windows), GCC
Debug GTK+ (Linux), or GCC Debug Mac (Mac OS X), and press the green
Build and Run Project button. You may be prompted to build wxWidgets if you
have not already built it for the selected configuration.

You can also find a similar sample in samples/minimal in your wxWidgets
distribution. If you do not wish to use DialogBlocks, you can simply compile
this sample instead. See Appendix A, “Installing wxWidgets,” for instructions
on how to build wxWidgets samples.

PROGRAM FLOW

This is how the application starts running:

1. Depending on platform, the main, WinMain, or equivalent function runs
(supplied by wxWidgets, not the application). wxWidgets initializes its
internal data structures and creates an instance of MyApp.

2. wxWidgets calls MyApp::OnInit, which creates an instance of MyFrame.
3. The MyFrame constructor creates the window via the wxFrame constructor

and adds an icon, menu bar, and status bar.
4. MyApp::OnInit shows the frame and returns true.
5. wxWidgets starts the event loop, waiting for events and dispatching

them to the appropriate handlers.

As noted here, the application terminates when the frame is closed, when the
user either selects the Quit menu item or closes the frame via standard but-
tons or menus (these will differ from one platform to the next).

SUMMARY

This chapter gave you an idea of how a really simple wxWidgets application
works. We’ve touched on the wxFrame class, event handling, application initial-
ization, and creating a menu bar and status bar. However complicated your
own code gets, the basic principles of starting the application will remain the
same, as we’ve shown in this small example. In the next chapter, we’ll take a
closer look at events and how your application handles them.

Summary 23

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 23

Smart_Ch02f.qxd 6/10/05 11:14 AM Page 24

C H A P T E R 3

Event Handling

This chapter explains the principles behind event-driven programming in
wxWidgets, including how events are generated, how an application handles
them using event tables, and where window identifiers fit in. We’ll also discuss
plug-in and dynamic event handlers, and we’ll describe how you can create
your own event class, types, and macros.

EVENT-DRIVEN PROGRAMMING

When programmers encountered an Apple Macintosh for the first time, they
were astonished at how different it was from the conventional computer expe-
rience of the period. Moving the pointer from one window to another, playing
with scrollbars, menus, text controls and so on, it was hard to imagine how the
underlying code sorted out this fabulous complexity. It seemed that many dif-
ferent things were going on in parallel—in reality, a clever illusion. For many
people, the Macintosh was their first introduction to the world of event-driven
programming.

All GUI applications are event-driven. That is to say, the application sits
in a loop waiting for events initiated by the user or from some other source
(such as a window needing to be refreshed, or a socket connection), and then
dispatches the event to an appropriate function that handles it. Although it
may seem that windows are being updated simultaneously, most GUI applica-
tions are not multithreaded, so each task is being done in turn—as becomes
painfully obvious when something slows your computer to a crawl and you can
see each window being repainted, one after the other.

Different frameworks have different ways of exposing event handling to
the developer—the primary method in wxWidgets is the use of event tables, as
explained in the next section.

25

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 25

26 Event Handling Chapter 3

EVENT TABLES AND HANDLERS

The wxWidgets event processing system is a more flexible mechanism than
virtual functions, allowing us to avoid declaring all possible event handlers in
a base class, which would be totally impractical as well as inefficient.

Every class that derives from wxEvtHandler, including frames, buttons,
menus, and even documents, can contain an event table to tell wxWidgets how
events are routed to handler functions. All window classes (derived from
wxWindow), and the application class, are derived from wxEvtHandler.

To create a static event table (one that’s created at compile time), you need to

1. Declare a new class that is derived directly or indirectly from wxEvtHandler.
2. Add a member function for each event that must be handled.
3. Declare the event table in the class with DECLARE_EVENT_TABLE.
4. Implement the event table in the source file with BEGIN_EVENT_TABLE...

END_EVENT_TABLE.
5. Add event table entries to the table (such as EVT_BUTTON), mapping each

event to the appropriate member function.

All event handler functions have the same form—their return type is void,
they are not virtual, and they take a single event object argument. (If you’re
familiar with MFC, this will come as a relief, because there is no standard sig-
nature for message handlers in MFC.) The type of this argument changes
according to the type of event being handled; for example, simple control com-
mands and menu commands share the wxCommandEvent class. A size event
(caused by a window being resized either by the program or by the user) is rep-
resented by the wxSizeEvent class. Each event type has different accessors that
you can use to learn about the cause of the event or the resulting UI change,
such as a change in the value of a text control. In simple cases (such as a but-
ton press), you can often ignore the event object.

Expanding on the example from the previous chapter, let’s add a handler
for frame sizing, plus an OK button. A simple class declaration for an event-
handling class looks like this:

// Declare our main frame class
class MyFrame : public wxFrame
{
public:

// Constructor
MyFrame(const wxString& title);
// Event handlers
void OnQuit(wxCommandEvent& event);
void OnAbout(wxCommandEvent& event);
void OnSize(wxSizeEvent& event);
void OnButtonOK(wxCommandEvent& event);

private:
// This class handles events
DECLARE_EVENT_TABLE()

};

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 26

The code to add menu items will be similar to the code in the previous
chapter, while code to add an OK button might look like this, in the frame
constructor:

wxButton* button = new wxButton(this, wxID_OK, wxT(“OK”),
wxPoint(200, 200));

Here’s the event table, allowing the frame to handle menu, button, and size
events.

// Event table for MyFrame
BEGIN_EVENT_TABLE(MyFrame, wxFrame)

EVT_MENU (wxID_ABOUT, MyFrame::OnAbout)
EVT_MENU (wxID_EXIT, MyFrame::OnQuit)
EVT_SIZE (MyFrame::OnSize)
EVT_BUTTON (wxID_OK, MyFrame::OnButtonOK)

END_EVENT_TABLE()

When the user clicks on the About or Quit menu items, the event is sent to the
frame, and MyFrame’s event table tells wxWidgets that a menu event with iden-
tifier wxID_ABOUT should be sent to MyFrame::OnAbout, and a menu event with
identifier wxID_EXIT should be sent to MyFrame::OnQuit. In other words, these
functions will be called with a single argument (in this case, wxCommandEvent)
when the event loop processes the events.

The EVT_SIZE macro does not take an identifier argument because a size
event can only be handled by the object that generated it.

The EVT_BUTTON entry will cause OnButtonOK to be called when a button in
the frame’s window hierarchy with identifier wxID_OK is pressed. This example
shows that the event can be processed by a window other than the source of
the event. Let’s assume the button is a child of MyFrame. When the button is
pressed, wxWidgets will check the wxButton class for a suitable handler. When
one is not found, it checks the parent of the button—in this case, a MyFrame
instance. The event matches an entry in the event table, so
MyFrame::OnButtonOK is called. This search of the window component hierarchy,
as well as the inheritance hierarchy, means that you can choose where you
handle events. For example, if you are designing a dialog class that must
respond to commands such as wxID_OK, but you need to leave the creation of the
actual controls to other programmers using your code, you can still define
default behavior for the controls as long as they have the expected identifiers.

The generation of a button click event and its subsequent matching
against an appropriate event table entry is illustrated in Figure 3-1. Two class
hierarchies are shown, for wxButton and MyFrame. Each class has its own event
table that potentially contains the entry that will match the event. When the
user clicks on the OK button, a new wxCommandEvent object is created that con-
tains the identifier (wxID_OK) and the type of event (wxEVT_COMMAND_BUTTON_
CLICKED). Now the event tables are searched using wxEvtHandler::ProcessEvent;

Event Tables and Handlers 27

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 27

all of the wxButton’s event table events are tried, then wxControl’s, then
wxWindow’s. If no appropriate entry is found that matches against the event type
and identifier, wxWidgets tries the parent of the button and starts searching
its event table. It has a matching entry:

EVT_BUTTON(wxID_OK,MyFrame::OnButtonOK)

so MyFrame::OnButtonOK is called.
Note that only command events (whose event classes are based directly

or indirectly on wxCommandEvent) are recursively applied to the window parent’s
event handler. As this quite often causes confusion for users, here is a list of
system events that will not get sent to the parent’s event handler: wxActivate

Event, wxCloseEvent, wxEraseEvent, wxFocusEvent, wxKeyEvent, wxIdleEvent,
wxInitDialogEvent, wxJoystickEvent, wxMenuEvent, wxMouseEvent, wxMoveEvent,
wxPaintEvent, wxQueryLayoutInfoEvent, wxSizeEvent, wxScrollWinEvent, and
wxSysColourChangedEvent.

These events do not propagate because they are meant for a particular
window, and sending a child’s paint event to its parent, for example, does not
make sense.

28 Event Handling Chapter 3

Event table

Event table

Event table

Event table

Event table

Event table

Event table

wxCommandEvent
wxEVT_COMMAND_BUTTON_CLICKED

id=wxID_OK

2.Event tables
are searched.wxButton

wxControl

wxWindow

Instance of MyFrame

OK

MyFrame

wxFrame

wxTopLevelWindow

wxWindow

child of

wxCommandEvent
wxEVT_..._CLICKED

id=wxID_OK
MyFrame::OnButtonOK

1. Clicking OK
generates an
event.

3. An entry
matched and the
function is called.

Figure 3-1 Processing a button click event

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 28

SKIPPING EVENTS

The wxWidgets event processing system implements something very close to
virtual methods in normal C++, which means that it is possible to alter the
behavior of a class by overriding its event handling functions. In many cases,
this works even for changing the behavior of native controls. For example, it is
possible to filter out selected keystroke events sent by the system to a native
text control by overriding wxTextCtrl and defining a handler for key events
using EVT_KEY_DOWN. This would indeed prevent any key events from being sent
to the native control, which might not be what is desired. In this case, the
event handler function has to call wxEvent::Skip to indicate that the search for
the event handler should continue.

To summarize, instead of explicitly calling the base class version, as you
would have done with C++ virtual functions, you should instead call Skip on
the event object.

For example, to make the derived text control only accept “a” to “z” and
“A” to “Z,” we would use this code:

void MyTextCtrl::OnChar(wxKeyEvent& event)
{

if (wxIsalpha(event.KeyCode()))
{

// Keycode is within range, so do normal processing.
event.Skip();

}
else
{

// Illegal keystroke. We don’t call event.Skip() so the
// event is not processed anywhere else.
wxBell();

}
}

PLUGGABLE EVENT HANDLERS

You don’t have to derive a new class from a window class in order to process
events. Instead, you can derive a new class from wxEvtHandler, define the
appropriate event table, and then call wxWindow::PushEventHandler to add this
object to the window’s stack of event handlers. Your new event handler will
catch events first; if they are not processed, the next event handler in the stack
will be searched, and so on. Use wxWindow::PopEventHandler to pop the topmost
event handler off the stack, passing true if you want it to be deleted.

With this method, you can avoid a lot of class derivation and potentially
use the same event handler object to handle events from instances of
different classes.

Pluggable Event Handlers 29

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 29

Normally, the value returned from wxWindow::GetEventHandler is the win-
dow itself, but if you have used PushEventHandler, this will not be the case. If
you ever have to call a window’s event handler manually, use the GetEvent
Handler function to retrieve the window’s topmost event handler and use that
to call the member function in order to ensure correct processing of the event
handler stack.

One use of PushEventHandler is to temporarily or permanently change the
behavior of the GUI. For example, you might want to invoke a dialog editor in
your application. You can grab all the mouse input for an existing dialog box
and its controls, processing events for dragging sizing handles and moving
controls, before restoring the dialog’s normal mouse behavior. This could be a
useful technique for online tutorials, where you take a user through a series of
steps and don’t want them to diverge from the lesson. Here, you can examine
the events coming from buttons and windows and, if acceptable, pass them
through to the original event handler using wxEvent::Skip. Events not handled
by your event handler will pass through to the window’s event table.

DYNAMIC EVENT HANDLERS

We have discussed event handling mostly in terms of static event tables
because this is the most common way to handle events. However, you can also
specify the mapping between events and their handlers at runtime. You might
use this method because you want to use different event handlers at different
times in your program, or because you are using a different language (such as
Python) that can’t use static event tables, or simply because you prefer it.
Event handlers allow greater granularity—you can turn individual event han-
dlers on and off at runtime, whereas PushEventHandler and PopEventHandler
deal with a whole event table. Plus, they allow sharing of event handler func-
tions between different objects.

There are two functions associated with dynamic event tables:
wxEvtHandler::Connect and wxEvtHandler::Disconnect. Often, you won’t need to
call wxEvtHandler::Disconnect because the disconnection will happen when the
window object is destroyed.

Let’s use our simple frame class with two event handlers as an example.

// Declare our main frame class
class MyFrame : public wxFrame
{
public:

// Constructor
MyFrame(const wxString& title);

// Event handlers
void OnQuit(wxCommandEvent& event);
void OnAbout(wxCommandEvent& event);

private:
};

30 Event Handling Chapter 3

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 30

Notice that this time, we do not use the DECLARE_EVENT_TABLE macro. To specify
event handling dynamically, we add a couple of lines to our application class’s
OnInit function:

frame->Connect(wxID_EXIT,
wxEVT_COMMAND_MENU_SELECTED,
wxCommandEventHandler(MyFrame::OnQuit));

frame->Connect(wxID_ABOUT,
wxEVT_COMMAND_MENU_SELECTED,
wxCommandEventHandler(MyFrame::OnAbout));

We pass to Connect the window identifier, the event identifier, and finally a
pointer to the event handler function. Note that the event identifier
(wxEVT_COMMAND_MENU_SELECTED) is different from the event table macro
(EVT_MENU); the event table macro makes use of the event identifier internally.
The wxCommandEventHandler macro around the function name is necessary to
appease the compiler—casts are done by static event table macros automati-
cally. In general, if you have a handler that takes an event called wxXYZEvent,
then in your Connect call, you will wrap the function name in the macro
wxXYZEventHandler.

If we want to remove the mapping between event and handler function,
we can use the wxEvtHandler::Disconnect function, as follows:

frame->Disconnect(wxID_EXIT,
wxEVT_COMMAND_MENU_SELECTED,
wxCommandEventHandler(MyFrame::OnQuit));

frame->Disconnect(wxID_ABOUT,
wxEVT_COMMAND_MENU_SELECTED,
wxCommandEventFunction(MyFrame::OnAbout));

WINDOW IDENTIFIERS

Window identifiers are integers, and are used to uniquely determine window
identity in the event system. In fact, identifiers do not need to be unique across
your entire application, just unique within a particular context, such as a
frame and its children. You may use the wxID_OK identifier, for example, on any
number of dialogs as long as you don’t have several within the same dialog.

If you pass wxID_ANY to a window constructor, an identifier will be gener-
ated for you automatically by wxWidgets. This is useful when you don’t care
about the exact identifier, either because you’re not going to process the events
from the control being created at all, or because you process the events from
all controls in one place. In this case, you should specify wxID_ANY in the event
table or wxEvtHandler::Connect call as well. The generated identifiers are

Window Identifiers 31

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 31

Table 3-1 Standard Window Identifiers

Identifier Name Description
wxID_ANY This may be passed to a window constructor as an

identifier, and wxWidgets will generate an appro-
priate identifier

wxID_LOWEST The lowest standard identifier value (4999)
wxID_HIGHEST The highest standard identifier value (5999)
wxID_OPEN File open
wxID_CLOSE Window close
wxID_NEW New window, file or document
wxID_SAVE File save
wxID_SAVEAS File save as (prompts for a save dialog)
wxID_REVERT Revert (revert to file on disk)
wxID_EXIT Exit application
wxID_UNDO Undo the last operation
wxID_REDO Redo the last undo
wxID_HELP General help (for example, for dialog Help

buttons)
wxID_PRINT Print
wxID_PRINT_SETUP Print setup dialog
wxID_PREVIEW Print preview
wxID_ABOUT Show a dialog describing the application
wxID_HELP_CONTENTS Show the help contents
wxID_HELP_COMMANDS Show the application commands
wxID_HELP_PROCEDURES Show the application procedures

always negative, so they will never conflict with the user-specified identifiers,
which must always be positive.

wxWidgets supplies the standard identifiers listed in Table 3-1. Use the
standard identifiers wherever possible: some systems can use the information
to provide standard graphics (such as the OK and Cancel buttons on GTK+) or
default behavior (such as responding to the Escape key by emulating a
wxID_CANCEL event). On Mac OS X, wxID_ABOUT, wxID_PREFERENCES and wxID_EXIT
menu items are interpreted specially and transferred to the application menu.
Some wxWidgets components, such as wxTextCtrl, know how to handle menu
items or buttons with identifiers such as wxID_COPY, wxID_PASTE, wxID_UNDO.

You can use wxID_HIGHEST to determine the number above which it is safe
to define your own identifiers, or you can use identifiers below wxID_LOWEST.

32 Event Handling Chapter 3

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 32

Identifier Name Description
wxID_HELP_CONTEXT Unused
wxID_CUT Cut
wxID_COPY Copy
wxID_PASTE Paste
wxID_CLEAR Clear
wxID_FIND Find
wxID_DUPLICATE Duplicate
wxID_SELECTALL Select all
wxID_DELETE Delete (cut without copying)
wxID_REPLACE Replace
wxID_REPLACE_ALL Replace all
wxID_PROPERTIES Show properties for the selection
wxID_VIEW_DETAILS View details in a list control
wxID_VIEW_LARGEICONS View as large icons in a list control
wxID_VIEW_SMALLICONS View as small icons in a list control
wxID_VIEW_LIST View as a list in a list control
wxID_VIEW_SORTDATE Sort by date
wxID_VIEW_SORTNAME Sort by name
wxID_VIEW_SORTSIZE Sort by size
wxID_VIEW_SORTTYPE Sort by type
wxID_FILE1 to wxID_FILE9 View recent file
wxID_OK Confirms dialog selections
wxID_CANCEL Vetoes dialog selections
wxID_APPLY Applies selections to data
wxID_YES Identifier for a Yes button
wxID_NO Identifier for a No button
wxID_STATIC Identifier for static text or bitmap control
wxID_FORWARD Navigate forward
wxID_BACKWARD Navigate backward
wxID_DEFAULT Restore default settings
wxID_MORE View more settings
wxID_SETUP View a setup dialog
wxID_RESET Reset settings

Window Identifiers 33

(continues)

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 33

Table 3-1 Standard Window Identifiers (Continued)

Identifier Name Description
wxID_CONTEXT_HELP Show context-sensitive help
wxID_YESTOALL Reply yes to all prompts
wxID_NOTOALL Reply no to all prompts
wxID_ABORT Abort the current operation
wxID_RETRY Retry the operation
wxID_IGNORE Ignore an error condition
wxID_UP Navigate up
wxID_DOWN Navigate down
wxID_HOME Navigate home
wxID_REFRESH Refresh
wxID_STOP Stop the current operation
wxID_INDEX Show an index
wxID_BOLD Highlight in bold
wxID_ITALIC Highlight in italic
wxID_JUSTIFY_CENTER Center
wxID_JUSTIFY_FILL Format
wxID_JUSTIFY_RIGHT Right align
wxID_JUSTIFY_LEFT Left align
wxID_UNDERLINE Underline
wxID_INDENT Indent
wxID_UNINDENT Unindent
wxID_ZOOM_100 Zoom to 100%
wxID_ZOOM_FIT Fit to page
wxID_ZOOM_IN Zoom in
wxID_ZOOM_OUT Zoom out
wxID_UNDELETE Undelete
wxID_REVERT_TO_SAVED Revert to saved state

34 Event Handling Chapter 3

DEFINING CUSTOM EVENTS

If you want to define your own event class and macros, you need to follow these
steps:

1. Derive your class from a suitable class, declaring dynamic type informa-
tion and including a Clone function. You may or may not want to add data
members and accessors. Derive from wxCommandEvent if you want the event

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 34

to propagate up the window hierarchy, and from wxNotifyEvent if you also
want handlers to be able to call Veto.

2. Define a typedef for the event handler function.
3. Define a table of event types for the individual events your event class

supports. The event table is defined in your header with
BEGIN_DECLARE_EVENT_TYPES()... END_DECLARE_EVENT_TYPES() and each type is
declared with DECLARE_EVENT_TABLE(name, integer). Then in your imple-
mentation file, write DEFINE_EVENT_TYPE(name).

4. Define an event table macro for each event type.

Let's make this clearer with an example. Say we want to implement a
new control class, wxFontSelectorCtrl, which displays a font preview; the user
can click on the preview to pop up a font selector dialog to change the font. The
application may want to intercept the font selection event, so we'll send a cus-
tom command event from within our low-level mouse handling code.

We will need to define a new event class wxFontSelectorCtrlEvent. An
application will be able to route font change events to an event handler with
the macro EVT_FONT_SELECTION_CHANGED(id, func), which uses the single event
type wxEVT_COMMAND_FONT_SELECTION_CHANGED. Here's what we need in our new
control header file, as well as the control declaration itself (not shown):

/*!
* Font selector event class
*/

class wxFontSelectorCtrlEvent : public wxNotifyEvent
{
public:

wxFontSelectorCtrlEvent(wxEventType commandType = wxEVT_NULL,
int id = 0): wxNotifyEvent(commandType, id)

{}

wxFontSelectorCtrlEvent(const wxFontSelectorCtrlEvent& event):
wxNotifyEvent(event)

{}

virtual wxEvent *Clone() const
{ return new wxFontSelectorCtrlEvent(*this); }

DECLARE_DYNAMIC_CLASS(wxFontSelectorCtrlEvent);
};

typedef void (wxEvtHandler::*wxFontSelectorCtrlEventFunction)
(wxFontSelectorCtrlEvent&);

/*!
* Font selector control events and macros for handling them
*/

Defining Custom Events 35

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 35

BEGIN_DECLARE_EVENT_TYPES()
DECLARE_EVENT_TYPE(wxEVT_COMMAND_FONT_SELECTION_CHANGED, 801)

END_DECLARE_EVENT_TYPES()

#define EVT_FONT_SELECTION_CHANGED(id, fn) DECLARE_EVENT_TABLE_ENTRY(
wxEVT_COMMAND_FONT_SELECTION_CHANGED, id, -1, (wxObjectEventFunction)
(wxEventFunction) (wxFontSelectorCtrlEventFunction) & fn,
(wxObject *) NULL),

In our implementation file, we write

DEFINE_EVENT_TYPE(wxEVT_COMMAND_FONT_SELECTION_CHANGED)
IMPLEMENT_DYNAMIC_CLASS(wxFontSelectorCtrlEvent, wxNotifyEvent)

To send the custom event, the font selector control can call ProcessEvent when
a selection is detected from within the mouse handling code:

wxFontSelectorCtrlEvent event(
wxEVT_COMMAND_FONT_SELECTION_CHANGED, GetId());

event.SetEventObject(this);
GetEventHandler()->ProcessEvent(event);

Now an application can write a font selection event handler, for example:

BEGIN_EVENT_TABLE(MyDialog, wxDialog)
EVT_FONT_SELECTION_CHANGED(ID_FONTSEL, MyDialog::OnChangeFont)

END_EVENT_TABLE()

void MyDialog::OnChangeFont(wxFontSelectorCtrlEvent& event)
{

// Take appropriate action when the font selection changed
...

}

The event identifier value (801) is not used in recent versions of wxWidgets
and is only included for compatibility with wxWidgets 2.4.

Let's take another look at the event macro definition:

#define EVT_FONT_SELECTION_CHANGED(id, fn) DECLARE_EVENT_TABLE_ENTRY(
wxEVT_COMMAND_FONT_SELECTION_CHANGED, id, -1, (wxObjectEventFunction)
(wxEventFunction) (wxFontSelectorCtrlEventFunction) & fn,
(wxObject *) NULL),

The macro places information into an array that forms the event table, which
is why the syntax looks rather strange. The five entries in the event table
record are as follows:

1. The event type. One event class can handle several types, but in our
example, we only define one event type, and therefore there is only one
event table macro. This type must match the type of the event being
processed for the event handler to be called.

36 Event Handling Chapter 3

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 36

2. The identifier value passed to the macro. The event handler function will
only be called if the value in the table matches the value in the event
being processed.

3. A second identifier value, used when specifying a range of values. -1 indi-
cates that there is no second value.

4. The event handler function. The sequence of casts is needed for some
compilers, and this is where the member function typedef is used.

5. User data, normally NULL.

The full custom event example can be found in examples/chap03, and it includes
a font selection control implementation and handy validator class that you can
use in your own applications. You can also look at include/wx/event.h in your
wxWidgets distribution for more inspiration.

SUMMARY

In this chapter, we’ve discussed how events are propagated through inheri-
tance and window hierarchies, introduced pluggable and dynamic event han-
dlers, talked about window identifiers, and described how you can write your
own custom event classes and macros. For more on the mechanics of event
handling, please refer to Appendix H, “How wxWidgets Processes Events.”
Appendix I, “Event Classes and Macros,” lists commonly used event classes
and macros. You can also look at a number of the wxWidgets samples for exam-
ples of event usage, notably samples/event. Next, we'll discuss a range of
important GUI components that you can start putting to use in your
applications.

Summary 37

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 37

Smart_Ch03f.qxd 6/10/05 11:16 AM Page 38

C H A P T E R 4

Window Basics

In this chapter, we’ll first look at the main elements of a window before
describing the window classes that are most commonly used in applications.
These elements will almost certainly be familiar from other programming
you’ve done or from applications you’ve used. Despite the differences
between systems, the available controls are surprisingly similar in function-
ality, with wxWidgets handling nearly all of the differences. Remaining dif-
ferences are usually handled using optional platform-specific window styles.

ANATOMY OF A WINDOW

Naturally, you know what a window is, but for a full understanding of how
to use the wxWidgets API, it’s good to have a grasp of the window model
that wxWidgets uses. This differs in small respects from the window model
used on each individual platform. Figure 4-1 shows the basic elements of
a window.

39

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 39

The Concept of a Window

A window is any rectangular area with a common set of properties: it can be
resized, it can paint itself, it can be shown and hidden, and so on. It may con-
tain other windows (such as a frame with menu bar, toolbar, and status bar),
or no child windows (such as a static text control). Normally, a window that
you see on the screen in a wxWidgets application has a corresponding object of
the wxWindow class or derived class, but this is not always the case: for example,
the drop-down list in a native wxComboBox is not usually modeled with a sepa-
rate wxWindow.

Client and Non-Client Areas

When we refer to the size of a window, we normally include the outer dimen-
sions, including decorations such as the border and title bar. When we refer to
the size of the client area of a window, we mean the area inside the window
that can be drawn upon or into which child windows may be placed. A frame’s
client area excludes any space taken by the menu bar, status bar, and toolbar.

40 Window Basics Chapter 4

Figure 4-1 The elements of a window

Window border and decorations

Client area

(0, 0)

Optional
scrollbars

Child window

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 40

Scrollbars

Most windows are capable of showing scrollbars, managed by the window
rather than added explicitly by the application. The client area is then
reduced by the space used by the scrollbars. For optimization, only windows
that have the wxHSCROLL and wxVSCROLL style are guaranteed to own their own
scrollbars. More information on scrolling can be found later in this chapter
when we discuss wxScrolledWindow.

Caret and Cursor

A window can have a wxCaret (for displaying the current text position) and a
wxCursor (for displaying the current mouse position). When the mouse enters a
window, wxWidgets automatically displays the cursor that has been set for the
window. When a window receives the focus, the caret (if any) will be shown at
its current position, or at the mouse position if the focus was a result of a
mouse button click.

Top-Level Windows

Windows are broadly divided into top-level windows (wxFrame, wxDialog,
wxPopup) and other windows. Only top-level windows may be created with a
NULL parent, and only top-level windows have delayed destruction (they are
not deleted until idle time, when all other events have been processed). Except
for pop-up windows, top-level windows can have decorations such as title bars
and close buttons and can normally be dragged around the screen and resized,
if the application allows it.

Coordinate System

The coordinate system always has (0, 0) at the top-left corner, and window
dimensions are in pixels. The origin and scale can be changed for a device con-
text that is used to paint on the window. For more on device contexts, see
Chapter 5, “Drawing and Printing.”

Painting

When a window needs to be painted, it receives two events, wxEVT_ERASE_

BACKGROUND to paint the background, and wxEVT_PAINT to paint the foreground.
Ready-to-use classes such as wxButton paint themselves, but to create your
own special window class, you will need to handle these events. You can opti-
mize painting by getting the update region (the part that needs refreshing)
from the window.

Anatomy of a Window 41

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 41

Color and Font

Every window has background and foreground color settings that can be used
to determine the background color and (less commonly) foreground color. The
default background erase handler uses the window’s background color, or if
none has been set, the appropriate color or texture for the current color
scheme or theme. A window also has a font setting, which may or may not be
used depending on the kind of window.

Window Variant

On Mac OS X, a window has the concept of window variant, whereby it can be
shown in a selection of sizes: wxWINDOW_VARIANT_NORMAL (the default), wxWINDOW_
VARIANT_SMALL, wxWINDOW_VARIANT_MINI, or wxWINDOW_VARIANT_LARGE. Changing to
a smaller variant is useful when you have a lot of information to convey and
limited space, but it should be used in moderation. Some applications use the
small variant throughout.

Sizing

When a window is resized, either by the application or by the user, it receives
a wxEVT_SIZE event. If the window has children, they will need to be positioned
and sized appropriately, and the recommended way is to use sizers, as dis-
cussed in Chapter 7, “Window Layout Using Sizers.” Most stock windows have
a notion of a default size and position if you pass them wxDefaultSize or
wxDefaultPosition (or -1 as an individual size or position value). To this end,
each control implements DoGetBestSize, which returns a reasonable default
size based on the control content, current font, and other factors.

Input

Any window can receive input from the mouse at any time, unless another
window has temporarily captured the mouse or the window is disabled. Only
the window with the current focus can receive keyboard input. An application
can set the window focus itself; wxWidgets also sets the focus to a window
when the user clicks on it. The wxEVT_SET_FOCUS event is sent to a window that
is receiving the focus; wxEVT_KILL_FOCUS is sent when the focus is moving to a
different window. See Chapter 6, “Handling Input,” for more details on han-
dling input.

Idle Time Processing and UI Updates

All windows are (unless otherwise specified) recipients of idle events
(wxEVT_IDLE), which are sent when all other events have been processed, speci-
fied with the EVT_IDLE(func) macro. For more information, see “Idle Time
Processing” in Chapter 17, “Writing Multithreaded Applications.”

42 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 42

A special kind of idle time processing is user interface updating, in which
all windows can specify a function that updates the window’s state. This func-
tion is called periodically in idle time. In the descriptions of events that follow,
EVT_UPDATE_UI(id, func) is usually omitted for brevity. User interface updating
is covered in Chapter 9, “Creating Custom Dialogs.”

Window Creation and Deletion

In general, windows are created on the heap with new, but see Chapter 15,
“Memory Management, Debugging, and Error Checking,” for details and
exceptions. Most window classes allow creation either in one or two steps.
wxButton has typical constructor signatures:

wxButton();
wxButton(wxWindow* parent,

wxWindowID id,
const wxString& label = wxEmptyString,
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = 0,
const wxValidator& validator = wxDefaultValidator,
const wxString& name = wxT(“button”));

The following example of one-step construction takes advantage of all the con-
structor’s default values:

wxButton* button = new wxButton(parent, wxID_OK);

Unless the window is a frame or dialog, you must pass a non-NULL parent win-
dow to the constructor. This will automatically add the child window to the
parent, and when the parent is destroyed, the children will also be destroyed.
As we’ve seen previously, you pass a standard or user-defined identifier to the
window for the purposes of uniquely identifying it. You can also pass wxID_ANY,
and wxWidgets will generate a suitable identifier (a negative value, to differ-
entiate it from user-defined or standard identifiers). You can pass a position
and size to the window, a validator, if appropriate (see Chapter 9), a style (see
the following), and a string name. You can pass an arbitrary string to the name
parameter, or ignore it; it is rarely used now but was introduced to allow win-
dow customization under Xt and Motif, which require controls to be identified
by name.

With two-step construction, you use the default constructor and then call
Create, which has the same signature as the full constructor. For example, to
create a button in two steps:

wxButton* button = new wxButton;
button->Create(parent, wxID_OK);

Anatomy of a Window 43

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 43

Only when you call Create is the underlying window created, and a wxEVT_
CREATE event sent to the window in case it needs to do further processing at
this point.

Why would you want to use two-step construction? One reason is that
you may want to delay full creation of the window until it’s really required.
Another is to set some properties of the window before Create is called, espe-
cially if those properties are used within the Create call. For example, you may
want to set the wxWS_EX_VALIDATE_RECURSIVELY extra style (which must be set
with SetExtraStyle). In the case of a dialog, this style is used from within its
Create function when initial validation takes place, so if you need it, it’s impor-
tant to set it before the dialog is created.

When you create a wxWindow, or any non-top-level derived window class, it
is always in a visible state—so if the parent is visible at the time of creation,
the window will also be visible. You can then use Show(false) to hide it if
required. This is different from wxDialog and wxFrame, which are initially cre-
ated in a hidden state to enable the application to lay out the controls without
initial flicker, before showing with Show or (for modal dialogs) ShowModal.

Windows are deleted by calling Destroy (for top-level windows) or delete
(for child windows), and the wxEVT_DESTROY event is sent just before the actual
window is destroyed. In fact, child windows are deleted automatically, so it is
rare to delete them explicitly.

Window Styles

A window has a style and an extra style. Window styles are a concise way to
specify alternative behavior and appearances for windows when they are cre-
ated. The symbols are defined in such as way that they can be combined in a
“bit-list” using the C++ bitwise-or operator. For example:

wxCAPTION | wxMINIMIZE_BOX | wxMAXIMIZE_BOX | wxTHICK_FRAME

The wxWindow class has a basic set of styles, such as border styles, and each
derived class may add further styles. The “extra” style accommodates values
that cannot fit into the style value.

A QUICK GUIDE TO THE WINDOW CLASSES

The rest of this chapter provides you with enough detailed information about
the most commonly used window classes for you to apply them to your own
applications. However, if you are reading this book for the first time, you may
want to skip ahead to Chapter 5 and browse the window descriptions later.

44 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 44

Here’s a summary of the classes we cover, to help you navigate this chap-
ter. For other window classes, see Chapter 12, “Advanced Window Classes,”
and Appendix E, “Third-Party Tools for wxWidgets.”

Base Window Classes

These base classes implement functionality for derived concrete classes.

� wxWindow. The base class for all windows.
� wxControl. The base class for controls, such as wxButton.
� wxControlWithItems. The base class for multi-item controls.

Top-Level Windows

Top-level windows usually exist independently on the desktop.

� wxFrame. A resizable window containing other windows.
� wxMDIParentFrame. A frame that manages other frames.
� wxMDIChildFrame. A frame managed by a parent frame.
� wxDialog. A resizable window for presenting choices.
� wxPopupWindow. A transient window with minimal decoration.

Container Windows

Container windows manage child windows.

� wxPanel. A window for laying out controls.
� wxNotebook. A window for switching pages using tabs.
� wxScrolledWindow. A window that scrolls children and graphics.
� wxSplitterWindow. A window that manages two child windows.

Non-Static Controls

These controls can be edited by the user.

� wxButton. A push-button control with a text label.
� wxBitmapButton. A push-button control with a bitmap label.
� wxChoice. A drop-down list of choices.
� wxComboBox. An editable field with a list of choices.
� wxCheckBox. A control representing a check box, on or off.

A Quick Guide to the Window Classes 45

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 45

46 Window Basics Chapter 4

� wxListBox. A list of selectable string items.
� wxRadioBox. A grid of radio buttons.
� wxRadioButton. A control resembling a radio button, on or off.
� wxScrollBar. A scrollbar control.
� wxSpinButton. Arrows for incrementing/decrementing values.
� wxSpinCtrl. A text field and spin button for editing integers.
� wxSlider. A control for changing a value within a given range.
� wxTextCtrl. A single- or multiple-line text entry field.
� wxToggleButton. A button that can be toggled on and off.

Static Controls

These controls present information and cannot be edited by the user.

� wxGauge. A control showing a quantity.
� wxStaticText. A control that shows a text label.
� wxStaticBitmap. A control that shows a bitmap label.
� wxStaticLine. A control displaying a line.
� wxStaticBox. A control displaying a box around other controls.

Menus

Menus are transient windows containing lists of commands.

� wxMenu. A menu that can be used as a popup or in a menu bar.

Control Bars

Control bars present concise access to commands and information, usually
within a wxFrame.

� wxMenuBar. A menu bar that presents commands in a wxFrame.
� wxToolBar. A toolbar that provides quick access to commands.
� wxStatusBar. A status bar that shows information in multiple fields.

BASE WINDOW CLASSES

It’s worth mentioning base classes that you may or may not be able use
directly but that implement a lot of functionality for derived classes. Use the
API reference for these (and other) base classes as well as the reference for
the derived classes to get a full understanding of what’s available.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 46

wxWindow

wxWindow is both an important base class and a concrete window class that you
can instantiate. However, it’s more likely that you will derive classes from it
(or use pre-existing derived classes) than use it on its own.

As we’ve seen, a wxWindow may be created either in one step, using a non-
default constructor, or two steps, using the default constructor followed by
Create. For one-step construction, you use this constructor:

wxWindow(wxWindow* parent,
wxWindowID id,
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = 0,
const wxString& name = wxT(“panel”));

For example:

wxWindow* win = new wxWindow(parent, wxID_ANY,
wxPoint(100, 100), wxSize(200, 200));

wxWindow Styles

Each window class may add to the basic styles defined for wxWindow, listed in
Table 4-1. Not all native controls support all border styles, and if no border is
specified, a default style appropriate to that class will be used. For example, on
Windows, most wxControl-derived classes use wxSUNKEN_BORDER by default,
which will be interpreted as the border style for the current theme. An appli-
cation may suppress the default border by using a style such as wxNO_BORDER.

Table 4-1 Basic Window Styles

wxSIMPLE_BORDER Displays a thin border around the window.
wxDOUBLE_BORDER Displays a double border.
wxSUNKEN_BORDER Displays a sunken border, or control border consis-

tent with the current theme.
wxRAISED_BORDER Displays a raised border.
wxSTATIC_BORDER Displays a border suitable for a static control.

Windows only.
wxNO_BORDER Displays no border. This overrides any attempt

wxWidgets makes to add a suitable border.
wxTRANSPARENT_WINDOW Specifies a transparent window (one that doesn’t

receive paint events). Windows only.

Base Window Classes 47

(continues)

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 47

Table 4-1 Basic Window Styles (Continued)

wxTAB_TRAVERSAL Use this to enable tab traversal for non-dialog
windows.

wxWANTS_CHARS Use this to indicate that the window wants to get
all char/key events—even for keys like Tab or
Enter, which are used for dialog navigation and
which wouldn’t be generated without this style.

wxFULL_REPAINT_ON_RESIZE By default on Windows, wxWidgets won’t repaint
the entire client area during a resize. This style
ensures that the whole client area will be invali-
dated during a resize.

wxVSCROLL Enables a vertical scrollbar.
wxHSCROLL Enables a horizontal scrollbar.
wxALWAYS_SHOW_SB If a window has scrollbars, disables them instead of

hiding them when they are not needed (when the
size of the window is big enough to not require the
scrollbars to navigate it). This style is currently
only implemented for Windows and wxUniversal.

wxCLIP_CHILDREN On Windows only, used to eliminate flicker caused
by a window erasing the background of its children.

Table 4-2 lists extra styles that cannot be accommodated in the regular style
and that are set using wxWindow::SetExtraStyle.

Table 4-2 Basic Extra Window Styles

wxWS_EX_VALIDATE_RECURSIVELY By default, Validate, TransferDataToWindow,
and TransferDataFromWindow only work on
direct children of the window. Set this style to
make them recursively descend into all
subwindows.

wxWS_EX_BLOCK_EVENTS wxCommandEvents and the objects of derived
classes are forwarded to the parent window and
so on recursively by default. Using this style for
the given window enables you to block this prop-
agation at this window to prevent the events
from being propagated further upwards. Dialogs
have this style on by default, but note that if
SetExtraStyle is called by the application, it
may be reset.

wxWS_EX_TRANSIENT Don’t use this window as an implicit parent for
other windows. This must be used with tran-
sient windows; otherwise, there is the risk of
creating a dialog or frame with this window as a
parent, which would lead to a crash if the par-
ent were destroyed before the child.

48 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 48

wxWS_EX_PROCESS_IDLE This window should always process idle events,
even if the mode set by wxIdleEvent::SetMode
is wxIDLE_PROCESS_SPECIFIED.

wxWS_EX_PROCESS_UI_UPDATES This window should always process UI update
events, even if the mode set by wxUpdateUIEvent::
SetMode is wxUPDATE_UI_PROCESS_SPECIFIED.
See Chapter 9 for more information on UI
update events.

wxWindow Events

wxWindow and all its derived classes generate the events listed in Table 4-3.
Events generated by mouse, keyboard, or joystick input are covered in Chapter 6.

Table 4-3 wxWindow Events

EVT_WINDOW_CREATE(func) Processes a wxEVT_CREATE propagating event,
generated when the underlying window has
just been created. Handlers take a
wxWindowCreateEvent object.

EVT_WINDOW_DESTROY(func) Processes a wxEVT_DELETE propagating
event, generated when the window is
about to be destroyed. Handlers take a
wxWindowDestroyEvent object.

EVT_PAINT(func) Processes a wxEVT_PAINT event, generated when
the window needs updating. Handlers take a
wxPaintEvent object.

EVT_ERASE_BACKGROUND(func) Processes a wxEVT_ERASE_BACKGROUND event,
generated when the window background needs
updating. Handlers take a wxEraseEvent object.

EVT_MOVE(func) Processes a wxEVT_MOVE event, generated when the
window moves. Handlers take a wxMoveEvent object.

EVT_SIZE(func) Processes a wxEVT_SIZE event, generated when
the window is resized. Handlers take a
wxSizeEvent object.

EVT_SET_FOCUS(func) Processes wxEVT_SET_FOCUS and wxEVT_KILL_
EVT_KILL_FOCUS(func) FOCUS events, generated when the keyboard

focus is gained or lost for this window.
Handlers take a wxFocusEvent object.

EVT_SYS_COLOUR_CHANGED(func) Processes a wxEVT_SYS_COLOUR_CHANGED
event, generated when the user changed a color
in the control panel (Windows only). Handlers
take a wxSysColourChangedEvent object.

EVT_IDLE(func) Processes a wxEVT_IDLE event, generated in idle
time. Handlers take a wxIdleEvent object.

EVT_UPDATE_UI(func) Processes a wxEVT_UPDATE_UI event, generated
in idle time to give the window a chance to
update itself.

Base Window Classes 49

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 49

wxWindow Member Functions

Because wxWindow is the base class for all other window classes, it has the
largest number of member functions. We can’t describe them all here in detail,
so instead we present a summary of some of the most important functions.
Browsing them should give you a good idea of the general capabilities of win-
dows, and you can refer to the reference manual for details of parameters and
usage.

CaptureMouse captures all mouse input, and ReleaseMouse releases the cap-
ture. This is useful in a drawing program, for example, so that moving to the
edge of the canvas scrolls it rather than causing another window to be acti-
vated. Use the static function GetCapture to retrieve the window with the cur-
rent capture (if it’s within the current application), and HasCapture to
determine if this window is capturing input.

Centre (Center), CentreOnParent (CenterOnParent), and CentreOnScreen

(CenterOnScreen) center the window relative to the screen or the parent
window.

ClearBackground clears the window by filling it with the current back-
ground color.

ClientToScreen and ScreenToClient convert between coordinates relative
to the top-left corner of this window, and coordinates relative to the top-left
corner of the screen.

Close generates a wxCloseEvent whose handler usually tries to close the
window. Although the default close event handler will destroy the window,
calling Close may not actually close the window if a close event handler has
been provided that doesn’t destroy the window.

ConvertDialogToPixels and ConvertPixelsToDialog convert between dialog
and pixel units, which is useful when basing size or position on font size in
order to give more portable results.

Destroy destroys the window safely. Use this function instead of the
delete operator because different window classes can be destroyed differently.
Frames and dialogs are not destroyed immediately when this function is
called but are added to a list of windows to be deleted on idle time, when all
pending events have been processed. This prevents problems with events
being sent to non-existent windows.

Enable enables or disables the window and its children for input. Some
controls display themselves in a different color when disabled. Disable can be
used instead of passing false to Enable.

FindFocus is a static function that can be used to find the window that
currently has the keyboard focus.

FindWindow can be used with an identifier or a name to find a window in
this window’s hierarchy. It can return a descendant or the parent window
itself. If you know the type of the window, you can use wxDynamicCast to safely
cast to the correct type, returning either a pointer to that type or NULL:

50 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 50

MyWindow* window = wxDynamicCast(FindWindow(ID_MYWINDOW), MyWindow);

Fit resizes the window to fit its children. This should be used with sizer-based
layout. FitInside is similar, but it uses the virtual size (useful when the win-
dow has scrollbars and contains further windows).

Freeze and Thaw are hints to wxWidgets that display updates between
these two function calls should be optimized. For example, you could use this
when adding a lot of lines to a text control separately. Implemented for
wxTextCtrl on GTK+, and all windows on Windows and Mac OS X.

GetAcceleratorTable and SetAcceleratorTable get and set the accelerator
table for this window.

GetBackgroundColour and SetBackgroundColour are accessors for the win-
dow background color, used by the default wxEVT_ERASE_BACKGROUND event. After
setting the color, you will need to call Refresh or ClearBackground to show the
window with the new color. SetOwnBackgroundColour is the same as
SetBackgroundColour but the color is not inherited by the window’s children.

GetBackgroundStyle and SetBackgroundStyle are accessors for the window
background style. By default, the background style is wxBG_STYLE_SYSTEM, which
tells wxWidgets to draw the window background with whatever style is appro-
priate, whether a texture drawn according to the current theme (for example,
wxDialog), or a solid color (for example, wxListBox). If you set the style to
wxBG_STYLE_COLOUR, wxWidgets will use a solid color for this window. If you set
it to wxBG_STYLE_CUSTOM, wxWidgets will suppress the default background
drawing, and the application can paint it from its erase or paint event handler.
If you want to draw your own textured background, then setting the style to
wxBG_STYLE_CUSTOM is recommended for flicker-free refreshes.

GetBestSize returns the minimal size for the window in pixels (as imple-
mented for each window by DoGetBestSize). This is a hint to the sizer system
not to resize the window so small that it cannot be viewed or used properly.
For example, for a static control, it will be the minimum size such that the con-
trol label is not truncated. For windows containing subwindows (typically
wxPanel), the size returned by this function will be the same as the size the
window would have had after calling Fit.

GetCaret and SetCaret are accessors for the wxCaret object associated with
the window.

GetClientSize and SetClientSize are accessors for the size of the client
area in pixels. The client area is the region within any borders and window
decorations, inside which you can draw or place child windows.

GetCursor and SetCursor are accessors for the cursor associated with the
window.

GetDefaultItem returns a pointer to the child button that is the default for
this window, or NULL. The default button is the one activated by pressing the
Enter key. Use wxButton::SetDefault to set the default button.

Base Window Classes 51

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 51

GetDropTarget and SetDropTarget are accessors for the wxDropTarget object
which handles dropped data objects for this window. Drag and drop is covered
in Chapter 11, “Clipboard and Drag and Drop.”

GetEventHandler and SetEventHandler are accessors for the first event han-
dler for the window. By default, the event handler is the window itself, but you
can interpose a different event handler. You can also use PushEventHandler and
PopEventHandler to set up a handler chain, with different handlers dealing with
different events. wxWidgets will search along the chain for handlers that
match incoming events (see Chapter 3, “Event Handling”).

GetExtraStyle and SetExtraStyle are accessors for the “extra” style bits.
Extra styles normally start with wxWS_EX_.

GetFont and SetFont are accessors for the font associated with this win-
dow. SetOwnFont is the same as SetFont, except that the font is not inherited by
the window’s children.

GetForegroundColour and SetForegroundColour are accessors for the win-
dow foreground color, whose meaning differs according to the type of window.
SetOwnForegroundColour is the same as SetOwnForegroundColour but the color is
not inherited by the window’s children.

GetHelpText and SetHelpText are accessors for the context-sensitive help
string associated with the window. The text is actually stored by the current
wxHelpProvider implementation, and not in the window.

GetId and SetId are accessors for the window identifier.
GetLabel returns the label associated with the window. The interpreta-

tion of this value depends on the particular window class.
GetName and SetName are accessors for the window name, which does not

have to be unique. The window name has no special significance to wxWidgets,
except under Motif where it is the resource name for the window.

GetParent returns a pointer to the parent window.
GetPosition returns the position of the top-left corner of the window in

pixels, relative to its parent.
GetRect returns a wxRect object (see Chapter 13, “Data Structure

Classes”) representing the size and position of the window in pixels.
GetSize and SetSize retrieve and set the outer window dimensions in

pixels.
GetSizer and SetSizer are accessors for the top-level sizer used for

arranging child windows on this window.
GetTextExtent gets the dimensions of the string in pixels, as it would be

drawn on the window with the currently selected font.
GetToolTip and SetToolTip are accessors for the window tooltip object.
GetUpdateRegion returns the portion of the window that currently needs

refreshing (since the last paint event was handled).
GetValidator and SetValidator are accessors for the optional wxValidator

object associated with the window, to handle transfer and validation of data.
See Chapter 9 for more about validators.

52 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 52

GetVirtualSize returns the virtual size of the window in pixels, as deter-
mined by setting the scrollbar dimensions.

GetWindowStyle and SetWindowStyle are accessors for the window style.
InitDialog sends a wxEVT_INIT_DIALOG event to initiate transfer of data to

the window.
IsEnabled indicates whether the window is enabled or disabled.
IsExposed indicates whether a point or a part of the rectangle is in the

update region.
IsShown indicates whether the window is shown.
IsTopLevel indicates whether the window is top-level (a wxFrame or a

wxDialog).
Layout invokes the sizer-based layout system if there is a sizer associated

with the window. See Chapter 7 for more about sizers.
Lower sends a window to the bottom of the window hierarchy, while Raise

raises the window above all other windows. This works for top-level windows
and child windows.

MakeModal disables all the other top-level windows in the application so
that the user can only interact with this window.

Move moves the window to a new position.
MoveAfterInTabOrder moves the tab order of this window to a position just

after the window passed as argument, and MoveBeforeInTabOrder is the same
but moves the tab order in front of the window argument.

PushEventHandler pushes an event handler onto the event stack for this
window, and PopEventHandler removes and returns the top-most event handler
on the event handler stack. RemoveEventHandler finds a handler in the event
handler stack and removes it.

PopupMenu shows a menu at the specified position.
Refresh and RefreshRect causes a paint event (and optionally an erase

event) to be sent to the window.
SetFocus gives the window the current keyboard focus.
SetScrollbar sets the properties for a built-in scrollbar.
SetSizeHints allows specification of the minimum and maximum window

sizes, and window size increments, in pixels. This is applicable to top-level
windows only.

Show shows or hides the window; Hide is equivalent to passing false to
Show.

TransferDataFromWindow and TransferDataToWindow transfer data from and
to the window. By default, these call validator functions, but they can be over-
ridden by the application.

Update immediately repaints the invalidated area of the window.
UpdateWindowUI sends wxUpdateUIEvents to the window to give the window

(and application) a chance to update window elements, such as toolbars as
menu items.

Validate validates the current values of the child controls using their
validators.

Base Window Classes 53

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 53

wxControl

wxControl derives from wxWindow and is the abstract base class for controls:
windows that display items of data and usually respond to mouse clicks or
keyboard input by sending command events.

wxControlWithItems

wxControlWithItems is an abstract base class for some wxWidgets controls that
contain several items, such as wxListBox, wxCheckListBox, wxChoice, and
wxComboBox. The use of this intermediate class ensures that a consistent API is
used across several controls that have similar functionality.

The items in a wxControlWithItems have string labels and, optionally,
client data associated with them. Client data comes in two different flavors:
either simple untyped (void*) pointers, which are stored by the control but not
used in any way by it, or typed pointers (wxClientData*). These typed pointers
are owned by the control, meaning that the typed client data will be deleted
when an item is deleted or when the entire control is cleared (for example,
when it is destroyed). All items in the same control must have client data of
the same type: either all typed or all untyped (if it has any at all). The client
data type is determined by the first call to Append, SetClientData, or
SetClientObject. To work with typed client data, you should derive a class from
wxClientData containing the data you want to store, and pass it to Append or
SetClientObject.

wxControlWithItems Member Functions

Append adds a single item or an array of items to the control. When adding a
single item, you can also associate typed or untyped data with the item by
passing a second argument. For example:

wxArrayString strArr;
strArr.Add(wxT(“First string”));
strArr.Add(wxT(“Second string”));
controlA->Append(strArr);
controlA->Append(wxT(“Third string”));
controlB->Append(wxT(“First string”), (void *) myPtr);
controlC->Append(wxT(“First string”), new MyTypedData(1));

Clear clears all items from the controls (deleting all typed client data).
Delete removes an item (and its typed client data) using a zero-based

position.
FindString returns the zero-based index to the item matching a string, or

wxNOT_FOUND if no item was found.
GetClientData and GetClientObject return a pointer to the client data

associated with the specified item (if any). SetClientData and SetClientObject
can be used to set the data for a specified item.

54 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 54

GetCount returns the number of items in the control.
GetSelection returns the index of the selected item, or wxNOT_FOUND if none

was selected. SetSelection sets the index of the selected item.
GetString returns the item label at the given position; SetString sets an

item’s label.
GetStringSelection returns the label of the selected item or an empty

string if no item is selected; SetStringSelection sets the selection. To avoid an
assertion, first check that the string is available in the control using
FindString.

Insert inserts an item (with or without client data) at a specified position
in the control.

IsEmpty returns true if the control has no items, and false otherwise.

TOP-LEVEL WINDOWS

Top-level windows are placed directly on the desktop and are not contained
within other windows. They can be moved around the screen, and resized if
the application permits it. There are three basic kinds of top-level window:
wxFrame and wxDialog, both derived from an abstract base class called
wxTopLevelWindow, and wxPopupWindow, which has less functionality and is
derived directly from wxWindow. A dialog can be either modal or modeless,
whereas a frame is almost always modeless. Modal means that flow through
the application effectively halts until the user dismisses the dialog. This is
very handy for getting a response before continuing, but it’s always good to see
whether an alternative user interface can be used (for example, a font control
on the toolbar rather than in a properties window) to keep the interaction
more fluid.

Top-level windows normally have a title bar and can have decorations for
closing, minimizing, or restoring the window. A frame often has a menu bar,
toolbar, and status bar, but a dialog generally does not. On Mac OS X, a
frame’s menu bar is not shown at the top of the frame, but at the top of the
screen.

Don’t confuse this usage of “top-level window” with the window returned
by wxApp::GetTopWindow, by which wxWidgets or your application can get hold
of the “main window,” most often the first frame or dialog you create.

If needed, you can access all current top-level windows using the global
variable wxTopLevelWindows, which is a wxWindowList.

wxFrame

wxFrame is a popular choice for the main application window. Figure 4-2 shows
the elements that compose a frame. A frame may optionally have a title bar
(with decorations such as a button for closing the window), a wxMenuBar, a
wxToolBar, and a wxStatusBar. The area that is left for child windows is called

Top-Level Windows 55

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 55

the client area, and it is up to the application to arrange the children’s size
and position if there is more than one child. You should use sizers for this pur-
pose, described in Chapter 7, or perhaps a splitter window (covered later in
this chapter) if you need a couple of child windows.

56 Window Basics Chapter 4

Title bar Window border and decorations

Demo Application

File Edit Help Menu bar

Toolbar

Client area

Status bar

Ready

Figure 4-2 The elements of a frame

Because some platforms do not allow direct painting on a frame, and to
support keyboard navigation between child controls, you should create an
intermediate wxPanel (see later).

A frame can have more than one toolbar, but it will only do sizing and
positioning for one toolbar. You must implement explicit layout for multiple
toolbars.

It is highly likely that you will derive a new class from wxFrame rather
than using it directly, so that you can handle events such as wxEVT_CLOSE (see
the following) and command events. Often you will create child windows and a
menu bar within your frame constructor.

You can assign an icon to the frame to be shown by the system, such as
on the taskbar or in the file manager. On Windows, it’s best to use a compound
icon at 16×16 and 32×32 pixels and perhaps several color depths. On Linux,
the same icons as for Windows usually suffices. On Mac OS X, you’ll need a
variety of icons in different colors and depths. For more details on icons and
icon bundles, see Chapter 10, “Programming with Images.”

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 56

wxFrame has the following constructor in addition to the default
constructor:

wxFrame(wxWindow* parent, wxWindowID id, const wxString& title,
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxDEFAULT_FRAME_STYLE,
const wxString& name = wxT(“frame”));

For example:

wxFrame* frame = new wxFrame(NULL, ID_MYFRAME,
wxT(“Hello wxWidgets”), wxDefaultPosition,
wxSize(500, 300));

frame->Show(true);

Note that the frame won’t be shown until Show(true) is called, to give the
application the chance to do child window layout invisibly.

You don’t have to pass a parent window to the new frame, but if you do,
the new window will be displayed on top of the parent window if the
wxFRAME_FLOAT_ON_PARENT style is specified.

To destroy a frame, do not use delete, but instead use Destroy or Close to
tell wxWidgets to clean up the frame in idle time when all its events have been
processed. When you call Close, you send a wxEVT_CLOSE event to the window.
The default handler for this event calls Destroy. When a frame is deleted, its
children are automatically deleted, as long as they are not themselves top-
level windows.

When the last top-level window has been destroyed, the application exits
(although you can change this behavior by calling wxApp::SetExitOnFrame
Delete). Your main window’s wxEVT_CLOSE handler may need to destroy other
top-level windows that might be open—for example, a Find dialog—otherwise
the application will not close when the main window is closed.

A frame does not have the equivalent of wxDialog::ShowModal to enter an
event loop and disable other top-level windows. However, you can get similar
behavior by creating a wxWindowDisabler object when you require other top-
level windows to be disabled. Or, you can use a wxModalEventLoop object, pass-
ing the frame pointer, calling Run to start a local event loop and calling Exit
(usually from an event handler) to quit the loop.

Figure 4-3 shows the frame of a consumer application running on
Windows. The frame has a title bar at the top, a menu bar, a colorful toolbar,
a splitter window in the frame’s client area, and a status bar at the bottom,
giving help on toolbar buttons and menu items as the user drags the mouse
over them.

Top-Level Windows 57

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 57

wxFrame Styles

wxFrame can have the window styles listed in Table 4-4, in addition to those
described for wxWindow.

Table 4-4 wxFrame Styles

wxDEFAULT_FRAME_STYLE Defined as wxMINIMIZE_BOX | wxMAXIMIZE_BOX |
wxRESIZE_BORDER | wxSYSTEM_MENU | wxCAPTION
| wxCLOSE_BOX.

wxICONIZE Displays the frame iconized (minimized). Windows
only.

wxCAPTION Puts a caption on the frame.
wxMINIMIZE Identical to wxICONIZE. Windows only.
wxMINIMIZE_BOX Displays a minimize box on the frame.
wxMAXIMIZE Displays the frame maximized. Windows only.
wxMAXIMIZE_BOX Displays a maximize box on the frame.
wxCLOSE_BOX Displays a close box on the frame.
wxSTAY_ON_TOP The frame stays on top of all other windows.

Windows only.
wxSYSTEM_MENU Displays a system menu.
wxRESIZE_BORDER Displays a resizable border around the window.
wxFRAME_TOOL_WINDOW Causes a frame with a small title bar to be created;

the frame does not appear in the taskbar under
Windows.

58 Window Basics Chapter 4

Figure 4-3 A typical wxFrame

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 58

wxFRAME_NO_TASKBAR Creates an otherwise normal frame, but it does not
appear in the taskbar under Windows or Linux
(note that on Windows it will minimize to the desk-
top window, which may seem strange to users and
thus it might be better to use this style without the
wxMINIMIZE_BOX style). Has no effect under other
platforms.

wxFRAME_FLOAT_ON_PARENT The frame will always be on top of its parent. A
frame created with this style must have a non-NULL
parent.

wxFRAME_SHAPED Windows with this style are allowed to have their
shape changed with the SetShape method.

Table 4-5 shows the extra styles that couldn’t be accommodated in the regular
style and that are set using wxWindow::SetExtraStyle.

Table 4-5 wxFrame Extra Styles

wxFRAME_EX_CONTEXTHELP Under Windows, puts a query button on the caption.
When pressed, Windows will go into a context-sensitive
help mode and wxWidgets will send a wxEVT_HELP
event if the user clicked on an application window. You
cannot use this style together with wxMAXIMIZE_BOX or
wxMINIMIZE_BOX.

wxFRAME_EX_METAL Under Mac OS X, this style will give the frame a
metallic appearance. This should be used sparingly
and is intended for consumer applications that emu-
late a physical device such as an audio player.

wxFrame Events

wxFrame and its derived classes generate the events listed in Table 4-6, in addi-
tion to those mentioned for wxWindow.

Table 4-6 wxFrame Events

EVT_ACTIVATE(func) Processes a wxEVT_ACTIVATE event, generated when
the frame is about to be activated or deactivated.
Handlers take a wxActivateEvent object.

EVT_CLOSE(func) Processes a wxEVT_CLOSE event, generated when the
program or windowing system is trying to close the
frame. Handlers take a wxCloseEvent object and can
veto the close by calling Veto on the object.

Top-Level Windows 59

(continues)

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 59

Table 4-6 wxFrame Events (Continued)

EVT_ICONIZE(func) Processes a wxEVT_ICONIZE event, generated when the
frame is being iconized (minimized) or restored.
Handlers take a wxIconizeEvent object. Call IsIconized
to check if this is an iconize or restore event.

EVT_MAXIMIZE(func) Processes a wxEVT_MAXIMIZE event, generated when
the frame is being maximized or restored. Handlers take
a wxMaximizeEvent object. Call IsMaximized to check if
this is a maximize or restore event.

wxFrame Member Functions

These are the major wxFrame functions. Because wxFrame derives from
wxTopLevelWindow and wxWindow, please also refer also to the member functions
for these classes.

CreateStatusBar creates one or more status fields at the bottom of the
frame. Use SetStatusText to set the text for a particular field, and
SetStatusWidths to customize the widths of the fields (see also wxStatusBar
later in this chapter). For example:

frame->CreateStatusBar(2, wxST_SIZEGRIP);
int widths[3] = { 100, 100, -1 };
frame->SetStatusWidths(3, widths);
frame->SetStatusText(wxT(“Ready”), 0);

CreateToolBar creates a toolbar under the menu bar and associates it with
the frame. Alternatively, you can create a toolbar by using the wxToolBar con-
structor, but to allow it to be managed by the frame, you need to call
wxFrame::SetToolBar.

GetMenuBar and SetMenuBar are accessors for the frame’s wxMenuBar. There
is only one menu bar per frame. You can replace an existing one with a new
menu bar, and the old menu bar will be deleted.

GetTitle and SetTitle are accessors for the title that appears on the
frame’s title bar.

Iconize iconizes or restores the frame. You can test the frame’s iconic
state by calling IsIconized.

Maximize resizes the frame to fit the desktop, or restores it to the previous
state if it is currently maximized. Call IsMaximized to test whether the frame is
maximized.

SetIcon sets the icon displayed when the frame is minimized. It’s also
used for other purposes by the window manager, such as displaying the pro-
gram’s icon in Windows Explorer or on the taskbar. You can also use SetIcons
to set an icon bundle (multiple icons with a variety of resolutions and depths).

60 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 60

SetShape sets a region specifying the shape of the frame on some plat-
forms (currently Windows, Mac OS X, and GTK+, and X11 if the appropriate
X11 extension is available).

ShowFullScreen hides as many decorations as possible and shows the
client window at the maximum size of the display. It can also restore the frame
to its former size and state. Use IsFullScreen to determine whether the frame
is currently being shown full-screen.

Non-Rectangular Frames

If you want to write a more unusual-looking consumer application, such as a
clock or media player, you can set a non-rectangular region for the frame, and
only that region will be displayed. In Figure 4-4, the frame has no decorations
(such as caption, border, or menu bar), and its paint handler is displaying a
penguin bitmap. There is a region associated with the frame that acts as a
mask that lets only the penguin show through.

Top-Level Windows 61

Figure 4-4 A shaped wxFrame

The principles are demonstrated by the code in samples/shaped, although
it uses a different image from the one shown here. When the frame is created,
a bitmap is loaded, and a region is created out of it. On GTK+, setting the win-
dow shape must be delayed until the window creation event is sent, so you will
need a __WXGTK__ test in your code. The following code demonstrates the
required event table, frame constructor, and window creation event handler:

BEGIN_EVENT_TABLE(ShapedFrame, wxFrame)
EVT_MOTION(ShapedFrame::OnMouseMove)
EVT_PAINT(ShapedFrame::OnPaint)

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 61

#ifdef __WXGTK__
EVT_WINDOW_CREATE(ShapedFrame::OnWindowCreate)

#endif
END_EVENT_TABLE()

ShapedFrame::ShapedFrame()
: wxFrame((wxFrame *)NULL, wxID_ANY, wxEmptyString,

wxDefaultPosition, wxSize(250, 300),
| wxFRAME_SHAPED
| wxSIMPLE_BORDER
| wxFRAME_NO_TASKBAR
| wxSTAY_ON_TOP

)
{

m_hasShape = false;
m_bmp = wxBitmap(wxT(“penguin.png”), wxBITMAP_TYPE_PNG);
SetSize(wxSize(m_bmp.GetWidth(), m_bmp.GetHeight()));

#ifndef __WXGTK__
// On wxGTK we can’t do this yet because the window hasn’t
// been created yet so we wait until the EVT_WINDOW_CREATE
// event happens. On wxMSW and wxMac the window has been created
// at this point so we go ahead and set the shape now.
SetWindowShape();

#endif
}

// Used on GTK+ only
void ShapedFrame::OnWindowCreate(wxWindowCreateEvent& WXUNUSED(evt))
{

SetWindowShape();
}

To set the shape, we create a region from the bitmap and the color to be used
as the transparent color, and call SetShape.

void ShapedFrame::SetWindowShape()
{

wxRegion region(m_bmp, *wxWHITE);
m_hasShape = SetShape(region);

}

In order to allow the window to be moved around the screen, there is a mouse
handler that explicitly moves the window.

void ShapedFrame::OnMouseMove(wxMouseEvent& evt)
{

wxPoint pt = evt.GetPosition();
if (evt.Dragging() && evt.LeftIsDown())
{

wxPoint pos = ClientToScreen(pt);
Move(wxPoint(pos.x - m_delta.x, pos.y - m_delta.y));

}
}

62 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 62

The paint handler is very simple, but of course in a real application, you will
have other windows or graphics displayed inside the frame.

void ShapedFrame::OnPaint(wxPaintEvent& evt)
{

wxPaintDC dc(this);
dc.DrawBitmap(m_bmp, 0, 0, true);

}

For more details, see samples/shaped in the wxWidgets distribution.

Mini-Frames

On Windows and GTK+, you can use wxMiniFrame for frames that must have a
small caption—for example, if implementing tool palettes. Figure 4-5 shows a
wxMiniFrame on Windows. This class is implemented as a normal frame on Mac
OS X. There are no special styles or member functions for this class.

Top-Level Windows 63

Figure 4-5 A wxMiniFrame

wxMDIParentFrame

This frame class, derived from wxFrame, is part of wxWidgets’ Multiple
Document Interface (MDI) support, whereby a parent frame manages zero or
more wxMDIChildFrame windows. How it does so depends on platform; the main
visual differences are illustrated in Figure 4-6. On Windows, the child win-
dows are clipped to the boundary of the main window. These windows can be
tiled, overlapped, or maximized within the main frame so that only one
shows at a time, and a Window menu (automatically added by wxWidgets)
is available for controlling the child windows. The MDI style has the advan-
tage of keeping a desktop relatively uncluttered, grouping together all the
windows in the application. Also, because the main frame’s menu bar is
replaced by the active child frame’s menu bar, the clutter of multiple menu
bars is also reduced.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 63

On platforms where MDI children are contained within the parent, a
wxMDIParentFrame arranges its children on a wxMDIClientWindow, which can coex-
ist with other windows in the frame. In Figure 4-6, the parent frame’s size
event handler sets the sizes and positions of a text control and the client win-
dow. For details, see samples/mdi in your wxWidgets distribution.

Each child frame can have its own menu bar, in addition to the parent
frame’s menu bar. When a child frame is activated, its menu bar is shown.
When there are no child frames, the parent frame’s menu bar is shown. You
need to construct your child frame menu bar carefully to include the same
commands as the parent’s menu bar, adding others that are specific to the
child. The parent frame and child frames can have their own toolbars and sta-
tus bars, but they are not swapped like menu bars.

wxMDIParentFrame has the same constructor as wxFrame.

wxMDIParentFrame Styles

wxMDIParentFrame can have the window styles listed in Table 4-7, in addition to
those described for wxFrame.

Table 4-7 wxMDIParentFrame Styles

wxFRAME_NO_WINDOW_MENU Under Windows, removes the Window menu that is
normally added automatically.

Under GTK+, wxWidgets emulates the MDI style using tabbed windows;
only one window is shown at a time, but the user can switch between windows
quickly using the tabs. On Mac OS, wxMDIParentFrame and wxMDIChildFrame win-
dows look like normal frames, reflecting the fact that documents always open
in a new window on Mac OS.

64 Window Basics Chapter 4

Figure 4-6 wxMDIParentFrame on Windows and GTK+

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 64

wxMDIParentFrame Member Functions

These are the major wxMDIParentFrame functions, in addition to those defined
for wxFrame.

ActivateNext and ActivatePrevious activate the next or previous child
frame.

Cascade and Tile provide two methods to arrange the child frames: over-
lapping and tiling them, respectively. ArrangeIcons lays out any minimized
frames within the client window. These three functions only apply on
Windows.

GetActiveChild provides the application with a pointer to the currently
active child (if any).

GetClientWindow returns a pointer to the client window (a container for
the child frames). You can provide a different client window from the default
by overriding OnCreateClient and returning an instance of your own
wxMDIClientWindow-derived class, but you must then use two-step parent frame
construction.

wxMDIChildFrame

wxMDIChildFrame should always be created as a child of a wxMDIParentFrame win-
dow. As explained in the previous section, its appearance depends on the plat-
form and will either be free-floating or constrained to the boundary of its
parent.

Its constructor is the same as a regular frame; despite the fact that its
true parent is a wxMDIClientWindow, you should pass the frame parent to the
constructor.

For example:

#include “wx/mdi.h”

wxMDIParentFrame* parentFrame = new wxMDIParentFrame(
NULL, ID_MYFRAME, wxT(“Hello wxWidgets”));

wxMDIChildFrame* childFrame = new wxMDIChildFrame(
parentFrame, ID_MYCHILD, wxT(“Child 1”));

childFrame->Show(true);
parentFrame->Show(true);

wxMDIChildFrame Styles

wxMDIChildFrame takes the same styles as wxFrame, although depending on plat-
form, not all of them will take effect.

Top-Level Windows 65

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 65

wxMDIChildFrame Member Functions

These are the major wxMDIChildFrame functions. See also the base class, wxFrame.
Activate activates this frame, bringing it to the front and displaying its

menu bar.
Maximize resizes the frame to fit the parent (Windows only).
Restore sets the frame to the size it was before it was maximized

(Windows only).

wxDialog

A dialog is a top-level window used for presenting information, options, or
selections. It can optionally have a title bar with decorations such as the close
window button and minimize button, and as with wxFrame, you can assign an
icon to the dialog to be shown in the taskbar or equivalent. A dialog can con-
tain any combination of non-top level windows and control—for example, a
wxNotebook with OK and Cancel buttons underneath. As its name suggests, you
use this class to initiate a dialog with a user, presenting specific information
and choices, compared with the frame’s usual role as the main window of an
application.

There are two kinds of dialog—modal and modeless. A modal dialog
blocks program flow and user input on other windows until it is dismissed
(EndModal is called), whereas a modeless dialog behaves more like a frame in
that program flow continues, and input in other windows is still possible. To
show a modal dialog, you should use the ShowModal method, whereas to show a
dialog modelessly, you simply use Show, as with frames.

Note that the modal dialog is one of the very few examples of wxWindow-
derived objects that may be created on the stack and not on the heap. In other
words, you can use the heap method as follows:

void AskUser()
{

MyAskDialog *dlg = new MyAskDialog(...);
if (dlg->ShowModal() == wxID_OK)

...
//else: dialog was cancelled or some another button pressed

dlg->Destroy();
}

You can also achieve the same result by using the stack:

void AskUser()
{

MyAskDialog dlg(...);
if (dlg.ShowModal() == wxID_OK)

...

// no need to call Destroy() here
}

66 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 66

Normally you will derive a new class from wxDialog rather than using it
directly so that you can handle events such as wxEVT_CLOSE (see the following)
and command events. Often you will create your dialog’s controls within the
constructor.

Just as with wxFrame, wxWidgets will resize a single child window to fill
the dialog, but for more than one child, the application is responsible for sizing
and positioning the controls using sizers (see Chapter 7).

When you call Show, wxWidgets calls InitDialog to send a wxInitDialog
Event to the dialog, transferring data to the dialog via validators or other
means.

wxDialog has the following constructor in addition to the default constructor:

wxDialog(wxWindow* parent, wxWindowID id, const wxString& title,
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxDEFAULT_DIALOG_STYLE,
const wxString& name = wxT(“dialog”));

For example:

wxDialog* dialog = new wxDialog(NULL, ID_MYDIALOG,
wxT(“Hello wxWidgets”), wxDefaultPosition,
wxSize(500, 300));

dialog->Show(true);

The dialog won’t be shown until Show(true) or ShowModal is called to give the
application the chance to do child window layout invisibly.

By default, a dialog created with a NULL parent window will be given the
application’s top-level window as parent. Use the wxDIALOG_NO_PARENT style to
prevent this from happening and create an orphan dialog. This is not recom-
mended for modal dialogs.

As with wxFrame, do not use delete to destroy a dialog, but instead use
Destroy or Close to delay deletion until all the object’s events have been
processed. When you call Close, the default wxEVT_CLOSE handler for this func-
tion usually calls Destroy.

Note that before a modal dialog is destroyed, an event handler should
have called EndModal, passing the identifier of the command that closed it
(for example, wxID_OK or wxID_CANCEL). This will exit the dialog’s event loop so
that the dialog object can be destroyed by the code that called ShowModal. The
identifier passed to EndModal will be returned by ShowModal. To clarify, the
OnCancel function in the following example will be called while ShowModal is
in its event loop:

Top-Level Windows 67

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 67

// Event handler for wxID_CANCEL
void MyDialog::OnCancel(wxCommandEvent& event)
{

EndModal(wxID_CANCEL);
}

// Show a dialog
void ShowDialog()
{

// Show the dialog
MyDialog dialog;

// OnCancel or other function is called from within ShowModal
if (dialog.ShowModal() == wxID_CANCEL)
{

...
}

}

Figure 4-7 shows a typical simple dialog, which we’ll create in Chapter 9.
Dialogs can, of course, get more complicated, such as the settings dialog shown
in Figure 4-8. This one has a splitter window, a tree control to navigate
between multiple panels, and a grid control acting as a property editor.

68 Window Basics Chapter 4

Figure 4-7 A typical simple dialog

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 68

wxDialog Styles

wxDialog can have the window styles listed in Table 4-8 in addition to those
described for wxWindow.

Table 4-8 wxDialog Styles

wxDEFAULT_DIALOG_STYLE Defined as wxSYSTEM_MENU | wxCAPTION |
wxCLOSE_BOX.

wxCAPTION Puts a caption on the dialog.
wxMINIMIZE_BOX Displays a minimize box on the dialog.
wxMAXIMIZE_BOX Displays a maximize box on the dialog.
wxCLOSE_BOX Displays a close box on the dialog.
wxSTAY_ON_TOP The dialog stays on top of all other windows.

Windows only.
wxSYSTEM_MENU Displays a system menu.
wxRESIZE_BORDER Displays a resizable border around the window.
wxDIALOG_NO_PARENT A dialog created with a NULL parent window will be

given the application’s top-level window as parent.
Use this style to create an “orphan” dialog. This is not
recommended for modal dialogs.

Top-Level Windows 69

Figure 4-8 A more complex dialog

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 69

Table 4-9 describes extra styles that couldn’t be accommodated in the regular
style, and so are set using wxWindow::SetExtraStyle. Although wxWS_EX_BLOCK_
EVENTS is valid for all windows, we repeat it here because it is set by default.

Table 4-9 wxDialog Extra Styles

wxDIALOG_EX_CONTEXTHELP Under Windows, puts a query button on the caption.
When pressed, Windows will go into a context-
sensitive help mode and wxWidgets will send a
wxEVT_HELP event if the user clicked on an application
window. You cannot use this style together with
wxMAXIMIZE_BOX or wxMINIMIZE_BOX.

wxWS_EX_BLOCK_EVENTS Blocks command event propagation above this win-
dow (the default). Be aware that calling SetExtra
Style may reset the style.

wxDIALOG_EX_METAL Under Mac OS X, this style will give the dialog a
metallic appearance. This should be used sparingly
and is intended for consumer applications that emu-
late a physical device such as an audio player.

wxDialog Events

wxDialog generates the events listed in Table 4-10, in addition to those men-
tioned for wxWindow.

Table 4-10 wxDialog Events

EVT_ACTIVATE(func) Processes a wxEVT_ACTIVATE event, generated when the
dialog is about to be activated or deactivated. Handlers
take a wxActivateEvent object.

EVT_CLOSE(func) Processes a wxEVT_CLOSE event, generated when the pro-
gram or windowing system is trying to close the dialog.
Handlers take a wxCloseEvent object and can veto the
close by calling Veto on the object.

EVT_ICONIZE(func) Processes a wxEVT_ICONIZE event, generated when the
dialog is being iconized (minimized) or restored. Handlers
take a wxIconizeEvent object. Call IsIconized to check if
this is an iconize or restore event.

EVT_MAXIMIZE(func) Processes a wxEVT_MAXIMIZE event, generated when the
dialog is being maximized or restored. Handlers take a
wxMaximizeEvent object. Call IsMaximized to check if this
is a maximize or restore event.

EVT_INIT_DIALOG(func) Processes a wxEVT_INIT_DIALOG event, generated to en-
able the dialog to initialize itself. Handlers take a wxInit
DialogEvent object. This event is also generated for
wxPanel. The default handler calls TransferDataToWindow.

70 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 70

wxDialog Member Functions

These are the major wxDialog functions. Please refer also to the member func-
tions for wxWindow and wxTopLevelWindow, from which wxDialog is derived.

GetTitle and SetTitle are accessors for the title that appears on the dia-
log’s title bar.

Iconize iconizes or restores the dialog. You can test the dialog’s iconic
state by calling IsIconized.

Maximize maximizes the dialog (makes it as large as the desktop) or
restores it to the previous state. Call IsMaximized to test whether the dialog is
maximized. Windows only.

SetIcon sets the icon displayed when the dialog is minimized. It’s also
used for other purposes by the window manager, such as displaying the pro-
gram’s icon in Windows Explorer or on the taskbar. You can also use SetIcons
to set an icon bundle (multiple icons with a variety of resolutions and depths).

ShowModal is used when showing a modal dialog. It returns the value of
the identifier passed to EndModal—normally this is the identifier of the control
that the user clicked on to dismiss the dialog. By default (implemented in the
dialog’s wxEVT_CLOSE handler), closing the dialog sends a simulated wxID_CANCEL
to the dialog. The default handler for wxID_CANCEL calls EndModal with wxID_
CANCEL. Therefore, if you provide a button with the identifier wxID_CANCEL,
the logic for canceling the dialog is handled for you, unless you need extra
functionality.

SetLeftMenu and SetRightMenu are only available on Microsoft
Smartphone, and they set the commands allocated to the left and right menu
buttons. They take a command identifier, such as wxID_OK, a label, and an
optional pointer to a wxMenu to show.

wxPopupWindow

Pop-up windows are not implemented on all platforms (in particular, they are
missing from Mac OS X), and so we will only briefly mention them.

wxPopupWindow is a top-level window that normally has minimal decora-
tion and is used to implement windows that are shown briefly, such as a menu
or a tooltip. Create it by passing a parent window and optional style to the
constructor (defaulting to wxNO_BORDER). Move it into position with Position,
which takes a screen position and size and makes sure that the popup is visi-
ble on the display.

wxPopupTransientWindow is a special kind of wxPopupWindow that dismisses
itself (hides) when it loses the focus or the mouse is clicked outside of the win-
dow. It can also be hidden with Dismiss.

Top-Level Windows 71

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 71

CONTAINER WINDOWS

Container windows are designed to hold further visual elements, either child
windows or graphics drawn on the window.

wxPanel

wxPanel is essentially a wxWindow with some dialog-like properties. This is usu-
ally the class to use when you want to arrange controls on a window that’s not
a wxDialog, such as a wxFrame. It’s often used for pages of a wxNotebook. wxPanel
normally takes the system dialog color.

As with wxDialog, you can use InitDialog to send a wxInitDialogEvent to
the panel, transferring data to the panel via validators or other means.
wxPanel also handles navigation keys such as the Tab key to provide automatic
traversal between controls, if the wxTAB_TRAVERSAL style is provided.

wxPanel has the following constructor in addition to the default
constructor:

wxPanel(wxWindow* parent, wxWindowID id,
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxTAB_TRAVERSAL|wxNO_BORDER,
const wxString& name = wxT(“panel”));

For example:

wxPanel* panel = new wxPanel(frame, wxID_ANY,
wxDefaultPosition, (500, 300));

wxPanel Styles

There are no specific styles for wxPanel, but see the styles for wxWindow.

wxPanel Member Functions

There are no distinct wxPanel functions; please refer to the wxWindow member
functions, inherited by wxPanel.

wxNotebook

This class represents a control with several pages, switched by clicking on tabs
along an edge of the control. A page is normally a wxPanel or a class derived
from it, although you may use other window classes.

72 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 72

Notebook tabs may have images as well as, or instead of, text labels. The
images are supplied via a wxImageList (see Chapter 10), and specified by posi-
tion in the list.

To use a notebook, create a wxNotebook object and call AddPage or
InsertPage, passing a window to be used as the page. Do not explicitly destroy
the window for a page that is currently managed by wxNotebook; use DeletePage
instead, or let the notebook destroy the pages when it is itself destroyed.

Here’s an example of creating a notebook with three panels, and a text
label and icon for each tab:

#include “wx/notebook.h”

#include “copy.xpm”
#include “cut.xpm”
#include “paste.xpm”

// Create the notebook
wxNotebook* notebook = new wxNotebook(parent, wxID_ANY,
wxDefaultPosition, wxSize(300, 200));

// Create the image list
wxImageList* imageList = new wxImageList(16, 16, true, 3);
imageList->Add(wxIcon(copy_xpm));
imageList->Add(wxIcon(paste_xpm));
imageList->Add(wxIcon(cut_xpm));

// Create and add the pages
wxPanel1* window1 = new wxPanel(notebook, wxID_ANY);
wxPanel2* window2 = new wxPanel(notebook, wxID_ANY);
wxPanel3* window3 = new wxPanel(notebook, wxID_ANY);

notebook->AddPage(window1, wxT(“Tab one”), true, 0);
notebook->AddPage(window2, wxT(“Tab two”), false, 1);
notebook->AddPage(window3, wxT(“Tab three”), false 2);

Figure 4-9 shows the result on Windows.

Container Windows 73

Figure 4-9 A wxNotebook

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 73

On most platforms, there are scroll buttons to view tabs that cannot all
be displayed on the window at once. However, on Mac OS, the tabs do not
scroll, so the number you can display is limited by the window and tab label
size.

If you use sizers to lay out controls on individual pages, and pass
wxDefaultSize to the notebook constructor, wxNotebook will adjust its size to fit
the sizes of its pages.

Notebook Theme Management

On Windows XP, the default theme paints a gradient on the notebook’s pages.
Although this is the expected native behavior, it can slow down performance,
and you may prefer a solid background for aesthetic reasons, especially when
the notebook is not being used in a dialog. If you want to suppress themed
drawing, there are three ways of doing it. You can use the wxNB_NOPAGETHEME
style to disable themed drawing for a particular notebook, you can call
wxSystemOptions::SetOption to disable it for the whole application, or you can
disable it for individual pages by using SetBackgroundColour. To disable themed
pages globally, do this:

wxSystemOptions::SetOption(wxT(“msw.notebook.themed-background”), 0);

Set the value to 1 to enable it again. To give a single page a solid background
that matches the current theme, use

wxColour col = notebook->GetThemeBackgroundColour();
if (col.Ok())
{

page->SetBackgroundColour(col);
}

On platforms other than Windows, or if the application is not using Windows
themes, GetThemeBackgroundColour will return an uninitialized color object, and
this code will therefore work on all platforms. Please note that this syntax and
behavior is subject to change, so refer to the wxNotebook documentation in your
wxWidgets distribution for the latest information.

wxNotebook Styles

wxNotebook can have the window styles listed in Table 4-11, in addition to those
described for wxWindow.

74 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 74

Table 4-11 wxNotebook Styles

wxNB_TOP Place tabs on the top side.
wxNB_LEFT Place tabs on the left side. Not supported under Windows XP

for all themes.
wxNB_RIGHT Place tabs on the right side. Not supported under Windows

XP for all themes.
wxNB_BOTTOM Place tabs under instead of above the notebook pages. Not

supported under Windows XP for all themes.
wxNB_FIXEDWIDTH All tabs will have same width. Windows only.
wxNB_MULTILINE There can be several rows of tabs. Windows only.
wxNB_NOPAGETHEME On Windows, suppresses the textured theme painting for the

notebook’s pages, drawing a solid color to match the current
theme instead. This can improve performance in addition to
giving an aesthetic choice.

wxNotebook Events

wxNotebook generates wxNotebookEvent propagating events (events that can be
handled by the notebook or its ancestors) specified in Table 4-12.

Table 4-12 wxNotebook Events

EVT_NOTEBOOK_PAGE_CHANGED(id, func) The page selection has changed.
EVT_NOTEBOOK_PAGE_CHANGING(id, func) The page selection is about to change.

You can veto the selection change with
Veto.

wxNotebook Member Functions

These are the major wxNotebook functions.
AddPage adds a page, and InsertPage inserts a page at the given position.

You can use a text label for the tab, or an image (specified by index into an
image list), or both. For example:

// Adds an unselected page with a label and an image
// (index 2 in the associated image list).
notebook->AddPage(page, wxT(“My tab”), false, 2);

DeletePage removes and destroys the specified page, while RemovePage just
removes the page without deleting the page. Call DeleteAllPages to delete all
the pages. When the wxNotebook is deleted, it will delete all its pages.

Container Windows 75

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 75

AdvanceSelection cycles through the pages, and SetSelection sets the
specified page by zero-based index. Use GetSelection to get the index of the
selected page, or wxNOT_FOUND if none was selected.

SetImageList sets a wxImageList to be used by the notebook but does not
take ownership of it. Call AssignImageList if you want the notebook to delete
the image list when it is destroyed. GetImageList returns the associated image
list. An image list stores images to be shown on each page tab, if required.
wxImageList is described in Chapter 10.

Use GetPage to return the page window for a given index, and use
GetPageCount to return the number of pages in the notebook.

SetPageText and GetPageText are accessors for the label for a given page
(by index).

SetPageImage and GetPageImage are accessors for the index of a page’s
image index in the notebook’s image list.

Alternatives to wxNotebook

wxNotebook is derived from a base class wxBookCtrlBase, which abstracts the
concept of a control that manages pages. There are two API-compatible varia-
tions of the wxNotebook concept, wxListbook and wxChoicebook, and you can
implement your own, such as wxTreebook.

wxListbook uses a wxListCtrl to change pages; the list control displays
icons with text labels underneath them, and can be on any of the four sides,
defaulting to the left side. This is an attractive alternative to wxNotebook, and it
has the advantage of being able to cope with an arbitrary number of pages
even on Mac OS X because the list control can scroll.

wxChoicebook uses a choice control (a drop-down list) and is particularly
handy for small devices with restricted screen space, such as smartphones. It
does not display images, and by default, it will display the choice control at the
top.

The include files for these classes are wx/listbook.h and wx/choicebk.h.
Event handlers for these two classes take a wxListbookEvent or
wxChoicebookEvent argument, respectively, and you can use the event macros
EVT_XXX_PAGE_CHANGED(id, func) and EVT_XXX_PAGE_CHANGING(id, func) where
XXX is LISTBOOK or CHOICEBOOK.

You can use the same window styles as wxNotebook, or you can use the
equivalents, such as wxCHB_TOP or wxLB_TOP instead of wxNB_TOP.

wxScrolledWindow

All windows can have scrollbars, but extra code is required to make scrolling
work. This gives the flexibility to define appropriate scrolling behaviors for dif-
ferent kinds of windows. wxScrolledWindow implements commonly required
scrolling behavior by assuming that scrolling happens in consistent units, not
different-sized jumps, and that page size (the amount scrolled when “paging”

76 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 76

up, down, left, or right) is represented by the visible portion of the window. It is
suited to drawing applications but is not so suitable for a sophisticated editor
in which the amount scrolled may vary according to the size of text on a given
line. For this, you would derive from wxWindow and implement scrolling your-
self. wxGrid is an example of a class that implements its own scrolling, largely
because columns and rows can vary in size.

To use a scrolled window, you need to define the number of pixels per log-
ical scroll unit (how much the window is scrolled for a line up or down scroll
event) and provide the virtual size in logical units. wxScrolledWindow will then
take care of showing the scrollbars with appropriately sized “thumbs” (the
parts you can drag) and will show or hide scrollbars as appropriate, according
to the actual size of the window.

The following fragment shows how to create a scrolled window:

#include “wx/scrolwin.h”

wxScrolledWindow* scrolledWindow = new wxScrolledWindow(
this, wxID_ANY, wxPoint(0, 0), wxSize(400, 400),
wxVSCROLL|wxHSCROLL);

// Set up virtual window dimensions. It will be 1000x1000
// and will scroll 10 pixels at a time
int pixelsPerUnixX = 10;
int pixelsPerUnixY = 10;
int noUnitsX = 1000;
int noUnitsY = 1000;

scrolledWindow->SetScrollbars(pixelsPerUnitX, pixelsPerUnitY,
noUnitsX, noUnitsY);

A second way to specify the virtual size is to use SetVirtualSize, which takes
the virtual size in pixels, plus a call to SetScrollRate to set the horizontal and
vertical scrolling increments. A third way is to set a sizer for the window, and
the scrolled window will calculate the required scrollbar dimensions from the
space taken up by the child windows. You will still need to call SetScrollRate to
specify the scrolling increments.

You can provide a paint event handler as normal, but in order to draw
the graphics at the appropriate position for the current positions of the scroll-
bars, call DoPrepareDC before drawing. This sets the device context’s device
origin. For example:

void MyScrolledWindow::OnPaint(wxPaintEvent& event)
{

wxPaintDC dc(this);
DoPrepareDC(dc);

dc.SetPen(*wxBLACK_PEN);
dc.DrawLine(0, 0, 100, 100);

}

Container Windows 77

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 77

Alternatively, you can override the OnDraw virtual function; wxScrolledWindow
creates a paint device context and calls DoPrepareDC for you before calling your
OnDraw function, so the code simplifies to the following:

void MyScrolledWindow::OnDraw(wxDC& dc)
{

dc.SetPen(*wxBLACK_PEN);
dc.DrawLine(0, 0, 100, 100);

}

Note that you will need to call DoPrepareDC if you draw on the window from
outside the paint event, such as within a mouse event handler.

You can provide your own DoPrepareDC function. The default function sim-
ply shifts the device origin according to the current scroll positions so that
subsequent drawing will appear at the right place:

void wxScrolledWindow::DoPrepareDC(wxDC& dc)
{

int ppuX, ppuY, startX, startY;

GetScrollPixelsPerUnit(& ppuX, & ppuY);
GetViewStart(& startX, & startY);

dc.SetDeviceOrigin(- startX * ppuX, - startY * ppuY);
}

For more on painting on a wxScrolledWindow, including using buffered
drawing, please see the section on wxPaintDC in Chapter 5, “Drawing and
Printing.”

wxScrolledWindow Styles

There are no special styles for wxScrolledWindow, but usually you will supply
wxVSCROLL|wxHSCROLL (the default style for wxScrolledWindow). On some plat-
forms, if these styles are not present, no scrollbars will be provided for effi-
ciency reasons.

wxScrolledWindow Events

wxScrolledWindow generates wxScrollWinEvent events (see Table 4-13). These
events do not propagate up the window parent-child hierarchy, so if you want
to intercept these events, you must derive a new class or plug an event han-
dler object into the window object. Normally you will not need to override the
existing handlers for these events.

78 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 78

Table 4-13 wxScrolledWindow Events

EVT_SCROLLWIN(func) Handles all scroll events.
EVT_SCROLLWIN_TOP(func) Handles wxEVT_SCROLLWIN_TOP scroll-to-top

events.
EVT_SCROLLWIN_BOTTOM(func) Handles wxEVT_SCROLLWIN_TOP scroll-to-

bottom events.
EVT_SCROLLWIN_LINEUP(func) Handles wxEVT_SCROLLWIN_LINEUP line up

events.
EVT_SCROLLWIN_LINEDOWN(func) Handles wxEVT_SCROLLWIN_LINEDOWN line

down events.
EVT_SCROLLWIN_PAGEUP(func) Handles wxEVT_SCROLLWIN_PAGEUP page

up events.
EVT_SCROLLWIN_PAGEDOWN(func) Handles wxEVT_SCROLLWIN_PAGEDOWN page

down events.

wxScrolledWindow Member Functions

These are the major wxScrolledWindow functions.
CalcScrolledPosition and CalcUnscrolledPosition both take four argu-

ments: two integers for the position input in pixels, and two pointers to inte-
gers for the transformed position output, also in pixels. CalcScrolledPosition
calculates the device position from the logical position. For example, if the
window is scrolled 10 pixels down from the top, the logical first visible position
is 0, but the device position is -10. CalcUnscrolledPosition does the inverse, cal-
culating the logical position from the device position.

EnableScrolling enables or disables physical scrolling in horizontal and
vertical directions independently. Physical scrolling is the physical transfer of
bits up or down the screen when a scroll event occurs. If the application scrolls
by a variable amount (for example, if there are different font sizes), then phys-
ical scrolling will not work, and you should switch it off. If physical scrolling is
disabled, you will have to reposition child windows yourself. Physical scrolling
may not be available on all platforms, but it is enabled by default where it is
available.

GetScrollPixelsPerUnit returns the horizontal and vertical scroll unit
sizes in two pointers to integers. A value of zero indicates that there is no
scrolling in that direction.

GetViewStart returns the position of the first visible position on the win-
dow, in logical units. Pass two pointers to integers to receive the values. You
will need to multiply by the values returned by GetScrollPixelsPerUnit to get
pixel values.

Container Windows 79

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 79

GetVirtualSize returns the size in device units (pixels) of the scrollable
window area. Pass two pointers to integers to receive the virtual width and
height.

DoPrepareDC prepares the device context by setting the device origin
according to the current scrollbar positions.

Scroll scrolls a window so that the view is at the given point in scroll
units (not pixels), passed as two integers. If either parameter is -1, that posi-
tion will be unchanged.

SetScrollbars sets the pixels per unit in each direction, the number of
units for the virtual window in each direction, the horizontal and vertical posi-
tion to scroll to (optional), and a boolean to indicate whether the window
should be refreshed (false by default).

SetScrollRate sets the horizontal and increment scroll rate (the same as
the pixels per unit parameters in SetScrollbars).

SetTargetWindow can be used to scroll a window other than the
wxScrolledWindow.

Scrolling Without Using wxScrolledWindow

If you want to implement your own scrolling behavior, you can derive a class
from wxWindow and use wxWindow::SetScrollbar to set scrollbar properties.

SetScrollbar takes the arguments listed in Table 4-14.

Table 4-14 SetScrollbar Arguments

int orientation The scrollbar to set: wxVERTICAL or wxHORIZONTAL.
int position The position of the scrollbar “thumb” in scroll units.
int visible The size of the visible portion of the scrollbar, in scroll units.

Normally, a scrollbar is capable of indicating the visible por-
tion visually by showing a different length of thumb.

int range The maximum value of the scrollbar, where zero is the start
position. You choose the units that suit you, so if you wanted
to display text that has 100 lines, you would set this to 100.
Note that this doesn’t have to correspond to the number of
pixels scrolled—it is up to you how you actually show the
contents of the window.

bool refresh true if the scrollbar should be repainted immediately.

Let’s say you want to display 50 lines of text, using the same font. The window
is sized so that you can only see 16 lines at a time.

You would use

SetScrollbar(wxVERTICAL, 0, 16, 50)

80 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 80

Note that with the window at this size, the thumb position can never go above
50 minus 16, or 34.

You can determine how many lines are currently visible by dividing the
current view size by the character height in pixels.

When defining your own scrollbar behavior, you will always need to
recalculate the scrollbar settings when the window size changes. You could
therefore introduce a new function AdjustScrollbars into which you place your
scrollbar calculations and SetScrollbar call. AdjustScrollbars can be called ini-
tially, and also from your wxSizeEvent handler function.

It’s instructive to look at the implementations of wxScrolledWindow and
wxGrid if you’re thinking of implementing your own scrolling behavior.

You may want to look at wxVScrolledWindow in the wxWidgets reference
manual; this can be used to build a scrolled window class that can scroll by
lines of unequal height in the vertical direction.

wxSplitterWindow

This class manages up to two subwindows (use nested splitter windows if you
need more splits). The current view can be split into two by the application, for
example, from a menu command. It can be unsplit either by the application or
via the splitter window user interface by double-clicking on the sash or drag-
ging the sash until one of the panes has zero size (override the latter behavior
with SetMinimumPaneSize).

On most platforms, when the sash is dragged, a reverse-video line will be
drawn to show where the sash will end up. You can pass wxSP_LIVE_UPDATE to
let the sash move in “real time” instead, resizing the child windows. This is the
default (and only) mode on Mac OS X.

The following fragment shows how to create a splitter window, creating
two subwindows and hiding one of them.

#include “wx/splitter.h”

wxSplitterWindow* splitter = new wxSplitterWindow(this, wxID_ANY,
wxPoint(0, 0), wxSize(400, 400), wxSP_3D);

leftWindow = new MyWindow(splitter);
leftWindow->SetScrollbars(20, 20, 50, 50);

rightWindow = new MyWindow(splitter);
rightWindow->SetScrollbars(20, 20, 50, 50);
rightWindow->Show(false);

splitter->Initialize(leftWindow);

// Unncomment this to prevent unsplitting
// splitter->SetMinimumPaneSize(20);

Container Windows 81

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 81

This fragment shows how the splitter window can be manipulated after
creation:

void MyFrame::OnSplitVertical(wxCommandEvent& event)
{

if (splitter->IsSplit())
splitter->Unsplit();

leftWindow->Show(true);
rightWindow->Show(true);
splitter->SplitVertically(leftWindow, rightWindow);

}

void MyFrame::OnSplitHorizontal(wxCommandEvent& event)
{

if (splitter->IsSplit())
splitter->Unsplit();

leftWindow->Show(true);
rightWindow->Show(true);
splitter->SplitHorizontally(leftWindow, rightWindow);

}

void MyFrame::OnUnsplit(wxCommandEvent& event)
{

if (splitter->IsSplit())
splitter->Unsplit();

}

Figure 4-10 shows how the wxWidgets splitter sample looks on Windows with-
out the wxSP_NO_XP_THEME style. If you use this style, the splitter will take on a
more traditional look with a sunken border and 3D sash.

82 Window Basics Chapter 4

Figure 4-10 A wxSplitterWindow

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 82

wxSplitterWindow Styles

wxSplitterWindow can have the window styles shown in Table 4-15 in addition
to those described for wxWindow.

Table 4-15 wxSplitterWindow Styles

wxSP_3D Draws a 3D-effect border and sash.
wxSP_3DSASH Draws a 3D-effect sash.
wxSP_3DBORDER Synonym for wxSP_BORDER.
wxSP_BORDER Draws a standard border.
wxSP_NOBORDER No border (the default).
wxSP_NO_XP_THEME Add a sunken border and 3D sash on Windows, if you

don’t like the minimal (but more native) look.
wxSP_PERMIT_UNSPLIT Always enable the window to unsplit, even with the

minimum pane size other than zero.
wxSP_LIVE_UPDATE Resize the child windows immediately as the splitter is

being moved.

wxSplitterWindow Events

wxSplitterWindow generates wxSplitterEvent propagating events, as listed in
Table 4-16.

Table 4-16 wxSplitterWindow Events

EVT_SPLITTER_SASH_POS_ Processes a wxEVT_COMMAND_SPLITTER_SASH_
CHANGING(id, func) POS_CHANGING event, generated when the

sash position is in the process of being
changed. Call Veto to stop the sash position
changing, or call the event's
SetSashPosition function to change the
sash position.

EVT_SPLITTER_SASH(id, func) Processes a wxEVT_COMMAND_SPLITTER_
SASH_POS_CHANGED event, generated when
the sash position is changed. May be used
to modify the sash position before it is set,
or to prevent the change from taking place,
by calling the event's SetSashPosition
function.

EVT_SPLITTER_UNSPLIT(id, func) Processes a wxEVT_COMMAND_SPLITTER_
UNSPLIT event, generated when the splitter
is unsplit.

EVT_SPLITTER_DCLICK(id, func) Processes a wxEVT_COMMAND_SPLITTER_
DOUBLECLICKED event, generated when the
sash is double-clicked.

Container Windows 83

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 83

wxSplitterWindow Member Functions

These are the major wxSplitterWindow functions.
GetMinimumPaneSize and SetMinimumPaneSize are accessors for the mini-

mum pane size. The default minimum pane size is zero, which means that
either pane can be reduced to zero by dragging the sash, thus removing one of
the panes. To prevent this behavior (and veto out-of-range sash dragging), set
a minimum size, for example 20 pixels. However, if the wxSP_PERMIT_UNSPLIT
style is used when a splitter window is created, the window may be unsplit
even if the minimum size is non-zero.

GetSashPosition and SetSashPosition are accessors for the sash position.
Passing true to SetSashPosition resizes the pane and redraws the sash and border.

GetSplitMode and SetSplitMode are accessors for the split orientation,
which can be wxSPLIT_VERTICAL or wxSPLIT_HORIZONTAL.

GetWindow1 and GetWindow2 get the pointers to the two panes.
Initialize can be called with a pointer to a window if you only want to

have one pane initially.
IsSplit tests whether the window is split.
ReplaceWindow replaces one of the windows managed by the wxSplitter

Window with another one. Generally, it’s better to use this function instead of
calling Unsplit and then resplitting the window.

SetSashGravity takes a floating-point argument, which determines the
position of the sash as the window is resized. A value of 0.0 (the default)
means that only the bottom or right child window will be resized, and a value
of 1.0 means that only the top or left child window will be resized. Values inbe-
tween indicate that the change in size should be distributed between both
child windows (a value of 0.5 distributes the size evenly). Use GetSashGravity
to return the current setting.

SplitHorizontally and SplitVertically initialize the splitter window with
two panes and optionally an initial sash size.

Unsplit removes the specified pane.
UpdateSize causes the splitter to update its sash position immediately

(normally, this is done in idle time).

Sizing Issues with wxSplitterWindow

There are subtleties to be aware of when using a splitter window as part of a
sizer hierarchy. If you don’t need the sash to be moveable, you can create both
child windows with absolute sizes. This will fix the minimum size of both child
windows, and the sash will therefore not be free to move. If you need the sash
to be moveable, as is normally the case, pass default values to the child win-
dows and specify an initial minimum size in the splitter window constructor.
Then add the splitter window to its sizer, passing the wxFIXED_MINSIZE flag to
Add, which tells wxWidgets to treat the specified size as the minimum size.

Another issue is that a splitter does not set its sash position (and there-
fore the sizes of its child windows) until idle time, when it can be sure that sizing

84 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 84

has been finalized and the sash position won’t be set prematurely. This can
result in a sash that visibly repositions itself just after the window has been
shown. To fix this, call wxSplitterWindow::UpdateSize as soon as you have done
your layout, for example after a wxSizer::Fit call. The splitter will update its
sash and child window sizes immediately.

By default, when the user or application resizes the splitter, only the bot-
tom (or right) window is adjusted to take into account the new size. If you need
different behavior, use SetSashGravity as documented in the previous section.

Alternatives to wxSplitterWindow

If you have a lot of “split” windows in your application, consider using
wxSashWindow. This is a window that allows any of its edges to have a sash (as
specified by the application) that can be dragged to resize the window. The
actual content window is normally created by the application as a child of
wxSashWindow.

When a sash is dragged, it notifies the application with a wxSashEvent so
the handler can change the window size accordingly before laying out the win-
dows. Layout is achieved via a class called wxLayoutAlgorithm, which provides
LayoutWindow, LayoutFrame, and LayoutMDIFrame methods for arranging the sash
windows on different kinds of parent windows.

You can also use the class wxSashLayoutWindow, which responds to events
of type wxQueryLayoutInfoEvent to provide orientation and size information to
wxLayoutAlgorithm.

Please see the reference manual for further details. wxSashWindow doesn’t
permit moving or undocking windows, and it’s likely that these classes will be
superceded by a general docking and layout framework in the near future.

Figure 4-11 shows a view of the wxSashWindow sample provided in
samples/sashtest.

Container Windows 85

Figure 4-11 The wxSashWindow demo

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 85

NON-STATIC CONTROLS

Non-static controls, such as wxButton and wxListBox, respond to mouse and key-
board input. We’ll describe the basic ones here; more advanced controls are
described in Chapter 12. You can also download others (see Appendix E) or
create your own.

wxButton

A wxButton is a control that looks like a physical push button with a text label,
and it is one of the most common elements of a user interface. It may be placed
on a dialog box or panel, or almost any other window. A command event is gen-
erated when the user clicks on the button.

Here’s a simple example of creating a button:

#include “wx/button.h”

wxButton* button = new wxButton(panel, wxID_OK, wxT(“OK”),
wxPoint(10, 10), wxDefaultSize);

Figure 4-12 shows how a button with the default size looks on Windows XP.

86 Window Basics Chapter 4

Figure 4-12 A wxButton

wxWidgets obtains the default button size by calling the static function
wxButton::GetDefaultSize, calculated appropriately for each platform, but you
can let wxWidgets size the button to just fit the label by passing the style
wxBU_EXACTFIT.

wxButton Styles

Table 4-17 lists the specific window styles for wxButton.

Table 4-17 wxButton Styles

wxBU_LEFT Left-justifies the label. Windows and GTK+ only.
wxBU_TOP Aligns the label to the top of the button. Windows and GTK+ only.
wxBU_RIGHT Right-justifies the bitmap label. Windows and GTK+ only.
wxBU_BOTTOM Aligns the label to the bottom of the button. Windows and GTK+

only.
wxBU_EXACTFIT Creates the button as small as possible instead of making it the

standard size.
wxNO_BORDER Creates a flat button. Windows and GTK+ only.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 86

wxButton Events

wxButton generates a wxCommandEvent propagating event, as shown in
Table 4-18.

Table 4-18 wxButton Events

EVT_BUTTON(id, func) Processes a wxEVT_COMMAND_BUTTON_CLICKED event,
generated when the user left-clicks on a wxButton.

wxButton Member Functions

These are the major wxButton functions.
SetLabel and GetLabel are accessors for the button label. You can use an

ampersand to indicate that the following letter is a mnemonic on Windows
and GTK+.

SetDefault sets this button to be the default button on the parent win-
dow, so pressing the Enter key activates this button.

wxButton Labels

You can use an ampersand in the button label to indicate that the next letter
is an underlined mnemonic (or “access key”), so that the user can press that
key instead of clicking on the button. The mnemonic only works on Windows
and GTK+; on other platforms, the ampersand will simply be stripped from
the label and ignored.

On some systems, notably GTK+, standard buttons such as OK and New
are displayed with special graphics in line with the native look and feel for
that platform. wxWidgets maps some of its standard window identifiers to
these stock buttons, but it also permits the application to substitute a custom
label should the need arise.

The recommended usage is as follows. When using a stock button identi-
fier, and you want wxWidgets to supply the label, just supply the identifier
and not the label (or an empty string for the label). For example:

wxButton* button = new wxButton(this, wxID_OK);

wxWidgets will substitute the correct standard label on all platforms. For
example, on Windows and Mac OS X, the string “&OK” will be used. On GTK+,
the stock OK button will be used. However, if you supply a label that is
different from the stock label, wxWidgets will use that label. For example:

wxButton* button = new wxButton(this, wxID_OK, wxT(“&Apply”));

Non-Static Controls 87

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 87

This will result in the “Apply” label being displayed on all platforms, overrid-
ing the standard identifier.

You can get the stock button label for a given identifier with
wxGetStockLabel (include wx/stockitem.h), passing the identifier, true (if you
want menu codes to be included), and an optional accelerator string to append.

Table 4-19 shows the stock button identifiers and their corresponding
labels.

Table 4-19 Stock Button Identifiers

Stock Button Identifier Stock Button Label
wxID_ADD "Add"
wxID_APPLY "&Apply"
wxID_BOLD "&Bold"
wxID_CANCEL "&Cancel"
wxID_CLEAR "&Clear"
wxID_CLOSE "&Close"
wxID_COPY "&Copy"
wxID_CUT "Cu&t"
wxID_DELETE "&Delete"
wxID_FIND "&Find"
wxID_REPLACE "Rep&lace"
wxID_BACKWARD "&Back"
wxID_DOWN "&Down"
wxID_FORWARD "&Forward"
wxID_UP "&Up"
wxID_HELP "&Help"
wxID_HOME "&Home"
wxID_INDENT "Indent"
wxID_INDEX "&Index"
wxID_ITALIC "&Italic"
wxID_JUSTIFY_CENTER "Centered"
wxID_JUSTIFY_FILL "Justified"
wxID_JUSTIFY_LEFT "Align Left"
wxID_JUSTIFY_RIGHT "Align Right"
wxID_NEW "&New"
wxID_NO "&No"
wxID_OK "&OK"
wxID_OPEN "&Open"
wxID_PASTE "&Paste"

88 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 88

wxID_PREFERENCES "&Preferences"
wxID_PRINT "&Print"
wxID_PREVIEW "Print previe&w"
wxID_PROPERTIES "&Properties"
wxID_EXIT "&Quit"
wxID_REDO "&Redo"
wxID_REFRESH "Refresh"
wxID_REMOVE "Remove"
wxID_REVERT_TO_SAVED "Revert to Saved"
wxID_SAVE "&Save"
wxID_SAVEAS "Save &As..."
wxID_STOP "&Stop"
wxID_UNDELETE "Undelete"
wxID_UNDERLINE "&Underline"
wxID_UNDO "&Undo"
wxID_UNINDENT "&Unindent"
wxID_YES "&Yes"
wxID_ZOOM_100 "&Actual Size"
wxID_ZOOM_FIT "Zoom to &Fit"
wxID_ZOOM_IN "Zoom &In"
wxID_ZOOM_OUT "Zoom &Out"

wxBitmapButton

A bitmap button is like a normal text button, but it shows a bitmap instead of
text. A command event is generated when the user clicks on the button.

Here’s a simple example of creating a bitmap button:

#include “wx/bmpbuttn.h”

wxBitmap bitmap(wxT(“print.xpm”), wxBITMAP_TYPE_XPM);
wxBitmapButton* button = new wxBitmapButton(panel, wxID_OK,

bitmap, wxDefaultPosition, wxDefaultSize, wxBU_AUTODRAW);

Figure 4-13 shows the result under Windows.

Non-Static Controls 89

Figure 4-13 A wxBitmapButton

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 89

A bitmap button can be supplied with a single bitmap (optionally with
transparency information), and wxWidgets will draw all button states using
this bitmap. If the application needs more control, additional bitmaps for the
selected state, unpressed focused state, and grayed-out state may be supplied.

XPM is a good choice of bitmap format for buttons because it supports
transparency and can be included into C++ code, but you can load them from
other formats too, such as JPEG, PNG, GIF, and BMP.

wxBitmapButton Styles

Table 4-20 lists the specific window styles for wxBitmapButton.

Table 4-20 wxBitmapButton Styles

wxBU_AUTODRAW If this is specified, the button will be drawn automatically
using the label bitmap only, providing a 3D-look border. If this
style is not specified, the button will be drawn without borders
and using all provided bitmaps. Windows and Mac OS only.

wxBU_LEFT Left-justifies the bitmap label. Ignored on Mac OS.
wxBU_TOP Aligns the bitmap label to the top of the button. Ignored on

Mac OS.
wxBU_RIGHT Right-justifies the bitmap label. Ignored on Mac OS.
wxBU_BOTTOM Aligns the bitmap label to the bottom of the button. Ignored on

Mac OS.

wxBitmapButton Events

wxBitmapButton generates wxCommandEvent propagating events, identical to
wxButton.

wxBitmapButton Member Functions

These are the major wxBitmapButton functions.
SetBitmapLabel and GetBitmapLabel are accessors for the main button

label bitmap. You can also use SetBitmapFocus, SetBitmapSelected, and
SetBitmapDisabled and their corresponding getters for more precise control of
the button in different states.

SetDefault sets this button to be the default button on the parent win-
dow, so pressing the Enter key will activate the button.

wxChoice

The choice control consists of a read-only text area that reflects the selection
of a drop-down list box. The list box is hidden until the user presses a button
on the control to reveal the list of strings.

90 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 90

To create a choice control, pass the usual parent window, identifier, posi-
tion, size, and style parameters, plus an array of strings to populate the list.
For example:

#include “wx/choice.h”

wxArrayString strings;
strings.Add(wxT(“One”));
strings.Add(wxT(“Two”));
strings.Add(wxT(“Three”));

wxChoice* choice = new wxChoice(panel, ID_COMBOBOX,
wxDefaultPosition, wxDefaultSize, strings);

On most platforms, the look is similar to wxComboBox (see Figure 4-14), except
that the user cannot edit the text. On GTK+, wxChoice is a button with a drop-
down menu. You may like to use a read-only wxComboBox to get the benefit of the
scrolling drop-down list.

wxChoice Styles

There are no special styles for wxChoice.

wxChoice Events

wxChoice generates wxCommandEvent propagating events, as shown in Table 4-21.

Table 4-21 wxChoice Events

EVT_CHOICE(id, func) Processes a wxEVT_COMMAND_CHOICE_SELECTED event,
generated by a wxChoice control when the user selects an
item in the list.

wxChoice Member Functions

All wxChoice functions are described by wxControlWithItems: Clear, Delete,
FindString, GetClientData, GetClientObject, SetClientData, SetClientObject,
GetCount, GetSelection, SetSelection, GetString, SetString, GetStringSelection,
SetStringSelection, Insert, and IsEmpty.

wxComboBox

The combo box is a combination of a list box and a single-line text field, and it
allows you to set and get the text of the text field independently of the list box.
The text field can be read-only, in which case it behaves very much like
wxChoice. Normally, the list box is hidden until the user presses a button on
the control to reveal the list of strings. This makes for a very compact way of
allowing the user to enter text and also to choose from a list of existing
options.

Non-Static Controls 91

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 91

wxComboBox Styles

Table 4-22 lists the specific window styles for wxComboBox.

Table 4-22 wxComboBox Styles

wxCB_SIMPLE Creates a combo box with a permanently displayed list.
Windows only.

wxCB_DROPDOWN Creates a combo box with a drop-down list.
wxCB_READONLY Same as wxCB_DROPDOWN but only the strings specified as the

combo box choices can be selected, and it is impossible to select
a string that is not in the choices list, even from application
code.

wxCB_SORT Creates a combo box whose items are always sorted
alphabetically.

To create a combo box, pass the usual parent window, identifier, position,
size, and style parameters, plus the initial text and an array of strings to pop-
ulate the list. For example:

#include “wx/combobox.h”

wxArrayString strings;
strings.Add(wxT(“Apple”));
strings.Add(wxT(“Orange”));
strings.Add(wxT(“Pear”));
strings.Add(wxT(“Grapefruit”));

wxComboBox* combo = new wxComboBox(panel, ID_COMBOBOX,
wxT(“Apple”), wxDefaultPosition, wxDefaultSize,
strings, wxCB_DROPDOWN);

The result on Windows is shown in Figure 4-14 with the drop-down list
activated.

92 Window Basics Chapter 4

Figure 4-14 A wxComboBox

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 92

wxComboBox Events

wxComboBox generates wxCommandEvent propagating events, described in Table
4-23.

Table 4-23 wxComboBox Events

EVT_TEXT(id, func) Processes a wxEVT_COMMAND_TEXT_UPDATED event,
generated by the wxComboBox control when its text
is edited.

EVT_COMBOBOX(id, func) Processes a wxEVT_COMMAND_COMBOBOX_SELECTED
event, generated by a wxComboBox control when the
user selects an item in the list.

wxComboBox Member Functions

These are the major wxComboBox functions. Please refer also to the
wxControlWithItems member functions from earlier in this chapter.

Copy copies the selected text onto the clipboard from the text field. Cut
does the same, and it also deletes the selected text. Paste copies text from the
clipboard into the text field.

GetInsertionPoint returns the insertion point for the combo box’s text
field (a long integer representing the position), and SetInsertionPoint sets it.
Use SetInsertionPointEnd to set the insertion point at the end of the text field.

GetLastPosition returns the last position in the text field.
GetValue returns the value of the text field, and SetValue sets it. For a

combo box with the wxCB_READONLY style, the string must be in the combo box
choices list; otherwise, the call is ignored in release mode, and it displays an
alert in debug mode.

SetSelection with two arguments selects the text in the combo box text
field between two given positions. Replace replaces the text between two given
positions with specified text. Remove removes the text between two given posi-
tions.

See also the following functions from wxControlWithItems: Clear, Delete,
FindString, GetClientData, GetClientObject, SetClientData, SetClientObject,
GetCount, GetSelection, SetSelection, GetString, SetString, GetStringSelection,
SetStringSelection, Insert, and IsEmpty.

wxCheckBox

A check box is a control that normally has two states: on or off. It is repre-
sented by a box containing a cross or tick if checked, with a label to the left or
right of the check box. Optionally, it can have a third state, called the mixed or
undetermined state, which can be used to indicate that the item does not
apply (for example, a component in an installer that is always installed and
therefore cannot be selected or deselected).

Non-Static Controls 93

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 93

Here’s a simple example of creating a check box:

#include “wx/checkbox.h”

wxCheckBox* checkbox = new wxCheckBox(panel, ID_CHECKBOX,
wxT(“&Check me”), wxDefaultPosition, wxDefaultSize);

checkBox->SetValue(true);

Figure 4-15 shows how this looks on Windows.

94 Window Basics Chapter 4

Figure 4-15 A wxCheckBox

Figure 4-16 A three-state wxCheckBox

A check box with the wxCHK_3STATE style looks like Figure 4-16 on Windows.

wxCheckBox Styles

Table 4-24 lists the specific window styles for wxCheckBox.

Table 4-24 wxCheckBox Styles

wxCHK_2STATE Create a two-state check box. This is the
default.

wxCHK_3STATE Create a three-state check box.
wxCHK_ALLOW_3RD_STATE_FOR_USER By default, a user can’t set a three-state

check box to the third state. It can only be
done from code. Using this style enables the
user to set the check box to the third state
by clicking.

wxALIGN_RIGHT Makes the check box appear to the right of
the label.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 94

wxCheckBox Events

wxCheckBox generates wxCommandEvent propagating events, described in
Table 4-25.

Table 4-25 wxCheckBox Events

EVT_CHECKBOX(id, func) Processes a wxEVT_COMMAND_CHECKBOX_ CLICKED
event, generated when the user checks or unchecks
a wxCheckBox control.

wxCheckBox Member Functions

These are the major wxCheckBox functions.
SetLabel and GetLabel are accessors for the check box label. You can use

an ampersand to indicate that the following letter is the mnemonic (or “access
key”) on Windows and GTK+.

GetValue and SetValue get and set the boolean state. Use Get3StateValue
or Set3StateValue to get and set one of wxCHK_UNCHECKED, wxCHK_CHECKED, or
wxCHK_UNDETERMINED.

Is3State can be used to determine whether the check box is a three-state
check box.

IsChecked returns true if the check box is checked.

wxListBox and wxCheckListBox

A wxListBox is used to select one or more of a list of strings, numbered from
zero. The strings are displayed in a scrolling box, with the selected strings
marked in reverse video. A list box can be single-selection: if an item is
selected, the previous selection is removed. In a multiple-selection list box,
clicking an item toggles the item on or off independently of other selections.

Here’s an example of creating a single-selection list box:

#include “wx/listbox.h”

wxArrayString strings;
strings.Add(wxT(“First string”));
strings.Add(wxT(“Second string”));
strings.Add(wxT(“Third string”));
strings.Add(wxT(“Fourth string”));
strings.Add(wxT(“Fifth string”));
strings.Add(wxT(“Sixth string”));

wxListBox* listBox = new wxListBox(panel, ID_LISTBOX,
wxDefaultPosition, wxSize(180, 80), strings, wxLB_SINGLE);

Non-Static Controls 95

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 95

wxCheckListBox is derived from wxListBox and inherits its functionality,
but in addition, it can display a check box next to each item label. Include
wx/checklst.h to use this class. Figure 4-18 shows a wxCheckListBox on
Windows.

96 Window Basics Chapter 4

Figure 4-17 A wxListBox

Figure 4-17 shows what this looks like under Windows.

Figure 4-18 A wxCheckListBox

If you have a lot of items to display, consider using wxVListBox. This is a
virtual list box that displays data directly from a source that you specify by
deriving a new class and implementing the functions OnDrawItem and
OnMeasureItem. Its event macros are the same as for wxListBox.

wxHtmlListBox is derived from wxVListBox and offers an easy way to dis-
play complex items. wxHtmlListBox obtains HTML fragments from the
OnGetItem function, which your derived class must override. Figure 4-19 shows
the wxWidgets wxHtmlListBox sample (in samples/htlbox), with custom separa-
tors drawn by an overridden OnDrawSeparator function.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 96

wxListBox and wxCheckListBox Styles

Table 4-26 lists the specific window styles for wxListBox and wxCheckListBox.

Table 4-26 wxListBox and wxCheckListBox Styles

wxLB_SINGLE Single-selection list.
wxLB_MULTIPLE Multiple-selection list: the user can toggle multiple items on

and off.
wxLB_EXTENDED Extended-selection list: the user can select multiple items

using the Shift key and the mouse or special key combinations.
wxLB_HSCROLL Create a horizontal scrollbar if contents are too wide. Windows

only.
wxLB_ALWAYS_SB Always show a vertical scrollbar.
wxLB_NEEDED_SB Only create a vertical scrollbar if needed.
wxLB_SORT The list box contents are sorted in alphabetical order.

wxListBox and wxCheckListBox Events

wxListBox and wxCheckListBox generate wxCommandEvent propagating events,
described in Table 4-27.

Non-Static Controls 97

Figure 4-19 The wxHtmlListBox sample

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 97

Table 4-27 wxListBox Events

EVT_LISTBOX(id, func) Processes a wxEVT_COMMAND_LISTBOX_SELECTED
event, generated by a wxListBox control when
the user selects an item in the list.

EVT_LISTBOX_DCLICK(id, func) Processes a wxEVT_COMMAND_LISTBOX_
DOUBLECLICKED event, generated by a
wxListBox control when the user double-clicks
on an item in the list.

EVT_CHECKLISTBOX (id, func) Processes a wxEVT_COMMAND_CHECKLISTBOX_
TOGGLED event, generated by a wxCheckListBox
control when the user checks or unchecks an
item.

wxListBox Member Functions

These are the major wxListBox functions.
Deselect deselects an item in the list box.
GetSelections fills a wxArrayInt array with the positions of the currently

selected items and returns it.
InsertItems inserts the given number of strings before the specified posi-

tion. Pass either the number of items, a C++ array of wxStrings, and the inser-
tion position, or a wxArrayString object and the insertion position.

Selected returns true if the given item is selected.
Set clears the list box and adds the given strings to it. Pass either the

number of items, a C++ array of wxStrings, and an optional array of void*
client data, or a wxArrayString object and an optional array of void* client data.

SetFirstItem sets the specified item to be the first visible item.
SetSelection and SetStringSelection take an integer or string item and

an optional boolean for the selection state, defaulting to true.
See also the wxControlWithItems functions: Clear, Delete, FindString,

GetClientData, GetClientObject, SetClientData, SetClientObject, GetCount,
GetSelection, GetString, SetString, GetStringSelection, Insert, and IsEmpty.

wxCheckListBox Member Functions

In addition to wxListBox’s functions, wxCheckListBox has the following functions.
Check takes an item index and boolean and checks or unchecks the item.
IsChecked returns true if the given item is checked, and false otherwise.

wxRadioBox

A radio box is used to select an item from a number of mutually exclusive but-
tons. It is displayed as a vertical column or horizontal row of labeled buttons,
within a static box, which may have a label.

98 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 98

Non-Static Controls 99

The way that the buttons are laid out depends on two constructor param-
eters: the major dimension, and the orientation style, which can be wxRA_
SPECIFY_COLS (the default) or wxRA_SPECIFY_ROWS. The major dimension is the
number of rows or columns. For example, eight buttons laid out with a major
dimension of two and the wxRA_SPECIFY_COLS style will have two columns and
four rows. Changing to wxRA_SPECIFY_ROWS will give the radio box two rows and
four columns.

Here’s an example of creating a radio box with three columns:

#include “wx/radiobox.h”

wxArrayString strings;
strings.Add(wxT(“&One”));
strings.Add(wxT(“&Two”));
strings.Add(wxT(“T&hree”));
strings.Add(wxT(“&Four “));
strings.Add(wxT(“F&ive “));
strings.Add(wxT(“&Six “));

wxRadioBox* radioBox = new wxRadioBox(panel, ID_RADIOBOX,
wxT(“Radiobox”), wxDefaultPosition, wxDefaultSize,
strings, 3, wxRA_SPECIFY_COLS);

The constructor specifies that the buttons should be laid out in three columns.
On Windows, this produces the result shown in Figure 4-20.

Figure 4-20 A wxRadioBox

wxRadioBox Styles

wxRadioBox can have the window styles listed in Table 4-28 in addition to those
described for wxWindow. Specifying a different major dimension changes the but-
ton ordering.

Table 4-28 wxRadioBox Styles

wxRA_SPECIFY_ROWS The major dimension parameter refers to the maximum
number of rows.

wxRA_SPECIFIY_COLS The major dimension parameter refers to the maximum
number of columns.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 99

wxRadioBox Events

wxRadioBox generates wxCommandEvent propagating events, as shown in
Table 4-29.

Table 4-29 wxRadioBox Events

EVT_RADIOBOX(id, func) Processes a wxEVT_COMMAND_RADIOBOX_ SELECTED
event, generated by a wxRadioBox control when the
user clicks on a radio button.

wxRadioBox Member Functions

These are the major wxRadioBox functions.
Enable with an index and a boolean enables or disables a specified button.
FindString returns the index of a button matching the given string, or

wxNOT_FOUND if no match was found.
GetCount returns the number of buttons in the radio box.
GetString and SetString are accessors for the label of the specified but-

ton. GetLabel and SetLabel set the radio box label.
GetSelection returns the zero-based index of the selected radio button.

GetStringSelection returns the label of the selected button. SetSelection and
SetStringSelection set the selection without generating a command event.

Show shows or hides an individual button or the whole radio box.

wxRadioButton

A radio button usually denotes one of several mutually exclusive options. It
has a text label next to a button, which is normally round in appearance.
It has two states: on or off. You can create a group of mutually exclusive radio
buttons by specifying wxRB_GROUP for the first in the group. The group ends
when another radio button group is created, or when there are no more con-
trols. You can also create other types of control within a group.

You might use a group of radio buttons instead of a radio box when the
layout is slightly more complex: for example, you may have an extra descrip-
tion or other control next to each radio button. Or you may use radio buttons
simply to avoid the static box that wxRadioBox provides.

100 Window Basics Chapter 4

Figure 4-21 A pair of radio buttons

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 100

Non-Static Controls 101

Here’s a simple example of a group of two radio buttons.

#include “wx/radiobut.h”

wxRadioButton* radioButton1 = new wxRadioButton (panel,
ID_RADIOBUTTON1, wxT(“&Male”), wxDefaultPosition,
wxDefaultSize, wxRB_GROUP);

radioButton1->SetValue(true);
wxRadioButton* radioButton2 = new wxRadioButton (panel,

ID_RADIOBUTTON2, wxT(“&Female”));

// Sizer code to group the buttons horizontally
wxBoxSizer* sizer = new wxBoxSizer(wxHORIZONTAL);
sizer->Add(radioButton1, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);
sizer->Add(radioButton2, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);
parentSizer->Add(sizer, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

On Windows, this will create the controls shown in Figure 4-22.

wxRadioButton Styles

Table 4-30 lists the specific window styles for wxRadioButton.

Table 4-30 wxRadioButton Styles

wxRB_GROUP Marks the beginning of a new group of radio buttons.
wxRB_USE_CHECKBOX Displays a check box button instead of a radio button

(Palm OS only).

wxRadioButton Events

wxRadioButton generates wxCommandEvent propagating events, which are
described in Table 4-31.

Table 4-31 wxRadioButton Events

EVT_RADIOBUTTON(id, func) Processes a wxEVT_COMMAND_ RADIOBUTTON_
SELECTED event, generated by a wxRadioButton
control when a user clicks on it.

wxRadioButton Member Functions

GetValue and SetValue get and set the boolean state.

wxScrollBar

A wxScrollBar is a control that represents a horizontal or vertical scrollbar. It
is distinct from the two scrollbars that some windows provide automatically,

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 101

After creation, call SetScrollbar to set its properties. For more informa-
tion on using this function, see the description of wxScrolledWindow earlier in
this chapter.

wxScrollBar Styles

Table 4-32 lists the specific window styles for wxScrollBar.

Table 4-32 wxScrollBar Styles

wxSB_HORIZONTAL Specifies a horizontal scrollbar.
wxSB_VERTICAL Specifies a vertical scrollbar.

wxScrollBar Events

wxScrollBar generates wxScrollEvent propagating events. You can use EVT_
COMMAND_SCROLL... macros with window identifiers when intercepting scroll
events from controls, or EVT_SCROLL... macros without window identifiers for
intercepting scroll events from the receiving window—except for this, the

but the two types of scrollbar share the way events are received. A scrollbar
has the following main attributes: range, thumb size, page size, and position.

The range is the total number of units associated with the view repre-
sented by the scrollbar. For a table with 15 columns, the range would be 15.

The thumb size is the number of units that are currently visible. For the
table example, the window might be sized so that only 5 columns are currently
visible, in which case the application would set the thumb size to 5. When the
thumb size becomes the same as or greater than the range, the scrollbar will
automatically be hidden on most platforms.

The page size is the number of units that the scrollbar should scroll when
paging through the data.

The scrollbar position is the current thumb position.
To create a scrollbar control, pass the usual parent window, identifier,

position, size, and style parameters. For example:

#include “wx/scrolbar.h”

wxScrollBar* scrollBar = new wxScrollBar(panel, ID_SCROLLBAR,
wxDefaultPosition, wxSize(200, 20), wxSB_HORIZONTAL);

Under Windows, this will look like the control in Figure 4-22.

102 Window Basics Chapter 4

Figure 4-22 A wxScrollBar

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 102

Non-Static Controls 103

macros behave exactly the same. Use EVT_SCROLL(func) to respond to all scroll
events. For a comprehensive list of scroll event macros, please see Table I-1 in
Appendix I, “Event Classes and Macros,” and also see the reference manual.

wxScrollBar Member Functions

These are the major wxScrollBar functions.
GetRange returns the length of the scrollbar.
GetPageSize returns the number of scroll units that will be scrolled when

the user pages up or down. Often it is the same as the thumb size.
GetThumbPosition and SetThumbPosition are accessors for the current posi-

tion of the scrollbar thumb.
GetThumbLength returns the thumb or “view” size.
SetScrollbar sets the scrollbar properties. It takes the position in scroll

units, thumb size, range, page size, and optional boolean to specify whether
the control will be refreshed.

wxSpinButton

wxSpinButton has two small up and down (or left and right) arrow buttons. It is
often used next to a text control for incrementing and decrementing a value.
Portable programs should try to use wxSpinCtrl instead as wxSpinButton is not
implemented for all platforms.

The range supported by this control (and wxSpinCtrl) depends on the
platform but is at least -32768 to 32767.

To create a wxSpinButton control, pass the usual parent window, identifier,
position, size, and style parameters. For example:

#include “wx/spinbutt.h”

wxSpinButton* spinButton = new wxSpinButton(panel, ID_SPINBUTTON,
wxDefaultPosition, wxDefaultSize, wxSP_VERTICAL);

On Windows, the result is the control shown in Figure 4-23.

Figure 4-23 A wxSpinButton

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 103

104 Window Basics Chapter 4

wxSpinButton Styles

Table 4-33 lists the specific window styles for wxSpinButton.

Table 4-33 wxSpinButton Styles

wxSP_HORIZONTAL Specifies a horizontal spin button. This style is not sup-
ported in wxGTK.

wxSP_VERTICAL Specifies a vertical spin button.
wxSP_ARROW_KEYS The user can use arrow keys to change the value.
wxSP_WRAP The value wraps at the minimum and maximum.

wxSpinButton Events

wxSpinButton generates wxSpinEvent propagating events, as shown in Table
4-34.

Table 4-34 wxSpinButton Events

EVT_SPIN(id, func) Handles a wxEVT_SCROLL_THUMBTRACK event, generated
whenever the up or down arrows are clicked.

EVT_SPIN_UP(id, func) Handles a wxEVT_SCROLL_LINEUP event, generated
when the up arrow is clicked.

EVT_SPIN_DOWN(id, func) Handles a wxEVT_SCROLL_LINEDOWN event, generated
when the down arrow is clicked.

wxSpinButton Member Functions

These are the major wxSpinButton functions.
GetMax returns the maximum permissible value.
GetMin returns the minimum permissible value.
GetValue returns the current spin button value, and SetValue sets the cur-

rent spin value.
SetRange sets the minimum and maximum values.

wxSpinCtrl

wxSpinCtrl combines a wxTextCtrl and a wxSpinButton into one control. When
you click on the up and down arrow buttons, the value displayed in the text
control will be incremented or decremented, and you can also type integers
directly into the text control.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 104

wxSpinCtrl Styles

Table 4-35 lists the specific window styles for wxSpinCtrl.

Table 4-35 wxSpinCtrl Styles

wxSP_ARROW_KEYS The user can use arrow keys to change the value.
wxSP_WRAP The value wraps at the minimum and maximum.

wxSpinCtrl Events

wxSpinCtrl generates wxSpinEvent propagating events as shown in Table 4-36.
You can also use EVT_TEXT to intercept text updates with a wxCommandEvent
handler.

Table 4-36 wxSpinCtrl Events

EVT_SPIN(id, func) Handles a wxEVT_SCROLL_THUMBTRACK event, gener-
ated whenever the up or down arrow is clicked.

EVT_SPIN_UP(id, func) Handles a wxEVT_SCROLL_LINEUP event, generated
when the up arrow is clicked.

EVT_SPIN_DOWN(id, func) Handles a wxEVT_SCROLL_LINEDOWN event, gener-
ated when the down arrow is clicked.

EVT_SPINCTRL(id, func) Handles all events generated for the wxSpinCtrl.

Non-Static Controls 105

To create a wxSpinCtrl control, pass the usual parent window, identifier,
position, size, and style parameters. The following code creates a spin control
with a range of zero to 100 and an initial value of 5.

#include “wx/spinctrl.h”

wxSpinCtrl* spinCtrl = new wxSpinCtrl(panel, ID_SPINCTRL,
wxT(“5”), wxDefaultPosition, wxDefaultSize, wxSP_ARROW_KEYS,
0, 100, 5);

On Windows, this will look like the control in Figure 4-24.

Figure 4-24 A wxSpinCtrl

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 105

106 Window Basics Chapter 4

wxSpinCtrl Member Functions

These are the major wxSpinCtrl functions.
GetMax returns the maximum permissible value.
GetMin returns the minimum permissible value.
GetValue returns the current integer spin button value, and SetValue sets

the current spin value.
SetRange sets the minimum and maximum values.

wxSlider

A slider is a control with a handle that can be moved back and forth to change
the value.

To create a wxSlider control, pass the usual parent window, identifier,
position, size, and style parameters. The following code creates a slider control
with a range of zero to 40 and an initial position of 16.

#include “wx/slider.h”

wxSlider* slider = new wxSlider(panel, ID_SLIDER, 16, 0, 40,
wxDefaultPosition, wxSize(200, -1),
wxSL_HORIZONTAL|wxSL_AUTOTICKS|wxSL_LABELS);

On Windows, this creates the control shown in Figure 4-25.

Figure 4-25 A wxSlider

wxSlider Styles

Table 4-37 lists the specific window styles for wxSlider.

Table 4-37 wxSlider Styles

wxSL_HORIZONTAL Displays the slider horizontally.
wxSL_VERTICAL Displays the slider vertically.
wxSL_AUTOTICKS Displays tick marks.
wxSL_LABELS Displays minimum, maximum, and value labels.
wxSL_LEFT Displays ticks on the left if it’s a vertical slider.
wxSL_RIGHT Displays ticks on the right if it’s a vertical slider.
wxSL_TOP Displays ticks on the top if it’s a horizontal slider. The default

is to display them along the bottom.
wxSL_SELRANGE Enables the user to select a range on the slider. Windows only.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 106

wxSlider Events

wxSlider generates wxCommandEvent propagating events, as shown in Table
4-38, but if you need finer control, you can use EVT_COMMAND_SCROLL_... with
wxScrollEvent handlers; see Table I-1 in Appendix I.

Table 4-38 wxSlider Events

EVT_SLIDER(id, func) Processes a wxEVT_COMMAND_SLIDER_UPDATED event,
generated by a wxSlider control when the user moves
the slider.

wxSlider Member Functions

These are the major wxSlider functions.
ClearSel clears the selection for a slider with wxSL_SELRANGE on Windows.

ClearTicks clears the ticks on Windows.
GetLineSize and SetLineSize are accessors for the number of units incre-

mented or decremented when the arrow buttons are clicked. GetPageSize and
SetPageSize are accessors for the number of units paged when clicking either
side of the thumb.

GetMax returns the maximum permissible value.
GetMin returns the minimum permissible value.
GetSelEnd and GetSelStart return the selection end and start points; use

SetSelection to set the selection. These functions are only implemented on
Windows.

GetThumbLength and SetThumbLength are accessors for the slider thumb
size.

GetTickFreq and SetTickFreq are accessors for the tick frequency on
Windows. Use SetTick to set a tick position on Windows.

GetValue returns the current slider value, and SetValue sets the slider
value.

SetRange sets the minimum and maximum values.

wxTextCtrl

The text control enables text to be displayed and edited, either as a single-line
or a multi-line control. Some simple styling and formatting is supported on
some platforms (Windows, GTK+, and Mac OS X via setting and getting text
attributes using the wxTextAttr class.

Non-Static Controls 107

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 107

108 Window Basics Chapter 4

Figure 4-26 A multiline wxTextCtrl

To create a text control, pass the usual parent window, identifier, posi-
tion, size, and style parameters, plus the initial text. For example, to create a
multi-line text control:

#include “wx/textctrl.h”

wxTextCtrl* textCtrl = new wxTextCtrl(panel, ID_TEXTCTRL,
wxEmptyString, wxDefaultPosition, wxSize(240, 100),
wxTE_MULTILINE);

On Windows, this will create the control shown in Figure 4-26.

Multi-line text controls always store text as a sequence of lines separated
by \n characters, using Unix newlines even on non-Unix platforms. As a result,
you can ignore the differences between platforms, but at a price: indices such
as those returned by GetInsertionPoint or GetSelection cannot be used as
indices into the string returned by GetValue as they’re going to be slightly off
for platforms using \r\n as the separator as Windows does.

Instead, if you need to obtain a substring between the two indices
obtained from the control with the help of the functions mentioned previously,
you should use GetRange. The indices themselves can only be passed to other
methods, such as SetInsertionPoint or SetSelection. Never use the indices
returned by multi-line text controls as indices into the string it contains, but
only as arguments to be passed back to other wxTextCtrl methods.

Multi-line text controls support setting styles: you can set colors and
fonts for individual characters. Note that under Windows, the wxTE_RICH style
is required for style support. To use the styles, you can either call
SetDefaultStyle before inserting the text or call SetStyle later to change
the style of the text already in the control. The first method is much more
efficient.

In either case, if the style doesn’t specify some of the attributes, the val-
ues of the default style will be used. If there is no default style, the attributes
of the text control itself are used.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 108

In the following code, the second call to SetDefaultStyle doesn’t change
the text foreground color (which stays red), while the last one doesn’t change
the background color (which stays gray):

text->SetDefaultStyle(wxTextAttr(*wxRED));
text->AppendText(wxT(“Red text\n”));
text->SetDefaultStyle(wxTextAttr(wxNullColour, *wxLIGHT_GREY));
text->AppendText(wxT(“Red on gray text\n”));
text->SetDefaultStyle(wxTextAttr(*wxBLUE);
text->AppendText(wxT(“Blue on gray text\n”));

wxTextCtrl Styles

Table 4-39 lists the specific window styles for wxTextCtrl.

Table 4-39 wxTextCtrl Styles

wxTE_PROCESS_ENTER The control will generate the event wxEVT_
COMMAND_TEXT_ENTER. Otherwise, pressing the
Enter key is either processed internally by the con-
trol or used for navigation between dialog controls.

wxTE_PROCESS_TAB The control will receive wxEVT_CHAR events when
Tab is pressed—normally, the Tab key is used for
passing to the next control in a dialog instead.

wxTE_MULTILINE The text control supports multiple lines.
wxTE_PASSWORD Text will be echoed as asterisks.
wxTE_READONLY The text will not be user-editable.
wxTE_RICH Uses a rich text control under Windows. This enables

the control to store more than 64KB of text in the
control; the vertical scrollbar is only shown when
needed. This style is ignored under other platforms.

wxTE_RICH2 Uses a rich text control version 2.0 or 3.0 under
Windows; the vertical scrollbar is always shown.
This style is ignored on other platforms.

wxTE_AUTO_URL Highlight URLs and generate wxTextUrlEvents
when mouse events occur over them. On Windows
this requires wxTE_RICH. Windows and GTK+ only.

wxTE_NOHIDESEL By default, the Windows text control doesn’t show
the selection when it doesn’t have focus—use this
style to force it to always show the selection.
Ignored under other platforms.

wxHSCROLL A horizontal scrollbar will be created and used so
that text won’t be wrapped. No effect under GTK+.

wxTE_LEFT The text in the control will be left justified (the
default).

wxTE_CENTRE The text in the control will be centered.
wxTE_RIGHT The text in the control will be right justified.

Non-Static Controls 109

(continues)

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 109

Table 4-39 wxTextCtrl Styles (Continued)

wxTE_DONTWRAP Same as the wxHSCROLL style.
wxTE_LINEWRAP Wrap lines that are too long to be shown entirely at

any position. Currently only supported under
wxUniversal.

wxTE_WORDWRAP Wrap lines that are too long to be shown entirely at
word boundaries only. Currently only supported
under wxUniversal.

wxTE_NO_VSCROLL Removes the vertical scrollbar. No effect on GTK+.

wxTextCtrl Events

wxTextCtrl generates wxCommandEvent propagating events, as described in Table
4-40.

Table 4-40 wxTextCtrl Events

EVT_TEXT(id, func) Processes a wxEVT_COMMAND_TEXT_UPDATED
event, generated when the text is changed.

EVT_TEXT_ENTER(id, func) Processes a wxEVT_COMMAND_TEXT_ENTER event,
generated when the user presses the Enter
key. Note that you must use wxTE_PROCESS_
ENTER style when creating the control if you
want it to generate such events.

EVT_TEXT_MAXLEN(id, func) Processes a wxEVT_COMMAND_TEXT_MAXLEN
event, generated when the user tries to enter
more characters into it than the limit previ-
ously set with SetMaxLength. Windows and
GTK+ only.

wxTextCtrl Member Functions

These are the major wxTextCtrl functions.
AppendText appends the given text to the end of the text control, and

WriteText writes the text at the current insertion point. SetValue clears and
then sets the value, after which IsModified returns false. You can pass strings
with newlines for a multi-line text control. Be aware that these functions send
text update events.

GetValue returns the entire contents of the control, possibly with new-
lines for a multi-line control. GetLineText gets just one line from a multi-line
control. GetRange gets the text between two positions.

Copy copies the selected text onto the clipboard from the text field. Cut
does the same, and it also deletes the selected text. Paste copies text from the
clipboard into the text field. You can use CanCopy, CanCut, and CanPaste in UI
update event handlers.

110 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 110

Non-Static Controls 111

Clear clears the text in the control. Note that this will generate a text
update event.

DiscardEdits resets the internal “modified” flag as if the current edits had
been saved.

EmulateKeyPress inserts the character that would have been inserted if
the given key event had occurred in the text control.

GetDefaultStyle and SetDefaultStyle are accessors for the font currently
used for new text. GetStyle returns the style at the given position in the text,
and SetStyle sets the style for the given range.

GetInsertionPoint and SetInsertionPoint get and set the current inser-
tion point for new text. GetLastPosition returns the last position in the control,
and SetInsertionPointEnd sets the insertion point at the end of the text.

GetLineLength returns the length of the specified line in characters.
GetNumberOfLines returns the number of lines of text in the control.
GetStringSelection returns the text currently selected in the control, or

an empty string if there is no selection. GetSelection returns the current selec-
tion span in two pointers to long integers. SetSelection selects the text range
indicated by two long integers representing positions in the text.

IsEditable returns true if the contents may be edited. Call SetEditable to
make the control read-only or writeable. IsModified returns true if the user
has modified the text. IsMultiline returns true if the control is multi-line.

LoadFile loads text from a file into the control, and SaveFile saves the
contents as a file.

PositionToXY converts a pixel position to character position and line num-
ber, whereas XYToPosition goes the other way.

Remove removes the text in the given span. Replace replaces the text in the
given span.

ShowPosition makes the line containing the given position visible.
Undo undoes the last edit, and Redo redoes the last edit. This may do noth-

ing on some platforms. You can use CanUndo and CanRedo to test whether these
operations can be applied to the control’s text (but not whether the platform
supports undo/redo).

wxToggleButton

wxToggleButton is a button that stays pressed when clicked. In other words, it
is similar to wxCheckBox in functionality but looks like a wxButton.

Here’s a simple example of creating a toggle button:

#include “wx/tglbtn.h”

wxToggleButton* toggleButton = new wxToggleButton(panel, ID_TOGGLE,
wxT(“&Toggle label”), wxDefaultPosition, wxDefaultSize);

toggleButton->SetValue(true);

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 111

wxToggleButton Styles

There are no specific wxToggleButton styles.

wxToggleButton Events

wxToggleButton generates wxCommandEvent propagating events, described in
Table 4-41.

Table 4-41 wxToggleButton Events

EVT_TOGGLEBUTTON(id, func) Processes a wxEVT_COMMAND_TOGGLEBUTTON_CLICKED
event, generated when the user clicks the button.

wxToggleButton Member Functions

These are the major wxToggleButton functions.
SetLabel and GetLabel are accessors for the button label. You can use an

ampersand to indicate that the following letter is the mnemonic (or “access
key”), used on Windows and GTK+.

GetValue and SetValue get and set the boolean state.

STATIC CONTROLS

Static controls do not take any input and are used to display information or to
enhance the application’s aesthetics.

wxGauge

This is a horizontal or vertical bar that shows a quantity (often time) from zero
to the specified range. No command events are generated for the gauge. Here’s
a simple example of creating a gauge:

#include “wx/gauge.h”

wxGauge* gauge = new wxGauge(panel, ID_GAUGE,
200, wxDefaultPosition, wxDefaultSize, wxGA_HORIZONTAL);

gauge->SetValue(50);

112 Window Basics Chapter 4

Figure 4-27 shows how a toggle button looks on Windows in the toggled state.

Figure 4-27 A wxToggleButton

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 112

Static Controls 113

Figure 4-28 A wxGauge

Under Windows, this is displayed as shown in Figure 4-28.

wxGauge Styles

Table 4-42 lists the specific window styles for wxGauge.

Table 4-42 wxGauge Styles

wxGA_HORIZONTAL Creates a horizontal gauge.
wxGA_VERTICAL Creates a vertical gauge.
wxGA_SMOOTH Creates a smooth progress bar with no spaces between

steps. This is only supported on Windows.

wxGauge Events

Because it only displays information, wxGauge does not generate events.

wxGauge Member Functions

These are the major wxGauge functions.
GetRange and SetRange are accessors for the gauge range (the maximum

integer value).
GetValue and SetValue get and set the integer value of the gauge.
IsVertical returns true if the gauge is vertical, and false if horizontal.

wxStaticText

A static text control displays one or more lines of read-only text.
To create a wxStaticText control, pass a parent window, identifier, label,

position, size, and style. For example:

#include “wx/stattext.h”

wxStaticText* staticText = new wxStaticText(panel, wxID_STATIC,
wxT(“This is my &static label”),
wxDefaultPosition, wxDefaultSize, wxALIGN_LEFT);

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 113

Under Windows, this creates the control shown in Figure 4-29.

114 Window Basics Chapter 4

Figure 4-29 A wxStaticText

An ampersand in the label (as shown here) indicates to some platforms—
currently Windows and GTK+—that the following letter should be under-
scored and used as a shortcut key for navigating to the next non-static control.

wxStaticText Styles

Table 4-43 lists the specific window styles for wxStaticText.

Table 4-43 wxStaticText Styles

wxALIGN_LEFT Aligns the text to the left.
wxALIGN_RIGHT Aligns the text to the right.
wxALIGN_CENTRE Centers the text horizontally.
wxALIGN_CENTER

wxST_NO_AUTORESIZE By default, the control will adjust its size to exactly fit the
size of the text when SetLabel is called. If this style is
given, the control will not change its size. This style is
especially useful with controls that also have wxALIGN_
RIGHT or wxALIGN_CENTER because otherwise they won’t
make sense any longer after a call to SetLabel.

wxStaticText Member Functions

GetLabel and SetLabel are accessors for the text label.

wxStaticBitmap

A static bitmap control displays an image.
To create a wxStaticBitmap control, pass a parent window, identifier,

bitmap, position, size and style. For example:

#include “wx/statbmp.h”
#include “print.xpm”

wxBitmap bitmap(print_xpm);
wxStaticBitmap* staticBitmap = new wxStaticBitmap(panel, wxID_STATIC,
bitmap);

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 114

Static Controls 115

Figure 4-30 A wxStaticBitmap

This produces a simple image on the panel or dialog as shown in Figure 4-30.

wxStaticBitmap Styles

There are no special styles for wxStaticBitmap.

wxStaticBitmap Member Functions

GetBitmap and SetBitmap are accessors for the bitmap label.

wxStaticLine

This control displays a horizontal or vertical line, to be used as a separator in
dialogs.

Here’s an example of creating a wxStaticLine control:

#include “wx/statline.h”

wxStaticLine* staticLine = new wxStaticLine(panel, wxID_STATIC,
wxDefaultPosition, wxSize(150, -1), wxLI_HORIZONTAL);

Figure 4-31 shows what a horizontal static line looks like under Windows.

Figure 4-31 A wxStaticLine

wxStaticLine Styles

Table 4-44 lists the specific window styles for wxStaticLine.

Table 4-44 wxStaticLine Styles

wxLI_HORIZONTAL Creates a horizontal line.
wxLI_VERTICAL Creates a vertical line.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 115

116 Window Basics Chapter 4

wxStaticLine Member Functions

IsVertical returns true if the line is vertical, false otherwise.

wxStaticBox

This control is a rectangle drawn around other controls to denote a logical
grouping of items, with an optional text label. At present, the control should
not be used as a parent for further controls; the controls that it surrounds are
actually siblings of the box and should be created after it but with the same
parent as the box. Future versions of wxWidgets may allow contained con-
trols to be either siblings or children.

Here’s an example of creating a wxStaticBox control:

#include “wx/statbox.h”

wxStaticBox* staticBox = new wxStaticBox(panel, wxID_STATIC,
wxT(“&Static box”), wxDefaultPosition, wxSize(100, 100));

This will look like the control in Figure 4-32 under Windows.

Figure 4-32 A wxStaticBox

wxStaticBox Styles

There are no special styles for wxStaticBox.

wxStaticBox Member Functions

Use GetLabel and SetLabel to get and set the static box text.

MENUS

In this section, we’ll describe programming with wxMenu, a simple way to pres-
ent commands without taking up a lot of display space. In the next section,
we’ll look at how menus are used in menu bars.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 116

Menus 117

wxMenu

A menu is a list of commands that pops up either from a menu bar or on an
arbitrary window, often as a “context menu” invoked by clicking the right
mouse button (or equivalent). A menu item can be a normal command, or it
can have a check or radio button next to the label. A menu item in a disabled
state won’t respond to commands. A special kind of menu item can display a
visual indication of a further pull-right menu, and this can be nested to an
arbitrary level. Another kind of menu item is the separator, which simply dis-
plays a line or space to indicate separation between two groups of items.

Figure 4-33 shows a typical menu with normal, check, and radio items
and a submenu.

Figure 4-33 A typical menu

The example shows the use of both mnemonics and shortcuts. A
mnemonic is a highlighted key in a label (such as the “N” in “New”) that can be
pressed when the menu is shown to execute that command. Specify a
mnemonic by preceding the letter with an ampersand (“&”). A shortcut (or
accelerator) is a key combination that can be used when the menu is not
shown, and it is indicated in a menu item by a key combination following a tab
character. For example, the New menu item in the example was created with
this code:

menu->Append(wxID_NEW, wxT(“&New...\tCtrl+N”));

For more on creating accelerators via menu items or by programming with
wxAcceleratorTable, please see Chapter 6.

Check and radio items automatically update their state; that is, when
the user toggles a check item, it will be shown in the reverse state when the
menu is next popped up. Similarly, consecutive radio items form a group and
when one item is checked, the other items in the group are unchecked. You can
also set these states yourself, for example from a user interface update event
handler (see Chapter 9).

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 117

118 Window Basics Chapter 4

You can create a menu and show it at a particular point in a window
using wxWindow::PopupMenu, for example:

void wxWindow::OnRightClick(wxMouseEvent& event)
{

if (!m_menu)
{

m_menu = new wxMenu;
m_menu->Append(wxID_OPEN, wxT(“&Open”));
m_menu->AppendSeparator();
m_menu->Append(wxID_EXIT, wxT(“E&xit”));

}

PopupMenu(m_menu, event.GetPosition());
}

Events are sent to the menu itself before travelling up the hierarchy of win-
dows starting from the window the popup menu was shown on. PopupMenu will
cause program flow to “block” at this point, resuming when the user has dis-
missed the menu. If you want, you can delete and re-create the menu every
time it needs to be shown, or you can reuse the same menu.

Where possible, use standard wxWidgets identifiers in menus, such as
wxID_OPEN, wxID_ABOUT, wxID_PRINT, and so on. You can find a full list of these in
Chapter 3. In particular, wxID_ABOUT, wxID_PREFERENCES and wxID_EXIT are inter-
preted specially on Mac OS X. When used in a menu bar, these menu items are
not shown in the menus to which they are appended, but are shown instead in
the standard application menu. Thus wxWidgets adapts your menus automat-
ically to Mac OS X conventions, but beware of side effects such as a Help menu
with no menu items, or two separators together.

See samples/menu in the wxWidgets distribution for a test of most menu
functionality, and also see samples/ownerdrw for a demonstration of the use of
custom fonts and bitmaps in menu items.

wxMenu Events

There are four different kinds of event associated with wxMenu: wxCommandEvent,
wxUpdateUIEvent, wxMenuEvent, and wxContextMenuEvent.

Table 4-45 lists the command events, whose handlers take a
wxCommandEvent argument. Use these for processing menu commands, either
from a pop-up menu or a menu bar on a frame. These are interchangeable
with the equivalent toolbar event macros so that events generated from both
menus and toolbar buttons can be processed by the same handler.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 118

Menus 119

Table 4-45 wxMenu Command Events

EVT_MENU(id, func) Processes a wxEVT_COMMAND_MENU_SELECTED
event, generated by a menu item.

EVT_MENU_RANGE(id1, id2, func) Processes a wxEVT_COMMAND_MENU_RANGE
event, generated by a range of menu items.

Table 4-46 lists the event macros for update events—events generated by
the framework in idle time to give the application a chance to update ele-
ments of the UI—for example, enabling or disabling menu items. Although
wxUpdateUIEvent applies to all windows, menu event handlers can use them
slightly differently than other event handlers: they can call Check and SetText
as well as Enable. Check checks or unchecks the menu item, while SetText sets
the menu item label, which is useful if the label changes dynamically accord-
ing to some condition. For example:

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_UPDATE_UI(ID_TOGGLE_TOOLBAR, MyFrame::OnUpdateToggleToolbar)

END_EVENT_TABLE()

void MyFrame::OnUpdateToggleToolbar(wxUpdateUIEvent& event)
{

event.Enable(true);
event.Check(m_showToolBar);
event.SetText(m_showToolBar ?

wxT(“Show &Toolbar (shown)”) :
wxT(“Show &Toolbar (hidden)”));

}

For more on UI update events, please see Chapter 9.

Table 4-46 wxMenu Update Events

EVT_UPDATE_UI(id, func) Processes a wxEVT_UPDATE_UI event.
The handler can call Enable, Check, and
SetText among other functions.

EVT_UPDATE_UI_RANGE(id1, id2, func) Processes a wxEVT_UPDATE_UI event for
a range of identifiers.

Table 4-47 lists the other menu-related events. EVT_CONTEXT_MENU handlers
take a wxContextMenuEvent, which is derived from wxCommandEvent and therefore
propagates up the parent-child window hierarchy. Use this in preference to
intercepting a right mouse button click when you want to show a context
menu, and call the event object’s GetPosition function to find out where to
show the menu.

The remaining macros process wxMenuEvent objects, and these are only
sent from a menu bar to its frame. They tell the application when a menu has
been opened and closed, and when the user has highlighted a menu item. The

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 119

120 Window Basics Chapter 4

default EVT_MENU_HIGHLIGHT handler shows a menu item’s help string in the sta-
tus bar, but you can provide your own handler to do something different.

Table 4-47 Other wxMenu Events

EVT_CONTEXT_MENU(func) Processes the event generated when the
user has requested a popup menu to
appear by pressing a special key (under
Windows) or by right-clicking the
mouse. The handler takes a
wxContextMenuEvent.

EVT_COMMAND_CONTEXT_MENU(id, func) The same as EVT_CONTEXT_MENU, but it
takes a window identifier.

EVT_MENU_OPEN(func) Handles a wxEVT_MENU_OPEN event, sent
when a menu is about to be opened. On
Windows, this is only sent once for each
navigation of the menu bar.

EVT_MENU_CLOSE(func) Handles a wxEVT_MENU_CLOSE event, sent
when a menu has just been closed.

EVT_MENU_HIGHLIGHT(id, func) Handles a wxEVT_MENU_HIGHLIGHT event,
sent when the menu item with the speci-
fied id has been highlighted. This is used
to show help prompts in a frame’s status
bar.

EVT_MENU_HIGHLIGHT_ALL(func) Handles a wxEVT_MENU_HIGHLIGHT event
for any menu identifier.

wxMenu Member Functions

These are the major wxMenu functions.
Append adds a menu item: specify an identifier, a label, a help string, and

the kind of item (wxITEM_NORMAL, wxITEM_SEPARATOR, wxITEM_CHECK or wxITEM_
RADIO). You can also use AppendCheckItem and AppendRadioItem to avoid specify-
ing wxITEM_CHECK or wxITEM_RADIO. For example:

// Append a normal item
menu->Append(wxID_NEW, wxT(“&New...\tCtrl+N”));

// Append a check item
menu->AppendCheckItem(ID_SHOW_STATUS, wxT(“&Show Status”));

// Append a radio item
menu->AppendRadioItem(ID_PAGE_MODE, wxT(“&Page Mode”));

Another overload of Append enables you to append a submenu, for example:

// Append a submenu
menu->Append(ID_SUBMENU, wxT(“&More options...”), subMenu);

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 120

Menus 121

Yet another overload of Append enables you to use a wxMenuItem object directly
to append an item, and this is the only way to show bitmaps on menus or to set
special fonts. For example:

// Initialization of bitmaps and font not shown
wxBitmap bmpEnabled, bmpDisabled;
wxFont fontLarge;

// Create a menu item
wxMenuItem* pItem = new wxMenuItem(menu, wxID_OPEN, wxT(“&Open…”));

// Set bitmaps and font
pItem->SetBitmaps(bmpEnabled, bmpDisabled);
pItem->SetFont(fontLarge);

// Finally append it to the menu
menu->Append(pItem);

Use Insert to insert a menu at a particular position. There are also the func-
tions Prepend, PrependCheckItem, PrependRadioItem, and PrependSeparator for
inserting items at the start of the menu.

AppendSeparator adds a separator, and InsertSeparator inserts a separa-
tor in a given position. For example:

// Append a separator
menu->AppendSeparator();

Break inserts a break in a menu, causing the next appended item to appear in
a new column.

Use Check to toggle a check or radio item on or off, passing the menu item
identifier and a boolean value. Use IsChecked to get the checked status.

Delete deletes a menu item specified by identifier or by wxMenuItem
pointer. If the item is a menu, the submenu will not be deleted. Use Destroy if
you want to remove and delete a submenu. Remove removes the menu item
from a menu without deleting the returned wxMenuItem object.

Use Enable to enable or disable a menu item, but rather than doing this
explicitly, you may want to use UI update events (see Chapter 9). IsEnabled
returns the enabled status.

Use FindItem to find an item by label or identifier. Use FindItemByPosition
to find an item by position in the menu.

GetHelpString and SetHelpString are accessors for the help string associ-
ated with a menu item. When the menu is part of a menu bar, wxFrame shows
this string in the status bar (if available), as the user highlights each menu
item.

GetLabel and SetLabel get or set the menu item label, given its identifier.
GetMenuCount returns the number of items in the menu.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 121

122 Window Basics Chapter 4

Figure 4-34 A wxMenuBar

GetMenuItems returns a reference to the list of menu items, a
wxMenuItemList object.

GetTitle and SetTitle are accessors for the optional title of a menu and
are only used for pop-up menus.

UpdateUI sends UI update events to the event handler argument or to the
owning window if NULL is passed. This is called just before the menu is popped
up, but the application may call it at other times if required.

CONTROL BARS

A control bar provides a convenient way to contain and arrange multiple con-
trols. There are currently three kinds of control bars: wxMenuBar, wxToolBar, and
wxStatusBar. wxMenuBar can only belong to a wxFrame. wxToolBar and wxStatusBar
are most commonly used with wxFrame, but they can also be children of other
windows.

wxMenuBar

A menu bar contains a series of menus accessible from the top of a frame
under the title bar. You can replace a frame’s current menu bar by calling
SetMenuBar. To create a menu bar, use the default constructor and append
wxMenu objects. For example:

wxMenuBar* menuBar = new wxMenuBar;
wxMenu* fileMenu = new wxMenu;
fileMenu->Append(wxID_OPEN, wxT(“&Open...”), wxT(“Opens a file”));
fileMenu->AppendSeparator();
fileMenu->Append(wxID_EXIT, wxT(“E&xit”), wxT(“Quits the program”));
menuBar->Append(fileMenu);
frame->SetMenuBar(menuBar, wxT(“&File”));

This code creates a one-menu menu bar, as shown in Figure 4-34.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 122

Control Bars 123

You can append submenus to a wxMenu, and you can create check and
radio menu items (refer to the “Menus” section earlier in this chapter). As in
the previous example, an ampersand in a label indicates that the following
character should be used as a mnemonic (pressing that key when the menu is
shown executes the associated command).

If you provide a help string, it will be shown in the frame’s status bar (if
any) by virtue of the default EVT_MENU_HIGHLIGHT handler.

wxMenuBar Styles

wxMenuBar takes the wxMB_DOCKABLE style, used under GTK+ to allow the menu
bar to be detached from the frame.

wxMenuBar Events

Menu bars use the events already covered in the description of wxMenu.

wxMenuBar Member Functions

These are the major wxMenuBar functions.
Append adds a menu to the end of the menu bar, which will then own the

menu and will destroy it when the menu bar is destroyed (usually by the own-
ing frame). Pass the menu and a label. Insert inserts a menu at the given posi-
tion.

Enable enables or disables the given menu item, given its identifier. Use
IsEnabled to check its enabled status.

Check checks or unchecks a check or radio menu item. Use IsChecked to
test its checked status.

EnableTop enables or disables a whole menu, by zero-based position.
FindMenu returns the index of a menu whose label matches the given

string, with or without mnemonic characters. It returns wxNOT_FOUND if there
was no match.

FindMenuItem returns the index of a menu item given a menu name and a
menu item.

FindItem returns the wxMenuItem object given a menu item identifier, and
if it is a submenu, its wxMenu pointer will be returned in the second argument.

GetHelpString and SetHelpString are accessors for the help string for a
given menu item.

GetLabel and SetLabel are accessors for a menu item’s label.
GetLabelTop and SetLabelTop are accessors for a menu’s label in the menu

bar, given the zero-based menu position.
GetMenu returns a pointer to the wxMenu at the given zero-based position.
GetMenuCount returns the number of menus in the menu bar.
Refresh redraws the menu bar.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 123

124 Window Basics Chapter 4

Figure 4-35 A wxToolBar

Remove removes a menu and returns the wxMenu object, which the applica-
tion is then responsible for deleting.

Replace replaces a menu at the given position with another one. The old
menu is returned, and the application is responsible for deleting it.

wxToolBar

A toolbar contains a number of buttons and controls. It can be horizontal or
vertical, and the buttons can be push, check, or radio buttons. The buttons can
show labels as well as bitmaps. If you use wxFrame::CreateToolBar to create the
toolbar, or wxFrame::SetToolBar to associate it with a frame, the frame will
manage the toolbar, and it will not be counted as part of the client area. If you
use it in any other way, then your code will have to manage the toolbar size
and position using sizers or some other method.

Here’s an example of creating a toolbar and associating it with a frame:

#include “wx/toolbar.h”

#include “open.xpm”
#include “save.xpm”

wxToolBar* toolBar = new wxToolBar(frame, wxID_ANY,
wxDefaultPosition, wxDefaultSize, wxTB_HORIZONTAL|wxNO_BORDER);

wxBitmap bmpOpen(open_xpm);
wxBitmap bmpSave(save_xpm);
toolBar->AddTool(wxID_OPEN, bmpOpen, wxT(“Open”));
toolBar->AddTool(wxID_SAVE, bmpSave, wxT(“Save”));
toolBar->AddSeparator();
wxComboBox* comboBox = new wxComboBox(toolBar, ID_COMBOBOX);
toolBar->AddControl(comboBox);
toolBar->Realize();
frame->SetToolBar(toolBar);

Under Windows, this will create a toolbar, as shown in Figure 4-35.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 124

Control Bars 125

Note the call to Realize, which must be performed after all buttons and
controls have been added to the toolbar; otherwise, nothing will appear in the
toolbar.

Check out the wxWidgets sample in samples/toolbar for a demonstration
of changing orientation, showing labels on buttons, changing the button size,
and other aspects of wxToolBar.

Tool Bitmap Colors Under Windows

Under Windows, wxWidgets will attempt to map colors in the tool bitmaps
that are close to “standard” colors to equivalents used by the current theme. In
particular, light gray is used to indicate transparency within the bitmap.
Table 4-48 lists these colors. In fact, colors in the bitmap only have to be close
to the indicated color (each RGB element can be within 10 units of the stan-
dard value) for the substitution to take place.

Table 4-48 Standard Bitmap Colors

Color Value Color Name Used For
wxColour(0, 0, 0) Black Dark shadows
wxColour(128, 128, 128) Dark gray Shadows for 3D edges facing

away from the light source
wxColour(192, 192, 192) Light gray 3D face (button background),

indicates transparent area
wxColour(255, 255, 255) White Highlights for 3D edges

facing the light source

This is fine for 16-color tool bitmaps, but if you use more colors, the mapping
can be undesirable because it leads to a grainy effect. In this case, add the fol-
lowing line to your code before the creation of the toolbar to switch off the
mapping:

wxSystemOptions::SetOption(wxT(“msw.remap”), 0);

You will need to include wx/sysopt.h in your source file.

Smart_Ch04f.qxd 6/10/05 1:48 PM Page 125

wxToolBar Styles

Table 4-49 lists the specific window styles for wxToolBar.

Table 4-49 wxToolBar Styles

wxTB_HORIZONTAL Creates a horizontal toolbar.
wxTB_VERTICAL Creates a vertical toolbar.
wxTB_FLAT Gives the toolbar a flat look. Windows and GTK+ only.
wxTB_DOCKABLE Makes the toolbar floatable and dockable. GTK+ only.
wxTB_TEXT Shows the text in the toolbar buttons; by default, only icons

are shown.
wxTB_NOICONS Specifies no icons in the toolbar buttons; by default, they

are shown.
wxTB_NODIVIDER Specifies no divider above the toolbar. Windows only.
wxTB_HORZ_LAYOUT Shows the text and the icons alongside, not vertically

stacked. Windows and GTK+ only. This style must be used
with wxTB_TEXT.

wxTB_HORZ_TEXT Combination of wxTB_HORZ_LAYOUT and wxTB_TEXT.

wxToolBar Events

Toolbar event macros are listed in Table 4-50. The toolbar class emits menu
commands in the same way that a frame’s menu bar does, so you can use one
EVT_MENU or EVT_TOOL macro for both a menu item and a toolbar button. The
event handler functions take a wxCommandEvent argument. For most of the event
macros, the identifier of the tool is passed, but for EVT_TOOL_ENTER, the toolbar
window identifier is passed, and the tool identifier is retrieved from the
wxCommandEvent. This is because the identifier may be -1 when the mouse
moves off a tool, and -1 is not allowed as an identifier in the event system.

Table 4-50 wxToolBar Events

EVT_TOOL(id, func) Processes a wxEVT_COMMAND_TOOL_CLICKED
event (a synonym for wxEVT_COMMAND_MENU_
SELECTED), generated when the user clicks on
a toolbar tool. Pass the identifier of the tool.

EVT_TOOL_RANGE(id1, id2, func) Processes a wxEVT_COMMAND_TOOL_CLICKED
event for a range of identifiers. Pass the iden-
tifier of the tools.

EVT_TOOL_RCLICKED(id, func) Processes a wxEVT_COMMAND_TOOL_RCLICKED
event, generated when the user right-clicks
on a control. Pass the identifier of the tool.

EVT_TOOL_RCLICKED_RANGE Processes a wxEVT_COMMAND_TOOL_RCLICKED
(id1, id2, func) event for a range of identifiers. Pass the iden-

tifiers of the tools.

126 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 126

Control Bars 127

EVT_TOOL_ENTER(id, func) Processes a wxEVT_COMMAND_TOOL_ENTER
event, generated when the mouse pointer
moves into or out of a tool. Pass the identifier
of the toolbar itself. The value of
wxCommandEvent::GetSelection is the tool
identifier, or -1 if the pointer has moved off
a tool.

wxToolBar Member Functions

These are the major wxToolBar functions.
AddTool adds a tool: specify the identifier, an optional label, a bitmap, a

help string, and the kind of tool (wxITEM_NORMAL, wxITEM_CHECK, or wxITEM_RADIO).
Use InsertTool to insert the tool at a particular position. You can also use
AddCheckTool and AddRadioTool to avoid specifying wxITEM_CHECK or
wxITEM_RADIO. AddSeparator adds a separator, which is a line or a space depend-
ing on implementation. Use InsertSeparator to insert a separator in a given
position. For example, the following line adds a checkable tool with a caption
(“Save”), a bitmap, and a help string (“Toggle button 1”):

toolBar->AddTool(wxID_SAVE, wxT(“Save”), bitmap,
wxT(“Toggle button 1”), wxITEM_CHECK);

AddControl adds a control, such as a combo box. InsertControl inserts a control
at a given position.

DeleteTool deletes a tool specified by identifier. DeleteToolByPos deletes a
tool by position. RemoveTool removes a tool from the toolbar but doesn’t delete
the wxToolBarTool object, which is returned from the function.

Use EnableTool to enable or disable a tool, but rather than doing this
explicitly, you may want to use UI update events (see Chapter 9).
GetToolEnabled returns the enabled status.

Use FindById and FindControl to find a tool or control by identifier.
If you need to add bitmaps with a size other than the default 16×15, call

SetToolBitmapSize. GetToolBitmapSize returns the current bitmap size.
GetToolSize returns the size including decorations around the tool.

GetMargins and SetMargins are accessors for the left/right and top/bottom
margins.

GetToolClientData and SetToolClientData can be used to return or associ-
ate an arbitrary wxObject for a tool, given the tool identifier.

GetToolLongHelp and SetToolLongHelp are accessors for the long help
string associated with a tool. This is a line of help that could be shown in a sta-
tus bar, for example. GetToolShortHelp and SetToolShortHelp are accessors for
the short help string (tooltip) associated with a tool.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 127

128 Window Basics Chapter 4

GetToolPacking and SetToolPacking are accessors for the tool spacing in
the vertical direction if the toolbar is horizontal, and for spacing in the hori-
zontal direction if the toolbar is vertical.

GetToolPosition returns the position in the toolbar given a tool identifier.
GetToolSeparation and SetToolSeparation are accessors for the tool sepa-

rator size.
GetToolState and SetToolState are accessors for a check or radio tool

on/off state.
Realize must always be called after tools have been added.
ToggleTool toggles the given radio or check tool on or off.

wxStatusBar

A status bar is a narrow window that can be placed along the bottom of
a frame to give small amounts of status information. It can contain one
or more fields, which can have fixed or variable width. If you use
wxFrame::CreateStatusBar to create the status bar, or wxFrame::SetStatusBar to
associate it with a frame, the frame will manage the status bar, and it will not
be counted as part of the client area. If you use it in any other way, then your
code will have to manage the status bar size and position using sizers or some
other method.

Here’s an example of creating a status bar with three fields, two that are
60 pixels wide and a third that expands to fill the rest of the status bar.

#include “wx/statusbr.h”

wxStatusBar* statusBar = new wxStatusBar(frame, wxID_ANY,
wxST_SIZEGRIP);

frame->SetStatusBar(statusBar);
int widths[] = { 60, 60, -1 };
statusBar->SetFieldWidths(WXSIZEOF(widths), widths);
statusBar->SetStatusText(wxT(“Ready”), 0);

The resulting status bar is shown in Figure 4-36.

Figure 4-36 A wxStatusBar

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 128

Control Bars 129

If you want, you can create small controls inside status bar fields. You
will have to manage their size and position yourself—for example, from within
the size event handler of a class derived from wxStatusBar.

wxStatusBar Styles

Table 4-51 shows the specific window style for wxStatusBar. You can also deter-
mine the appearance of the individual field borders using SetStatusStyles.

Table 4-51 wxStatusBar Style

wxST_SIZEGRIP Displays a gripper at the right side of the status bar.

wxStatusBar Events

There are no special events for wxStatusBar.

wxStatusBar Member Functions

These are the major wxStatusBar functions.
GetFieldRect returns the size and position of a field’s internal bounding

rectangle.
GetFieldsCount returns the number of fields in the status bar. Use

SetFieldsCount to set the number of fields.
GetStatusText gets the status text for a field, and SetStatusText sets the

text for a field.
PushStatusText saves the current field text in a stack and sets the field

text to the string passed as an argument. PopStatusText sets the field text to
the top of the stack and pops the stack of saved strings.

SetMinHeight sets the minimal possible height for the status bar.
SetStatusWidths takes the number of fields and an array of integers that

represent each field’s width, or a negative number to specify a proportion of
the status bar to fill. For example, to create one field of fixed width 100 in the
right part of the status bar and two more fields that get 66% and 33% of the
remaining space respectively, you should specify an array containing -2, -1,
and 100. The negative numbers are used to distinguish absolute pixel values
from proportions.

SetStatusStyles takes the number of fields and an array of integer styles
that determine the appearance of the fields. Use wxSB_NORMAL for a sunken field
with a 3D border, wxSB_FLAT for a flat field with no border, and wxSB_RAISED for a
field with a raised 3D border.

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 129

SUMMARY

This chapter has given you enough information about the capabilities of
essential window and control classes to know how to start building useful
applications. For more details on these and other window classes, please refer
to the reference manual. For further window classes, and how to create your
own controls, see Chapter 12. You’ll also find it useful to look at the samples in
your wxWidgets distribution, such as samples/widgets, samples/toolbar,
samples/text, and samples/listbox.

Next, we’ll look at how how your application can draw on a variety of sur-
faces, including windows, bitmaps, and the printed page.

130 Window Basics Chapter 4

Smart_Ch04f.qxd 6/10/05 11:17 AM Page 130

C H A P T E R 5

Drawing and Printing

This chapter introduces the idea of the device context, generalizing the con-
cept of a drawing surface such as a window or a printed page. We will discuss
the available device context classes and the set of “drawing tools” that
wxWidgets provides for handling fonts, color, line drawing, and filling. Next
we describe a device context’s drawing functions and how to use the
wxWidgets printing framework. We end the chapter by briefly discussing
wxGLCanvas, which provides a way for you to draw 3D graphics on your win-
dows using OpenGL.

UNDERSTANDING DEVICE CONTEXTS

All drawing in wxWidgets is done on a device context, using an instance of a
class derived from wxDC. There is no such thing as drawing directly to a win-
dow; instead, you create a device context for the window and then draw on
the device context. There are also device context classes that work with
bitmaps and printers, or you can design your own. A happy consequence of
this abstraction is that you can define drawing code that will work on a num-
ber of different device contexts: just parameterize it with wxDC, and if neces-
sary, take into account the device’s resolution by scaling appropriately. Let’s
describe the major properties of a device context.

A device context has a coordinate system with its origin at the top-left of
the surface. This position can be changed with SetDeviceOrigin so that graph-
ics subsequently drawn on the device context are shifted—this is used when
painting with wxScrolledWindow. You can also use SetAxisOrientation if you pre-
fer, say, the y-axis to go from bottom to top.

131

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 131

There is a distinction between logical units and device units. Device units
are the units native to the particular device—for a screen, a device unit is a
pixel. For a printer, the device unit is defined by the resolution of the printer,
which can be queried using GetSize (for a page size in device units) or
GetSizeMM (for a page size in millimeters).

The mapping mode of the device context defines the unit of measurement
used to convert logical units to device units. Note that some device contexts, in
particular wxPostScriptDC, do not support mapping modes other than
wxMM_TEXT. Table 5-1 lists the available mapping modes.

Table 5-1 Mapping Modes

wxMM_TWIPS Each logical unit is 1/20 of a point, or 1/1440 of an inch.
wxMM_POINTS Each logical unit is a point, or 1/72 of an inch.
wxMM_METRIC Each logical unit is 1 millimeter.
wxMM_LOMETRIC Each logical unit is 1/10 of a millimeter.
wxMM_TEXT Each logical unit is 1 pixel. This is the default mode.

You can impose a further scale on your logical units by calling SetUser Scale,
which multiplies with the scale implied by the mapping mode. For example, in
wxMM_TEXT mode, a user scale value of (1.0, 1.0) makes logical and device units
identical. By default, the mapping mode is wxMM_TEXT, and the scale is (1.0, 1.0).

A device context has a clipping region, which can be set with SetClipping
Region and cleared with DestroyClippingRegion. Graphics will not be shown
outside the clipping region. One use of this is to draw a string so that it
appears only inside a particular rectangle, even though the string might
extend beyond the rectangle boundary. You can set the clipping region to be
the same size and location as the rectangle, draw the text, and then destroy
the clipping region, and the text will be truncated to fit inside the rectangle.

Just as with real artistry, in order to draw, you must first select some
tools. Any operation that involves drawing an outline uses the currently
selected pen, and filled areas use the current brush. The current font, together
with the foreground and background text color, determines how text will
appear. We will discuss these tools in detail later, but first we’ll look at the
types of device context that are available to us.

Available Device Contexts

These are the device context classes you can use:

� wxClientDC. For drawing on the client area of a window.
� wxBufferedDC. A replacement for wxClientDC for double-buffered painting.

132 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 132

� wxWindowDC. For drawing on the client and non-client (decorated) area of a
window. This is rarely used and not fully implemented on all platforms.

� wxPaintDC. For drawing on the client area of a window during a paint
event handler.

� wxBufferedPaintDC. A replacement for wxPaintDC for double-buffered
painting.

� wxScreenDC. For drawing on or copying from the screen.
� wxMemoryDC. For drawing into or copying from a bitmap.
� wxMetafileDC. For creating a metafile (Windows and Mac OS X).
� wxPrinterDC. For drawing to a printer.
� wxPostScriptDC. For drawing to a PostScript file or printer.

The following sections describe how to create and work with these device
contexts. Working with printer device contexts is discussed in more detail
later in the chapter in “Using the Printing Framework.”

Drawing on Windows with wxClientDC

Use wxClientDC objects to draw on the client area of windows outside of paint
events. For example, to implement a doodling application, you might create a
wxClientDC object within your mouse event handler. It can also be used within
background erase events.

Here’s a code fragment that demonstrates how to paint on a window
using the mouse:

BEGIN_EVENT_TABLE(MyWindow, wxWindow)
EVT_MOTION(MyWindow::OnMotion)

END_EVENT_TABLE()

void MyWindow::OnMotion(wxMouseEvent& event)
{

if (event.Dragging())
{

wxClientDC dc(this);
wxPen pen(*wxRED, 1); // red pen of width 1
dc.SetPen(pen);
dc.DrawPoint(event.GetPosition());
dc.SetPen(wxNullPen);

}
}

Understanding Device Contexts 133

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 133

For more realistic doodling code, see Chapter 19, “Working with Documents
and Views.” The “Doodle” example uses line segments instead of points and
implements undo/redo. It also stores the line segments, so that when the win-
dow is repainted, the graphic is redrawn; using the previous code, the graphic
will only linger on the window until the next paint event is received. You may
also want to use CaptureMouse and ReleaseMouse to direct all mouse events to
your window while the mouse button is down.

An alternative to using wxClientDC directly is to use wxBufferedDC, which
stores your drawing in a memory device context and transfers it to the window
in one step when the device context is about to be deleted. This can result in
smoother updates—for example, if you don’t want the user to see a complex
graphic being updated bit by bit. Use the class exactly as you would use
wxClientDC. For efficiency, you can pass a stored bitmap to the constructor to
avoid the object re-creating a bitmap each time.

Erasing Window Backgrounds

A window receives two kinds of paint event: wxPaintEvent for drawing the main
graphic, and wxEraseEvent for painting the background. If you just handle
wxPaintEvent, the default wxEraseEvent handler will clear the background to the
color previously specified by wxWindow::SetBackgroundColour, or a suitable
default.

This may seem rather convoluted, but this separation of background and
foreground painting enables maximum control on platforms that follow this
model, such as Windows. For example, suppose you want to draw a textured
background on a window. If you tile your texture bitmap in OnPaint, you will
see a brief flicker as the background is cleared prior to painting the texture. To
avoid this, handle wxEraseEvent and do nothing in the handler. Alternatively,
you can do the background tiling in the erase handler, and paint the fore-
ground in the paint handler (however, this defeats buffered drawing as
described in the next section).

On some platforms, intercepting wxEraseEvent still isn’t enough to sup-
press default background clearing. The safest thing to do if you want to have a
background other than a plain color is to call wxWindow::SetBackgroundStyle
passing wxBG_STYLE_CUSTOM. This tells wxWidgets to leave all background paint-
ing to the application.

If you do decide to implement an erase handler, call wxEraseEvent::GetDC
and use the returned device context if it exists. If it’s NULL, you can use a
wxClientDC instead. This allows for wxWidgets implementations that don’t
pass a device context to the erase handler, which can be an unnecessary
expense if it’s not used. This is demonstrated in the following code for drawing
a bitmap as a background texture:

BEGIN_EVENT_TABLE(MyWindow, wxWindow)
EVT_ERASE_BACKGROUND(MyWindow::OnErase)

134 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 134

END_EVENT_TABLE()

void MyWindow::OnErase(wxEraseEvent& event)
{

wxClientDC* clientDC = NULL;
if (!event.GetDC())

clientDC = new wxClientDC(this);

wxDC* dc = clientDC ? clientDC : event.GetDC() ;

wxSize sz = GetClientSize();
wxEffects effects;
effects.TileBitmap(wxRect(0, 0, sz.x, sz.y), *dc, m_bitmap);

if (clientDC)
delete clientDC;

}

As with paint events, the device context will be clipped to the area that needs
to be repaired, if using the object returned from wxEraseEvent::GetDC.

Drawing on Windows with wxPaintDC

If you define a paint event handler, you must always create a wxPaintDC object,
even if you don’t use it. Creating this object will tell wxWidgets that the
invalid regions in the window have been repainted so that the windowing sys-
tem won’t keep sending paint events ad infinitum. In a paint event, you can
call wxWindow::GetUpdateRegion to get the region that is invalid, or
wxWindow::IsExposed to determine if the given point or rectangle is in the
update region. If possible, just repaint this region. The device context will
automatically be clipped to this region anyway during the paint event, but you
can speed up redraws by only drawing what is necessary.

Paint events are generated when user interaction causes regions to need
repainting, but they can also be generated as a result of wxWindow::Refresh or
wxWindow::RefreshRect calls. If you know exactly which area of the window
needs to be repainted, you can invalidate that region and cause as little flicker
as possible. One problem with refreshing the window this way is that you can’t
guarantee exactly when the window will be updated. If you really need to have
the paint handler called immediately—for example, if you’re doing time-
consuming calculations—you can call wxWindow::Update after calling Refresh
or RefreshRect.

The following code draws a red rectangle with a black outline in the cen-
ter of a window, if the rectangle was in the update region:

BEGIN_EVENT_TABLE(MyWindow, wxWindow)
EVT_PAINT(MyWindow::OnPaint)

END_EVENT_TABLE()

void MyWindow::OnPaint(wxPaintEvent& event)
{

Understanding Device Contexts 135

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 135

wxPaintDC dc(this);

dc.SetPen(*wxBLACK_PEN);
dc.SetBrush(*wxRED_BRUSH);

// Get window dimensions
wxSize sz = GetClientSize();

// Our rectangle dimensions
wxCoord w = 100, h = 50;

// Center the rectangle on the window, but never
// draw at a negative position.
int x = wxMax(0, (sz.x—w)/2);
int y = wxMax(0, (sz.y—h)/2);

wxRect rectToDraw(x, y, w, h);

// For efficiency, do not draw if not exposed
if (IsExposed(rectToDraw))

DrawRectangle(rectToDraw);
}

Note that by default, when a window is resized, only the newly exposed areas
are included in the update region. Use the wxFULL_REPAINT_ON_RESIZE window
style to have the entire window included in the update region when the win-
dow is resized. In our example, we need this style because resizing the window
changes the position of the graphic, and we need to make sure that no odd bits
of the rectangle are left behind.

wxBufferedPaintDC is a buffered version of wxPaintDC. Simply replace
wxPaintDC with wxBufferedPaintDC in your paint event handler, and the graph-
ics will be drawn to a bitmap before being drawn all at once on the window,
reducing flicker.

As we mentioned in the previous topic, another thing you can do to make
drawing smoother (particularly when resizing) is to paint the background in
your paint handler, and not in an erase background handler. All the painting
will then be done in your buffered paint handler, so you don’t see the back-
ground being erased before the paint handler is called. Add an empty erase
background handler, and call SetBackgroundStyle with wxBG_STYLE_CUSTOM to
hint to some systems not to clear the background automatically. In a scrolling
window, where the device origin is moved to shift the graphic for the current
scroll position, you will need to calculate the position of the window client
area for the current origin. The following code snippet illustrates how to
achieve smooth painting and scrolling for a class derived from
wxScrolledWindow:

#include “wx/dcbuffer.h”

BEGIN_EVENT_TABLE(MyCustomCtrl, wxScrolledWindow)

136 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 136

EVT_PAINT(MyCustomCtrl::OnPaint)
EVT_ERASE_BACKGROUND(MyCustomCtrl::OnEraseBackground)

END_EVENT_TABLE()

/// Painting
void MyCustomCtrl::OnPaint(wxPaintEvent& event)
{

wxBufferedPaintDC dc(this);

// Shifts the device origin so we don’t have to worry
// about the current scroll position ourselves
PrepareDC(dc);

// Paint the background
PaintBackground(dc);

// Paint the graphic
...

}

/// Paint the background
void MyCustomCtrl::PaintBackground(wxDC& dc)
{

wxColour backgroundColour = GetBackgroundColour();
if (!backgroundColour.Ok())

backgroundColour =
wxSystemSettings::GetColour(wxSYS_COLOUR_3DFACE);

dc.SetBrush(wxBrush(backgroundColour));
dc.SetPen(wxPen(backgroundColour, 1));

wxRect windowRect(wxPoint(0, 0), GetClientSize());

// We need to shift the client rectangle to take into account
// scrolling, converting device to logical coordinates
CalcUnscrolledPosition(windowRect.x, windowRect.y,

& windowRect.x, & windowRect.y);
dc.DrawRectangle(windowRect);

}

// Empty implementation, to prevent flicker
void MyCustomCtrl::OnEraseBackground(wxEraseEvent& event)
{
}

To increase efficiency when using wxBufferedPaintDC, you can maintain a
bitmap large enough to cope with all window sizes (for example, the screen
size) and pass it to the wxBufferedPaintDC constructor as its second argument.
Then the device context doesn’t have to keep creating and destroying its
bitmap for every paint event.

The area that wxBufferedPaintDC copies from its buffer is normally the
size of the window client area (the part that the user can see). The actual paint
context that is internally created by the class is not transformed by the win-
dow’s PrepareDC to reflect the current scroll position. However, you can specify
that both the paint context and your buffered paint context use the same

Understanding Device Contexts 137

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 137

transformations by passing wxBUFFER_VIRTUAL_AREA to the wxBufferedPaintDC
constructor, rather than the default wxBUFFER_CLIENT_AREA. Your window’s
PrepareDC function will be called on the actual paint context so the transforma-
tions on both device contexts match. In this case, you will need to supply a
bitmap that is the same size as the virtual area in your scrolled window. This
is inefficient and should normally be avoided. Note that at the time of writing,
using buffering with wxBUFFER_CLIENT_AREA does not work with scaling
(SetUserScale).

For a full example of using wxBufferedPaintDC, you might like to look at
the wxThumbnailCtrl control in examples/chap12/thumbnail on the CD-ROM.

Drawing on Bitmaps with wxMemoryDC

A memory device context has a bitmap associated with it, so that drawing
into the device context draws on the bitmap. First create a wxMemoryDC object with
the default constructor, and then use SelectObject to associate a bitmap
with the device context. When you have finished with the device context, you
should call SelectObject with wxNullBitmap to remove the association.

The following example creates a bitmap and draws a red rectangle out-
line on it:

wxBitmap CreateRedOutlineBitmap()
{

wxMemoryDC memDC;
wxBitmap bitmap(200, 200);
memDC.SelectObject(bitmap);
memDC.SetBackground(*wxWHITE_BRUSH);
memDC.Clear();
memDC.SetPen(*wxRED_PEN);
memDC.SetBrush(*wxTRANSPARENT_BRUSH);
memDC.DrawRectangle(wxRect(10, 10, 100, 100));
memDC.SelectObject(wxNullBitmap);
return bitmap;

}

You can also copy areas from a memory device context to another device con-
text with the Blit function, described later in the chapter.

Creating Metafiles with wxMetafileDC

wxMetafileDC is available on Windows and Mac OS X, where it models a draw-
ing surface for a Windows metafile or a Mac PICT, respectively. It allows you
to draw into a wxMetafile object, which consists of a list of drawing instruc-
tions that can be interpreted by an application or rendered into a device
context with wxMetafile::Play.

138 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 138

Accessing the Screen with wxScreenDC

Use wxScreenDC for drawing on areas of the whole screen. This is useful when
giving feedback for dragging operations, such as the sash on a splitter window.
For efficiency, you can limit the screen area to be drawn on to a specific region
(often the dimensions of the window in question). As well as drawing with this
class, you can copy areas to other device contexts and use it for capturing
screenshots. Because it is not possible to control where other applications are
drawing, use of wxScreenDC to draw on the screen usually works best when
restricted to windows in the current application.

Here’s example code that snaps the current screen and returns it in a
bitmap:

wxBitmap GetScreenShot()
{

wxSize screenSize = wxGetDisplaySize();
wxBitmap bitmap(screenSize.x, screenSize.y);
wxScreenDC dc;
wxMemoryDC memDC;
memDC.SelectObject(bitmap);
memDC.Blit(0, 0, screenSize.x, screenSize.y, & dc, 0, 0);
memDC.SelectObject(wxNullBitmap);
return bitmap;

}

Printing with wxPrinterDC and wxPostScriptDC

wxPrinterDC represents the printing surface. On Windows and Mac, it maps to
the respective printing system for the application. On other Unix-based sys-
tems where there is no standard printing model, a wxPostScriptDC is used
instead, unless GNOME printing support is available (see the later section,
“Printing Under Unix with GTK+”).

There are several ways to construct a wxPrinterDC object. You can pass it
a wxPrintData after setting paper type, landscape or portrait, number of copies,
and so on. An easier way is to show a wxPrintDialog and then call
wxPrintDialog::GetPrintDC to retrieve an appropriate wxPrinterDC for the set-
tings chosen by the user. At a higher level, you can derive a class from
wxPrintout to specify behavior for printing and print previewing, passing it to
an instance of wxPrinter (see the later section on printing).

If your printout is mainly text, consider using the wxHtmlEasyPrinting

class to bypass the need to deal with wxPrinterDC or wxPrintout altogether: just
write an HTML file (using wxWidgets’ subset of HTML syntax) and create a
wxHtmlEasyPrinting object to print or preview it. This could save you days or
even weeks of programming to format your text, tables, and images. See
Chapter 12, “Advanced Window Classes,” for more on this.

wxPostScriptDC is a device context specifically for creating PostScript files
for sending to a printer. Although mainly for Unix-based systems, it can be

Understanding Device Contexts 139

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 139

used on other systems too, where PostScript files need to be generated and you
can’t guarantee the presence of a PostScript printer driver.

You can create a wxPostScriptDC either by passing a wxPrintData object, or
by passing a file name, a boolean to specify whether a print dialog should be
shown, and a parent window for the dialog. For example:

#include “wx/dcps.h”

wxPostScriptDC dc(wxT(“output.ps”), true, wxGetApp().GetTopWindow());

if (dc.Ok())
{

// Tell it where to find the AFM files
dc.GetPrintData().SetFontMetricPath(wxGetApp().GetFontPath());

// Set the resolution in points per inch (the default is 720)
dc.SetResolution(1440);

// Draw on the device context
...

}

One of the quirks of wxPostScriptDC is that it can’t directly return text size
information from GetTextExtent. You will need to provide AFM (Adobe Font
Metric) files with your application and use wxPrintData::SetFontMetricPath
to specify where wxWidgets will find them, as in this example. You can get
a selection of GhostScript AFM files from ftp://biolpc22.york.ac.uk/pub/
support/gs_afm.tar.gz.

DRAWING TOOLS

Drawing code in wxWidgets operates like a very fast artist, rapidly selecting
colors and drawing tools, drawing a little part of the scene, then selecting dif-
ferent tools, drawing another part of the scene, and so on. Here we describe
the wxColour, wxPen, wxBrush, wxFont and wxPalette classes. You will also find it
useful to refer to the descriptions of other classes relevant to drawing—wxRect,
wxRegion, wxPoint, and wxSize, which are described in Chapter 13, “Data
Structure Classes.”

Note that these classes use “reference-counting,” efficiently copying only
internal pointers rather than chunks of memory. In most circumstances, you
can create color, pen, brush, and font objects on the stack as they are needed
without worrying about speed implications. If your application does have per-
formance problems, you can take steps to improve efficiency, such as storing
some objects as data members.

140 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 140

wxColour

You use wxColour to define various aspects of color when drawing. (Because
wxWidgets started life in Edinburgh, the API uses British spelling. However,
to cater for the spelling sensibilities of the New World, wxWidgets defines
wxColor as an alias for wxColour.)

You can specify the text foreground and background color for a device
context using a device context’s SetTextForeground and SetTextBackground func-
tions, and you also use wxColour to create pens and brushes.

A wxColour object can be constructed in a number of different ways. You
can pass red, green, and blue values (each 0 to 255), or a standard color string
such as WHITE or CYAN, or you can create it from another wxColour object.
Alternatively, you can use the stock color objects, which are pointers: wxBLACK,
wxWHITE, wxRED, wxBLUE, wxGREEN, wxCYAN, and wxLIGHT_GREY. The stock object
wxNullColour is an uninitialized color for which the Ok function always returns
false.

Using the wxSystemSettings class, you can retrieve some standard, system-
wide colors, such as the standard 3D surface color, the default window back-
ground color, menu text color, and so on. Please refer to the documentation for
wxSystemSettings::GetColour for the identifiers you can pass.

Here are some different ways to create a wxColour object:

wxColour color(0, 255, 0); // green
wxColour color(wxT(“RED”)); // red

// The color used for 3D faces and panels
wxColour color(wxSystemSettings::GetColour(wxSYS_COLOUR_3DFACE));

You can also use the wxTheColourDatabase pointer to add a new color, find a wxColour
object for a given name, or find the name corresponding to the given color:

wxTheColourDatabase->Add(wxT(“PINKISH”), wxColour(234, 184, 184));
wxString name = wxTheColourDatabase->FindName(

wxColour(234, 184, 184));
wxString color = wxTheColourDatabase->Find(name);

These are the available standard colors: aquamarine, black, blue, blue violet,
brown, cadet blue, coral, cornflower blue, cyan, dark gray, dark green, dark
olive green, dark orchid, dark slate blue, dark slate gray dark turquoise, dim
gray, firebrick, forest green, gold, goldenrod, gray, green, green yellow, indian
red, khaki, light blue, light gray, light steel blue, lime green, magenta,
maroon, medium aquamarine, medium blue, medium forest green, medium
goldenrod, medium orchid, medium sea green, medium slate blue, medium spring
green, medium turquoise, medium violet red, midnight blue, navy, orange,
orange red, orchid, pale green, pink, plum, purple, red, salmon, sea green,
sienna, sky blue, slate blue, spring green, steel blue, tan, thistle, turquoise, vio-
let, violet red, wheat, white, yellow, and yellow green.

Drawing Tools 141

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 141

wxPen

You define the current pen for the device context by passing a wxPen object to
SetPen. The current pen defines the outline color, width, and style for subse-
quent drawing operations. wxPen has a low overhead, so you can create
instances on the stack within your drawing code rather than storing them.

As well as a color and a width, a pen has a style, as described in Table 5-2.
Hatch and stipple styles are not supported by the GTK+ port.

Table 5-2 wxPen Styles

Style Example Description

wxSOLID Lines are drawn solid.

wxTRANSPARENT Used when no pen drawing is
desired.

wxDOT The line is drawn dotted.

wxLONG_DASH Draws with a long dashed style.

wxSHORT_DASH Draws with a short dashed style.
On Windows, this is the same as
wxLONG_SASH.

wxDOT_DASH Draws with a dot and a dash.

wxSTIPPLE Uses a stipple bitmap, which is
passed as the first constructor
argument.

wxUSER_DASH Uses user-specified dashes. See
the reference manual for further
information.

wxBDIAGONAL_HATCH Draws with a backward-diagonal
hatch.

wxCROSSDIAG_HATCH Draws with a cross-diagonal
hatch.

wxFDIAGONAL_HATCH Draws with a forward-diagonal
hatch.

wxCROSS_HATCH Draws with a cross hatch.

wxHORIZONTAL_HATCH Draws with a horizontal hatch.

wxVERTICAL_HATCH Draws with a vertical hatch.

142 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 142

Call SetCap if you need to specify how the ends of thick lines should look:
wxCAP_ROUND (the default) specifies rounded ends, wxCAP_PROJECTING specifies a
square projection on either end, and wxCAP_BUTT specifies that the ends should
be square and should not project.

You can call SetJoin to set the appearance where lines join. The default is
wxJOIN_ROUND, where the corners are rounded. Other values are wxJOIN_BEVEL
and wxJOIN_MITER.

There are some stock pens that you can use: wxRED_PEN, wxCYAN_PEN,
wxGREEN_PEN, wxBLACK_PEN, wxWHITE_PEN, wxTRANSPARENT_PEN, wxBLACK_DASHED_PEN,
wxGREY_PEN, wxMEDIUM_GREY_PEN, and wxLIGHT_GREY_PEN. These are pointers, so
you’ll need to dereference them when passing them to SetPen. There is also the
object wxNullPen (an object, not a pointer), an uninitialized pen object that can
be used to reset the pen in a device context.

Here are some examples of creating pens:

// A solid red pen
wxPen pen(wxColour(255, 0, 0), 1, wxSOLID);
wxPen pen(wxT(“RED”), 1, wxSOLID);
wxPen pen = (*wxRED_PEN);
wxPen pen(*wxRED_PEN);

The last two examples use reference counting, so pen’s internal data points to
wxRED_PEN’s data. Reference counting is used for all drawing objects, and it
makes the assignment operator and copy constructor cheap operations, but it
does mean that sometimes changes in one object affect the properties of
another.

One way to reduce the amount of construction and destruction of pen
objects without storing pen objects in your own classes is to use the global
pointer wxThePenList to create and store the pens you need, for example:

wxPen* pen = wxThePenList->FindOrCreatePen(*wxRED, 1, wxSOLID);

The pen object will be stored in wxThePenList and cleaned up on application
exit. Obviously, you should take care not to use this indiscriminately to avoid
filling up memory with pen objects, and you also need to be aware of the refer-
ence counting issue mentioned previously. You can remove a pen from the list
without deleting it by using RemovePen.

wxBrush

The current brush, specified with SetBrush, defines the fill color and style for
drawing operations. You also specify the device context background color using
a wxBrush, rather than with just a color. As with wxPen, wxBrush has a low over-
head and can be created on the stack.

Drawing Tools 143

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 143

Pass a color and a style to the brush constructor. The style can be one of
the values listed in Table 5-3.

Table 5-3 wxBrush Styles

Style Example Description
wxSOLID Solid color is used.

wxTRANSPARENT Used when no filling is desired.

wxBDIAGONAL_HATCH Draws with a backward-diagonal hatch.

wxCROSSDIAG_HATCH Draws with a cross-diagonal hatch.

wxFDIAGONAL_HATCH Draws with a forward-diagonal hatch.

wxCROSS_HATCH Draws with a cross hatch.

wxHORIZONTAL_HATCH Draws with a horizontal hatch.

wxVERTICAL_HATCH Draws with a vertical hatch.

wxSTIPPLE Uses a stipple bitmap, which is passed as
the first constructor argument.

You can use the following stock brushes: wxBLUE_BRUSH, wxGREEN_BRUSH, wxWHITE
BRUSH, wxBLACK_BRUSH, wxGREY_BRUSH, wxMEDIUM_GREY_BRUSH, wxLIGHT_GREY_BRUSH,
wxTRANSPARENT_BRUSH, wxCYAN_BRUSH, and wxRED_BRUSH. These are pointers. You
can also use the wxNullBrush object (an uninitialized brush object).

Here are some examples of creating brushes:

// A solid red brush
wxBrush brush(wxColour(255, 0, 0), wxSOLID);
wxBrush brush(wxT(“RED”), wxSOLID);
wxBrush brush = (*wxRED_BRUSH); // a cheap operation
wxBrush brush(*wxRED_BRUSH);

As with wxPen, wxBrush also has an associated list, wxTheBrushList, which you
can use to cache brush objects:

wxBrush* brush = wxTheBrushList->FindOrCreateBrush(*wxBLUE, wxSOLID);

Use this with care to avoid proliferation of brush objects and side effects from
reference counting. You can remove a brush from the list without deleting it by
using RemoveBrush.

144 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 144

wxFont

You use font objects for specifying how text will appear when drawn on a
device context. A font has the following properties:

The point size specifies the maximum height of the text in points (1/72 of
an inch). wxWidgets will choose the closest match it can if the platform is not
using scalable fonts.

The font family specifies one of a small number of family names, as
described in Table 5-4. Specifying a family instead of an actual face name
makes applications be more portable because you can’t usually rely on a par-
ticular typeface being available on all platforms.

The style can be wxNORMAL, wxSLANT, or wxITALIC. wxSLANT may not be imple-
mented for all platforms and fonts.

The weight is one of wxNORMAL, wxLIGHT, or wxBOLD.
A font’s underline can be on (true) or off (false).
The face name is optional and specifies a particular typeface. If empty, a

default typeface will be chosen from the family specification.
The optional encoding specifies the mapping between the character codes

used in the program and the letters that are drawn onto the device context.
Please see Chapter 16, “Writing International Applications,” for more on this
topic.

Table 5-4 Font Family Identifiers

Identifier Example Description
wxFONTFAMILY_SWISS A sans-serif font—often

Helvetica or Arial depending
on platform.

wxFONTFAMILY_ROMAN A formal, serif font.

wxFONTFAMILY_SCRIPT A handwriting font.

wxFONTFAMILY_MODERN A fixed pitch font, often
Courier.

wxFONTFAMILY_DECORATIVE A decorative font.

wxFONTFAMILY_DEFAULT wxWidgets chooses a default
family.

You can create a font with the default constructor or by specifying the proper-
ties listed in Table 5-4.

There are some stock font objects that you can use: wxNORMAL_FONT,
wxSMALL_FONT, wxITALIC_FONT, and wxSWISS_FONT. These have the size of the stan-
dard system font (wxSYS_DEFAULT_GUI_FONT), apart from wxSMALL_FONT, which is
two points smaller. You can also use wxSystemSettings::GetFont to retrieve
standard fonts.

Drawing Tools 145

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 145

To use a font object, pass it to wxDC::SetFont before performing text oper-
ations, in particular DrawText and GetTextExtent.

Here are some examples of font creation.

wxFont font(12, wxFONTFAMILY_ROMAN, wxITALIC, wxBOLD, false);
wxFont font(10, wxFONTFAMILY_SWISS, wxNORMAL, wxBOLD, true,

wxT(“Arial”), wxFONTENCODING_ISO8859_1));
wxFont font(wxSystemSettings::GetFont(wxSYS_DEFAULT_GUI_FONT));

wxFont has an associated list, wxTheFontList, which you can use to find a previ-
ously created font or add a new one:

wxFont* font = wxTheFontList->FindOrCreateFont(12, wxSWISS,
wxNORMAL, wxNORMAL);

As with the pen and brush lists, use this with moderation because the fonts
will be deleted only when the application exits. You can remove a font from the
list without deleting it by using RemoveFont.

We’ll see some examples of working with text and fonts later in the
chapter. Also, you may like to play with the font demo in samples/font (see
Figure 5-1). It lets you set a font to see how some text will appear, and you can
change the font size and other properties.

146 Drawing and Printing Chapter 5

Figure 5-1 wxWidgets font demo

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 146

wxPalette

A palette is a table, often with a size of 256, that maps index values to the red,
green, and blue values of the display colors. It’s normally used when the dis-
play has a very limited number of colors that need to be shared between appli-
cations. By setting a palette for a client device context, an application’s color
needs can be balanced with the needs of other applications. It is also used to
map the colors of a low-depth bitmap to the available colors, and so wxBitmap
has an optional associated wxPalette object.

Because most computers now have full-color displays, palettes are rarely
needed. RGB colors specified in an application are mapped to the nearest dis-
play color with no need for a palette.

A wxPalette can be created by passing a size and three arrays (unsigned
char*) for each of the red, green, and blue components. You can query the num-
ber of colors with GetColoursCount. To find the red, green, and blue values for a
given index, use GetRGB, and you can find an index value for given red, green,
and blue values with GetPixel.

Set the palette into a client, window, or memory device context with
wxDC::SetPalette. For example, you can set the palette obtained from a low-
depth wxBitmap you are about to draw, so the system knows how to map the
index values to device colors. When using drawing functions that use wxColour
with a device context that has a palette set, the RGB color will be mapped
automatically to the palette index by the system, so choose a palette that
closely matches the colors you will be using.

Another use for wxPalette is to query a wxImage or wxBitmap for the colors
in a low-color image that was loaded from a file, such as a GIF. If there is an
associated wxPalette object, it will give you a quick way to identify the unique
colors in the original file, even though the image will have been converted to
an RGB representation. Similarly, you can create and associate a palette with
a wxImage that is to be saved in a reduced-color format. For example, the fol-
lowing fragment loads a PNG file and saves it as an 8-bit Windows bitmap file:

// Load the PNG
wxImage image(wxT(“image.png”), wxBITMAP_TYPE_PNG);

// Make a palette
unsigned char* red = new unsigned char[256];
unsigned char* green = new unsigned char[256];
unsigned char* blue = new unsigned char[256];
for (size_t i = 0; i < 256; i ++)
{

red[i] = green[i] = blue[i] = i;
}
wxPalette palette(256, red, green, blue);

// Set the palette and the BMP depth
image.SetPalette(palette);

Drawing Tools 147

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 147

image.SetOption(wxIMAGE_OPTION_BMP_FORMAT, wxBMP_8BPP_PALETTE);

// Save the file
image.SaveFile(wxT(“image.bmp”), wxBITMAP_TYPE_BMP);

More realistic code would “quantize” the image to reduce the number of colors;
see “Color Reduction” in Chapter 10, “Programming with Images,” for use of
the wxQuantize class to do this.

wxWidgets defines a null palette object, wxNullPalette.

DEVICE CONTEXT DRAWING FUNCTIONS

In this section, we’ll take a closer look at how we draw on device contexts. The
major functions are summarized in Table 5-5. We cover most of them in the fol-
lowing sections, and you can also find more details in the reference manual.

Table 5-5 Device Context Functions

Blit Copies from one device context to another. You can
specify how much of the original to draw, where draw-
ing should start, the logical function to use, and
whether to use a mask if the source is a memory
device context.

Clear Fills the device context with the current background
brush.

SetClippingRegion Sets and destroys the clipping region, which restricts
DestroyClippingRegion drawing to a specified area. The clipping region can
GetClippingBox be specified as a rectangle or a wxRegion. Use

GetClippingBox to get the rectangle surrounding the
current clipping region.

DrawArc Draws an arc or elliptic arc using the current pen and
DrawEllipticArc brush.
DrawBitmap Draws a wxBitmap or wxIcon at the specified location.
DrawIcon The bitmap may have a mask to specify transparency.
DrawCircle Draws a circle using the current pen and brush.
DrawEllipse Draws an ellipse using the current pen and brush.
DrawLine Draws a line or number of lines using the current
DrawLines pen. The last point of the line is not drawn.
DrawPoint Draws a point using the current pen.
DrawPolygon DrawPolygon draws a filled polygon using an array of
DrawPolyPolygon points or list of pointers to points, adding an optional

offset coordinate. wxWidgets automatically closes the
first and last points. DrawPolyPolygon draws one or
more polygons at once, which can be a more efficient
operation on some platforms.

148 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 148

DrawRectangle Draws a rectangle or rounded rectangle using the
DrawRoundedRectangle current pen and brush.
DrawText Draws a text string, or rotated text string, at the
DrawRotatedText specified point using the current text font and the

current text foreground and background colors.
DrawSpline Draws a spline between all given control points,

using the current pen.
FloodFill Flood fills the device context starting from the given

point, using the current brush color.
Ok Returns true if the device context is OK to use.
SetBackground Sets and gets the background brush used in Clear
GetBackground and in functions that use a complex logical function.

The default is wxTRANSPARENT_BRUSH.
SetBackgroundMode Sets and gets the background mode for drawing
GetBackgroundMode text: wxSOLID or wxTRANSPARENT. Normally, you will

want to set the mode to wxTRANSPARENT (the default)
so the existing background will be kept when draw-
ing text.

SetBrush Sets and gets the brush to be used to fill shapes in
GetBrush subsequent drawing operations. The initial value of

the brush is undefined.
SetPen Sets and gets the pen to be used to draw the outline
GetPen of shapes in subsequent drawing operations. The ini-

tial value of the pen is undefined.
SetFont Sets and gets the font to be used in DrawText,
GetFont DrawRotatedText, and GetTextExtent calls. The ini-

tial value of the font is undefined.
SetPalette Sets and gets wxPalette object mapping index values
GetPalette to RGB colors.
SetTextForeground Sets and gets the color to be used for text foreground
GetTextForeground and background. The defaults are black and white,
SetTextBackground respectively.
GetTextBackground

SetLogicalFunction The logical function determines how a source pixel
GetLogicalFunction from a pen or brush color, or source device context if

using Blit, combines with a destination pixel in the
current device context. The default is wxCOPY, which
simply draws with the current color.

GetPixel Returns the color at the given point. This is not
implemented for wxPostScriptDC and wxMetafileDC.

GetTextExtent Returns metrics for a given text string.
GetPartialTextExtents

GetSize Returns the dimensions of the device in device units
GetSizeMM or millimeters.

Device Context Drawing Functions 149

(continues)

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 149

Table 5-5 Device Context Functions (Continued)

StartDoc Starts and ends a document. This is only applicable
EndDoc to printer device contexts. When StartDoc is called, a

message will be shown as the document is printed,
and EndDoc will hide the message box.

StartPage Starts and ends a page. This is only applicable to
EndPage printer device contexts.
DeviceToLogicalX Converts device coordinates to logical coordinates,
DeviceToLogicalXRel either absolute (for positions) or relative (for widths
DeviceToLogicalY and heights).
DeviceToLogicalYRel

LogicalToDeviceX Converts logical coordinates to device coordinates,
LogicalToDeviceXRel either absolute (for positions) or relative (for widths
LogicalToDeviceY and heights).
LogicalToDeviceYRel

SetMapMode As described earlier, this determines (along with
GetMapMode SetUserScale) how logical units are converted to

device units.
SetAxisOrientation Sets the x- and y-axis orientation: the direction from

lowest to highest values on the axis. The default ori-
entation is to have the x-axis from left to right (true)
and the y-axis from top to bottom (false).

SetDeviceOrigin Sets and gets the device origin. You can use this to
GetDeviceOrigin place a graphic in a particular place on a page, for

example.
SetUserScale Sets and gets the scale to be applied when converting
GetUserScale from logical units to device units.

Drawing Text

The way text is drawn on a device context with DrawText is determined by the
current font, the background mode (transparent or solid drawing), and the text
foreground and background colors. If the background mode is wxSOLID, the area
behind the text will be drawn in the current background color, and if
wxTRANSPARENT, the text will be drawn without disturbing the background.

Pass a string and either two integers or a wxPoint to DrawText. The text
will be drawn with the given location at the very top-left of the string. Here’s a
simple example of drawing a text string:

// Draw a text string on a window at the given point
void DrawTextString(wxDC& dc, const wxString& text,

const wxPoint& pt)
{

wxFont font(12, wxFONTFAMILY_SWISS, wxNORMAL, wxBOLD);
dc.SetFont(font);
dc.SetBackgroundMode(wxTRANSPARENT);

150 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 150

dc.SetTextForeground(*wxBLACK);
dc.SetTextBackground(*wxWHITE);
dc.DrawText(text, pt);

}

You can also use the device context function DrawRotatedText to draw text at an
angle by specifying the angle in degrees as the last parameter. The following
code draws text at 45-degree increments, and the result is illustrated in
Figure 5-2.

wxFont font(20, wxFONTFAMILY_SWISS, wxNORMAL, wxNORMAL);

dc.SetFont(font);
dc.SetTextForeground(wxBLACK);
dc.SetBackgroundMode(wxTRANSPARENT);

for (int angle = 0; angle < 360; angle += 45)
dc.DrawRotatedText(wxT(“Rotated text...”), 300, 300, angle);

Device Context Drawing Functions 151

Figure 5-2 Drawing rotated text

On Windows, only TrueType fonts can be drawn rotated. Be aware that the
stock object wxNORMAL_FONT is not TrueType.

Often, you’ll need to find out how much space text will take on a device
context, which you can do by passing wxCoord (integer) pointers to the function
GetTextExtent. Its prototype is

void GetTextExtent(const wxString& string,
wxCoord* width, wxCoord* height,
wxCoord* descent = NULL, wxCoord* externalLeading = NULL,
wxFont* font = NULL);

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 151

The default arguments mean that you can call it just to find the overall width
and height the string occupies, or you can pass extra arguments to get further
text dimensions. If you imagine the bottoms of the characters sitting on a
baseline, the descent is how far below the baseline the characters extend. The
letter “g,” for example, extends below the baseline. External leading is the
space between the descent of one line and the top of the line below. Finally, you
can provide a font to be used in place of the current device context font.

Here’s code that uses GetTextExtent to center a string on a window:

void CenterText(const wxString& text, wxDC& dc, wxWindow* win)
{

// Set font, background mode for drawing text,
// and text color
dc.SetFont(*wxNORMAL_FONT);
dc.SetBackgroundMode(wxTRANSPARENT);
dc.SetTextForeground(*wxRED);

// Get window and text dimensions
wxSize sz = win->GetClientSize();
wxCoord w, h;
dc.GetTextExtent(text, & w, & h);

// Center the text on the window, but never
// draw at a negative position.
int x = wxMax(0, (sz.x - w)/2);
int y = wxMax(0, (sz.y - h)/2);

dc.DrawText(msg, x, y);
}

You can also use GetPartialTextExtents to retrieve the width of each character,
passing a wxString and a wxArrayInt reference to receive the character width
values. If you need accurate information about individual character widths,
this can be quicker on some platforms than calling GetTextExtent for each
character.

Drawing Lines and Shapes

The simpler drawing primitives include points, lines, rectangles, circles, and
ellipses. The current pen determines the line or outline color, and the brush
determines the fill color. For example:

void DrawSimpleShapes(wxDC& dc)
{

// Set line color to black, fill color to green
dc.SetPen(wxPen(*wxBLACK, 2, wxSOLID));
dc.SetBrush(wxBrush(*wxGREEN, wxSOLID));

// Draw a point
dc.DrawPoint(5, 5);

152 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 152

// Draw a line
dc.DrawLine(10, 10, 100, 100);

// Draw a rectangle at (50, 50) with size (150, 100)
// and hatched brush
dc.SetBrush(wxBrush(*wxBLACK, wxCROSS_HATCH));
dc.DrawRectangle(50, 50, 150, 100);

// Set a red brush
dc.SetBrush(*wxRED_BRUSH);

// Draw a rounded rectangle at (150, 20) with size (100, 50)
// and corner radius 10
dc.DrawRoundedRectangle(150, 20, 100, 50, 10);

// Draw another rounded rectangle with no border
dc.SetPen(*wxTRANSPARENT_PEN);
dc.SetBrush(wxBrush(*wxBLUE));
dc.DrawRoundedRectangle(250, 80, 100, 50, 10);

// Set a black pen and black brush
dc.SetPen(wxPen(*wxBLACK, 2, wxSOLID));
dc.SetBrush(*wxBLACK);

// Draw a circle at (100, 150) with radius 60
dc.DrawCircle(100, 150, 60);

// Set a white brush
dc.SetBrush(*wxWHITE);

// Draw an ellipse that fills the given rectangle
dc.DrawEllipse(wxRect(120, 120, 150, 50));

}

This produces the graphic in Figure 5-3.

Device Context Drawing Functions 153

Figure 5-3 Drawing simple shapes

Note that by convention, the last point of a line is not drawn.

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 153

154 Drawing and Printing Chapter 5

Figure 5-4 A circular arc

To draw a circular arc, use DrawArc, taking a starting point, end point,
and center point. The arc is drawn counterclockwise from the starting point to
the end. For example:

// Draw a cup-shaped arc
int x = 10, y = 200, radius = 20;
dc.DrawArc(x–radius, y, x + radius, y, x, y);

This produces the arc shown in Figure 5-4.

Figure 5-5 An elliptical arc

For an elliptic arc, DrawEllipticArc takes the position and size of a rec-
tangle that contains the arc, plus the start and end of the arc in degrees
specified from the three o’clock position from the center of the rectangle. If the
start and end points are the same, a complete ellipse will be drawn. The fol-
lowing code draws the arc shown in Figure 5-5.

// Draws an elliptical arc within a rectangle at (10, 100),
// size 200x40. Arc extends from 270 to 420 degrees.
dc.DrawEllipticArc(10, 100, 200, 40, 270, 420);

If you need to draw a lot of lines quickly, DrawLines can be more efficient
than using DrawLine multiple times. The following example draws lines
between ten points, at an offset of (100, 100).

wxPoint points[10];
for (size_t i = 0; i < 10; i++)
{
pt.x = i*10; pt.y = i*20;

}

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 154

int offsetX = 100;
int offsetY = 100;

dc.DrawLines(10, points, offsetX, offsetY);

DrawLines does not fill the area surrounded by the lines. You can draw a filled
shape with an arbitrary number of sides using DrawPolygon, and several of
them with DrawPolyPolygon. DrawPolygon takes a point count, an array of points,
optional offsets to add to the points, and an optional fill style: wxODDEVEN_RULE,
the default, or wxWINDING_RULE. DrawPolygonPolygon additionally takes an array
of integers that specifies the number of points to be used for each polygon.

The following code demonstrates how to draw polygons and poly-
polygons, with the result shown in Figure 5-6.

void DrawPolygons(wxDC& dc)
{

wxBrush brushHatch(*wxRED, wxFDIAGONAL_HATCH);
dc.SetBrush(brushHatch);

wxPoint star[5];
star[0] = wxPoint(100, 60);
star[1] = wxPoint(60, 150);
star[2] = wxPoint(160, 100);
star[3] = wxPoint(40, 100);
star[4] = wxPoint(140, 150);

dc.DrawPolygon(WXSIZEOF(star), star, 0, 30);
dc.DrawPolygon(WXSIZEOF(star), star, 160, 30, wxWINDING_RULE);

wxPoint star2[10];
star2[0] = wxPoint(0, 100);
star2[1] = wxPoint(-59, -81);
star2[2] = wxPoint(95, 31);
star2[3] = wxPoint(-95, 31);
star2[4] = wxPoint(59, -81);
star2[5] = wxPoint(0, 80);
star2[6] = wxPoint(-47, -64);
star2[7] = wxPoint(76, 24);
star2[8] = wxPoint(-76, 24);
star2[9] = wxPoint(47, -64);
int count[2] = {5, 5};

dc.DrawPolyPolygon(WXSIZEOF(count), count, star2, 450, 150);
}

Device Context Drawing Functions 155

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 155

156 Drawing and Printing Chapter 5

Figure 5-7 Drawing splines

Drawing Splines

DrawSpline lets you draw a curve known as a “spline” between multiple points.
There is a version for three points, and a version for an arbitrary number of
points, both illustrated in this example code:

// Draw 3-point sline
dc.DrawSpline(10, 100, 200, 200, 50, 230);

// Draw 5-point spline
wxPoint star[5];
star[0] = wxPoint(100, 60);
star[1] = wxPoint(60, 150);
star[2] = wxPoint(160, 100);
star[3] = wxPoint(40, 100);
star[4] = wxPoint(140, 150);
dc.DrawSpline(WXSIZEOF(star), star);

This produces the two splines illustrated in Figure 5-7.

Figure 5-6 Drawing polygons

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 156

Device Context Drawing Functions 157

Figure 5-8 Drawing with transparency

Drawing Bitmaps

There are two main ways of drawing bitmaps on a device context: DrawBitmap
and Blit. DrawBitmap is a simplified form of Blit, and it takes a bitmap, a posi-
tion, and a boolean flag specifying transparent drawing. The transparency can
be either a simple mask or an alpha channel (which offers translucency),
depending on how the bitmap was loaded or created. The following code loads
an image with an alpha channel and draws it over lines of text.

wxString msg = wxT(“Some text will appear mixed in the image’s
shadow...”);
int y = 75;
for (size_t i = 0; i < 10; i++)
{

y += dc.GetCharHeight() + 5;
dc.DrawText(msg, 200, y);

}

wxBitmap bmp(wxT(“toucan.png”), wxBITMAP_TYPE_PNG);
dc.DrawBitmap(bmp, 250, 100, true);

This produces the drawing in Figure 5-8, where the shadows in the bitmap
appear to partially obscure the text underneath.

The Blit function is more flexible and enables you to copy a specific por-
tion of a source device context onto a destination device context. This is its pro-
totype:

bool Blit(wxCoord destX, wxCoord destY,
wxCoord width, wxCoord height, wxDC* dcSource,
wxCoord srcX, wxCoord srcY,
int logicalFunc = wxCOPY,
bool useMask = false,
wxCoord srcMaskX = -1, wxCoord srcMaskY = -1);

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 157

This code copies an area from a source device context dcSource to the destina-
tion (the object that the function is operating on). An area of specified width
and height is drawn starting at the position (destX, destY) on the destination
surface, taken from the position (srcX, srcY) on the source. The logical function
logicalFunc is usually wxCOPY, which means the bits are transferred from
source to destination with no transformation. Not all platforms support a logi-
cal function other than wxCOPY. For more information, please see “Logical
Functions” later in this chapter.

The last three parameters are used only when the source device context
is a wxMemoryDC with a transparent bitmap selected into it. useMask specifies
whether transparent drawing is used, and srcMaskX and srcMaskY enable the
bitmap’s mask to start from a different position than the main bitmap start
position.

The following example loads a small pattern into a bitmap and uses Blit
to fill a larger destination bitmap, with transparency if available.

wxMemoryDC dcDest;
wxMemoryDC dcSource;

int destWidth = 200, destHeight = 200;

// Create the destination bitmap
wxBitmap bitmapDest(destWidth, destHeight);

// Load the pattern bitmap
wxBitmap bitmapSource(wxT(“pattern.png”), wxBITMAP_TYPE_PNG);

int sourceWidth = bitmapSource.GetWidth();
int sourceHeight = bitmapSource.GetHeight();

// Clear the destination background to white
dcDest.SelectObject(bitmapDest);
dcDest.SetBackground(*wxWHITE_BRUSH);
dcDest.Clear();

dcSource.SelectObject(bitmapSource);

// Tile the smaller bitmap onto the larger bitmap
for (int i = 0; i < destWidth; i += sourceWidth)

for (int j = 0; j < destHeight; j += sourceHeight)
{

dcDest.Blit(i, j, sourceWidth, sourceHeight,
& dcSource, 0, 0, wxCOPY, true);

}

// Tidy up
dcDest.SelectBitmap(wxNullBitmap);
dcSource.SelectBitmap(wxNullBitmap);

You can also draw icons directly, with DrawIcon. This operation always takes
transparency into account. For example:

158 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 158

#include “file.xpm”

wxIcon icon(file_xpm);
dc.DrawIcon(icon, 20, 30);

Filling Arbitrary Areas

FloodFill can be used to fill an arbitrary area of a device context up to a color
boundary. Pass a starting point, a color for finding the flood area boundary,
and a style to indicate how the color parameter should be used. The device
context will be filled with the current brush color.

The following example draws a green rectangle with a red border and
fills it with black, followed by blue.

// Draw a green rectangle outlines in red
dc.SetPen(*wxRED_PEN);
dc.SetBrush(*wxGREEN_BRUSH);

dc.DrawRectangle(10, 10, 100, 100);
dc.SetBrush(*wxBLACK_BRUSH);

// Now fill the green area with black (while green is found)
dc.FloodFill(50, 50, *wxGREEN, wxFLOOD_SURFACE);
dc.SetBrush(*wxBLUE_BRUSH);

// Then fill with blue (until red is encountered)
dc.FloodFill(50, 50, *wxRED, wxFLOOD_BORDER);

The function may fail if it cannot find the color specified, or the point is out-
side the clipping region. FloodFill won’t work with printer device contexts, or
with wxMetafileDC.

Logical Functions

The current logical function determines how a source pixel (from a pen or
brush color, or source device context if using Blit) combines with a destination
pixel in the current device context. The default is wxCOPY, which simply draws
with the current color. The others combine the current color and the back-
ground using a logical operation. wxINVERT is commonly used for drawing rub-
ber bands or moving outlines because with this operation drawing a shape the
second time erases the shape.

The following example draws a dotted line using wxINVERT and then
erases it before restoring the normal logical function.

wxPen pen(*wxBLACK, 1, wxDOT);
dc.SetPen(pen);

// Invert pixels
dc.SetLogicalFunction(wxINVERT);

Device Context Drawing Functions 159

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 159

dc.DrawLine(10, 10, 100, 100);

// Invert again, rubbing it out
dc.DrawLine(10, 10, 100, 100);

// Restore to normal drawing
dc.SetLogicalFunction(wxCOPY);

Another use for logical functions is to combine images to create new images.
For example, here’s one method for creating transparent jigsaw puzzle pieces
out of an image. First, draw a black outline of each shape on a white bitmap,
using a grid of standard (but randomized) puzzle edges. Then, for each piece,
flood-fill the outline to create a black puzzle shape on a white background.
Blit the corresponding area of the puzzle image onto this template bitmap
with the wxAND_REVERSE function to mask out the unwanted parts of the puzzle,
leaving the “stamped out” puzzle piece on a black background. This can be
made into a transparent wxBitmap by converting to a wxImage, setting black as
the image mask color, and converting back to a transparent wxBitmap, which
can be drawn appropriately. (Note that this technique depends on there being
no black in the puzzle image, or else holes will appear in the puzzle pieces.)

Table 5-6 shows the logical function values and their meanings.

Table 5-6 Logical Functions

Logical Function Meaning (src = source, dst = destination)
wxAND src AND dst
wxAND_INVERT (NOT src) AND dst
wxAND_REVERSE src AND (NOT dst)
wxCLEAR 0
wxCOPY src
wxEQUIV (NOT src) XOR dst
wxINVERT NOT dst
wxNAND (NOT src) OR (NOT dst)
wxNOR (NOT src) AND (NOT dst)
wxNO_OP dst
wxOR src OR dst
wxOR_INVERT (NOT src) OR dst
wxOR_REVERSE src OR (NOT dst)
wxSET 1
wxSRC_INVERT NOT src
wxXOR src XOR dst

160 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 160

USING THE PRINTING FRAMEWORK

As we’ve seen, wxPrinterDC can be created and used directly. However, a more
flexible method is to use the wxWidgets printing framework to “drive” print-
ing. The main task for the developer is to derive a new class from wxPrintout,
overriding functions that specify how to print a page (OnPrintPage), how many
pages there are (GetPageInfo), document setup (OnPreparePrinting), and so on.
The wxWidgets printing framework will show the print dialog, create the
printer device context, and call appropriate wxPrintout functions when appro-
priate. The same printout class can be used for both printing and preview.

To start printing, a wxPrintout object is passed to a wxPrinter object, and
Print is called to kick off the printing process, showing a print dialog before
printing the pages specified by the layout object and the user. For example:

// A global object storing print settings
wxPrintDialogData g_printDialogData;

// Handler for Print menu item
void MyFrame::OnPrint(wxCommandEvent& event)
{

wxPrinter printer(& g_printDialogData);
MyPrintout printout(wxT(“My printout”));

if (!printer.Print(this, &printout, true))
{

if (wxPrinter::GetLastError() == wxPRINTER_ERROR)
wxMessageBox(wxT(“There was a problem printing.\nPerhaps your

current printer is not set correctly?”), wxT(“Printing”), wxOK);
else

wxMessageBox(wxT(“You cancelled printing”),
wxT(“Printing”), wxOK);

}
else
{

(*g_printDialogData) = printer.GetPrintDialogData();
}

}

Because the Print function returns only after all pages have been rendered
and sent to the printer, the printout object can be created on the stack.

The wxPrintDialogData class stores data related to the print dialog, such
as the pages the user selected for printing and the number of copies to be
printed. It’s a good idea to keep a global wxPrintDialogData object in your appli-
cation to store the last settings selected by the user. You can pass a pointer to
this data to wxPrinter to be used in the print dialog, and then if printing is suc-
cessful, copy the settings back from wxPrinter to your global object, as in the
previous example. (In a real application, g_printDialogData would probably be

Using the Printing Framework 161

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 161

a data member of your application class.) See Chapter 8, “Using Standard
Dialogs,” for more about print and page dialogs and how to use them.

To preview the document, create a wxPrintPreview object, passing two
printout objects to it: one for the preview and one to use for printing if the user
requests it. You can also pass a wxPrintDialogData object so that the preview
picks up settings that the user chose earlier. Then pass the preview object to
wxPreviewFrame, call the frame’s Initialize function, and show the frame. For
example:

// Handler for Preview menu item
void MyFrame::OnPreview(wxCommandEvent& event)
{

wxPrintPreview *preview = new wxPrintPreview(
new MyPrintout, new MyPrintout,
& g_printDialogData);

if (!preview->Ok())
{

delete preview;
wxMessageBox(wxT(“There was a problem previewing.\nPerhaps your

current printer is not set correctly?”),
wxT(“Previewing”), wxOK);

return;
}

wxPreviewFrame *frame = new wxPreviewFrame(preview, this,
wxT(“Demo Print Preview”));

frame->Centre(wxBOTH);
frame->Initialize();
frame->Show(true);

}

When the preview frame is initialized, it disables all other top-level windows
in order to avoid actions that might cause the document to be edited after the
print or preview process has started. Closing the frame automatically
destroys the two printout objects. Figure 5-9 shows the print preview window,
with a control bar along the top providing page navigation, printing, and
zoom control.

162 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 162

More on wxPrintout

When creating a printout object, the application can pass an optional title that
will appear in the print manager under some operating systems. You will need
to provide at least GetPageInfo, HasPage, and OnPrintPage, but you can override
any of the other methods below as well.

GetPageInfo should be overridden to return minPage, maxPage, pageFrom,
and pageTo. The first two integers represent the range supported by this print-
out object for the current document, and the second two integers represent a
user selection (not currently used by wxWidgets). The default values for
minPage and maxPage are 1 and 32,000, respectively. However, the printout will
stop printing if HasPage returns false. Typically, your OnPreparePrinting func-
tion will calculate the values returned by GetPageInfo and will look something
like this:

Using the Printing Framework 163

Figure 5-9 Print preview window

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 163

void MyPrintout::GetPageInfo(int *minPage, int *maxPage,
int *pageFrom, int *pageTo)

{
*minPage = 1; *maxPage = m_numPages;
*pageFrom = 1; *pageTo = m_numPages;

}

HasPage must return false if the argument is outside the current page range.
Often its implementation will look like this, where m_numPages has been calcu-
lated in OnPreparePrinting:

bool MyPrintout::HasPage(int pageNum)
{

return (pageNum >= 1 && pageNum <= m_numPages);
}

OnPreparePrinting is called before the print or preview process commences,
and overriding it enables the application to do various setup tasks, including
calculating the number of pages in the document. OnPreparePrinting can call
wxPrintout functions such as GetDC, GetPageSizeMM, IsPreview, and so on to get
the information it needs.

OnBeginDocument is called with the start and end page numbers when each
document copy is about to be printed, and if overridden, it must call the base
wxPrintout::OnBeginDocument function. Similarly, wxPrintout::OnEndDocument

must be called if overridden.
OnBeginPrinting is called once for the printing cycle, regardless of the

number of copies, and OnEndPrinting is called at the end.
OnPrintPage is passed a page number, and the application should override

it to return true if the page was successfully printed (returning false cancels
the print job). This function will use wxPrintout::GetDC to get the device con-
text to draw on.

The following are the utility functions you can use in your overridden
functions, and they do not need to be overridden.

IsPreview can be called to determine whether this is a real print task or a
preview.

GetDC returns a suitable device context for the current task. When print-
ing, a wxPrinterDC will be returned, and when previewing, a wxMemoryDC will be
returned because a preview is rendered into a bitmap via a memory device
context.

GetPageSizeMM returns the size of the printer page in millimeters, whereas
GetPageSizePixels returns the size in pixels (the maximum resolution of the
printer). For a preview, this will not be the same as the size returned by
wxDC::GetSize, which will return the preview bitmap size.

164 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 164

GetPPIPrinter returns the number of pixels per logical inch for the cur-
rent device context, and GetPPIScreen returns the number of pixels per logical
inch of the screen.

Scaling for Printing and Previewing

When drawing on a window, you probably don’t concern yourself about scaling
your graphics because displays tend to have similar resolutions. However,
there are several factors to take into account when drawing to a printer:

� You need to scale and position graphics to fit the width of the page, and
break the graphics into pages if necessary.

� Fonts are based on screen resolution, so when drawing text, you need to
set a scale so that the printer device context matches the screen resolu-
tion. Dividing the printer resolution (GetPPIPrinter) by the screen resolu-
tion (GetPPIScreen) can give a suitable scaling factor for drawing text.

� When rendering the preview, wxWidgets uses a wxMemoryDC to draw into a
bitmap. The size of the bitmap (returned by wxDC::GetSize) depends on
the zoom scale, and an extra scale factor must be calculated to deal with
this. Divide the size returned by GetSize by the actual page size returned
by GetPageSizePixels to get this scale factor. This value should be multi-
plied by any other scale you calculated.

You can use wxDC::SetUserScale to let the device context perform the scal-
ing for subsequent graphics operations and wxDC::SetDeviceOrigin to set the
origin (for example, to center a graphic on a page). You can keep calling these
scaling and device origin functions for different parts of your graphics, on the
same page if necessary.

The wxWidgets sample in samples/printing shows how to do scaling. The
following example shows a function adapted from the printing sample, which
scales and positions a 200×200 pixel graphic on a printer or preview device
context.

void MyPrintout::DrawPageOne(wxDC *dc)
{

// You might use THIS code if you were scaling
// graphics of known size to fit on the page.

// We know the graphic is 200x200. If we didn’t know this,
// we’d need to calculate it.
float maxX = 200;
float maxY = 200;

// Let’s have at least 50 device units margin
float marginX = 50;
float marginY = 50;

Using the Printing Framework 165

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 165

// Add the margin to the graphic size
maxX += (2*marginX);
maxY += (2*marginY);

// Get the size of the DC in pixels
int w, h;
dc->GetSize(&w, &h);

// Calculate a suitable scaling factor
float scaleX=(float)(w/maxX);
float scaleY=(float)(h/maxY);

// Use x or y scaling factor, whichever fits on the DC
float actualScale = wxMin(scaleX,scaleY);

// Calculate the position on the DC for centring the graphic
float posX = (float)((w - (200*actualScale))/2.0);
float posY = (float)((h - (200*actualScale))/2.0);

// Set the scale and origin
dc->SetUserScale(actualScale, actualScale);
dc->SetDeviceOrigin((long)posX, (long)posY);

// Now do the actual drawing
dc.SetBackground(*wxWHITE_BRUSH);
dc.Clear();
dc.SetFont(wxGetApp().m_testFont);

dc.SetBackgroundMode(wxTRANSPARENT);

dc.SetBrush(*wxCYAN_BRUSH);
dc.SetPen(*wxRED_PEN);

dc.DrawRectangle(0, 30, 200, 100);

dc.DrawText(wxT(“Rectangle 200 by 100”), 40, 40);

dc.SetPen(wxPen(*wxBLACK,0,wxDOT_DASH));
dc.DrawEllipse(50, 140, 100, 50);
dc.SetPen(*wxRED_PEN);

dc.DrawText(wxT(“Test message: this is in 10 point text”),
10, 180);

}

In this code, we simply use wxDC::GetSize to get the preview or printer resolu-
tion so we can fit the graphic on the page. In this example, we’re not interested
in the points-per-inch printer resolution, as we might be if we were drawing
text or lines of a specific length in millimeters, because the graphic doesn’t
have to be a precise size: it’s just scaled to fit the available space.

Next, we’ll show code that prints text at a size to match how it appears
on the screen and that also draws lines that have a precise length, rather than
simply being scaled to fit.

void MyPrintout::DrawPageTwo(wxDC *dc)
{

// You might use THIS code to set the printer DC to roughly

166 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 166

// reflect the screen text size. This page also draws lines of
// actual length 5cm on the page.

// Get the logical pixels per inch of screen and printer
int ppiScreenX, ppiScreenY;
GetPPIScreen(&ppiScreenX, &ppiScreenY);
int ppiPrinterX, ppiPrinterY;
GetPPIPrinter(&ppiPrinterX, &ppiPrinterY);

// This scales the DC so that the printout roughly represents the
// the screen scaling.
float scale = (float)((float)ppiPrinterX/(float)ppiScreenX);

// Now we have to check in case our real page size is reduced
// (e.g. because we’re drawing to a print preview memory DC)
int pageWidth, pageHeight;
int w, h;
dc->GetSize(&w, &h);
GetPageSizePixels(&pageWidth, &pageHeight);

// If printer pageWidth == current DC width, then this doesn’t
// change. But w might be the preview bitmap width,
// so scale down.
float overallScale = scale * (float)(w/(float)pageWidth);
dc->SetUserScale(overallScale, overallScale);

// Calculate conversion factor for converting millimetres into
// logical units.
// There are approx. 25.4 mm to the inch. There are ppi
// device units to the inch. Therefore 1 mm corresponds to
// ppi/25.4 device units. We also divide by the
// screen-to-printer scaling factor, because we need to
// unscale to pass logical units to DrawLine.

// Draw 50 mm by 50 mm L shape
float logUnitsFactor = (float)(ppiPrinterX/(scale*25.4));
float logUnits = (float)(50*logUnitsFactor);
dc->SetPen(* wxBLACK_PEN);
dc->DrawLine(50, 250, (long)(50.0 + logUnits), 250);
dc->DrawLine(50, 250, 50, (long)(250.0 + logUnits));

dc->SetBackgroundMode(wxTRANSPARENT);
dc->SetBrush(*wxTRANSPARENT_BRUSH);

dc->SetFont(wxGetApp().m_testFont);

dc->DrawText(wxT(“Some test text”), 200, 300);
}

Printing Under Unix with GTK+

Unlike Mac OS X and Windows, Unix does not provide a standard way to dis-
play text and graphics onscreen and print it using the same API. Instead,
screen display is done via the X11 library (via GTK+ and wxWidgets), whereas
printing has to be done by sending a file of PostScript commands to the
printer. Fonts are particularly tricky to handle; until recently, only a small
number of applications have offered WYSIWYG (What You See Is What You

Using the Printing Framework 167

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 167

Get) under Unix. In the past, wxWidgets offered its own printing implementa-
tion using PostScript that never fully matched the screen display.

From version 2.8, the GNOME Free Software Desktop Project provides
printing support through the libgnomeprint and libgnomeprintui libraries by
which most printing problems are solved. Beginning with version 2.5.4, the
GTK+ port of wxWidgets can make use of these libraries if wxWidgets is
configured accordingly and if the libraries are present. You need to config-
ure wxWidgets with the --with-gnomeprint switch, which will cause your
application to search for the GNOME print libraries at runtime. If they are
found, printing will be done through these; otherwise, the application will fall
back to the old PostScript printing code. Note that the application will not
require the GNOME print libraries to be installed in order to run (there is no
dependency on these libraries).

3D GRAPHICS WITH WXGLCANVAS

It’s worth mentioning that wxWidgets comes with the capability of drawing
3D graphics, thanks to OpenGL and wxGLCanvas. You can use it with the
OpenGL clone Mesa if your platform doesn’t support OpenGL.

To enable wxGLCanvas support under Windows, edit include/wx/msw/

setup.h, set wxUSE_GLCANVAS to 1, and compile with USE_OPENGL=1 on the com-
mand line. You may also need to add opengl32.lib to the list of libraries your
program is linked with. On Unix and Mac OS X, pass --with-opengl to the
configure script to compile using OpenGL or Mesa.

If you’re already an OpenGL programmer, using wxGLCanvas is very sim-
ple. You create a wxGLCanvas object within a frame or other container window,
call wxGLCanvas::SetCurrent to direct regular OpenGL commands to the win-
dow, issue normal OpenGL commands, and then call wxGLCanvas::SwapBuffers
to show the OpenGL buffer on the window.

The following paint handler shows the principles of rendering 3D graph-
ics and draws a cube. The full sample can be compiled and run from
samples/opengl/cube in your wxWidgets distribution.

void TestGLCanvas::OnPaint(wxPaintEvent& event)
{

wxPaintDC dc(this);

SetCurrent();

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-0.5f, 0.5f, -0.5f, 0.5f, 1.0f, 3.0f);
glMatrixMode(GL_MODELVIEW);

/* clear color and depth buffers */
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* draw six faces of a cube */
glBegin(GL_QUADS);

168 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 168

glNormal3f(0.0f, 0.0f, 1.0f);
glVertex3f(0.5f, 0.5f, 0.5f); glVertex3f(-0.5f, 0.5f, 0.5f);
glVertex3f(-0.5f,-0.5f, 0.5f); glVertex3f(0.5f,-0.5f, 0.5f);

glNormal3f(0.0f, 0.0f,-1.0f);
glVertex3f(-0.5f,-0.5f,-0.5f); glVertex3f(-0.5f, 0.5f,-0.5f);
glVertex3f(0.5f, 0.5f,-0.5f); glVertex3f(0.5f,-0.5f,-0.5f);

glNormal3f(0.0f, 1.0f, 0.0f);
glVertex3f(0.5f, 0.5f, 0.5f); glVertex3f(0.5f, 0.5f,-0.5f);
glVertex3f(-0.5f, 0.5f,-0.5f); glVertex3f(-0.5f, 0.5f, 0.5f);

glNormal3f(0.0f,-1.0f, 0.0f);
glVertex3f(-0.5f,-0.5f,-0.5f); glVertex3f(0.5f,-0.5f,-0.5f);
glVertex3f(0.5f,-0.5f, 0.5f); glVertex3f(-0.5f,-0.5f, 0.5f);

glNormal3f(1.0f, 0.0f, 0.0f);
glVertex3f(0.5f, 0.5f, 0.5f); glVertex3f(0.5f,-0.5f, 0.5f);
glVertex3f(0.5f,-0.5f,-0.5f); glVertex3f(0.5f, 0.5f,-0.5f);

glNormal3f(-1.0f, 0.0f, 0.0f);
glVertex3f(-0.5f,-0.5f,-0.5f); glVertex3f(-0.5f,-0.5f, 0.5f);
glVertex3f(-0.5f, 0.5f, 0.5f); glVertex3f(-0.5f, 0.5f,-0.5f);
glEnd();

glFlush();
SwapBuffers();

}

Figure 5-10 shows another OpenGL sample, a cute (if angular) penguin
that can be rotated using the mouse. You can find this sample in
samples/opengl/penguin.

3D Graphics with wxGLCanvas 169

Figure 5-10 OpenGL “penguin” sample

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 169

SUMMARY

In this chapter, you have learned how to draw on device contexts and use the
wxWidgets printing framework, and you received a quick introduction to
wxGLCanvas. You can look at the following source code in your wxWidgets distri-
bution for examples of drawing and printing code:

� samples/drawing

� samples/font

� samples/erase

� samples/image

� samples/scroll

� samples/printing

� src/html/htmprint.cpp

� demos/bombs

� demos/fractal

� demos/life

For advanced 2D drawing applications, you might want to consider the
wxArt2D library, which offers loading and saving of graphical objects using
SVG files (Scalable Vector Graphics), flicker-free updating, gradients, vector
paths, and more. See Appendix E, “ Third-Party Tools for wxWidgets,” for
where to get wxArt2D.

Next, we’ll look at how your application can respond to mouse, keyboard,
and joystick input.

170 Drawing and Printing Chapter 5

Smart_Ch05f.qxd 6/10/05 11:17 AM Page 170

C H A P T E R 6

Handling Input

All GUI applications must respond to input in some way. This chapter shows
how you can respond to user input from the mouse, keyboard, and joystick.

MOUSE INPUT

Broadly speaking, there are two categories of mouse input. Basic mouse
events are sent using wxMouseEvent and are passed uninterpreted to your
handler function. Commands associated with controls, on the other hand,
are often the result of interpreting a mouse (or other) event as a particular
command.

For example, when you add EVT_BUTTON to an event table, you are inter-
cepting a wxCommandEvent that was generated by the wxButton. Internally, the
button is intercepting EVT_LEFT_DOWN and generating the command event as a
result. (Of course, on most platforms, wxButton is implemented natively and
doesn’t use low-level wxWidgets event handling, but it’s true of custom
classes.)

Because we’ve already seen examples of handling command events, we
will concentrate on basic mouse events.

You can intercept button up, button down, and double-click events for
left, middle, and right mouse buttons. You can intercept motion events,
whether the mouse is moving with or without buttons pressed. You can inter-
cept events telling you that the mouse is entering or leaving the window.
Finally, you can intercept scroll wheel events if the hardware provides a scroll
wheel.

When you receive a mouse event, you can also check the state of the
mouse buttons, and the pressed state of the modifier keys (Shift, Alt, Control,
and Meta). You can also retrieve the current mouse position relative to the
top-left corner of the window’s client area.

171

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 171

Table 6-1 lists the event table macros you can use. wxMouseEvent does not
propagate to parents of the originating window, so to handle these events, you
must derive from a window class or derive from wxEvtHandler and plug the
object into the window with SetEventHandler or PushEventHandler.
Alternatively, you can use dynamic event handling with Connect.

Table 6-1 Mouse Event Table Macros

EVT_LEFT_DOWN(func Handles a wxEVT_LEFT_DOWN event, generated
when the left mouse button changes to the
“down” state.

EVT_LEFT_UP(func) Handles a wxEVT_LEFT_UP event, generated
when the left mouse button changes to the
“up” state.

EVT_LEFT_DCLICK(func) Handles a wxEVT_LEFT_DCLICK event, generated
when the left mouse button is double-clicked.

EVT_MIDDLE_DOWN(func) Handles a wxEVT_MIDDLE_DOWN event, gener-
ated when the middle mouse button changes to
the “down” state.

EVT_MIDDLE_UP(func) Handles a wxEVT_MIDDLE_UP event, generated
when the middle mouse button changes to the
“up” state.

EVT_MIDDLE_DCLICK(func) Handles a wxEVT_MIDDLE_DCLICK event, gener-
ated when the middle mouse button is
double-clicked.

EVT_RIGHT_DOWN(func) Handles a wxEVT_RIGHT_DOWN event, generated
when the right mouse button changes to the
“down” state.

EVT_RIGHT_UP(func) Handles a wxEVT_RIGHT_UP event, generated
when the right mouse button changes to
the “up” state.

EVT_RIGHT_DCLICK(func) Handles a wxEVT_RIGHT_DCLICK event, gener-
ated when the right mouse button is
double-clicked.

EVT_MOTION(func) Handles a wxEVT_MOTION event, generated
when the mouse moves.

EVT_ENTER_WINDOW(func) Handles a wxEVT_ENTER_WINDOW event, gener-
ated when the mouse enters the window.

EVT_LEAVE_WINDOW(func) Handles a wxEVT_LEAVE_WINDOW event, gener-
ated when the mouse leaves the window.

EVT_MOUSEWHEEL(func) Handles a wxEVT_MOUSEWHEEL event,
generated when the mouse wheel moves.

EVT_MOUSE_EVENTS(func) Handles all mouse events.

172 Handling Input Chapter 6

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 172

Handling Button and Motion Events

These are the main mouse event functions that you can use within your event
handler when handling mouse button and motion events.

To test whether a modifier key is down at the time of generating the
event, use AltDown, MetaDown, ControlDown, or ShiftDown. Use CmdDown if you
want to test for either the Meta key (on Mac OS X) or the Control key (other
platforms). See “Modifier Key Variations” later in the chapter for more on this.

To determine which mouse button is currently pressed, use LeftIsDown,
MiddleIsDown, and RightIsDown. You can also test whether a button is pressed by
passing wxMOUSE_BTN_LEFT, wxMOUSE_BTN_MIDDLE, wxMOUSE_BTN_RIGHT or wxMOUSE_
BTN_ANY to Button. Note that these test whether a button is down at the time of
the mouse event, rather than whether the button changed state.

On Mac OS X, the Command key translates to Meta, and the Option key
is Alt. Because the Mac is often configured with only one mouse button, the
user holds down the Control key while clicking to generate a right-click event.
This means that there is no such thing as Control-Right Click on Mac unless
you have an external mouse with two or three buttons.

You can test for the type of mouse event with Dragging (the mouse is mov-
ing with a button pressed down), Moving (no button is currently pressed),
Entering, Leaving, ButtonDown, ButtonUp, ButtonDClick, LeftClick, LeftDClick,
LeftUp, RightClick, RightDClick, RightUp, ButtonUp, and IsButton.

Retrieve the mouse position in device units (relative to the client win-
dow’s top-left corner) with GetPosition or GetX and GetY. You can get the posi-
tion in logical units by passing a device context to GetLogicalPosition.

Here’s an example of mouse handling for a simple doodling application.

BEGIN_EVENT_TABLE(DoodleCanvas, wxWindow)
EVT_MOUSE_EVENTS(DoodleCanvas::OnMouseEvent)

END_EVENT_TABLE()

void DoodleCanvas::OnMouseEvent(wxMouseEvent& event)
{

static DoodleSegment *s_currentSegment = NULL;

wxPoint pt(event.GetPosition());

if (s_currentSegment && event.LeftUp())
{

// End the segment on mouse left up
if (s_currentSegment->GetLines().GetCount() == 0)
{

// Empty segment: delete it
delete s_currentSegment;
s_currentSegment = (DoodleSegment *) NULL;

}
else
{

// We’ve got a valid segment, so store it
DrawingDocument *doc = GetDocument();

doc->GetCommandProcessor()->Submit(

Mouse Input 173

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 173

new DrawingCommand(wxT(“Add Segment”), DOODLE_ADD,
doc, s_currentSegment));

doc->Modify(true);
s_currentSegment = NULL;

}
}
else if (m_lastX > -1 && m_lastY > -1 && event.Dragging())
{

// We’re dragging: append a line to the current segment
if (!s_currentSegment)

s_currentSegment = new DoodleSegment;

DoodleLine *newLine = new DoodleLine(m_lastX, m_lastY, pt.x,
pt.y);

s_currentSegment->GetLines().Append(newLine);

wxClientDC dc(this);
DoPrepareDC(dc);

dc.SetPen(*wxBLACK_PEN);
dc.DrawLine(m_lastX, m_lastY, pt.x, pt.y);

}
m_lastX = pt.x;
m_lastY = pt.y;

}

In this application, line segments are stored in a document. While the user
drags using the left button, the function adds lines to the current segment and
also draws the lines. When the user releases the left mouse button, the current
segment is submitted to the document using the command processor (part of
the document-view framework), which allows undo/redo to be implemented. In
the application’s OnPaint handler (not shown), all the document’s line seg-
ments are drawn. For a complete doodling program with undo/redo, see
Chapter 19, “Working with Documents and Views.”

A more realistic application would capture the mouse on left button
down and release it on left button up so that when dragging outside the win-
dow, the window would still receive events.

Handling Mouse Wheel Events

When you get a mouse wheel event, you retrieve the positive or negative rota-
tion amount with GetWheelRotation. Divide this value by the value returned by
GetWheelDelta to get the number of lines that this rotation represents. Most
devices generate one event per delta, but future devices may send events more
frequently, so you need to be able to accumulate the amount of rotation and
only take action when rotation equivalent to a full line has been received.
Alternatively, you may be able to scroll by a fraction of a line. You should take
into account the value returned by GetLinesPerAction, as configured by the
user via the system control panel, and multiply by this amount to scroll the
desired number of actual lines.

174 Handling Input Chapter 6

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 174

In fact, the mouse may be configured to scroll by a page at a time. In this
case, you need to call IsPageScroll, and if this returns true, scroll by a page.

To illustrate, here’s how wxScrolledWindow implements default scroll
wheel processing. The variable m_wheelRotation accumulates the rotation, and
action is only taken if the number of lines is non-zero.

void wxScrollHelper::HandleOnMouseWheel(wxMouseEvent& event)
{

m_wheelRotation += event.GetWheelRotation();
int lines = m_wheelRotation / event.GetWheelDelta();
m_wheelRotation -= lines * event.GetWheelDelta();

if (lines != 0)
{

wxScrollWinEvent newEvent;

newEvent.SetPosition(0);
newEvent.SetOrientation(wxVERTICAL);
newEvent.m_eventObject = m_win;

if (event.IsPageScroll())
{

if (lines > 0)
newEvent.m_eventType = wxEVT_SCROLLWIN_PAGEUP;

else
newEvent.m_eventType = wxEVT_SCROLLWIN_PAGEDOWN;

m_win->GetEventHandler()->ProcessEvent(newEvent);
}
else
{

lines *= event.GetLinesPerAction();
if (lines > 0)

newEvent.m_eventType = wxEVT_SCROLLWIN_LINEUP;
else

newEvent.m_eventType = wxEVT_SCROLLWIN_LINEDOWN;

int times = abs(lines);
for (; times > 0; times—)

m_win->GetEventHandler()->ProcessEvent(newEvent);
}

}
}

HANDLING KEYBOARD EVENTS

Keyboard events are represented by the class wxKeyEvent. There are three dif-
ferent kinds of keyboard events in wxWidgets: key down, key up, and charac-
ter. Key down and up events are untranslated events, whereas character
events are translated, which we’ll explain shortly. If the key is held down, you
will typically get many down events but only one up event, so don’t assume
that one up event corresponds to each down event.

Handling Keyboard Events 175

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 175

To receive key events, your window needs to have the keyboard focus,
which you can achieve by calling wxWindow::SetFocus—for example, when a
mouse button is pressed.

Table 6-2 lists the three keyboard event table macros.

Table 6-2 Keyboard Event Table Macros

EVT_KEY_DOWN(func) Handles a wxEVT_KEY_DOWN event (untranslated
key press).

EVT_KEY_UP(func) Handles a wxEVT_KEY_UP event (untranslated
key release).

EVT_CHAR(func) Handles a wxEVT_CHAR event (translated key press).

These are the main wxKeyEvent functions that you can use within your key
event handler when handling keyboard events.

To get the keycode, call GetKeyCode (in Unicode builds, you can also call
GetUnicodeKeyCode). All valid key codes are listed in Table 6-3.

176 Handling Input Chapter 6

Table 6-3 Key Code Identifiers

WXK_BACK

WXK_TAB

WXK_RETURN

WXK_ESCAPE

WXK_SPACE

WXK_DELETE

WXK_START

WXK_LBUTTON

WXK_RBUTTON

WXK_CANCEL

WXK_MBUTTON

WXK_CLEAR

WXK_SHIFT

WXK_CONTROL

WXK_MENU

WXK_PAUSE

WXK_CAPITAL

WXK_PRIOR

WXK_NEXT

WXK_END

WXK_HOME

WXK_LEFT

WXK_UP

WXK_RIGHT

WXK_DOWN

WXK_SELECT

WXK_PRINT

WXK_EXECUTE

WXK_SNAPSHOT

WXK_INSERT

WXK_HELP

WXK_NUMPAD0

WXK_NUMPAD1

WXK_NUMPAD2

WXK_NUMPAD3

WXK_NUMPAD4

WXK_NUMPAD5

WXK_NUMPAD6

WXK_NUMPAD7

WXK_NUMPAD8

WXK_NUMPAD9

WXK_MULTIPLY

WXK_ADD

WXK_SEPARATOR

WXK_SUBTRACT

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 176

WXK_PAGEDOWN

WXK_NUMPAD_SPACE

WXK_NUMPAD_TAB

WXK_NUMPAD_ENTER

WXK_NUMPAD_F1

WXK_NUMPAD_F2

WXK_NUMPAD_F3

WXK_NUMPAD_F4

WXK_NUMPAD_HOME

WXK_NUMPAD_LEFT

WXK_NUMPAD_UP

WXK_NUMPAD_RIGHT

WXK_NUMPAD_DOWN

WXK_NUMPAD_PRIOR

WXK_NUMPAD_PAGEUP

WXK_NUMPAD_NEXT

WXK_NUMPAD_PAGEDOWN

WXK_NUMPAD_END

WXK_NUMPAD_BEGIN

WXK_NUMPAD_INSERT

WXK_NUMPAD_DELETE

WXK_NUMPAD_EQUAL

WXK_NUMPAD_MULTIPLY

WXK_NUMPAD_ADD

WXK_NUMPAD_SEPARATOR

WXK_NUMPAD_SUBTRACT

WXK_NUMPAD_DECIMAL

WXK_NUMPAD_DIVIDE

WXK_DECIMAL

WXK_DIVIDE

WXK_F1

WXK_F2

WXK_F3 WXK_F4

WXK_F5

WXK_F6

WXK_F7

WXK_F8

WXK_F9

WXK_F10

WXK_F11

WXK_F12

WXK_F13

WXK_F14

WXK_F15

WXK_F16

WXK_F17

WXK_F18

WXK_F19

WXK_F20

WXK_F21

WXK_F22

WXK_F23

WXK_F24

WXK_NUMLOCK

WXK_SCROLL

WXK_PAGEUP

Handling Keyboard Events 177

To test whether a modifier key is pressed down at the time of generating
the event, use AltDown, MetaDown, ControlDown, or ShiftDown. HasModifiers returns
true if either Control or Alt was down at the time of the key event (but not the
Shift or Meta key states).

Instead of using ControlDown or MetaDown, you may want to use the higher-
level CmdDown function that calls MetaDown on Mac OS X and ControlDown on other
platforms. See also “Modifier Key Variations” in the following section for fur-
ther explanation.

GetPosition returns the position of the mouse pointer in client coordi-
nates at the time the event was received.

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 177

Tip
If a key down event is caught and the event handler does not call
event.Skip(), then the corresponding character event will not happen. If
you don’t call event.Skip() for events that you don’t process in key event
function, shortcuts may cease to work on some platforms.

An Example Character Event Handler

Here’s the key handler from the wxThumbnailCtrl sample that you can find in
examples/chap12/thumbnail on the CD-ROM:

BEGIN_EVENT_TABLE(wxThumbnailCtrl, wxScrolledWindow)
EVT_CHAR(wxThumbnailCtrl::OnChar)

END_EVENT_TABLE()

void wxThumbnailCtrl::OnChar(wxKeyEvent& event)
{

int flags = 0;
if (event.ControlDown())

flags |= wxTHUMBNAIL_CTRL_DOWN;
if (event.ShiftDown())

flags |= wxTHUMBNAIL_SHIFT_DOWN;
if (event.AltDown())

flags |= wxTHUMBNAIL_ALT_DOWN;

if (event.GetKeyCode() == WXK_LEFT ||
event.GetKeyCode() == WXK_RIGHT ||
event.GetKeyCode() == WXK_UP ||
event.GetKeyCode() == WXK_DOWN ||
event.GetKeyCode() == WXK_HOME ||
event.GetKeyCode() == WXK_PAGEUP ||
event.GetKeyCode() == WXK_PAGEDOWN ||
event.GetKeyCode() == WXK_PRIOR ||
event.GetKeyCode() == WXK_NEXT ||
event.GetKeyCode() == WXK_END)

{
Navigate(event.GetKeyCode(), flags);

}
else if (event.GetKeyCode() == WXK_RETURN)
{

wxThumbnailEvent cmdEvent(
wxEVT_COMMAND_THUMBNAIL_RETURN,
GetId());

cmdEvent.SetEventObject(this);
cmdEvent.SetFlags(flags);
GetEventHandler()->ProcessEvent(cmdEvent);

}
else

event.Skip();
}

For clarity, the navigation key handling is delegated to a separate function,
Navigate. Pressing the Return or Enter key generates a higher-level command

178 Handling Input Chapter 6

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 178

event that an application using the control can catch; for all other key presses,
Skip is called to enable other parts of the application to process unused key events.

Key Code Translation

Key events provide untranslated key codes, whereas the character event pro-
vides a translated key code. The untranslated code for alphanumeric keys is
always an uppercase value. For the other keys, it is one of the WXK_XXX values
from the keycodes table. The translated key is, in general, the character the
user expects to appear as the result of the key combination when typing text
into a text entry field.

Here are a few examples to clarify this. When the A key is pressed, the
key down event key code is equal to ASCII “A” (65), but the character event key
code is ASCII A (97). On the other hand, if you press both the Shift and A keys
simultaneously, the key code in the key down event will still be A, while the
character event key code will now be A as well.

In this simple case, it is clear that the ASCII code could be found in the
key down event handler by checking both the untranslated key code and the
value returned by ShiftDown. But in general, if you want the ASCII key
code, you should use the character event (with EVT_CHAR) because for non-
alphanumeric keys, the translation is dependent on keyboard layout and can
only be done properly by the system itself.

Another kind of translation is done when the Control key is pressed: for
example, for Ctrl+A, the key down event still passes the same key code A as
usual, but the character event will have a key code of 1, which is the ASCII
value of this key combination.

You may discover how the other keys on your system behave inter-
actively by running the keyboard sample (samples/keyboard) and press-
ing keys.

Modifier Key Variations

On Windows, there are Control and Alt modifier keys, and the special
Windows key acts as the Meta key. On Unix, the key that acts as Meta is con-
figurable (run xmodmap to see how your system is configured). The Numlock key
is sometimes configured as a Meta key, and this is the reason HasModifiers
does not return true if the Meta key is down—this allows key presses to be
processed normally when Numlock is on.

On Mac OS X, the Command key (with the apple symbol) translates to
Meta, while the Option key translates to Alt.

These differences are shown in Table 6-4, with the wxWidgets modifier
name shown in the first column, and the key used for this modifier on each of
the three major platforms. The Mac’s Option and Command keys are illus-
trated for clarification.

Handling Keyboard Events 179

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 179

180 Handling Input Chapter 6

Table 6-4 Modifier Keys Under Windows, Unix, and Mac OS X

Modifier Key on Windows Key on Unix Key on Mac
Shift Shift Shift Shift
Control Control Control Control

Alt Alt Alt Option

Meta Windows (Configurable) Command

Because Mac OS X uses the Command key as a modifier where Control
is used on other platforms, you may use wxKeyEvent’s CmdDown function
instead of ControlDown or MetaDown to catch the appropriate command modi-
fier on each platform.

Note that as well as testing for a modifier key from within an event han-
dler function, you can pass a key code to wxGetKeyState to test whether that
key is down.

Accelerators

An accelerator implements a keyboard shortcut for a menu command,
enabling the user to execute that command quickly. These shortcuts take
precedence over other keyboard processing, such as EVT_CHAR handlers.
Standard shortcuts include Ctrl+O to open a file and Ctrl+V to paste data into
the application. The easiest way to implement accelerators is to specify them
in menu items. For example:

menu->Append(wxID_COPY, wxT(“Copy\tCtrl+C”));

wxWidgets interprets the text after the “tab” character as an accelerator and
adds it to the menu’s accelerator table. In this example, when the user presses
Ctrl+C the wxID_COPY command is sent, just as though the menu item was
selected.

You can use Ctrl, Alt, or Shift in various combinations, followed by a + or
- and a character or function key. The following are all valid accelerator speci-
fications: Ctrl+B, G, Shift-Alt-K, F9, Ctrl+F3, Esc, and Del. You can use the fol-
lowing special key names: Del, Back, Ins, Insert, Enter, Return, PgUp, PgDn,
Left, Right, Up, Down, Home, End, Space, Tab, Esc, and Escape. Case is not
significant when interpreting the names (any combination of uppercase and
lowercase will work).

Note that on Mac OS X, a shortcut specification involving Ctrl will actu-
ally use the Command key.

Another way to provide accelerators is to populate an wxAccelerator
Table with wxAcceleratorEntry objects and associate it with a window using

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 180

Handling Joystick Events 181

wxWindow::SetAcceleratorTable. Each wxAcceleratorEntry is initialized with a bit-
list of modifiers (one or more of wxACCEL_ALT, wxACCEL_CTRL, wxACCEL_SHIFT, and
wxACCEL_NORMAL), a key code (see Table 6-3), and an identifier. For example:

wxAcceleratorEntry entries[4];
entries[0].Set(wxACCEL_CTRL, (int) ‘N’, wxID_NEW);
entries[1].Set(wxACCEL_CTRL, (int) ‘X’, wxID_EXIT);
entries[2].Set(wxACCEL_SHIFT, (int) ‘A’, wxID_ABOUT);
entries[3].Set(wxACCEL_NORMAL, WXK_DELETE, wxID_CUT);

wxAcceleratorTable accel(4, entries);
frame->SetAcceleratorTable(accel);

You can use several accelerator tables in a window hierarchy, and you can
combine menu string accelerator specifications with an explicit
wxAcceleratorTable. This is useful if you have alternative accelerators for a sin-
gle command, which you cannot entirely specify in the menu item label.

HANDLING JOYSTICK EVENTS

The wxJoystick class gives your application control over one or two joysticks on
Windows or Linux. Typically, you’ll create a wxJoystick object passing
wxJOYSTICK1 or wxJOYSTICK2 and keep the object on the heap while it’s needed.
When you need input, call SetCapture passing a window pointer for receiving
the joystick events, and then call ReleaseCapture when you no longer need the
events. You might set the capture for the lifetime of the application instance
(that is, calling SetCapture on initialization and ReleaseCapture on exit).

Before describing the events and functions in more detail, let’s take a
look at samples/joystick from the wxWidgets distribution. The user can con-
trol the joystick to draw a sequence of lines on a canvas by clicking on one of
the joystick’s buttons. Pressing the button also plays a sound.

The following is a snippet of the initialization code. First, the application
checks whether a joystick is installed by creating a temporary joystick object,
terminating if a joystick isn’t found. The buttonpress.wav sound file is loaded
into the wxSound object stored in the application object, and the minimum and
maximum joystick positions are stored to permit scaling input to the size of
the drawing window.

#include “wx/wx.h”
#include “wx/sound.h”
#include “wx/joystick.h”

bool MyApp::OnInit()
{

wxJoystick stick(wxJOYSTICK1);
if (!stick.IsOk())
{

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 181

182 Handling Input Chapter 6

wxMessageBox(wxT(“No joystick detected!”));
return false;

}

m_fire.Create(wxT(“buttonpress.wav”));

m_minX = stick.GetXMin();
m_minY = stick.GetYMin();
m_maxX = stick.GetXMax();
m_maxY = stick.GetYMax();

// Create the main frame window
...

return true;
}

MyCanvas is a window that stores the joystick object and also receives the joy-
stick events. Here’s the implementation of MyCanvas.

BEGIN_EVENT_TABLE(MyCanvas, wxScrolledWindow)
EVT_JOYSTICK_EVENTS(MyCanvas::OnJoystickEvent)

END_EVENT_TABLE()

MyCanvas::MyCanvas(wxWindow *parent, const wxPoint& pos,
const wxSize& size):
wxScrolledWindow(parent, wxID_ANY, pos, size, wxSUNKEN_BORDER)

{
m_stick = new wxJoystick(wxJOYSTICK1);
m_stick->SetCapture(this, 10);

}

MyCanvas::~MyCanvas()
{

m_stick->ReleaseCapture();
delete m_stick;

}

void MyCanvas::OnJoystickEvent(wxJoystickEvent& event)
{

static long xpos = -1;
static long ypos = -1;

wxClientDC dc(this);

wxPoint pt(event.GetPosition());

// if negative positions are possible then shift everything up
int xmin = wxGetApp().m_minX;
int xmax = wxGetApp().m_maxX;
int ymin = wxGetApp().m_minY;
int ymax = wxGetApp().m_maxY;

if (xmin < 0) {
xmax += abs(xmin);
pt.x += abs(xmin);

}

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 182

Handling Joystick Events 183

if (ymin < 0) {
ymax += abs(ymin);
pt.y += abs(ymin);

}

// Scale to canvas size
int cw, ch;
GetSize(&cw, &ch);

pt.x = (long) (((double)pt.x/(double)xmax) * cw);
pt.y = (long) (((double)pt.y/(double)ymax) * ch);

if (xpos > -1 && ypos > -1 && event.IsMove() && event.ButtonIsDown())
{

dc.SetPen(*wxBLACK_PEN);
dc.DrawLine(xpos, ypos, pt.x, pt.y);

}

xpos = pt.x;
ypos = pt.y;

wxString buf;
if (event.ButtonDown())

buf.Printf(wxT(“Joystick (%d, %d) Fire!”), pt.x, pt.y);
else

buf.Printf(wxT(“Joystick (%d, %d)”), pt.x, pt.y);

frame->SetStatusText(buf);

if (event.ButtonDown() && wxGetApp().m_fire.IsOk())
{

wxGetApp().m_fire.Play();
}

}

wxJoystick Events

wxJoystick generates events of type wxJoystickEvent, and the relevant event
table macros are listed in Table 6-5. Each event table macro takes a single
argument: the event handler function.

Table 6-5 Joystick Event Table Macros

EVT_JOY_BUTTON(func) Handles a wxEVT_JOY_BUTTON_DOWN event,
generated when a button is pressed.

EVT_JOY_BUTTON(func) Handles a wxEVT_JOY_BUTTON_UP event, gener-
ated when a button is released.

EVT_JOY_MOVE(func) Handles a wxEVT_JOY_MOVE event, generated
when the joystick is moved in the X-Y plane.

EVT_JOY_ZMOVE(func) Handles a wxEVT_JOY_ZMOVE event, generated
when the joystick is moved in the z-axis.

EVT_JOYSTICK_EVENTS(func) Handles all joystick events.

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 183

wxJoystickEvent Member Functions

These are the wxJoystickEvent functions you can call to retrieve more informa-
tion about the event. As usual, you can call GetEventType to get the type, which
is useful if you are using EVT_JOYSTICK_EVENTS to catch all joystick events.

Call ButtonDown to check if the event was a button press event; you can
optionally pass a button identifier wxJOY_BUTTONn (where n is 1, 2, 3, or 4) to
test which button was pressed, or wxJOY_BUTTON_ANY if you don’t care which but-
ton was pressed. ButtonUp is similar but tests for a button up event. The func-
tion IsButton is equivalent to ButtonDown() || ButtonUp().

To test whether a button is down at the time of an event (not whether the
event itself was a button press), call ButtonIsDown with the same arguments as
for ButtonDown. Alternatively, use GetButtonState with the same arguments to
return a bit-list of wxJOY_BUTTONn identifiers.

Call IsMove to test whether the event was a move event in the X-Y plane
and IsZMove for a move in the z-axis.

GetPosition returns a wxPoint for the current joystick position in the X-Y
plane, while GetZPosition returns an integer representing the Z position, if
supported.

Finally, you can determine which joystick controller generated the event
(wxJOYSTICK1 or wxJOYSTICK2) by calling GetJoystick.

wxJoystick Member Functions

We won’t list the joystick functions exhaustively—you can refer to the
wxJoystick class reference for that—but the following are the more inter-
esting ones.

As we’ve seen in the example, SetCapture needs to be called to direct
joystick input to a specified window, with a matching ReleaseCapture to
release it and enable other applications to take control of the joystick. In
case another application has captured the joystick, or the joystick is not
functioning, call IsOK before trying to capture input. You can also determine
the capabilities of the joystick with GetNumberButtons, GetNumberJoysticks,
GetNumberAxes, HasRudder, and other functions.

You can get the state of the joystick from outside an event handler with
functions such as GetPosition and GetButtonState.

Your application will almost always need to call GetXMin, GetXMax, and
similar functions in order to determine the range supported by the joystick.

184 Handling Input Chapter 6

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 184

Summary 185

SUMMARY

In this chapter, you have learned about mouse, keyboard, and joystick input,
and you can now add sophisticated interaction to your applications. For more
insight, see wxWidgets samples such as samples/keyboard, samples/joytest, and
samples/dragimag, and also the wxThumbnailCtrl class in examples/chap12 on the
CD-ROM.

The next chapter describes how you can achieve window layouts that are
resizable, portable, translation-friendly, and above all attractive by using our
flexible friend, the sizer.

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 185

Smart_Ch06f.qxd 6/10/05 11:18 AM Page 186

C H A P T E R 7

Window Layout Using Sizers

As graphic designers will testify, people are very sensitive to the way that
visual objects are arranged. A GUI framework must allow the creation of a
visually appealing layout, but unlike with print layout, an application’s win-
dows must often dynamically adapt to changes in size, font preferences, and
even language. For platform-independent programming, the layout must also
take into account the different sizes of individual controls from one platform
to the next. All this means that a näive approach using absolute positions and
sizes for controls simply won’t work. This chapter describes wxWidgets’ sys-
tem of sizers, which gives you all the flexibility you need for even the most
complex layouts. If it seems a bit daunting at first, remember that there are
tools that will help you create sizer-based layouts—such as DialogBlocks,
included on the accompanying CD-ROM—and you will rarely need to create
entire layouts by hand.

LAYOUT BASICS

Before taking the plunge into the world of sizers, let’s review where you might
need to program layout behavior and what options you have.

A simple case is where you have a frame with a single window inside the
client area. This is so simple that wxWidgets does the layout itself, fitting the
child window to the size of the frame client area. For each frame, wxWidgets
also manages the menu bar, one toolbar, and one status bar if they have been
associated with the frame. If you need two toolbars, then you have to manage
at least one of them yourself. If you have more than one child window in the
client area, then wxWidgets expects you to manage them explicitly. You can do
this with an OnSize event handler and calculate the position and size for each
window and then set them. Or, you can use sizers. Similarly, if you create a
custom control that consists of several child windows, you need to arrange for
the child windows to resize appropriately when the overall control is resized.

187

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 187

Most applications have custom dialogs, sometimes dozens of them. The
dialogs may be resizable, in which case the layout should look sensible even
when the dialog is much larger than the initial size. The language may be
changed, making some elements much larger or smaller than in the default
language. If you had to program a hundred resize-friendly dialogs by hand,
even with sizers, it would be almost impossibly daunting, so it’s fortunate that
editors are available to make this task simple—even a pleasure.

If (and when!) you choose to use sizers, you need to decide how you will
create and deploy them. You or your dialog editor can create code in C++ or
another language, or you can use XRC files, which are a declarative XML spec-
ification of the sizer layout. XRC files can be loaded dynamically or embedded
in the executable by compiling them into C++ files with the utility wxrc. Most
dialog editors can generate both code and XRC files. Your choice of code or
XRC may be a matter of taste; perhaps you prefer to separate the layout from
the class, or maybe you prefer the additional flexibility of tweaking the C++
code and the immediacy of having it in the same file as the class.

The next section describes the principles behind sizers, and the following
sections describe how to program with individual sizer classes.

SIZERS

The layout algorithm used by sizers in wxWidgets is closely related to layout
systems in other GUI toolkits, such as Java’s AWT, the GTK+ toolkit, or the Qt
toolkit. It is based upon the idea of individual windows reporting their mini-
mal required size and their ability to be stretched if the size of the parent win-
dow has changed. This will most often mean that the programmer does not set
the initial size of a dialog; instead, the dialog will be assigned a sizer, which
will be queried about the recommended size. This sizer in turn will query its
children (which can be windows, empty space, or other sizers) and further
descendants. Note that wxSizer does not derive from wxWindow and thus does
not interfere with tab ordering and requires very few resources compared to a
real window. Sizers form a containment hierarchy parallel to the actual win-
dow hierarchy: the sizer hierarchy for a complex dialog may be many deep,
but the controls themselves will probably all be siblings with the dialog as
their parent.

This sizer hierarchy is depicted graphically in wxWidgets dialog edi-
tors. Figure 7-1 shows Anthemion Software’s DialogBlocks editing the
Personal Record dialog that we will use as an example in Chapter 9,
“Creating Custom Dialogs.” A red border in the editor pane surrounds the
currently selected element, and its immediate parent is shown with a blue

188 Window Layout Using Sizers Chapter 7

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 188

To get a mental picture of how nested sizers work, consider Figure 7-2, a
schematic view of the dialog being edited in Figure 7-1. The shaded areas rep-
resent actual windows, while the white boxes represent sizers. There are two
vertical sizers inside the dialog (to give extra space around the edge of the dia-
log), and two horizontal sizers within the inner vertical sizer. A spacer is
employed inside a horizontal sizer to keep one control away from another
group of controls. As you can see, creating a sizer-based layout is really like
sorting through a collection of different-sized cardboard boxes, placing smaller
boxes in bigger boxes, and adding objects and packing material inside some of
them. Of course, the analogy is imperfect because cardboard doesn’t stretch!

There are currently five basic sizer classes available in wxWidgets. Each
either represents a specific way to lay out windows or fulfills a special task
such as wrapping a static box around another element. These sizers will be
discussed in the following sections.

Sizers 189

Figure 7-1 Viewing a sizer hierarchy in a dialog editor

border. The tree you see on the left represents the sizer view of the hierar-
chy, but all controls are still parented directly on the dialog as far as the
window hierarchy is concerned.

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 189

Common Features of Sizers

All sizers are containers—that is, they are used to lay out one or more ele-
ments, which they contain. No matter how the individual sizers lay out their
children, all children have certain features in common.

A minimal size: The minimal size of a control is calculated from the
control’s notion of its “best size” (supplied by implementing DoGetBestSize for
each control). This is the control’s natural size. For example, the best size of a
check box comprises the space taken up by the check box graphic and the
label. However, if you want the initial window size (as passed to the window’s
constructor) to be used as the minimal size instead, you can use the
wxFIXED_MINSIZE style when adding the control to a sizer. Note that only some
windows can calculate their size (such as a check box), whereas others (such
as a list box) don’t have any natural width or height and thus require an

190 Window Layout Using Sizers Chapter 7

PersonalRecordDialog

Vertical wxBoxSizer

Vertical wxBoxSizer

Horizontal wxBoxSizer
Spacer

Horizontal wxBoxSizer

Figure 7-2 A schematic view of the sizers for PersonalRecordDialog

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 190

explicit size. Some windows can calculate their height, but not their width—
for example, a single-line text control. Figure 7-3 shows three controls on their
own in a dialog, showing how they expand the dialog to fit their own minimal
size.

Sizers 191

Figure 7-3 Windows reporting their minimal size

A border: The border is just empty space that is used to separate ele-
ments. This border can be all around, or it can be at any combination of sides,
such as only above and below the control. The thickness of this border must be
set explicitly, typically 5 pixels. Figure 7-4 shows dialogs with only one control
(a button) and a border of 0, 5, and 10 pixels around the button, respectively.

Figure 7-4 Different border sizes

An alignment: An element can be moved to the center of the available
space, or to either side of the space. Figure 7-5 shows a horizontal box sizer
containing a list box and three buttons. One button is centered, one is aligned
at the top, and one is aligned at the bottom. Alignment can be specified in hor-
izontal or vertical orientations, but for most sizers, only one of these will have
an effect. For example, in Figure 7-5, we have specified alignment in the verti-
cal orientation, but horizontal alignment isn’t possible because of the way
space is distributed among children of the sizer. (To achieve the effect of hori-
zontal alignment, we would need to insert a stretching spacer, which we will
look at shortly.)

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 191

A stretch factor: If a sizer contains more than one child and is offered
more space than its children and their borders need, the surplus space needs
to be distributed among the children. For this purpose, a stretch factor may be
assigned to each child, where the default value of zero indicates that the child
will not get more space than its requested minimal size. A value of more than
zero is interpreted in relation to the sum of all stretch factors in the children
of the respective sizer, so if two children get a stretch factor of 1, they will each
get half the extra space, independent of their minimal size. Figure 7-6 shows a
dialog with three buttons, at the initial size and after resizing. The first button
has a stretch factor of 1 and thus gets stretched, whereas the other two but-
tons have a stretch factor of zero and keep their initial width.

Note that the term “proportion” is sometimes used instead of stretch fac-
tor in the wxWidgets reference manual.

192 Window Layout Using Sizers Chapter 7

Figure 7-5 Sizer alignment

Figure 7-6 Stretch factor

PROGRAMMING WITH SIZERS

To create a sizer-based layout, create a top-level sizer (any kind of sizer may
be used) and associate it with the parent window with wxWindow::SetSizer.
Now you can hang your hierarchy of windows and further sizers from the top-
level sizer. If you want the top-level window to fit itself around the contents,
you call wxSizer::Fit passing the top-level window. If the window should never
be resized smaller than the initial size, call wxSizer::SetSizeHints passing the
top-level window. This will call wxWindow::SetSizeHints with the appropriate
values.

Instead of the three functions described in the previous paragraph, you
can simply call the function wxWindow::SetSizerAndFit, which sets the sizer,
calls Fit, and also calls SetSizeHints.

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 192

If you have a panel inside a frame, you may be wondering which window
gets the top-level sizer. Assuming you only have one panel in the frame, the
frame already knows how to size the panel to fill the frame’s client area when
the frame size is changed. Therefore, you should set the sizer for the panel to
manage the panel’s children. If you had more than one panel in the frame, you
might set a top-level sizer for the frame, which would manage the frame’s chil-
dren. However, you would still need a top-level sizer for each child panel that
had its own children to lay out.

The following sections describe each kind of sizer and how to use it.

Programming with wxBoxSizer

wxBoxSizer can lay out its children either vertically or horizontally, depending
on the style passed to its constructor. When using a vertical sizer, each child
can be centered, aligned to the right, or aligned to the left. Correspondingly,
when using a horizontal sizer, each child can be centered, aligned at the bot-
tom, or aligned at the top. The stretch factor described previously is used for
the main orientation, so when using a horizontal box sizer, the stretch factor
determines how much the child can be stretched horizontally. Figure 7-7
shows the same dialog as in Figure 7-6, except that the sizer is a vertical box
sizer.

Programming with Sizers 193

Figure 7-7 A verical wxBoxSizer

You add child elements to a box sizer with Add:

// Add a window
void Add(wxWindow* window, int stretch = 0, int flags = 0,

int border = 0);

// Add a sizer
void Add(wxSizer* window, int stretch = 0, int flags = 0,

int border = 0);

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 193

The first parameter is a window or sizer.
The second is the proportion or stretch factor.
The third parameter is a bit-list specifying alignment behavior and

borders. The alignment flags specify what happens when a vertical sizer
changes its width, or when a horizontal sizer changes its height. The allowed
values for specifying alignment and borders are shown in Table 7-1. The
default alignment is wxALIGN_LEFT | wxALIGN_TOP.

Table 7-1 Sizer Flags

0 Indicates that the window will preserve its original
size.

wxGROW Forces the window to grow with the sizer. wxEXPAND
is a synonym for wxGROW.

wxSHAPED Tells the window to change its size proportionally,
preserving the original aspect ratio.

wxALIGN_LEFT Aligns to the left edge of the sizer.
wxALIGN_RIGHT Aligns to the right edge of the sizer.
wxALIGN_TOP Aligns to the top edge of the sizer.
wxALIGN_BOTTOM Aligns to the bottom edge of the sizer.
wxALIGN_CENTER_HORIZONTAL Centers horizontally.
wxALIGN_CENTER_VERTICAL Centers vertically.
wxALIGN_CENTER Centers both horizontally and vertically. Defined as

wxALIGN_CENTER_HORIZONTAL | wxALIGN_CENTER_
VERTICAL.

wxLEFT Specifies a border on the left edge of the element.
wxRIGHT Specifies a border on the right edge of the element.
wxTOP Specifies a border on the top edge of the element.
wxBOTTOM Specifies a border on the bottom edge of the

element.
wxALL Specifies a border on all edges of the element.

Defined as wxLEFT | wxRIGHT | wxTOP | wxBOTTOM.

The fourth parameter specifies the size of the border (on the edges that have
been specified in the flags parameter).

You can also add a spacer. There are three ways to do this:

// Add a spacer (old method)
void Add(int width, int height, int stretch = 0, int flags = 0,

int border = 0);

// Add a fixed-size spacer
void AddSpacer(int size);

// Add a stretching spacer
void AddStretchSpacer(int stretch = 1);

194 Window Layout Using Sizers Chapter 7

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 194

The second method is the equivalent of calling Add(size, size, 0), and the
third method is equivalent to calling Add(0, 0, stretch).

As an example, we will construct a dialog that will contain a text field at
the top and two buttons at the bottom. This can be seen at the top level as a
column with the text at the top and buttons at the bottom, and at the second
level as a row with an OK button to the left and a Cancel button to the right.
In many cases, the main window will be resizable by the user, and this change
of size will have to be propagated to its children. Here, we want the text area
to grow with the dialog, whereas the buttons should have a fixed size. In addi-
tion, the buttons will be centered as the width of the dialog changes. Figure
7-8 shows how it will look.

Programming with Sizers 195

Figure 7-8 A simple dialog using sizers

Here’s the code that produces this dialog:

// A dialog with a stretching text control

MyDialog::MyDialog(wxWindow *parent, wxWindowID id,
const wxString &title)

: wxDialog(parent, id, title,
wxDefaultPosition, wxDefaultSize,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER)

{
wxBoxSizer *topSizer = new wxBoxSizer(wxVERTICAL);

// Create text ctrl with minimal size 100x60
topSizer->Add(

new wxTextCtrl(this, wxID_ANY, “My text.”,
wxDefaultPosition, wxSize(100,60), wxTE_MULTILINE),

1, // make vertically stretchable
wxEXPAND| // make horizontally stretchable
wxALL, // and make border all around
10); // set border width to 10

wxBoxSizer *buttonSizer = new wxBoxSizer(wxHORIZONTAL);
buttonSizer->Add(

new wxButton(this, wxID_OK, “OK”),
0, // make horizontally unstretchable

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 195

wxALL, // make border all around: implicit top alignment
10); // set border width to 10

buttonSizer->Add(
new wxButton(this, wxID_CANCEL, “Cancel”),
0, // make horizontally unstretchable
wxALL, // make border all around (implicit top alignment)
10); // set border width to 10

topSizer->Add(
buttonSizer,
0, // make vertically unstretchable
wxALIGN_CENTER); // no border and centre horizontally

SetSizer(topSizer); // use the sizer for layout

topSizer->Fit(this); // fit the dialog to the contents
topSizer->SetSizeHints(this); // set hints to honor min size

}

Programming with wxStaticBoxSizer

wxStaticBoxSizer is a sizer derived from wxBoxSizer that manages a static box
around the sizer. Note that this static box has to be created separately. Create
wxStaticBoxSizer by passing a pointer to the static box and the orientation
(wxHORIZONTAL or wxVERTICAL). The Add function is the same as for wxBoxSizer.

Figure 7-9 shows an example of a dialog with a static box containing a
check box control.

196 Window Layout Using Sizers Chapter 7

Figure 7-9 A wxStaticBoxSizer

Here’s the corresponding code:

MyDialog::MyDialog(wxWindow *parent, wxWindowID id,
const wxString &title)

: wxDialog(parent, id, title,
wxDefaultPosition, wxDefaultSize,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER)

{
// Create top-level sizer
wxBoxSizer* topLevel = new wxBoxSizer(wxVERTICAL);

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 196

// Create static box and static box sizer
wxStaticBox* staticBox = new wxStaticBox(this,

wxID_ANY, wxT(“General settings”));
wxStaticBoxSizer* staticSizer = new wxStaticBoxSizer(staticBox,

wxVERTICAL);
topLevel->Add(staticSizer, 0,

wxALIGN_CENTER_HORIZONTAL|wxALL, 5);

// Create a check box inside the static box sizer
wxCheckBox* checkBox = new wxCheckBox(this, ID_CHECKBOX,

wxT(“&Show splash screen”), wxDefaultPosition, wxDefaultSize);
staticSizer->Add(checkBox, 0, wxALIGN_LEFT |wxALL, 5);

SetSizer(topLevel);
topLevel->Fit(this);
topLevel->SetSizeHints(this);

}

Programming with wxGridSizer

wxGridSizer is a sizer that lays out its children in a two-dimensional table with
all table fields having the same size; that is, the width of each field is the
width of the widest child, and the height of each field is the height of the
tallest child. Create a wxGridSizer by passing the number of rows, number of
columns, extra vertical gap between children, and extra horizontal gap
between children. Add is the same as for wxBoxSizer.

Figure 7-10 shows a grid sizer with three columns and two rows. The
extra size of the second button has caused the space occupied by all the but-
tons to increase because all the cells of a wxGridSizer are the same size.

Programming with Sizers 197

Figure 7-10 A wxGridSizer

Here’s the code:

MyDialog::MyDialog(wxWindow *parent, wxWindowID id,
const wxString &title)

: wxDialog(parent, id, title,
wxDefaultPosition, wxDefaultSize,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER)

{
// Create top-level grid sizer
wxGridSizer* gridSizer = new wxGridSizer(2, 3, 0, 0);

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 197

SetSizer(gridSizer);

wxButton* button1 = new wxButton(this, ID_BUTTON1, wxT(“One”));
gridSizer->Add(button1, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button2 = new wxButton(this, ID_BUTTON2, wxT(“Two (the
second button)”));

gridSizer->Add(button2, 0, wxALIGN_CENTER_HORIZONTAL|
wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button3 = new wxButton(this, ID_BUTTON3, wxT(“Three”));
gridSizer->Add(button3, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button4 = new wxButton(this, ID_BUTTON4, wxT(“Four”));
gridSizer->Add(button4, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button5 = new wxButton(this, ID_BUTTON5, wxT(“Five”));
gridSizer->Add(button5, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button6 = new wxButton(this, ID_BUTTON6, wxT(“Six”));
gridSizer->Add(button6, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

gridSizer->Fit(this);
gridSizer->SetSizeHints(this);

}

Programming with wxFlexGridSizer

wxFlexGridSizer is a sizer that lays out its children in a two-dimensional table
with all table fields in one row having the same height and all fields in one
column having the same width. However, unlike wxGridSizer, all rows or all
columns are not necessarily the same height or width: this will depend on the
size of elements in a row or column. Additionally, columns and rows can be
declared to be stretchable, which means that as the sizer is expanded, these
columns or rows will be allocated extra space.

Create a wxFlexGridSizer by passing the number of rows, number of
columns, extra vertical gap between children, and extra horizontal gap
between children. Add is the same as for wxBoxSizer.

Figure 7-11 shows a flex grid sizer at its initial size, where the first col-
umn has been made stretchable. It’s essentially the same as the wxGridSizer
example, but as you can see, the layout is more compact because the size of the
middle column is not reflected in the other columns.

198 Window Layout Using Sizers Chapter 7

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 198

Initially, we don’t see the effect of making the first column stretchable,
but if we stretch it horizontally, as in Figure 7-12, we can see this column (con-
taining buttons One and Four) taking up the extra space, with the buttons
centered in the column.

Programming with Sizers 199

Figure 7-11 A wxFlexGridSizer at its initial size

Figure 7-12 A resized wxFlexGridSizer

Here’s the code that creates the dialogs we’ve shown:

MyDialog::MyDialog(wxWindow *parent, wxWindowID id,
const wxString &title)

: wxDialog(parent, id, title,
wxDefaultPosition, wxDefaultSize,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER)

{
// Create top-level flex grid sizer
wxFlexGridSizer* flexGridSizer = new wxFlexGridSizer(2, 3, 0, 0);
this->SetSizer(flexGridSizer);

// Make the 1st row growable
flexGridSizer->AddGrowableCol(0);

wxButton* button1 = new wxButton(this, ID_BUTTON1, wxT(“One”));
flexGridSizer->Add(button1, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button2 = new wxButton(this, ID_BUTTON2, wxT(“Two (the
second button)”));

flexGridSizer->Add(button2, 0, wxALIGN_CENTER_HORIZONTAL|
wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button3 = new wxButton(this, ID_BUTTON3, wxT(“Three”));
flexGridSizer->Add(button3, 0, wxALIGN_CENTER_HORIZONTAL|

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 199

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button4 = new wxButton(this, ID_BUTTON4, wxT(“Four”));
flexGridSizer->Add(button4, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button5 = new wxButton(this, ID_BUTTON5, wxT(“Five”));
flexGridSizer->Add(button5, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxButton* button6 = new wxButton(this, ID_BUTTON6, wxT(“Six”));
flexGridSizer->Add(button6, 0, wxALIGN_CENTER_HORIZONTAL|

wxALIGN_CENTER_VERTICAL|wxALL, 5);

flexGridSizer->Fit(this);
flexGridSizer->SetSizeHints(this);

}

Programming with wxGridBagSizer

This sizer attempts to reconcile the worlds of absolute positioning and sizer-
based layout. It can lay out elements in a virtual grid, like a flex grid sizer, but
in this case item row and column positions are specified using wxGBPosition,
and items can optionally span more than one row and/or column using
wxGBSpan.

When creating a wxGridBagSizer, optionally pass sizers for vertical and
horizontal gaps between rows and columns (defaulting to zero). Use the Add
function to add windows or sizers, passing the position and optional span, plus
optional flags and border size as for wxBoxSizer.

Figure 7-13 shows a simple grid bag sizer example with four buttons, one
of them spanning two columns (button Two). We also specify that the second
row and third column are growable so that when we resize the dialog, we get
the effect shown in Figure 7-14.

200 Window Layout Using Sizers Chapter 7

Figure 7-13 A wxGridBagSizer at its original size

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 200

Here’s the code that produces this layout:

MyDialog::MyDialog(wxWindow *parent, wxWindowID id,
const wxString &title)

: wxDialog(parent, id, title,
wxDefaultPosition, wxDefaultSize,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER)

{
wxGridBagSizer* gridBagSizer = new wxGridBagSizer();
SetTopSizer(gridBagSizer);

wxButton* b1 = new wxButton(this, wxID_ANY, wxT(“One (0,0)”));
gridBagSizer->Add(b1, wxGBPosition(0, 0));

wxButton* b2 = new wxButton(this, wxID_ANY, wxT(“Two (2,2)”));
gridBagSizer->Add(b2, wxGBPosition(2, 2), wxGBSpan(1, 2),

wxGROW);

wxButton* b3 = new wxButton(this, wxID_ANY, wxT(“Three (3,2)”));
gridBagSizer->Add(b3, wxGBPosition(3, 2));

wxButton* b4 = new wxButton(this, wxID_ANY, wxT(“Four (3,3)”));
gridBagSizer->Add(b4, wxGBPosition(3, 3));

gridBagSizer->AddGrowableRow(3);
gridBagSizer->AddGrowableCol(2);

gridBagSizer->Fit(this);
gridBagSizer->SetSizeHints(this);

}

FURTHER LAYOUT ISSUES

In this section, we’ll discuss some further topics to bear in mind when you’re
working with sizers.

Further Layout Issues 201

Figure 7-14 A wxGridBagSizer after resizing

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 201

Dialog Units

Although sizers protect you from changes in basic control size on different
platforms and in different languages, you may still have some hard-coded
sizes in your dialogs (for example, for list boxes). If you would like these sizes
to adjust to the current system font (or font supplied by the application), you
can use dialog units instead of pixels. Dialog units are based on average char-
acter width and height for a window’s font, and so the actual pixel dimension
for a given dialog unit value will vary according to the current font.
wxWindow has functions ConvertDialogToPixels and ConvertPixelsToDialog,
and a convenience macro wxDLG_UNIT(window, ptOrSz) that can be used with
both wxPoint and wxSize objects. So instead of passing a pixel size to your con-
trol, use the wxDLG_UNIT macro, for example:

wxListBox* listBox = new wxListBox(parent, wxID_ANY,
wxDefaultPosition, wxDLG_UNIT(parent, wxSize(60, 20)));

Dialog units can be specified in an XRC file by appending “d” to dimension
values.

Platform-Adaptive Layouts

Although dialogs on different platforms are largely similar, sometimes the
style guides are incompatible. For example, on Windows and Linux, it’s accept-
able to have right-justified or centered OK, Cancel, and Help buttons, in that
order. On Mac OS X, the Help should be on the left, and Cancel and OK but-
tons are right aligned, in that order.

To help with this issue, wxStdDialogButtonSizer is provided. It’s derived
from wxBoxSizer, so it can be used in a similar way, but its orientation will
depend on platform.

This sizer’s constructor has no arguments. There are two ways of adding
buttons: pass the button pointer to AddButton, or (if you’re not using standard
identifiers) call SetAffirmativeButton, SetNegativeButton, and SetCancelButton.
If using AddButton, you should use identifiers from this list: wxID_OK, wxID_YES,
wxID_CANCEL, wxID_NO, wxID_SAVE, wxID_APPLY, wxID_HELP, and wxID_CONTEXT_HELP.

Then, after the buttons have been added, call Realize so that the sizer
can add the buttons in the appropriate order with the appropriate spacing
(which it can only do when it knows about all the buttons in the sizer). The
following code creates a standard button sizer with OK, Cancel, and Help
buttons:

wxBoxSizer* topSizer = new wxBoxSizer(wxVERTICAL);
dialog->SetSizer(topSizer);

wxButton* ok = new wxButton(dialog, wxID_OK);
wxButton* cancel = new wxButton(dialog, wxID_CANCEL);

202 Window Layout Using Sizers Chapter 7

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 202

wxButton* help = new wxButton(dialog, wxID_HELP);

wxStdDialogButtonSizer* buttonSizer = new wxStdDialogButtonSizer;
topSizer->Add(buttonSizer, 0, wxEXPAND|wxALL, 10);

buttonSizer->AddButton(ok);
buttonSizer->AddButton(cancel);
buttonSizer->AddButton(help);

buttonSizer->Realize();

As a convenience, wxDialog::CreateButtonSizer can be used, indirectly creating
a wxStdDialogButtonSizer with buttons based on a flag list. If you look at the
dialog implementations in src/generic, you will see that CreateButtonSizer is
used for many of them. The flags in Table 7-2 can be passed to this function.

Table 7-2 Flags for CreateButtonSizer

wxYES_NO Add Yes and No buttons to the panel.
wxYES Add Yes button to the panel, with identifier wxID_YES.
wxNO Add No button to the panel, with identifier wxID_NO.
wxNO_DEFAULT Make the No button the default, otherwise Yes or OK will be the

default.
wxOK Add an OK button to the panel, with identifier wxID_OK.
wxCANCEL Add a Cancel button to the panel, with identifier wxID_CANCEL.
wxAPPLY Add an Apply button to the panel, with identifier wxID_APPLY.
wxHELP Add a Help button to the panel, with identifier wxID_HELP.

Using CreateButtonSizer simplifies the example code shown previously to the
following:

wxBoxSizer* topSizer = new wxBoxSizer(wxVERTICAL);
dialog->SetSizer(topSizer);

topSizer->Add(CreateButtonSizer(wxOK|wxCANCEL|wxHELP), 0,
wxEXPAND|wxALL, 10);

There is another way to specify variations in UI on different platforms. XRC
allows a platform parameter to be associated with each object; this parame-
ter’s value can be a combination of unix, win, mac, and os2 separated by the pipe
character (“|”). XRC will only create the element if the platform value
matches the actual platform the program is running on. DialogBlocks sup-
ports this property and can generate conditional C++ code if XRC is not being
used.

Alternatively, you can load a different XRC file for each platform, but this
is harder to maintain than having the differences contained within a single
dialog design.

Further Layout Issues 203

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 203

Dynamic Layouts

Sometimes you’d like the layout to change dynamically; for example, clicking
on a Details button might expand the dialog and show further controls. You
can hide controls contained in sizers the same way you would hide any control,
using the wxWindow::Show method. However, wxSizer also offers a separate
method, which can tell the sizer not to consider a window in its size calcula-
tions. To hide a window using the sizer, pass false to wxSizer::Show. You must
then call wxSizer::Layout to force an update.

SUMMARY

Sizers takes some getting used to, so don’t worry if you found this chapter a bit
heavy going. The best way of getting to grips with them is to play with a dialog
editor such as DialogBlocks (included on the CD-ROM), experimenting with
different layouts and examining the generated code. You can also look at
samples/layout in your wxWidgets distribution. After you’ve tamed them,
you’ll find sizers a very powerful tool, and their ability to adapt to different
platforms and languages will prove to be a huge productivity benefit.

Next, we’ll look at the standard dialogs provided by wxWidgets.

204 Window Layout Using Sizers Chapter 7

Smart_Ch07f.qxd 6/10/05 11:19 AM Page 204

C H A P T E R 8

Using Standard Dialogs

This chapter describes the set of standard dialogs that wxWidgets provides for
displaying information or getting data from users with just a few lines of code.
Becoming familiar with the available standard dialogs is going to save you a
lot of coding time, and it will help give your applications a professional feel.
Where possible, wxWidgets uses the native dialogs implemented by each win-
dowing system, but some, such as wxTextEntryDialog, are implemented in
wxWidgets itself, and these are referred to as “generic” dialogs. In this chap-
ter, we will show pictures of dialogs on more than one platform where there are
significant visual differences.

We will divide the dialogs into the categories Informative Dialogs, File
and Directory Dialogs, Choice and Selection Dialogs, and Entry Dialogs.

INFORMATIVE DIALOGS

In this section, we’ll look at dialogs that present information: wxMessageDialog,
wxProgressDialog, wxBusyInfo, and wxShowTip.

wxMessageDialog

This dialog shows a message plus buttons that can be chosen from OK, Cancel,
Yes, and No. An optional icon can be shown, such as an exclamation mark or
question mark. The message text can contain newlines (“\n”).

The return value of wxMessageDialog::ShowModal indicates which button
the user pressed.

205

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 205

To create this dialog, pass a parent window, message, and optional cap-
tion, style, and position. Then call ShowModal to display the window, and test
the returned value.

The style is a bit-list of the values shown in Table 8-1.

Table 8-1 wxMessageDialog Styles

wxOK Shows an OK button.
wxCANCEL Shows a Cancel button.
wxYES_NO Shows Yes and No buttons.
wxYES_DEFAULT Sets Yes as the default. Use with wxYES_NO.

This is the default behavior for wxYES_NO.
wxNO_DEFAULT Sets No as the default. Use with wxYES_NO.
wxICON_EXCLAMATION Shows an exclamation mark.

Figure 8-2 wxMessageDialog under GTK+

206 Using Standard Dialogs Chapter 8

Figure 8-1 wxMessageDialog under Windows

Figure 8-3 wxMessageDialog under Mac OS X

Figure 8-1 shows how the dialog looks under Windows, Figure 8-2 shows
it under GTK+, and Figure 8-3 is the same dialog on Mac OS X.

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 206

wxICON_ERROR Shows an error icon.
wxICON_HAND Shows an error icon. The same as wxICON_ERROR.
wxICON_QUESTION Shows a question mark.
wxICON_INFORMATION Shows an information icon.
wxSTAY_ON_TOP On Windows, the message box will stay on top of

all other windows, even those of other applications.

wxMessageDialog Example

Here’s an example of using wxMessageDialog:

#include “wx/msgdlg.h”

wxMessageDialog dialog(NULL, wxT(“Message box caption”),
wxT(“Message box text”),
wxNO_DEFAULT|wxYES_NO|wxCANCEL|wxICON_INFORMATION);

switch (dialog.ShowModal())
{

case wxID_YES:
wxLogStatus(wxT(“You pressed \”Yes\””));
break;

case wxID_NO:
wxLogStatus(wxT(“You pressed \”No\””));
break;

case wxID_CANCEL:
wxLogStatus(wxT(“You pressed \”Cancel\””));
break;

default:
wxLogError(wxT(“Unexpected wxMessageDialog return code!”));

}

wxMessageBox

You can also use the convenience function wxMessageBox, which takes a mes-
sage string, caption string, style, and parent window. For example:

if (wxYES == wxMessageBox(wxT(“Message box text”),
wxT(“Message box caption”),
wxNO_DEFAULT|wxYES_NO|wxCANCEL|wxICON_INFORMATION,
parent))

{
return true;

}

Be aware that wxMessageBox returns values that are different from those
returned by wxMessageDialog::ShowModal. wxMessageBox returns wxOK, wxCANCEL,
wxYES, and wxNO, whereas wxMessageDialog::ShowModal returns wxID_OK,
wxID_CANCEL, wxID_YES, and wxID_NO.

Informative Dialogs 207

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 207

wxPD_APP_MODAL Makes the progress dialog modal. If this style is not
given, it is only “locally” modal—that is, the input to the
parent window is disabled, but not to the other ones.

wxPD_AUTO_HIDE Causes the progress dialog to disappear from the screen
as soon as the maximum value of the progress meter has
been reached.

wxPD_CAN_ABORT Tells the dialog that it should have a Cancel button that
the user may press. If this happens, the next call to
Update will return false.

wxPD_ELAPSED_TIME Tells the dialog that it should show the elapsed time since
creating the dialog.

wxPD_ESTIMATED_TIME Tells the dialog that it should show the estimated time.
wxPD_REMAINING_TIME Tells the dialog that it should show the remaining time.

wxProgressDialog

wxProgressDialog shows a short message and a progress bar representing how
long the user has to wait. It can display a Cancel button to abort the task in
progress, and it can also display elapsed time, estimated total time, and
remaining time. This dialog is implemented by wxWidgets on all platforms.
Figure 8-4 shows wxProgressDialog under Windows.

208 Using Standard Dialogs Chapter 8

Figure 8-4 wxProgressDialog under Windows

You can create the dialog object on the stack or dynamically. Pass the fol-
lowing parameters: a caption string, a message string to be displayed above
the progress bar, the maximum value for the progress bar, a parent window,
and a style.

The style is a bit-list of the values listed in Table 8-2.

Table 8-2 wxProgressDialog Styles

After dialog creation, the program flow continues, but the parent window is
disabled for input. If wxPD_APP_MODAL is specified, then all other windows in the
application are disabled as well. The application should call Update with a

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 208

value (between zero and the maximum specified in the constructor) and,
optionally, a new message to display in the dialog. If specified, the elapsed,
estimated, and remaining times are all calculated automatically by the dialog.

If wxPD_AUTO_HIDE is specified, the progress dialog will be hidden (but not
destroyed) as soon as the maximum value has been passed to Update. The
application should destroy the dialog. You can call Resume if you need to resume
an aborted progress dialog.

wxProgressDialog Example

Here’s an example of using the progress dialog:

#include “wx/progdlg.h”

void MyFrame::ShowProgress()
{

static const int max = 10;

wxProgressDialog dialog(wxT(“Progress dialog example”),
wxT(“An informative message”),
max, // range
this, // parent
wxPD_CAN_ABORT |
wxPD_APP_MODAL |
wxPD_ELAPSED_TIME |
wxPD_ESTIMATED_TIME |
wxPD_REMAINING_TIME);

bool cont = true;
for (int i = 0; i <= max; i++)
{

wxSleep(1);
if (i == max)

cont = dialog.Update(i, wxT(“That’s all, folks!”));
else if (i == max / 2)

cont = dialog.Update(i, wxT(“Only a half left (very
➥long message)!”));

else
cont = dialog.Update(i);

if (!cont)
{

if (wxMessageBox(wxT(“Do you really want to cancel?”),
wxT(“Progress dialog question”),
wxYES_NO | wxICON_QUESTION) == wxYES)

break;

dialog.Resume();
}

}

if (!cont)
wxLogStatus(wxT(“Progress dialog aborted!”));

else
wxLogStatus(wxT(“Countdown from %d finished”), max);

}

Informative Dialogs 209

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 209

wxBusyInfo

wxBusyInfo isn’t actually a dialog—it’s derived from wxObject—but it behaves in
a similar way. It shows a window displaying a message for as long as the object
exists, and it is useful for asking the user to wait while the application is work-
ing on something. On Windows, it looks like the window in Figure 8-5.

Create a wxBusyInfo object on the stack or dynamically, passing a message
and a window parent.

210 Using Standard Dialogs Chapter 8

Figure 8-5 wxBusyInfo dialog under Windows

wxBusyInfo Example

Here’s an example of using wxBusyInfo, first using wxWindowDisabler to disable
all windows currently open in the application.

#include “wx/busyinfo.h”

wxWindowDisabler disableAll;

wxBusyInfo info(wxT(“Counting, please wait...”), parent);
for (int i = 0; i < 1000; i++)
{

DoCalculation();
}

wxShowTip

Many applications show a tip on startup to give you extra insights into
using the application. Tips can be a good way to learn an application in
small, easily digested doses, especially for users who find it tedious to read
documentation.

Counting, please wait...

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 210

The startup tip dialog under Windows is shown in Figure 8-6.

Informative Dialogs 211

Figure 8-6 Tip dialog under Windows

Unlike most of the standard dialogs, startup tips are shown by calling a
function: wxShowTip. Pass a parent window, a pointer to a wxTipProvider object,
and optionally a boolean value specifying whether to show the Show Tips at
Startup check box. The return value is the value of this check box.

You must derive a new class from wxTipProvider and override the GetTip
function to return a wxString containing the tip. Fortunately, wxWidgets pro-
vides an implementation already: wxCreateFileTipProvider, which takes the
name of a file of tips (one per line) and an index into the tips.

The application is responsible for deleting the wxTipProvider object when
it is no longer needed.

wxShowTip Example

Here’s a function that shows a startup tip using the standard tip provider:

#include “wx/tipdlg.h”

void MyFrame::ShowTip()
{

static size_t s_index = (size_t)-1;

if (s_index == (size_t)-1)
{

// randomize...
srand(time(NULL));

// ...and pick a new tip
s_index = rand() % 5;

}

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 211

// pass a tips file and tip index
wxTipProvider *tipProvider =

wxCreateFileTipProvider(wxT(“tips.txt”), s_index);

m_showAtStartup = wxShowTip(this, tipProvider, true);
delete tipProvider;

}

FILE AND DIRECTORY DIALOGS

There are two dialogs you can use to get file and directory information from
the user: wxFileDialog and wxDirDialog.

wxFileDialog

wxFileDialog can handle the selection of one file or several files, and it has
variants for opening and saving files.

Figure 8-7 shows the file dialog under Windows.

212 Using Standard Dialogs Chapter 8

Figure 8-7 wxFileDialog under Windows

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 212

File and Directory Dialogs 213

Figure 8-8 and Figure 8-9 show the file dialog under Linux using GTK+
versions 1 and 2, respectively.

Figure 8-8 Generic wxFileDialog under GTK+

Figure 8-9 Native wxFileDialog under GTK+2.4 and above

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 213

214 Using Standard Dialogs Chapter 8

The file dialog appearance under Mac OS X is shown in Figure 8-10.

To create a wxFileDialog, pass a parent window, a message to display in
the dialog caption, a default directory, a default file name, a wildcard, the dia-
log style, and a position (ignored on some platforms). Call ShowModal and test
for a wxID_OK return value, which is returned if the user confirms a selection.

Directory and file name are distinct elements of a full path name. If the
directory is empty, the current directory will be used. If the file name is empty,
no default file name will be supplied.

The wildcard determines what files are displayed in the file selector. The
wildcard may be a specification for multiple types of file with a description for
each, such as

“BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif”

Typing a file name containing wildcards (“*”, “?”) in the file name text item and
clicking on OK will result in only those files matching the pattern being
displayed.

wxFileDialog Styles

The file dialog has the styles shown in Table 8-3.

Figure 8-10 wxFileDialog under Mac OS X

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 214

Table 8-3 wxFileDialog Styles

wxSAVE Specifies a “save” dialog.
wxOPEN Specifies an “open” dialog (the default).
wxOVERWRITE_PROMPT For a “save” dialog, the user will be prompted if the

chosen file already exists.
wxFILE_MUST_EXIT The user is forced to select an existing file.
wxMULTIPLE The user can select multiple files.

wxFileDialog Functions

The wxFileDialog functions are as follows.
GetDirectory returns the default directory or the directory component of

the selected file for a single-selection file dialog. Use SetDirectory to specify
the default directory.

GetFilename returns the default file name (without the directory) or the
selected file name for a single-selection file dialog. Use SetFilename to set the
default file name.

GetFilenames returns a wxArrayString of the file names of all selections in
a multiple-selection dialog. Generally, these file names do not include the
directory, but under Windows, if any shortcuts are selected, the file names do
include directories. This is because the application cannot determine the full
path of each referenced file by appending the file name to the selected direc-
tory. Use GetPaths if you want to get an array of the selections including their
directories.

GetFilterIndex returns a zero-based index of the default or selected filter.
Filters are usually displayed in a drop-down list under the list of files. Use
SetFilterIndex to set the default index to be displayed when the dialog is shown.

GetMessage returns the dialog caption. Use SetMessage to set the caption.
GetPath returns the full path (directory and file name) of the file selected

by the user or the default path. Use SetPath to set the default path. For a multiple-
selection dialog, use GetPaths to get a wxArrayString of all selections including
their directories.

GetWildcard returns the wildcard specification, and SetWildcard sets it.

wxFileDialog Example

Here’s an example of using wxFileDialog to open a single BMP or GIF file:

#include “wx/filedlg.h”

wxString caption = wxT(“Choose a file”);
wxString wildcard =

wxT(“BMP files (*.bmp)|*.bmp|GIF files (*.gif)|*.gif”);

File and Directory Dialogs 215

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 215

wxString defaultDir = wxT(“c:\\temp”));
wxString defaultFilename = wxEmptyString;

wxFileDialog dialog(parent, caption, defaultDir, defaultFilename,
wildcard, wxOPEN);

if (dialog.ShowModal() == wxID_OK)
{

wxString path = dialog.GetPath();
int filterIndex = dialog.GetFilterIndex();

}

wxDirDialog

wxDirDialog allows the user to choose a local or network directory (folder).
Optionally, it can allow the user to create a new directory if the wxDD_NEW_
DIR_BUTTON style is passed to the constructor.

Figure 8-11 shows wxDirDialog under Windows, where Windows supplies
the dialog. The generic version of wxDirDialog is used for GTK+ on Linux, as
Figure 8-12 shows.

216 Using Standard Dialogs Chapter 8

Figure 8-11 wxDirDialog under Windows

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 216

wxDirDialog on Mac OS X (Figure 8-13) looks very much like the file
dialog.

File and Directory Dialogs 217

Figure 8-12 wxDirDialog under GTK+

Figure 8-13 wxDirDialog under Mac OS X

To create the directory dialog, pass a parent window, a message to show
on the dialog, a default directory, a window style, a position, and a size (these
last two may be ignored, depending on implementation). Call ShowModal and

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 217

test for a wxID_OK return value, which indicates that the user confirmed a direc-
tory selection.

wxDirDialog Functions

The functions for this dialog are described in the following.
SetPath and GetPath are accessors for the default or user-selected directory.
SetMessage sets the message that appears on the dialog, and GetMessage

returns the current value.

wxDirDialog Example

Using wxDirDialog is easy, as this example shows:

#include “wx/dirdlg.h”

wxString defaultPath = wxT(“/”);

wxDirDialog dialog(parent,
wxT(“Testing directory picker”),
defaultPath, wxDD_NEW_DIR_BUTTON);

if (dialog.ShowModal() == wxID_OK)
{

wxString path = dialog.GetPath();
wxMessageBox(path);

}

CHOICE AND SELECTION DIALOGS

In this section, we look at dialogs for getting choices and selections from
the user: wxColourDialog, wxFontDialog, wxSingleChoiceDialog, and
wxMultiChoiceDialog.

wxColourDialog

This dialog allows the user to pick from a standard set or a full range of
colors.

Under Windows, the native color selector dialog is used. This dialog con-
tains three main regions: at the top left, a palette of 48 commonly used colors
is shown. Below this, there is a palette of 16 custom colors, which can be set by
the application. Additionally, the user may add to the custom color palette by
expanding the dialog box and choosing a precise color from the color selector
panel on the right. Figure 8-14 shows the color selector under Windows in full
selection mode.

218 Using Standard Dialogs Chapter 8

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 218

Choice and Selection Dialogs 219

Figure 8-14 wxColourDialog under Windows

Figure 8-15 Generic wxColourDialog under X11

The generic color dialog, shown in Figure 8-15 under GTK+ 1 and X11,
shows palettes of 48 standard and 16 custom colors, with the area on the right
containing three sliders for the user to select a color from red, green, and blue
components. This color may be added to the custom color palette, and it will
replace either the currently selected custom color or the first one in the palette
if none is selected. The RGB color sliders are not optional in the generic color
selector. The generic color selector is also available under Windows and other
platforms; use the name wxGenericColourDialog.

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 219

Figure 8-16 shows the native color dialog under GTK+.

220 Using Standard Dialogs Chapter 8

Figure 8-17 wxColourDialog under Mac OS X

Figure 8-17 shows Mac OS X’s color dialog, which offers yet another way
of getting a color from the user.

Figure 8-16 wxColourDialog under GTK+

To use this dialog, create a wxColourDialog object (dynamically allocated
or on the stack) and pass it a parent window and a pointer to a wxColourData
object. The information in wxColourData will be copied to the dialog to set some
defaults. Call ShowModal to enter the modal loop, and when control is returned
to your code, you can retrieve the user-modified data by calling GetColourData.

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 220

wxColourData Functions

wxColourData has the following functions.
SetChooseFull specifies that the color dialog should show the full selection

of colors; otherwise only a subset will be shown. This currently works only
under Windows. GetChooseFull retrieves the value of this boolean.

SetColour sets the default color to show in the color selector, and GetColour
retrieves the color that the user has chosen.

SetCustomColour takes a zero-based index (maximum 15) and a wxColour
object and sets one of the 16 custom colors. Use GetCustomColour to retrieve the
custom colors, which may have changed if the user has added to the custom
colors from within the color selector.

wxColourDialog Example

Here is an example of using wxColourDialog. The code sets various parameters
of a wxColourData object, including a gray scale for the custom colors. If the user
did not cancel the dialog, the application retrieves the selected color and uses
it to set the background of a window.

#include “wx/colordlg.h”

wxColourData data;
data.SetChooseFull(true);
for (int i = 0; i < 16; i++)
{

wxColour color(i*16, i*16, i*16);
data.SetCustomColour(i, color);

}

wxColourDialog dialog(this, &data);
if (dialog.ShowModal() == wxID_OK)
{

wxColourData retData = dialog.GetColourData();
wxColour col = retData.GetColour();
myWindow->SetBackgroundColour(col);
myWindow->Refresh();

}

wxFontDialog

wxFontDialog allows the user to provide font and, on some platforms, font color
selections.

Under Windows, the native font selector standard dialog is used. This
presents a dialog box with controls for font name, point size, style, weight,
underlining, strikeout, and text foreground color. A sample of the font is shown
on a white area of the dialog box. Note that in the translation from full
Windows fonts to wxWidgets font conventions, strikeout is ignored, and a font
family (such as Swiss or Modern) is deduced from the actual font name (such

Choice and Selection Dialogs 221

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 221

as Arial or Courier). Under GTK+, the GTK+ standard font selector is used,
which does not allow color selection.

Figure 8-18 shows how the font dialog looks under Windows.

222 Using Standard Dialogs Chapter 8

Figure 8-19 wxFontDialog under GTK+

Figure 8-18 wxFontDialog under Windows

Under platforms other than Windows and GTK+, the font selector is sim-
pler: see Figure 8-20 for a view of the generic dialog on Mac OS X. Controls for
font family, point size, style, weight, underlining, and text foreground color are
provided, and a sample is shown upon a white background. The generic font
selector is available on all platforms; use the name wxGenericFontDialog.

Figure 8-19 shows the native font dialog under GTK+.

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 222

To use wxFontDialog, create an object dynamically or on the stack and
pass a parent window and a wxFontData object. Call ShowModal and test for a
wxID_OK return value. Then retrieve the wxFontData from the dialog and call
GetChosenFont and GetChosenColour as required.

wxFontData Functions

wxFontData has the following functions.
EnableEffects enables controls for manipulating color and underline

properties under Windows or on the generic dialog (no effect on GTK+).
GetEnableEffects returns the current boolean value of this setting. Note that
even if effects are disabled, the font color will be preserved.

SetAllowSymbols allows the selection of symbol fonts (Windows only), and
GetAllowSymbols returns the current boolean value of this setting.

SetColour sets the default font color, and GetColour retrieves the font color
selected by the user.

SetInitialFont sets the default font that will be selected when the dialog
is first opened. GetChosenFont retrieves the wxFont selected by the user.

SetShowHelp can be called to indicate that the help button should be
displayed (under Windows only). Use GetShowHelp to return the value of this
setting.

Call SetRange with the minimum and maximum point size that the user
can select; the default (0, 0) indicates that any point size can be selected. This
has an effect on Windows only.

Choice and Selection Dialogs 223

Figure 8-20 Generic wxFontDialog under Mac OS X

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 223

Font Selector Example

In this fragment, the application uses the returned font and color for drawing
text on a window.

#include “wx/fontdlg.h”

wxFontData data;
data.SetInitialFont(m_font);
data.SetColour(m_textColor);

wxFontDialog dialog(this, &data);
if (dialog.ShowModal() == wxID_OK)
{

wxFontData retData = dialog.GetFontData();
m_font = retData.GetChosenFont();
m_textColor = retData.GetColour();

// Update the window to reflect the new font and color
myWindow->Refresh();

}

wxSingleChoiceDialog

wxSingleChoiceDialog presents the user with a list of strings and allows the
user to select one. It looks like the dialog in Figure 8-21.

224 Using Standard Dialogs Chapter 8

Figure 8-21 wxSingleChoiceDialog under Windows

Pass to the dialog constructor the parent window, a message to show on
the dialog, the dialog caption, and a wxArrayString for the strings to appear in
the list. You can also pass an array size and a C array of strings (wxChar**)
instead of passing a wxArrayString.

You can use SetSelection to set the default selection before showing the
dialog; after the dialog has been dismissed, query the user’s choice with
GetSelection (to return the index) or GetStringSelection (to return the string).

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 224

You also can pass an array of char* client data to the dialog’s constructor;
when the dialog is dismissed, GetSelectionClientData will return the char*
client data corresponding to the user selection.

wxSingleChoiceDialog Example

Here’s some code to show how wxSingleChoiceDialog is used.

#include “wx/choicdlg.h”

const wxArrayString choices;
choices.Add(wxT(“One”));
choices.Add(wxT(“Two”));
choices.Add(wxT(“Three”));
choices.Add(wxT(“Four”));
choices.Add(wxT(“Five”));

wxSingleChoiceDialog dialog(this,
wxT(“This is a small sample\nA single-

➥choice convenience dialog”),
wxT(“Please select a value”),
choices);

dialog.SetSelection(2);

if (dialog.ShowModal() == wxID_OK)
wxMessageBox(dialog.GetStringSelection(), wxT(“Got string”));

wxMultiChoiceDialog

wxMultiChoiceDialog is similar to wxSingleChoiceDialog, presenting the user
with a list of strings, but it allows the user to select zero or more. This dialog
is illustrated in Figure 8-22.

Choice and Selection Dialogs 225

Figure 8-22 wxMultiChoiceDialog under Windows

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 225

Pass to the dialog constructor the parent window, a message to show on
the dialog, the dialog caption, and a wxArrayString array of strings. As with
wxSingleChoiceDialog, you may pass an array size and wxChar** array instead
of the wxArrayString argument. Unlike wxSingleChoiceDialog, no client data
may be passed to the constructor.

To set the default selections, call SetSelections passing a wxArrayInt
where each element specifies an index in the passed array of strings. Query
the user’s choice with GetSelections to return a wxArrayInt of indices specify-
ing the user’s selections.

wxMultiChoiceDialog Example

Here’s how you use a wxMultiChoiceDialog.

#include “wx/choicdlg.h”

const wxArrayString choices;
choices.Add(wxT(“One”));
choices.Add(wxT(“Two”));
choices.Add(wxT(“Three”));
choices.Add(wxT(“Four”));
choices.Add(wxT(“Five”));

wxMultiChoiceDialog dialog(this,
wxT(“A multi-choice convenience

➥dialog”),
wxT(“Please select several values”),
choices);

if (dialog.ShowModal() == wxID_OK)
{

wxArrayInt selections = dialog.GetSelections();
wxString msg;
msg.Printf(wxT(“You selected %u items:\n”),

selections.GetCount());

for (size_t n = 0; n < selections.GetCount(); n++)
{

msg += wxString::Format(wxT(“\t%d: %d (%s)\n”),
n, selections[n],
choices[selections[n]].c_str());

}

wxMessageBox(msg, wxT(“Got selections”));
}

226 Using Standard Dialogs Chapter 8

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 226

Entry Dialogs 227

Figure 8-23 wxNumberEntryDialog under Windows

ENTRY DIALOGS

These dialogs ask you to type in information. They include wxNumberEntryDialog,
wxTextEntryDialog, wxPasswordEntryDialog, and wxFindReplaceDialog.

wxNumberEntryDialog

wxNumberEntryDialog prompts the user for an integer within a given range. The
dialog shows a spin control so that the number can be entered directly or by
clicking on the up and down arrows. This dialog is implemented by wxWidgets,
so it has the same functionality on all platforms.

Create a wxNumberEntryDialog passing a parent window, message text,
prompt text (that will precede the spin control), caption, default value, mini-
mum value, maximum value, and position. Then call ShowDialog and, if wxID_OK
is returned, retrieve the number using GetValue.

Figure 8-23 shows what the dialog looks like under Windows.

wxNumberEntryDialog Example

Figure 8-23 was created using the following code:

#include “wx/numdlg.h”

wxNumberEntryDialog dialog(parent,
wxT(“This is some text, actually a lot of text\nEven two rows of

➥text”),
wxT(“Enter a number:”), wxT(“Numeric input test”), 50, 0, 100);

if (dialog.ShowModal() == wxID_OK)
{

long value = dialog.GetValue();

}

wxTextEntryDialog and wxPasswordEntryDialog

wxTextEntryDialog and wxPasswordEntryDialog present the user with a single-
line text control and a message. They function identically except that the

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 227

letters typed into a wxPasswordEntryDialog are masked so that they cannot be
read. Figure 8-24 shows a wxTextEntryDialog under Windows.

228 Using Standard Dialogs Chapter 8

Pass a parent window, message, caption, default value, and style to the
constructor. The style can be a bit-list of wxOK, wxCANCEL, and wxCENTRE (or
wxCENTER), and you can also pass wxTextCtrl styles such as wxTE_CENTRE (or
wxTE_CENTER).

You can set the default string separately with SetValue, and GetValue
returns the text entered by the user.

wxTextEntryDialog Example

Figure 8-24 was created using this code:

#include “wx/textdlg.h”

wxTextEntryDialog dialog(this,
wxT(“This is a small sample\n”)
wxT(“A long, long string to test out the

➥text entrybox”),
wxT(“Please enter a string”),
wxT(“Default value”),
wxOK | wxCANCEL);

if (dialog.ShowModal() == wxID_OK)
wxMessageBox(dialog.GetValue(), wxT(“Got string”));

wxFindReplaceDialog

wxFindReplaceDialog is a modeless dialog that allows the user to search for
some text and replace it with something else, if desired. The actual searching
must be done in a derived class or a parent window, responding to events gen-
erated by the dialog’s buttons. Unlike most standard dialogs, this one must
have a parent window. This dialog cannot be used modally; it is always, by
design and implementation, modeless.

Figure 8-24 wxTextEntryDialog under Windows

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 228

Handling Events from the Dialog

wxFindReplaceDialog sends command events when the user clicks on controls
in the dialog. Event handlers take a wxFindDialogEvent argument, and the
event table macros take the dialog identifier and handler function, as listed
in Table 8-4.

Table 8-4 wxFindReplaceDialog Events

EVT_FIND(id, func) Handles Find button clicks.
EVT_FIND_NEXT(id, func) Handles Next button clicks.
EVT_FIND_REPLACE(id, func) Handles Replace button clicks.
EVT_FIND_REPLACE_ALL(id, func) Handles Replace All button clicks.
EVT_FIND_CLOSE(id, func) Handles a close event, generated when

the user closes the dialog via Cancel or
other means.

The Windows Find and Replace dialog is shown in Figure 8-25.

Entry Dialogs 229

Figure 8-25 wxFindReplaceDialog under Windows

Figure 8-26 wxFindReplaceDialog under GTK+

On other platforms, such as GTK+ and Mac OS X, wxWidgets uses the
generic version of the dialog, as shown in Figure 8-26.

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 229

wxFindDialogEvent Functions

wxFindDialogEvent has the following functions.
GetFlags returns flags for the current selections on the dialog. The value

is a bit-list of wxFR_DOWN, wxFR_WHOLEWORD, and wxFR_MATCHCASE.
GetFindString returns the string the user entered as the text to find.
GetReplaceString returns the string the user entered as the text to use as

the replacement.
GetDialog returns a pointer to the wxFindReplaceDialog that generated the

event.

Passing Data to the Dialog

To create a wxFindReplaceDialog, pass a window parent, a pointer to a
wxFindReplaceData object, a dialog caption, and a style, which is a bit-list of val-
ues shown in Table 8-5.

Table 8-5 wxFindReplaceData Style

wxFR_REPLACEDIALOG Specifies a find and replace dialog; otherwise, it will be a
find dialog.

wxFR_NOUPDOWN Specifies that the search direction should not be
adjustable.

wxFR_NOMATCHCASE Specifies that case-sensitive searching is not allowable.
wxFR_NOWHOLEWORD Specifies that whole-word searching is not allowable.

wxFindReplaceData holds the data for wxFindReplaceDialog. It is used to initial-
ize the dialog with the default values and will keep the last values from the
dialog when it is closed. It is also updated each time a wxFindDialogEvent is gen-
erated, so instead of using the wxFindDialogEvent methods, you can also direct-
ly query this object. Use the dialog’s GetData function to return a pointer to the
data you passed to the dialog constructor.

wxFindReplaceData Functions

These are the functions for setting and accessing data in wxFindReplaceData.
Note that the setters may only be called before showing the dialog, and calling
them has no effect later.

GetFindString and SetFindString are accessors for the search string, pro-
vided by the application or entered by the user.

GetFlags and SetFlags are accessors for the flags specifying the state of
the find dialog (refer to Table 8-5).

GetReplaceString and SetReplaceString are accessors for the replace
string, provided by the application or entered by the user.

230 Using Standard Dialogs Chapter 8

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 230

Find and Replace Example

The following shows an example fragment of wxFindReplaceDialog usage,
employing hypothetical DoFind and DoReplace functions to do the actual search
and replace for the application. These functions would maintain application-
dependent variables in the dialog class, storing the last position that was
searched, so that each time the functions are called, the next match can be
found. The functions will also change the document view and highlight the
match.

#include “wx/fdrepdlg.h”

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_MENU(ID_REPLACE, MyFrame::ShowReplaceDialog)
EVT_FIND(wxID_ANY, MyFrame::OnFind)
EVT_FIND_NEXT(wxID_ANY, MyFrame::OnFind)
EVT_FIND_REPLACE(wxID_ANY, MyFrame::OnReplace)
EVT_FIND_REPLACE_ALL(wxID_ANY, MyFrame::OnReplaceAll)
EVT_FIND_CLOSE(wxID_ANY, MyFrame::OnFindClose)

END_EVENT_TABLE()

void MyFrame::ShowReplaceDialog(wxCommandEvent& event)
{

if (m_dlgReplace)
{

delete m_dlgReplace;
m_dlgReplace = NULL;

}
else
{

m_dlgReplace = new wxFindReplaceDialog
(
this,
&m_findData,
wxT(“Find and replace dialog”),
wxFR_REPLACEDIALOG

);

m_dlgReplace->Show(true);
}

}

void MyFrame::OnFind(wxFindDialogEvent& event)
{

if (!DoFind(event.GetFindString(), event.GetFlags()))
{

wxMessageBox(wxT(“No more matches.”));
}

}

void MyFrame::OnReplace(wxFindDialogEvent& event)
{

if (!DoReplace(event.GetFindString(), event.GetReplaceString(),
event.GetFlags(), REPLACE_THIS))

Entry Dialogs 231

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 231

{
wxMessageBox(wxT(“No more matches.”));

}
}

void MyFrame::OnReplaceAll(wxFindDialogEvent& event)
{

if (DoReplace(event.GetFindString(), event.GetReplaceString(),
event.GetFlags(), REPLACE_ALL))

{
wxMessageBox(wxT(“Replacements made.”));

}
else
{

wxMessageBox(wxT(“No replacements made.”));
}

}

void MyFrame::OnFindClose(wxFindDialogEvent& event)
{

m_dlgReplace->Destroy();
m_dlgReplace = NULL;

}

PRINTING DIALOGS

You use wxPageSetupDialog and wxPrintDialog in applications that print docu-
ments. If you use the printing framework (including wxPrintout, wxPrinter, and
other classes), you won’t need to invoke these dialogs explicitly in your code.
For more on printing, refer to Chapter 5, “Drawing and Printing.”

wxPageSetupDialog

wxPageSetupDialog contains controls for paper size such as A4 and letter, orien-
tation (landscape or portrait), and controls for setting left, top, right, and bot-
tom margin sizes in millimeters. The user can also set printer-specific options
by invoking a further dialog from this one.

232 Using Standard Dialogs Chapter 8

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 232

Figure 8-28 shows wxPageSetupDialog using the generic implementation
under GTK+. If the GNOME printing libraries are installed, wxWidgets will
instead use a native GNOME page setup dialog, as shown in Figure 8-29.

Printing Dialogs 233

Figure 8-27 shows the wxPageSetupDialog dialog under Windows.

Figure 8-27 wxPageSetupDialog under Windows

Figure 8-28 wxPageSetupDialog under GTK+ without GNOME printing

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 233

The Mac OS X version of wxPageSetupDialog is shown in Figure 8-30.

234 Using Standard Dialogs Chapter 8

Figure 8-29 wxPageSetupDialog under GTK+ with GNOME printing

Figure 8-30 wxPageSetupDialog under Mac OS X

To use this dialog, pass to the constructor a parent window and a point-
er to a wxPageSetupDialogData object, which contains settings to pass to and
retrieve from the dialog. You can create the dialog on the stack or dynamical-
ly. The page setup data will be copied to the dialog’s own data; use
GetPageSetupData to return a reference to the dialog’s data.

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 234

wxPageSetupData Functions

wxPageSetupDialogData has the following functions.
Ok returns true if the print data associated with the object is valid. This

can return false on Windows if the current printer is not set, for example. On
all other platforms, it returns true.

SetMarginTopLeft takes a wxPoint object and sets the left and top margins
in millimeters. Call GetMarginTopLeft to retrieve this value.

SetMarginBottomRight takes a wxPoint object and sets the bottom and right
margins in millimeters. Call GetMarginBottomRight to retrieve this value.

SetPaperId sets the paper identifier to select the current paper size,
instead of using SetPaperSize. See the documentation for this function for the
symbols that are available. GetPaperId retrieves the paper identifier.

SetPaperSize takes a wxSize object and sets the paper size in millimeters.
Use GetPaperSize to retrieve the current paper size.

EnableMargins enables or disables the margin controls (Windows only).
Call GetEnableMargins to test the value of this setting.

EnableOrientation enables or disables the orientation control (Windows
only). Call GetEnableOrientation to test the value of this setting.

EnablePaper enables or disables the paper size control (Windows only).
Call GetEnablePaper to test the value of this setting.

EnablePrinter enables or disables the Printer button, which invokes a
print setup dialog. Call GetEnablePrinter to test the value of this setting.

wxPageSetupDialog Example

Here’s an example of using wxPageSetupDialog:

#include “wx/printdlg.h”

void MyFrame::OnPageSetup(wxCommandEvent& event)
{

wxPageSetupDialog pageSetupDialog(this, & m_pageSetupData);
if (pageSetupDialog.ShowModal() == wxID_OK)

m_pageSetupData = pageSetupDialog.GetPageSetupData();
}

wxPrintDialog

This class represents the print and print setup standard dialogs. You may
obtain a wxPrinterDC device context from a successfully dismissed print dialog.

Printing Dialogs 235

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 235

Figure 8-31 shows wxPrintDialog under Windows.

236 Using Standard Dialogs Chapter 8

Figure 8-31 wxPrintDialog under Windows

Figure 8-32 shows wxPrintDialog under GTK+ without the GNOME
printing libraries, and Figure 8-33 shows the dialog shown when the GNOME
printing libraries are installed.

Figure 8-32 wxPrintDialog under GTK+ without GNOME printing

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 236

Figure 8-34 shows wxPrintDialog under Mac OS X. As you can see from
the buttons along the bottom, Mac OS X gives you the added advantage of sav-
ing your document as a PDF file, and you can use the Mac OS X previewer as
an alternative to the application’s preview window.

Printing Dialogs 237

Figure 8-33 wxPrintDialog under GTK+ with GNOME printing

Figure 8-34 wxPrintDialog under Mac OS X

To use wxPrintDialog, create it on the stack or dynamically and pass the
parent window and a pointer to a wxPrintDialogData object, whose contents will
be copied to internal data in the dialog object. Call wxPrintDialogData::
SetSetupDialog with true before passing the data to the dialog if you want to
show the print setup dialog instead of the print dialog. Following Microsoft’s
conventions, the print setup dialog has been replaced by the wxPageSetupDialog,
but for compatibility, some applications may still need to use the setup dialog.

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 237

When the dialog returns successfully, you can retrieve the
wxPrintDialogData using the GetPrintDialogData function.

Call GetPrintDC on the dialog to get a printer device context based on the
settings the user has chosen. If the function returns a non-null pointer, the
application is then responsible for deleting the device context.

Ok returns true if the print data associated with the dialog is valid. This
can return false on Windows if the current printer is not set, for example. On
all other platforms, it returns true.

wxPrintDialogData Functions

These are the functions you can use with wxPrintDialogData.
EnableHelp enables or disables the Help button. Use GetEnableHelp to

return the value of this setting.
EnablePageNumbers enables or disables the page number controls, and

GetEnablePageNumbers returns the value of this setting.
EnablePrintToFile enables or disables the Print to File check box. Use

GetEnablePrintToFile to return the value of this setting.
EnableSelection enables or disables the Selection radio button that lets

the user specify that the current selection should be printed. Use
GetEnableSelection to return the value of this setting.

SetCollate sets the Collate check box to be true or false. Use GetCollate
to return the value of this setting.

SetFromPage and SetToPage set the page range to print. Use GetFromPage
and GetToPage to return this range.

SetMinPage and SetMaxPage set the minimum and maximum page numbers
that can be printed. Use GetMinPage and GetMaxPage to return these values.

SetNoCopies sets the default number of copies that will be printed. Use
GetNoCopies to return the value of this setting.

SetPrintToFile sets the Print to File check box to true or false. Use
GetPrintToFile to return the value of this setting.

SetSelection sets the Selection radio button. Use GetSelection to return
the value of this setting.

SetSetupDialog determines whether the print setup dialog is shown (true)
or the normal print dialog is shown (false). Use GetSetupDialog to return the
value of this setting.

SetPrintData sets the internal wxPrintData object. GetPrintData returns a
reference to the internal wxPrintData object.

wxPrintDialog Example

The following example shows wxPrintDialog being used to return a suitable
printer device context:

#include “wx/printdlg.h”

void MyFrame::OnPrint(wxCommandEvent& event)
{

238 Using Standard Dialogs Chapter 8

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 238

wxPrintDialogData dialogData;
dialogData.SetFromPage(0);
dialogData.SetToPage(10);

wxPrintDialog printDialog(this, & m_dialogData);
if (printDialog.ShowModal() == wxID_OK)
{

// After calling GetPrintDC(), the application
// owns the DC
wxDC* dc = printDialog.GetPrintDC();

// Draw on the device context
...

// Destroy it
delete dc;

}
}

However, usually you can avoid invoking the print dialog directly. Instead, use
the higher-level printing framework (refer to Chapter 5). The print dialog will
be shown as a side effect of calling wxPrinter::Print.

SUMMARY

In this chapter, you have learned about the standard dialogs that you can use
to present information and retrieve user choices with very little code. For fur-
ther examples of using standard dialogs, see samples/dialogs in your
wxWidgets distribution. Next, we’ll show you how to write your own dialogs.

Summary 239

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 239

Smart_Ch08f.qxd 6/10/05 11:19 AM Page 240

C H A P T E R 9

Writing Custom Dialogs

Sooner or later, you will have to create your own dialogs, whether simple ones
with only a few buttons and some text or highly complex dialogs with notebook
controls, multiple panels, custom controls, context-sensitive help, and so on. In
this chapter, we cover the principles of creating custom dialogs and transfer-
ring data between C++ variables and the controls. We also describe the
wxWidgets resource system, which enables you to load dialogs and other user
interface elements from XML files.

STEPS IN CREATING A CUSTOM DIALOG

When you start writing your own specialized dialogs, the fun really starts.
Here are the steps you’ll typically need to take:

1. Derive a new class from wxDialog.
2. Decide where the data is stored and how the application accesses user

choices.
3. Write code to create and lay out the controls.
4. Add code that transfers data between C++ variables and the controls.
5. Add functions and their event table entries to handle events from con-

trols.
6. Add user interface (UI) update handlers to set controls to the correct

state.
7. Add help, in particular tooltips, context-sensitive help (not implemented

on Mac OS X), and a way of showing an explanation of the dialog in your
application’s user manual.

8. Invoke the dialog from a suitable place in your application code.

Let’s illustrate these steps with a concrete example.

241

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 241

242 Writing Custom Dialogs Chapter 9

AN EXAMPLE: PERSONALRECORDDIALOG

As we saw in the previous chapter, dialogs come in two flavors: modal and
modeless. We’ll illustrate custom dialog creation with a modal dialog because
it’s the more common kind and has fewer complications. The application will
invoke the dialog with ShowModal and then query the dialog for user selections.
Until ShowModal returns, all user interactions with the application will be con-
tained within the little world of your custom dialog (and any further modal
dialogs that your dialog may invoke).

Many of the steps involved in creating a custom dialog can be accom-
plished very easily by using a dialog editor, such as wxDesigner or
DialogBlocks. The amount of coding left to do depends on the complexity of
your dialog. Here, we will assume handcrafting of all the code in order to
demonstrate the principles, but it’s highly recommended that you use a tool to
help you because it will save you many hours of repetitive work.

We’ll illustrate the steps involved in creating a custom dialog with a sim-
ple example where the user is required to enter his or her name, age, sex, and
whether the user wants to vote. This dialog is called PersonalRecordDialog, as
shown in Figure 9-1.

Figure 9-1 Personal record dialog under Windows

The Reset button restores all controls to their default values. The OK but-
ton dismisses the dialog and returns wxID_OK from ShowModal. The Cancel but-
ton returns wxID_CANCEL and does not update the dialog’s variables from the
values shown in the controls. The Help button invokes a few lines of text
describing the dialog (although in a real application, this button should invoke
a nicely formatted help file).

A good user interface should not allow the user to enter data that has no
meaning in the current context. In this example, the user should not be able
to use the Vote control if Age is less than the voting age (18 in the U.S. or U.K.).
So, we will ensure that when the age entered is less than 18, the Vote check
box is disabled.

Smart_Ch09f.qxd 6/10/05 3:28 PM Page 242

Deriving a New Class

Here’s the declaration for our PersonalRecordDialog. We provide run-time type
information by using DECLARE_CLASS, and we add an event table with
DECLARE_EVENT_TABLE.

/*!
* PersonalRecordDialog class declaration
*/

class PersonalRecordDialog: public wxDialog
{

DECLARE_CLASS(PersonalRecordDialog)
DECLARE_EVENT_TABLE()

public:
// Constructors
PersonalRecordDialog();
PersonalRecordDialog(wxWindow* parent,

wxWindowID id = wxID_ANY,
const wxString& caption = wxT(“Personal Record”),
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxCAPTION|wxRESIZE_BORDER|wxSYSTEM_MENU);

// Initialize our variables
void Init();

// Creation
bool Create(wxWindow* parent,

wxWindowID id = wxID_ANY,
const wxString& caption = wxT(“Personal Record”),
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxCAPTION|wxRESIZE_BORDER|wxSYSTEM_MENU);

// Creates the controls and sizers
void CreateControls();

};

Note that we follow wxWidgets convention by allowing both one-step and two-
step construction—we provide a default constructor and Create function as
well as a more verbose constructor.

Designing Data Storage

We have four pieces of data to store: name (string), age (integer), sex (boolean),
and voting preference (boolean). To make it easier to use a wxChoice control
with the data, we’re going to use an integer to store the boolean value for sex, but
the class interface can present it as boolean: true for female and false for male.
Let’s add these data members and accessors to the PersonalRecordDialog class:

An Example: PersonalRecordDialog 243

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 243

// Data members
wxString m_name;
int m_age;
int m_sex;
bool m_vote;

// Name accessors
void SetName(const wxString& name) { m_name = name; }
wxString GetName() const { return m_name; }

// Age accessors
void SetAge(int age) { m_age = age; }
int GetAge() const { return m_age; }

// Sex accessors (male = false, female = true)
void SetSex(bool sex) { sex ? m_sex = 1 : m_sex = 0; }
bool GetSex() const { return m_sex == 1; }

// Does the person vote?
void SetVote(bool vote) { m_vote = vote; }
bool GetVote() const { return m_vote; }

Coding the Controls and Layout

Now let’s add a CreateControls function to be called from Create.
CreateControls adds wxStaticText controls, wxButton controls, a wxSpinCtrl, a
wxTextCtrl, a wxChoice, and a wxCheckBox. Refer to Figure 9-1 earlier in the
chapter to see the resulting dialog.

We’re using sizer-based layout for this dialog, which is why it looks a bit
more involved than you might expect for a small number of controls. (We
described sizers in Chapter 7, “Window Layout Using Sizers”—briefly, they
enable you to create dialogs that look good on any platform and that easily
adapt to translation and resizing.) You can use a different method if you want,
such as loading the dialog from a wxWidgets resource file (XRC file).

The basic principle of sizer-based layout is to put controls into nested
boxes (sizers), which can distribute space among the controls or stretch just
enough to contain its controls. The sizers aren’t windows—they form a sepa-
rate hierarchy, and the controls remain children of their parent, regardless of
the complexity of the hierarchy of sizers. You might like to refresh your mem-
ory by looking at the schematic view of a sizer layout that we showed in Figure
7-2 in Chapter 7.

In CreateControls, we’re using a vertical box sizer (boxSizer) nested in
another vertical box sizer (topSizer) to give a decent amount of space around
the dialog’s controls. A horizontal box sizer is used for the wxSpinCtrl, wxChoice,
and wxCheckBox, and a second horizontal box sizer (okCancelSizer) is used for
the Reset, OK, Cancel, and Help buttons.

/*!
* Control creation for PersonalRecordDialog
*/

244 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 244

void PersonalRecordDialog::CreateControls()
{

// A top-level sizer

wxBoxSizer* topSizer = new wxBoxSizer(wxVERTICAL);
this->SetSizer(topSizer);

// A second box sizer to give more space around the controls

wxBoxSizer* boxSizer = new wxBoxSizer(wxVERTICAL);
topSizer->Add(boxSizer, 0, wxALIGN_CENTER_HORIZONTAL|wxALL, 5);

// A friendly message

wxStaticText* descr = new wxStaticText(this, wxID_STATIC,
wxT(“Please enter your name, age and sex, and specify whether

you wish to\nvote in a general election.”), wxDefaultPosition,
wxDefaultSize, 0);

boxSizer->Add(descr, 0, wxALIGN_LEFT|wxALL, 5);

// Spacer

boxSizer->Add(5, 5, 0, wxALIGN_CENTER_HORIZONTAL|wxALL, 5);

// Label for the name text control

wxStaticText* nameLabel = new wxStaticText (this, wxID_STATIC,
wxT(“&Name:”), wxDefaultPosition, wxDefaultSize, 0);

boxSizer->Add(nameLabel, 0, wxALIGN_LEFT|wxALL, 5);

// A text control for the user’s name

wxTextCtrl* nameCtrl = new wxTextCtrl (this, ID_NAME, wxT(“Emma”),
wxDefaultPosition, wxDefaultSize, 0);

boxSizer->Add(nameCtrl, 0, wxGROW|wxALL, 5);

// A horizontal box sizer to contain age, sex and vote

wxBoxSizer* ageSexVoteBox = new wxBoxSizer(wxHORIZONTAL);
boxSizer->Add(ageSexVoteBox, 0, wxGROW|wxALL, 5);

// Label for the age control

wxStaticText* ageLabel = new wxStaticText (this, wxID_STATIC,
wxT(“&Age:”), wxDefaultPosition, wxDefaultSize, 0);

ageSexVoteBox->Add(ageLabel, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// A spin control for the user’s age

wxSpinCtrl* ageSpin = new wxSpinCtrl (this, ID_AGE,
wxEmptyString, wxDefaultPosition, wxSize(60, -1),
wxSP_ARROW_KEYS, 0, 120, 25);

ageSexVoteBox->Add(ageSpin, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// Label for the sex control

wxStaticText* sexLabel = new wxStaticText (this, wxID_STATIC,
wxT(“&Sex:”), wxDefaultPosition, wxDefaultSize, 0);

ageSexVoteBox->Add(sexLabel, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// Create the sex choice control

An Example: PersonalRecordDialog 245

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 245

wxString sexStrings[] = {
wxT(“Male”),
wxT(“Female”)

};

wxChoice* sexChoice = new wxChoice (this, ID_SEX,
wxDefaultPosition, wxSize(80, -1), WXSIZEOF(sexStrings),

sexStrings, 0);
sexChoice->SetStringSelection(wxT(“Female”));
ageSexVoteBox->Add(sexChoice, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// Add a spacer that stretches to push the Vote control
// to the right

ageSexVoteBox->Add(5, 5, 1, wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxCheckBox* voteCheckBox = new wxCheckBox(this, ID_VOTE,
wxT(“&Vote”), wxDefaultPosition, wxDefaultSize, 0);

voteCheckBox ->SetValue(true);
ageSexVoteBox->Add(voteCheckBox, 0,

wxALIGN_CENTER_VERTICAL|wxALL, 5);

// A dividing line before the OK and Cancel buttons

wxStaticLine* line = new wxStaticLine (this, wxID_STATIC,
wxDefaultPosition, wxDefaultSize, wxLI_HORIZONTAL);

boxSizer->Add(line, 0, wxGROW|wxALL, 5);

// A horizontal box sizer to contain Reset, OK, Cancel and Help

wxBoxSizer* okCancelBox = new wxBoxSizer(wxHORIZONTAL);
boxSizer->Add(okCancelBox, 0, wxALIGN_CENTER_HORIZONTAL|wxALL, 5);

// The Reset button

wxButton* reset = new wxButton(this, ID_RESET, wxT(“&Reset”),
wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(reset, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// The OK button

wxButton* ok = new wxButton (this, wxID_OK, wxT(“&OK”),
wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(ok, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// The Cancel button

wxButton* cancel = new wxButton (this, wxID_CANCEL,
wxT(“&Cancel”), wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(cancel, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// The Help button

wxButton* help = new wxButton(this, wxID_HELP, wxT(“&Help”),
wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(help, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);
}

246 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 246

Data Transfer and Validation

Now we have the bare controls of the dialog, but the controls and the dialog’s
data are not connected. How do we make that connection?

When a dialog is first shown, wxWidgets calls InitDialog, which in turn
sends a wxEVT_INIT_DIALOG event. The default handler for this event calls
TransferDataToWindow on the dialog. To transfer data from the controls back to
the variables, you can call TransferDataFromWindow when the user confirms his
or her input. Again, wxWidgets does this for you by defining a default handler
for wxID_OK command events, which calls TransferDataFromWindow before calling
EndModal to dismiss the dialog.

So, you can override TransferDataToWindow and TransferDataFromWindow to
transfer your data. For our dialog, the code might look like this:

/*!
* Transfer data to the window
*/

bool PersonalRecordDialog::TransferDataToWindow()
{

wxTextCtrl* nameCtrl = (wxTextCtrl*) FindWindow(ID_NAME);
wxSpinCtrl* ageCtrl = (wxSpinCtrl*) FindWindow(ID_SAGE);
wxChoice* sexCtrl = (wxChoice*) FindWindow(ID_SEX);
wxCheckBox* voteCtrl = (wxCheckBox*) FindWindow(ID_VOTE);

nameCtrl->SetValue(m_name);
ageCtrl->SetValue(m_age);
sexCtrl->SetSelection(m_sex);
voteCtrl->SetValue(m_vote);

return true;
}

/*!
* Transfer data from the window
*/

bool PersonalRecordDialog::TransferDataFromWindow()
{

wxTextCtrl* nameCtrl = (wxTextCtrl*) FindWindow(ID_NAME);
wxSpinCtrl* ageCtrl = (wxSpinCtrl*) FindWindow(ID_SAGE);
wxChoice* sexCtrl = (wxChoice*) FindWindow(ID_SEX);
wxCheckBox* voteCtrl = (wxCheckBox*) FindWindow(ID_VOTE);

m_name = nameCtrl->GetValue();
m_age = ageCtrl->GetValue();
m_sex = sexCtrl->GetSelection();
m_vote = voteCtrl->GetValue();

return true;
}

However, there’s an easier way of transferring data. wxWidgets supports
validators, which are objects that link data variables and their corresponding

An Example: PersonalRecordDialog 247

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 247

248 Writing Custom Dialogs Chapter 9

controls. Although not always applicable, the use of validators where possible
will save you a lot of time and can make it unnecessary to write TransferData
ToWindow and TransferDataFromWindow functions. In our PersonalRecordDialog
example, we can use the following code instead of the previous two functions:

FindWindow(ID_NAME)->SetValidator(
wxTextValidator(wxFILTER_ALPHA, & m_name));

FindWindow(ID_AGE)->SetValidator(
wxGenericValidator(& m_age));

FindWindow(ID_SEX)->SetValidator(
wxGenericValidator(& m_sex);

FindWindow(ID_VOTE)->SetValidator(
wxGenericValidator(& m_vote);

These few lines of code at the end of CreateControls replace the two overrid-
den functions. As a bonus, the user will be prevented from accidentally entering
numbers in the Name field.

Validators can perform two jobs—as well as data transfer, they can
validate the data and show error messages if the data doesn’t conform to a
particular specification. In this example, no actual validation of the input is
done, other than for the name. wxGenericValidator is a relatively simple class,
only doing data transfer. However, it works with the basic control classes. The
other validator provided as standard, wxTextValidator, has more sophisticated
behavior and can even intercept keystrokes to veto invalid characters. In the
example, we just use the standard style wxFILTER_ALPHA, but we could also
specify which characters should or should not be regarded as valid by using
the validator’s SetIncludes and SetExcludes functions.

We need to dig a bit deeper into how wxWidgets handles validators in
order to understand what’s going on here. As we’ve seen, the default OnOK han-
dler calls TransferDataToWindow, but before it does so, it calls Validate, vetoing
the calls to TransferDataToWindow and EndModal if validation fails. This is the
default implementation of OnOK:

void wxDialog::OnOK(wxCommandEvent& event)
{

if (Validate() && TransferDataFromWindow())
{

if (IsModal())
EndModal(wxID_OK); // If modal

else
{

SetReturnCode(wxID_OK);
this->Show(false); // If modeless

}
}

}

The default implementation of Validate iterates through all the children of
the dialog (and their descendants, if you specified the extra window style
wxWS_EX_VALIDATE_RECURSIVELY), calling Validate for each control’s wxValidator

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 248

object. If any of these calls fails, then validation for the dialog fails, and the
dialog is not dismissed. The validator is expected to show a suitable error mes-
sage from within its Validate function if it fails the validation.

Similarly, TransferDataToWindow and TransferDataFromWindow will be called
automatically for the validators of a dialog’s controls. A validator must do data
transfer, but validation is optional.

A validator is an event handler, and the event processing mechanism will
route events to the validator, if present, before passing the events on to the
control. This enables validators to intercept user input—for example, to veto
characters that are not permitted in a control. Such vetoing should normally
be accompanied by a beep to inform the user that the key was pressed but not
accepted.

Because the two provided validator classes may not be sufficient for your
needs, especially if you write your own custom controls, you can derive new
validator classes from wxValidator. This class should have a copy constructor
and a Clone function that returns a copy of the validator object, as well as
implementations for data transfer and validation. A validator will typically
store a pointer to a C++ variable, and the constructor may take flags to speci-
fy modes of use. You can look at the files include/wx/valtext.h and src/
common/valtext.cpp in wxWidgets to see how a validator can be implemented;
see also “Writing Your Own Controls” in Chapter 12, “Advanced Window
Classes.”

Handling Events

In this example, wxWidgets’ default processing for OK and Cancel are suffi-
cient without any extra coding on our part, as long as we use the standard
wxID_OK and wxID_CANCEL identifiers for the controls. However, for non-trivial
dialogs, you probably will have to intercept and handle events from controls.
In our example, we have a Reset button, which can be clicked at any time to
reset the dialog back to its default values. We add an OnResetClick event han-
dler and a suitable entry in our event table. Implementing OnResetClick turns
out to be very easy; first we reset the data variables by calling the Init func-
tion we added to centralize data member initialization. Then we call
TransferDataToWindow to display that data.

BEGIN_EVENT_TABLE(PersonalRecordDialog, wxDialog)
...
EVT_BUTTON(ID_RESET, PersonalRecordDialog::OnResetClick)
...

END_EVENT_TABLE()

void PersonalRecordDialog::OnResetClick(wxCommandEvent& event)
{

Init();
TransferDataToWindow();

}

An Example: PersonalRecordDialog 249

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 249

250 Writing Custom Dialogs Chapter 9

Handling UI Updates

One of the challenges faced by the application developer is making sure that
the user can’t click on controls and menus that are not currently applicable. A
sure sign of sloppy programming is the appearance of messages that say, “This
option is not currently available.” If an option isn’t available, then it should
not look available, and clicking on the control or menu should do nothing. As
time-consuming as it can be, the programmer should update the elements of
the interface to reflect the context at every instant.

In our example, we must disable the Vote check box when the user’s age
is less than 18 because in that case, the decision is not available to the user.
Your first thought might be to add an event handler for the Age spin control
and enable or disable the Vote check box according to the spin control’s value.
Although this may be fine for simple user interfaces, imagine what happens
when many factors are influencing the availability of controls. Even worse,
there are some cases where the approach doesn’t work at all because you can-
not be notified when the change occurs. An example of this situation is when
you need to enable a Paste button or menu item when data becomes available
on the clipboard. This event is outside your power to intercept because the
data may become available from another program.

To solve these problems, wxWidgets provides an event class called
wxUpdateUIEvent that it sends to all windows in idle time—that is, when the
event loop has finished processing all other input. You can add EVT_UPDATE_UI
event table entries to your dialog, one for each control whose state you need to
maintain. Each UI update event handler evaluates the current state of the
world and calls functions in the event object (not the control) to enable, dis-
able, check, or uncheck the control. This technique puts the logic for updating
each control in one place, calling the event handler even when no real event
has been handled in the application. You can breathe a sigh of relief because
you don’t have to remember to update the user interface after any change that
might happen to be relevant!

Here’s our UI update handler for the Vote control. Note that we can’t use
the m_age variable because transfer from the controls to the variables doesn’t
happen until the user clicks OK.

BEGIN_EVENT_TABLE(PersonalRecordDialog, wxDialog)
...
EVT_UPDATE_UI(ID_VOTE, PersonalRecordDialog::OnVoteUpdate)
...

END_EVENT_TABLE()

void PersonalRecordDialog::OnVoteUpdate(wxUpdateUIEvent& event)
{

wxSpinCtrl* ageCtrl = (wxSpinCtrl*) FindWindow(ID_AGE);
if (ageCtrl->GetValue() < 18)
{

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 250

event.Enable(false);
event.Check(false);

}
else

event.Enable(true);
}

Don’t worry unduly about efficiency considerations; plenty of spare cycles are
available for processing these handlers. However, if you have a very complex
application and run into performance problems, see the wxUpdateUIEvent docu-
mentation for the functions SetMode and SetUpdateInterval that can be used to
decrease the time wxWidgets spends processing these events.

Adding Help

There are at least three kinds of help you can provide for your dialog:

� Tooltips
� Context-sensitive help
� Online help

You can probably think of further techniques not explicitly supported by
wxWidgets. We already have some descriptive text on the dialog described
here. For a more complex dialog, you could create a wxHtmlWindow instead of a
wxStaticText and load an HTML file containing further details. Alternatively,
a small help button could be placed next to each control to show a description
when clicked.

The three main types of help supported by wxWidgets are described in
the following sections.

Tooltips

Tooltips are little windows that pop up when the pointer is hovering over a
control, containing a short description of the control’s purpose. You call
SetToolTip to set the tooltip text for a control. Because this can get annoying
for experienced users, you should provide an application setting to switch this
off (that is, SetToolTip will not be called when dialogs are created and dis-
played).

Context-Sensitive Help

Context-sensitive help provides a short pop-up description similar to a tooltip.
The user must first click on a special button and then on a control to get the
help or press F1 to get help for the focused control (on Windows). On Windows,
you can specify the extra window style wxDIALOG_EX_CONTEXTHELP to create the
little question mark button on the dialog title. On other platforms, you can

An Example: PersonalRecordDialog 251

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 251

create a wxContextHelpButton on the dialog (usually next to the OK and Cancel
buttons). In your application initialization, you should call

#include “wx/cshelp.h”

wxHelpProvider::Set(new wxSimpleHelpProvider);

This tells wxWidgets how to provide the strings for context-sensitive help. You
call SetHelpText to set the help text for a control. Here’s a function to add
context-sensitive help and tooltips to our dialog:

// Sets the help text for the dialog controls
void PersonalRecordDialog::SetDialogHelp()
{

wxString nameHelp = wxT(“Enter your full name.”);
wxString ageHelp = wxT(“Specify your age.”);
wxString sexHelp = wxT(“Specify your gender, male or female.”);
wxString voteHelp = wxT(“Check this if you wish to vote.”);

FindWindow(ID_NAME)->SetHelpText(nameHelp);
FindWindow(ID_NAME)->SetToolTip(nameHelp);

FindWindow(ID_AGE)->SetHelpText(ageHelp);
FindWindow(ID_AGE)->SetToolTip(ageHelp);

FindWindow(ID_SEX)->SetHelpText(sexHelp);
FindWindow(ID_SEX)->SetToolTip(sexHelp);

FindWindow(ID_VOTE)->SetHelpText(voteHelp);
FindWindow(ID_VOTE)->SetToolTip(voteHelp);

}

If you want to invoke context-sensitive help yourself, as opposed to letting the dia-
log or wxContextHelpButton handle it, you can simply put this in an event handler:

wxContextHelp contextHelp(window);

This will put wxWidgets in a loop that detects a left-click on a control, after
which it will send a wxEVT_HELP event to the control to initiate popping up a
help window.

You don’t have to limit yourself to the way wxWidgets implements the stor-
age and display of help text, though. You can create your own class derived from
wxHelpProvider, overriding GetHelp, SetHelp, AddHelp, RemoveHelp, and ShowHelp.

Online Help

Most applications come with a help file that provides detailed instructions
for use. wxWidgets provides the means to control several kinds of help
windows through different derivations of the wxHelpControllerBase class. See
Chapter 20, “Perfecting Your Application,” for more information about pro-
viding online help.

252 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 252

For the purposes of this example, we’ll just use a wxMessageBox to display
some help when the user clicks on the Help button.

BEGIN_EVENT_TABLE(PersonalRecordDialog, wxDialog)
...
EVT_BUTTON(wxID_HELP, PersonalRecordDialog::OnHelpClick)
...

END_EVENT_TABLE()

void PersonalRecordDialog::OnHelpClick(wxCommandEvent& event)
{

// Normally we would wish to display proper online help.
/*
wxGetApp().GetHelpController().DisplaySection(wxT(“Personal record

dialog”));
*/

// For this example, we’re just using a message box.
wxString helpText =

wxT(“Please enter your full name, age and gender.\n”)
wxT(“Also indicate your willingness to vote in general

elections.\n\n”)
wxT(“No non-alphabetical characters are allowed in the name

field.\n”)
wxT(“Try to be honest about your age.”);

wxMessageBox(helpText,
wxT(“Personal Record Dialog Help”),
wxOK|wxICON_INFORMATION, this);

}

The Complete Class

The complete implementation of the dialog is listed in Appendix J, “Code
Listings,” and can also be found in examples/chap09 on the CD-ROM.

Invoking the Dialog

Now that we have the dialog completely coded, we can invoke it:

PersonalRecordDialog dialog(NULL, ID_PERSONAL_RECORD,
wxT(“Personal Record”));

dialog.SetName(wxEmptyString);
dialog.SetAge(30);
dialog.SetSex(0);
dialog.SetVote(true);
if (dialog.ShowModal() == wxID_OK)
{

wxString name = dialog.GetName();
int age = dialog.GetAge();
bool sex = dialog.GetSex();
bool vote = dialog.GetVote();

}

An Example: PersonalRecordDialog 253

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 253

ADAPTING DIALOGS FOR SMALL DEVICES

wxWidgets can be used on mobile and other embedded devices, using GTK+,
X11, and Windows CE ports (and others in the future). The most obvious lim-
itation associated with many of these devices is the size of the display, which
for a smartphone may be as little as 176×220 pixels.

Many dialogs will need an alternative dialog layout for small displays;
some controls may be omitted altogether, especially as the functionality of
the application may be reduced compared with a desktop application. You
can detect the size of the device with wxSystemSettings::GetScreenType, for
example:

#include “wx/settings.h”
bool isPda = (wxSystemSettings::GetScreenType() <= wxSYS_SCREEN_PDA);

GetScreenType returns one of the values listed in Table 9-1. Because the types
increase in value as the screen size increases, you can use integer comparison
operators to deal with classes of devices with screens below a certain size, as
in the example we’ve just seen.

Table 9-1 Screen Types

wxSYS_SCREEN_NONE Undefined screen type
wxSYS_SCREEN_TINY Tiny screen, less than 320×240
wxSYS_SCREEN_PDA PDA screen, 320×240 or more but less than 640×480
wxSYS_SCREEN_SMALL Small screen, 640×480 or more but less than 800×600
wxSYS_SCREEN_DESKTOP Desktop screen, 800×600 or more

If you need more detail about the display size, there are three ways to get it:

1. Use wxSystemSettings::GetMetric, passing wxSYS_SCREEN_X or wxSYS_SCREEN_Y.
2. Call wxGetDisplaySize, which returns a wxSize object.
3. Create a wxDisplay object and call GetGeometry, which returns a wxRect

containing the bounding rectangle of the display.

When you know you may have a stunted display to run on, what can you do
with this information? Here are some strategies you can use:

1. Replace the whole layout by loading a different XRC file or executing dif-
ferent control creation code. If the controls don’t change type, you may not
need to change the event handling code at all.

2. Reduce the number of controls and space.

254 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 254

3. Change the type of some controls to take less space (for example, from
wxListBox to wxComboBox). This will need some modification of the associ-
ated event handler.

4. Change the orientation of one or several sizers. Some small devices have
a lot more space in one direction than in another.

Occasionally you will need to use API enhancements for particular platforms.
Microsoft Smartphone has two special buttons that you can assign labels, such
as “OK” and “Cancel”. On this platform, instead of creating two wxButton
objects, you should call wxDialog::SetLeftMenu and wxDialog::SetRightMenu with
an identifier, label, and optional submenu to show. Because these functions
only exist on the Smartphone port, you need to conditionally compile your
code. For example:

#ifdef __SMARTPHONE__
SetLeftMenu(wxID_OK, wxT(“OK”));
SetRightMenu(wxID_OK, wxT(“Cancel”));

#else
wxBoxSizer* buttonSizer = new wxBoxSizer(wxHORIZONTAL);
GetTopSizer()->Add(buttonSizer, 0, wxALL|wxGROW, 0);
buttonSizer->Add(new wxButton(this, wxID_OK), 0, wxALL, 5);
buttonSizer->Add(new wxButton(this, wxID_CANCEL), 0, wxALL, 5);

#endif

FURTHER CONSIDERATIONS IN DIALOG DESIGN

Here are a few tips to help you create professional-looking dialogs.

Keyboard Navigation

Provide mnemonics in static text labels and other labeled controls by inserting
ampersands in front of characters. On some platforms (notably Windows and
GTK+), this will help the user navigate between controls.

Always provide a means for the user to cancel the dialog, preferably with
the option of using the Escape key. If a dialog has a button with the identifier
wxID_CANCEL, its handler will automatically be called when the user presses the
Escape key. So, if you have a Close button, consider giving it the wxID_CANCEL
identifier.

Provide a default button (often OK)—for example, by calling wxButton::
SetDefault. The command for this button will be invoked when the user press-
es the Enter key.

Further Considerations in Dialog Design 255

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 255

Data and UI Separation

To simplify the example, the data variables that PersonalRecordDialog uses are
stored in the class itself. However, a better design would be to provide a data
class separate from the dialog class, with a copy constructor and assignment
operator, so that you can pass a copy of the data to the dialog and retrieve the
modified data from the dialog only if the user confirms any changes. This is the
approach adopted for some of the standard dialogs. As an exercise, you can
rewrite the PersonalRecordDialog using a PersonalRecordData class. The dialog
constructor will take a PersonalRecordData reference, and there will be a
GetData function so that the calling application can retrieve the data.

In general, always consider how you can separate out the UI functional-
ity from non-UI functionality. The result will usually be code that is more com-
pact and easier to understand and debug. Don’t be afraid to introduce new
classes to make the design more elegant, and make use of copy constructors
and assignment operators so that objects can easily be copied and assigned
without the application having to repeat lots of low-level code.

Unless you provide an Apply button that commits your changes to the
underlying data, canceling the dialog should leave the application data in the
same state as it was before the dialog was opened. The use of a separate data
class makes this easier to achieve because the dialog isn’t editing “live” data
but rather a copy.

Layout

If your dialog looks claustrophobic or somehow odd, it may be due to a lack of
space. Try adding a bigger border around the edge of the dialog by using an
additional sizer (as in our PersonalRecordDialog example) and adding space
between groups of controls. Use wxStaticBoxSizer and wxStaticLine to logically
group or separate controls. Use wxGridSizer and wxFlexGridSizer to align con-
trols and their labels so that they don’t appear as a random jumble. In sizer-
based layouts, use expanding spacers to align a group of controls. For example,
often OK, Cancel, and Help buttons are in a right-aligned group, which can be
achieved by placing a spacer and the buttons in a horizontal wxBoxSizer and
setting the spacer to expand horizontally (give it a positive stretch factor).

If possible and appropriate, make your dialog resizable. Traditionally,
Windows dialog boxes haven’t often been resizable, but there is no reason why
this should be the case, and fiddling with tiny controls on a large display can
be a frustrating experience for the user. wxWidgets makes it easy to create
resizable dialogs with sizers, and you should be using sizers anyway to allow
for font and control size differences and changes in language. Choose careful-
ly which elements should grow; for example, there may be a multi-line text
control that is a good candidate for growing and giving the user more elbow
room. Again, you can put expanding spacers to good use to preserve alignment

256 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 256

in a resized dialog. Note that we’re not resizing controls in the sense of zoom-
ing in and out, making text bigger or smaller—we’re simply giving more or less
space for items in the control. See Chapter 7 for more about sizers.

If you find that your dialog is becoming too large, split it up into a num-
ber of panels and use a wxNotebook, wxListbook, or wxChoicebook to enable selec-
tion of one page at a time. Using lots of independent dialogs is annoying to the
user and clutters up your menus, whereas browsing through pages is perfect-
ly acceptable. Scrolling panels should be avoided unless there’s a very good
reason to use them. The ability to scroll controls is not supported on all plat-
forms, and use of scrolling can be a sign that the user interface has not been
adequately planned. If you have many properties to edit, consider using a
property editor based on wxGrid or a third-party class (see wxPropertyGrid,
which is mentioned in Appendix E, “Third-Party Tools for wxWidgets”).

Aesthetics

Be consistent with label capitalization. Don’t be tempted to use custom colors
or fonts in your dialog; this can be distracting and can look out of place in the
context of the current theme and other dialogs in the application. For best
results across platforms, leave control fonts and colors to wxWidgets. Instead,
consider providing some impact through judicious use of wxStaticBitmap con-
trols.

Alternatives to Dialogs

Finally, consider whether you should be creating an independent dialog box at
all—a modeless solution, such as a tab in the main application window, might
be better. Most of the principles of dialog design and implementation apply to
modeless dialogs and panels, but there are added challenges of layout (the win-
dow has less control of its size) and synchronization (the window may no
longer have exclusive use of the data it is showing).

USING WXWIDGETS RESOURCE FILES

You can load specifications of dialogs, frames, menu bars, toolbars, and so on
from XML files with extension xrc instead of creating these elements explicit-
ly in C++ code. This enables better separation of code and user interface, such
as enabling an application’s dialog design to be changed at runtime. XRC files
can be exported by a range of UI design tools, including wxDesigner,
DialogBlocks, XRCed, and wxGlade.

Using wxWidgets Resource Files 257

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 257

Loading Resources

To use XRC files in your application, you need to include wx/xrc/xmlres.h in
your application code.

If you will be converting your XRC files to binary XRS files, as we will
describe shortly, install the zip file system handler by placing an AddHandler
call in your OnInit function:

#include “wx/filesys.h”
#include “wx/fs_zip.h”

wxFileSystem::AddHandler(new wxZipFSHandler);

Initialize the XRC system by adding this to your OnInit:

wxXmlResource::Get()->InitAllHandlers();

Load the XRC file with code like this:

wxXmlResource::Get()->Load(wxT(“resources.xrc”));

This makes wxWidgets aware of the resources in the file; to create a real UI
element, we need another call. For example, the following fragment creates a
dialog whose resource name is dialog1:

MyDialog dlg;
wxXmlResource::Get()->LoadDialog(& dlg, parent, wxT(“dialog1”));
dlg.ShowModal();

The following code shows how to load menu bars, menus, toolbars, bitmaps,
icons, and panels.

MyFrame::MyFrame(const wxString& title): wxFrame(NULL, -1, title)
{

SetMenuBar(wxXmlResource::Get()->LoadMenuBar(wxT(“mainmenu”)));
SetToolBar(wxXmlResource::Get()->LoadToolBar(this,

wxT(“toolbar”)));

wxMenu* menu = wxXmlResource::Get()->LoadMenu(wxT(“popupmenu”));

wxIcon icon = wxXmlResource::Get()->LoadIcon(wxT(“appicon”));
SetIcon(icon);

wxBitmap bitmap = wxXmlResource::Get()->LoadBitmap(wxT(“bmp1”));

// Finish creating panelA after making an instance of it

258 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 258

MyPanel* panelA = new MyPanel;
panelA = wxXmlResource::Get()->LoadPanel(panelA, this,

wxT(“panelA”));

// A second method: get XRC to both create and load panelB
wxPanel* panelB = wxXmlResource::Get()->LoadPanel(this,

wxT(“panelB”));
}

wxWidgets maintains a single wxXmlResource object that you can use, but alter-
natively, you can create a wxXmlResource object, load resources, and then
destroy it. You can also use wxXmlResource::Set to set the current global
resource object, destroying the old one.

To define event tables for windows loaded from a resource file, you can’t
use integer identifiers because resources have string names. Instead, use the
XRCID macro, which takes a resource name and returns an integer identifier
associated with the name. XRCID is an alias for the function wxXmlResource::
GetXRCID. Here’s an example of XRCID usage:

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_MENU(XRCID(“menu_quit”), MyFrame::OnQuit)
EVT_MENU(XRCID(“menu_about”), MyFrame::OnAbout)

END_EVENT_TABLE()

Using Binary and Embedded Resource Files

It can be convenient to combine a number of resource files into one binary file
(extension xrs). To compile XRC files into a zip file that the resource system
can load, use the utility wxrc located in the utils/wxrc directory in your
wxWidgets distribution:

wxrc resource1.xrc resource2.xrc -o resource.xrs

Use wxXmlResource::Load to load a binary resource file in just the same way as
with a plain XML file.

Tip

Instead of creating a separate zip file for your XRC files, you can include
them in a single zip file that includes other files your applications needs,
such as HTML files, images, and so on. wxXmlResource::Load accepts vir-
tual file system specifications, as described in Chapter 14, “Files and
Streams,” so you can write

wxXmlResource::Get()->Load(wxT(“resources.bin#zip:dialogs.xrc”));

Using wxWidgets Resource Files 259

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 259

You can also compile your XRC files into C++ code that may be embedded
in your application, thereby eliminating a separate resource file. Here’s the
wxrc command to do this:

wxrc resource1.xrc resource2.xrc –c -o resource.cpp

Compile this C++ file as normal and link it with your application. The file
includes a function InitXmlResource, which you have to call, for example:

extern void InitXmlResource(); // defined in generated file

wxXmlResource::Get()->InitAllHandlers();
InitXmlResource();

Table 9-2 lists the command-line options and arguments that wxrc accepts.

Table 9-2 wxrc Commands

Short Command Long Command Description
-h —help Shows a help message.
-v —verbose Shows verbose logging information.
-c —cpp-code Writes C++ source rather than an

XRS file.
-p —python-code Writes Python source rather than

an XRS file.
-e —extra-cpp-code If used together with -c, generates a

C++ header file containing class
definitions for the windows defined
by the XRC file.

-u —uncompressed Do not compress XML files (C++
only).

-g —gettext Outputs underscore-wrapped
strings that poEdit or gettext can
scan. Outputs to stdout, or a file
if -o is used.

-n —function <name> Specifies a C++ initialization
function name (use with -c).

-o <filename> —output <filename> Specifies the output file, such as
resource.xrs or resource.cpp.

-l <filename> —list-of-handlers Outputs a list of resource handlers
<filename> that are needed for the specified

resources.

260 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 260

Translating Resources

If the wxXmlResource object has been created with the wxXRC_USE_LOCALE flag (the
default behavior), all displayable strings will be subject to translation, as
detailed in Chapter 16, “Writing International Applications.” However, poEdit
cannot scan XRC files for strings to translate as it can for C++ code, so you can
create a file of such strings using wxrc with the -g option. For example:

wxrc -g resources.xrc -o resource_strings.cpp

Then you can run poEdit to scan the strings in this and other files.

The XRC Format

There isn’t space to describe the XRC format in detail, but here is an example
showing a simple dialog with sizers:

<?xml version=”1.0”?>
<resource version=”2.3.0.1”>
<object class=”wxDialog” name=”simpledlg”>

<title>A simple dialog</title>
<object class=”wxBoxSizer”>

<orient>wxVERTICAL</orient>
<object class=”sizeritem”>

<object class=”wxTextCtrl”>
<size>200,200d</size>
<style>wxTE_MULTILINE|wxSUNKEN_BORDER</style>
<value>Hello, this is an ordinary multiline\n

textctrl....</value>
</object>
<option>1</option>
<flag>wxEXPAND|wxALL</flag>
<border>10</border>

</object>
<object class=”sizeritem”>

<object class=”wxBoxSizer”>
<object class=”sizeritem”>

<object class=”wxButton” name=”wxID_OK”>
<label>Ok</label>
<default>1</default>

</object>
</object>
<object class=”sizeritem”>

<object class=”wxButton” name=”wxID_CANCEL”>
<label>Cancel</label>

</object>
<border>10</border>
<flag>wxLEFT</flag>

</object>
</object>
<flag>wxLEFT|wxRIGHT|wxBOTTOM|wxALIGN_RIGHT</flag>

Using wxWidgets Resource Files 261

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 261

<border>10</border>
</object>

</object>
</object>

</resource>

A detailed specification of the XRC format can be found in the technical note
docs/tech/tn0014.txt in your wxWidgets distribution. If you use an editor to
create your user interfaces, you won’t need to know about XRC’s format.

You may be wondering how a text XRC file can be used to specify binary
bitmaps and icons. These resources may be specified as URLs, and wxWidgets’
virtual file system will extract them from sources such as a zip file. For
example:

<object class=”wxBitmapButton” name=”wxID_OK”>
<bitmap>resources.bin#zip:okimage.png</bitmap>

</object>

See Chapter 10, “Programming with Images,” and Chapter 14, “Files and
Streams,” for more information on using virtual file systems to load resources
such as images.

Writing Resource Handlers

The XRC system uses a resource handler to recognize the XML specification of
each type of resource. If you write your own custom control, you may want to
write a resource handler so that applications can use the custom control with
XRC.

As an illustration, the declaration for wxButton’s handler looks like this:

#include “wx/xrc/xmlres.h”

class wxButtonXmlHandler : public wxXmlResourceHandler
{
DECLARE_DYNAMIC_CLASS(wxButtonXmlHandler)
public:

wxButtonXmlHandler();
virtual wxObject *DoCreateResource();
virtual bool CanHandle(wxXmlNode *node);

};

The handler implementation is quite simple. In the handler’s constructor, the
XRC_ADD_STYLE macro is used to make the handler aware of specific button
styles, and AddWindowStyles is called to add common window styles. In
DoCreateResource, the button object is created in two steps, using
XRC_MAKE_INSTANCE and then Create, extracting parameters such as the label,

262 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 262

position, and size. Finally, CanHandle tests whether this handler can handle the
node in question. It’s permissible for a single handler class to handle more
than one kind of resource.

IMPLEMENT_DYNAMIC_CLASS(wxButtonXmlHandler, wxXmlResourceHandler)

wxButtonXmlHandler::wxButtonXmlHandler()
: wxXmlResourceHandler()
{

XRC_ADD_STYLE(wxBU_LEFT);
XRC_ADD_STYLE(wxBU_RIGHT);
XRC_ADD_STYLE(wxBU_TOP);
XRC_ADD_STYLE(wxBU_BOTTOM);
XRC_ADD_STYLE(wxBU_EXACTFIT);
AddWindowStyles();

}

wxObject *wxButtonXmlHandler::DoCreateResource()
{

XRC_MAKE_INSTANCE(button, wxButton)

button->Create(m_parentAsWindow,
GetID(),
GetText(wxT(“label”)),
GetPosition(), GetSize(),
GetStyle(),
wxDefaultValidator,
GetName());

if (GetBool(wxT(“default”), 0))
button->SetDefault();

SetupWindow(button);

return button;
}

bool wxButtonXmlHandler::CanHandle(wxXmlNode *node)
{

return IsOfClass(node, wxT(“wxButton”));
}

To use a handler, an application needs to include the header and register the
handler, as follows:

#include “wx/xrc/xh_bttn.h”
wxXmlResource::AddHandler(new wxBitmapXmlHandler);

Foreign Controls

An XRC file can specify a foreign, or “unknown” control, by specifying
class=”unknown” in the object definition. This can stand in for a control that is
actually created in the C++ code, after the parent is loaded from XRC. When

Using wxWidgets Resource Files 263

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 263

XRC loads the unknown object, a placeholder window is created. Then the
application calls AttachUnknownControl to superimpose the real window onto
the placeholder window, with the correct position and size. For example:

wxDialog dlg;

// Load the dialog
wxXmlResource::Get()->LoadDialog(&dlg, this, wxT(“mydialog”));

// Make an instance of our new custom class.
MyCtrl* myCtrl = new MyCtrl(&dlg, wxID_ANY);

// Attach it to the dialog
wxXmlResource::Get()->AttachUnknownControl(wxT(“custctrl”), myCtrl);

// Show the dialog
dlg.ShowModal();

The custom control definition can look like this:

<object class=”unknown” name=”custctrl”>
<size>100,100</size>

</object>

Using this technique, you can lay out interfaces in tools that don’t know about
your custom controls, and you also avoid the need to write a resource handler.

SUMMARY

In this chapter, you have learned the fundamentals of custom dialog design
and implementation, including a quick look at sizers, the use of validators, and
the advantages of using UI update events. For examples of creating custom
dialogs, see samples/dialogs in your wxWidgets distribution. Also see
samples/validate for use of the generic and text validator classes. Next, we’ll
look at how to handle images.

264 Writing Custom Dialogs Chapter 9

Smart_Ch09f.qxd 6/10/05 11:20 AM Page 264

C H A P T E R 10

Programming with Images

This chapter shows what you can do with bitmapped images. Images are great
for introducing “design values” into your application, and they can be used
with controls such as toolbars, tree controls, notebooks, buttons, HTML win-
dows, or in custom drawing code. Sometimes they can be used invisibly in an
application, for example to achieve flicker-free drawing. In this chapter, we
cover the different image classes and how to override standard icons and
bitmaps used with wxWidgets.

IMAGE CLASSES IN WXWIDGETS

wxWidgets supports four kinds of bitmap images: wxBitmap, wxIcon, wxCursor,
and wxImage.

wxBitmap represents a platform-dependent bitmap, with an optional
wxMask to support drawing with transparency. On Windows, wxBitmap is imple-
mented using device-independent bitmaps (DIBs). On GTK+ and X11, each
wxBitmap contains the pixmap object of GDK and X11, respectively. On Mac, a
PICT is used. A wxBitmap can be converted to and from a wxImage.

wxIcon represents the platform’s concept of an icon, a small image with
transparency that can be used for giving frames and dialogs a recognizable
visual cue, among other things. On GTK+, X11, and Mac, an icon is simply a
bitmap that always has a wxMask. On Windows, an icon is represented by an
HICON object.

wxCursor represents the mouse pointer image; this is a GdkCursor on
GTK+, a Cursor on X11, an HCURSOR in Windows, and a Cursor on Mac. It has the
notion of a hotspot (the pixel in the cursor image that is considered to be the
exact mouse pointer location) and a mask.

wxImage is the only class of the four with a platform-independent imple-
mentation, supporting 24-bit images with an optional alpha channel. A wxImage
can be created from data or by using wxBitmap::ConvertToImage. A wxImage can be
loaded from a file in a variety of formats, and it is extensible to new formats via

265

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 265

Table 10-1 Bitmap Types

wxBITMAP_TYPE_BMP A Windows bitmap file (BMP).
wxBITMAP_TYPE_BMP_RESOURCE A Windows bitmap to be loaded from the resource

part of the executable.
wxBITMAP_TYPE_ICO A Windows icon file (ICO).
wxBITMAP_TYPE_ICO_RESOURCE A Windows icon to be loaded from the resource

part of the executable.
wxBITMAP_TYPE_CUR A Windows cursor (CUR).
wxBITMAP_TYPE_CUR_RESOURCE A Windows cursor to be loaded from the resource

part of the executable.
wxBITMAP_TYPE_XBM An XBM monochrome bitmap file, used on Unix.
wxBITMAP_TYPE_XBM_DATA An XBM monochrome bitmap, to be constructed

from C++ data.
wxBITMAP_TYPE_XPM An XPM color bitmap file, a good cross-platform

format for small images that can be compiled into
the application.

wxBITMAP_TYPE_XPM_DATA An XPM color bitmap, to be constructed from
C++ data.

wxBITMAP_TYPE_TIF A TIFF bitmap file, popular for large images.
wxBITMAP_TYPE_GIF A GIF bitmap file, with a maximum 256 colors

and optional transparency information.
wxBITMAP_TYPE_PNG A PNG bitmap file, a popular file format with

optional transparency and alpha channel, and free
of patent problems.

wxBITMAP_TYPE_JPEG A JPEG bitmap file, a popular compressed format
for large images, but it uses lossy compression, so
it’s not suitable for multiple saving/loading cycles.

wxBITMAP_TYPE_PCX PCX bitmap file.
wxBITMAP_TYPE_PICT Mac PICT bitmap file.

image format handlers. Functions are available to set and get image bits, so it
can be used for basic image manipulation. Unlike a wxBitmap, a wxImage cannot
be drawn directly to a wxDC. Instead, a wxBitmap object must be created from the
wxImage. This bitmap can then be drawn in a device context by using wxDC::
DrawBitmap. wxImage supports a mask color indicating transparent areas, and it also
supports alpha channel data to allow for more sophisticated transparency effects.

You can convert between these bitmap objects, though there are platform
dependencies on some conversion operations.

Note that all image classes are reference-counted, so assignment and
copying are very cheap operations because the image data itself is not copied.
However, you need to be aware that if you change an image, other image
objects that refer to the same image data will also be changed.

All image classes use standard wxBitmapType identifiers for loading and
saving bitmap data, as described in Table 10-1.

266 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 266

Table 10-2 wxBitmap Functions

wxBitmap A bitmap can be created given a width and height,
another bitmap, a wxImage, XPM data (char**), raw
data (char[]), or a file name and type.

ConvertToImage Converts to a wxImage, preserving transparency.
CopyFromIcon Creates the bitmap from a wxIcon.
Create Creates the bitmap from data or a given size.
GetWidth, GetHeight Returns the bitmap’s size.
GetDepth Returns the bitmap’s color depth.
GetMask, SetMask Returns the wxMask object or NULL.
GetSubBitmap Returns an area of the bitmap as a new bitmap.
LoadFile, SaveFile Files can be loaded and (for some formats) saved.
Ok Returns true if the bitmap’s data is present.

wxBITMAP_TYPE_PICT_RESOURCE Mac PICT bitmap file to be loaded from the
resource part of the executable.

wxBITMAP_TYPE_ICON_RESOURCE On Mac OS X only, loads a standard icon (such
as wxICON_INFORMATION) or an icon resource.

wxBITMAP_TYPE_ANI Windows animated icon file (ANI).
wxBITMAP_TYPE_IFF IFF bitmap file.
wxBITMAP_TYPE_MACCURSOR Mac cursor file.
wxBITMAP_TYPE_MACCURSOR_ Mac cursor, to be loaded from the resource part of
RESOURCE the executable.
wxBITMAP_TYPE_ANY Tells the image loading code to figure out the type

itself.

PROGRAMMING WITH WXBITMAP

These are some of the things you can do with a wxBitmap:

� Draw it on a window via a device context.
� Use it as a bitmap label for classes such as wxBitmapButton, wxStaticBitmap,

and wxToolBar.
� Use it to implement double buffering (drawing into an off-screen

wxMemoryDC before drawing to a window).

On some platforms (in particular, Windows), the bitmap is a limited
resource, so if you have many images to store in memory, you may prefer to
work mainly with wxImage objects and convert to a temporary wxBitmap when
drawing on a device context.

Before discussing how to create wxBitmap and draw with it, let’s summa-
rize the main functions (Table 10-2).

Programming with wxBitmap 267

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 267

Creating a wxBitmap

There are several ways to create a wxBitmap object.
You can create the object in an uninitialized state (no bitmap data) by

using the default constructor. You will need to call Create or LoadFile or assign
another bitmap to it to do anything useful with the object.

You can create a wxBitmap with a given size and depth. The bitmap will be
filled with random data, so for this object to be useful, you will need to draw
on it. The following code creates a 200 × 100 pixel bitmap and gives it a white
background.

// Create a 200x100 bitmap with the current display depth
wxBitmap bitmap(200, 100, -1);

// Create a memory device context
wxMemoryDC dc;

// Select the bitmap into the DC
dc.SelectObject(bitmap);

// Set the background
dc.SetBackground(*wxWHITE_BRUSH);

// Color the bitmap white
dc.Clear();

// Select the bitmap out of the DC
dc.SelectObject(wxNullBitmap);

You can create a bitmap from an image object, preserving any mask or alpha
channel in the original image:

// Load an image
wxImage image(wxT(“image.png”), wxBITMAP_TYPE_PNG);

// Convert it to a bitmap
wxBitmap bitmap(image);

A bitmap can also be constructed from an icon by using CopyFromIcon:

// Load an icon
wxIcon icon(wxT(“image.xpm”), wxBITMAP_TYPE_XPM);

// Convert it to a bitmap
wxBitmap bitmap;
bitmap.CopyFromIcon(icon);

268 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 268

Or you can load a bitmap from a file:

// Load from a file
wxBitmap bitmap(wxT(“picture.png”, wxBITMAP_TYPE_PNG);
if (!bitmap.Ok())
{

wxMessageBox(wxT(“Sorry, could not load file.”));
}

wxBitmap can load all the file types that wxImage can (see Table 10-7), by using
either wxImage or a more efficient platform-specific implementation for certain
file types. Some of the most popular formats are PNG, JPEG, TIFF, BMP, and
XPM, which are available on all platforms for both loading and saving, assum-
ing that wxWidgets support for these formats has been enabled.

On Mac OS X, a PICT resource can also be loaded by specifying
wxBITMAP_TYPE_PICT_RESOURCE.

If you want to load a bitmap from a platform-dependent source, you can
use the wxBITMAP macro. For example:

#if !defined(__WXMSW__) && !defined(__WXPM__)
#include “picture.xpm”
#endif

wxBitmap bitmap(wxBITMAP(picture));

This will load the resource named picture from the executable on Windows
and OS/2, and on all other platforms, it will load an XPM from the picture_xpm
variable. However, the XPM format is supported on all platforms, so use of this
macro is not usually necessary.

Setting a wxMask

Each wxBitmap object can contain a wxMask, a monochrome bitmap that indi-
cates the transparent areas of the main bitmap. This will be created automat-
ically when you load a transparent image, for example using XPM, PNG, or
GIF, but you can also create it programmatically and assign it to a bitmap with
SetMask. You can create a wxMask object from a wxBitmap, or a wxBitmap plus a
color to indicate the transparent area.

The following example creates a monochrome transparent image called
mainBitmap, 32 pixels wide by 32 pixels high, from bitmap data (imageBits) and
a mask (maskBits) where 1 is black and 0 is white for the bits, and 1 is opaque
and 0 is transparent for the mask.

static char imageBits[] = { 255, 255, 255, 255, 31,
255, 255, 255, 31, 255, 255, 255, 31, 255, 255, 255,
31, 255, 255, 255, 31, 255, 255, 255, 31, 255, 255,
255, 31, 255, 255, 255, 31, 255, 255, 255, 25, 243,

Programming with wxBitmap 269

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 269

255, 255, 19, 249, 255, 255, 7, 252, 255, 255, 15, 254,
255, 255, 31, 255, 255, 255, 191, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255 };

static char maskBits[] = { 240, 1, 0, 0, 240, 1,
0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 240, 1,
0, 0, 240, 1, 0, 0, 240, 1, 0, 0, 255, 31, 0, 0, 255,
31, 0, 0, 254, 15, 0, 0, 252, 7, 0, 0, 248, 3, 0, 0,
240, 1, 0, 0, 224, 0, 0, 0, 64, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0 };

wxBitmap mainBitmap(imageBits, 32, 32);
wxBitmap maskBitmap(maskBits, 32, 32);
mainBitmap.SetMask(new wxMask(maskBitmap));

The XPM Format

Where small bitmaps with transparency are needed, for example as toolbar
buttons or bitmaps in notebooks and tree controls, wxWidgets programmers
often use XPM. One advantage of this format is that it uses C/C++ syntax, and
it can either be loaded dynamically or compiled into your program. Here’s an
example.

// You can also use #include “open.xpm”

static char *open_xpm[] = {
/* columns rows colors chars-per-pixel */
“16 15 5 1”,
“ c None”,
“. c Black”,
“X c Yellow”,
“o c Gray100”,
“O c #bfbf00”,
/* pixels */
“ “,
“ ... “,
“ . . .”,
“ ..”,
“ ”,
“ .XoX....... “,
“ .oXoXoXoXo. “,
“ .XoXoXoXoX. “,
“ .oXoX..........”,

270 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 270

Programming with wxBitmap 271

“ .XoX.OOOOOOOOO.”,
“ .oo.OOOOOOOOO. “,
“ .X.OOOOOOOOO. “,
“ ..OOOOOOOOO. “,
“ “,
“ “
};

wxBitmap bitmap(open_xpm);

As you can see, XPMs are encoded using character data. Before the image
data, there is a palette section that maps each character to its color, either as
an identifier or as a hash-prefixed six-digit hexadecimal string. Using the
identifier None causes this character to represent the transparent area in the
bitmap. Although XPM support is uncommon among Windows image manipu-
lation programs, you can create images as PNGs and convert to XPM using a
tool such as ImageBlocks (bundled with DialogBlocks), or you can simply write
your own converter using wxWidgets.

Drawing with Bitmaps

You can draw with a bitmap in a couple different ways. You can associate it
with a memory device context (wxMemoryDC) and then use wxDC::Blit to transfer
the contents of the bitmap to another device context. Or, you can use the sim-
pler wxDC::DrawBitmap. In either case, if the bitmap is transparent or has an
alpha channel, you can specify transparent drawing by passing true to the
function.

The two methods are illustrated in the following.

// Draw a bitmap using a wxMemoryDC
wxMemoryDC memDC;
memDC.SelectObject(bitmap);

// Draw the bitmap at 100, 100 on the destination DC
destDC.Blit(100, 100, // Draw at (100, 100)

bitmap.GetWidth(), bitmap.GetHeight(), // Draw full bitmap
& memDC, // Draw from memDC
0, 0, // Draw from bitmap origin
wxCOPY, // Logical operation
true); // Take mask into account

memDC.SelectObject(wxNullBitmap);

// Alternative method: use DrawBitmap
destDC.DrawBitmap(bitmap, 100, 100, true);

Chapter 5, “Drawing and Printing,” discusses drawing with bitmaps in more
detail.

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 271

Packaging Bitmap Resources

If you come from a Windows programming background, you are accustomed to
loading bitmaps from the resource section of the executable. You can still do
this by passing a resource name and the wxBITMAP_TYPE_BMP_RESOURCE type to
the constructor, but you are likely to want a less platform-specific method.

A portable way to package resources, whether they are bitmaps, HTML
files, or other files required by an application, is to store them in a single zip
file alongside the executable or in a separate data folder. Then you can use the
virtual file system functionality in wxWidgets to load the image directly from
the zip file, as the following fragment shows.

// Create a new file system object
wxFileSystem*fileSystem = new wxFileSystem;

wxString archiveURL(wxT(“myapp.bin”));
wxString filename(wxT(“myimage.png”));
wxBitmapType bitmapType = wxBITMAP_TYPE_PNG;

// Create a URL
wxString combinedURL(archiveURL + wxString(wxT(“#zip:”)) + filename);
wxImage image;
wxBitmap bitmap;

// Open the file in the archive
wxFSFile* file = fileSystem->OpenFile(combinedURL);
if (file)
{

wxInputStream* stream = file->GetStream();

// Load and convert to a bitmap
if (image.LoadFile(* stream, bitmapType))

bitmap = wxBitmap(image);

delete file;
}
delete fileSystem;

if (bitmap.Ok())
{

...
}

For more information about virtual file systems, please see Chapter 14, “Files
and Streams.”

PROGRAMMING WITH WXICON

A wxIcon is a small bitmap that always has a mask. Its uses include

� Setting the icon for a frame or dialog

272 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 272

� Adding icons to a wxTreeCtrl, wxListCtrl, or wxNotebook via the
wxImageList class (see more information later in this chapter)

� Drawing an icon on a device context with wxDC::DrawIcon

Table 10-3 summarizes the major icon functions.

Table 10-3 wxIcon Functions

wxIcon An icon can be created given another icon, XPM data
(char**), raw data (char[]), or a file name and type.

CopyFromBitmap Creates the icon from a wxBitmap.
GetWidth, GetHeight Returns the icon’s size.
GetDepth Returns the icon’s depth.
LoadFile Files can be loaded.
Ok Returns true if the icon’s data is present.

Creating a wxIcon

A wxIcon object can be created from XPM data included in the application, from
a wxBitmap object, from raw data, or by loading the icon from a file, such as a
transparent XPM file. wxWidgets provides the wxICON macro, which is similar
to the wxBITMAP macro described earlier; the icon is loaded either from a
platform-specific resource or from XPM data.

On Windows, LoadFile and the equivalent constructor will work for
Windows bitmap (BMP) and icon (ICO) resources and files. If you want to load
other formats, load the file into a wxBitmap and convert it to an icon.

On Mac OS X and Unix/Linux with GTK+, wxIcon has the same file load-
ing capabilities as wxBitmap.

The following code fragment shows four different ways to create a wxIcon
object.

// Method 1: load from XPM data
#include “icon1.xpm”
wxIcon icon1(icon1_xpm);

// Method 2: load from an ICO resource (Window and OS/2 only)
wxIcon icon2(wxT(“icon2”));

// Method 3: load from an ICO file (Windows and OS/2 only)
// You can specify the desired width since an icon may
// contain multiple images.
wxIcon icon3(wxT(“icon3.ico”), wxBITMAP_TYPE_ICO, 16, 16);

// Method 4: create from a bitmap
wxIcon icon4;
wxBitmap bitmap(wxT(“icon4.png”), wxBITMAP_TYPE_PNG);
icon4.CopyFromBitmap(bitmap);

Programming with wxIcon 273

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 273

Using wxIcon

The following code shows three different ways to use wxIcon: setting a frame
icon, adding an icon to an image list, and drawing an icon on a device context.

#include “myicon.xpm”
wxIcon icon(myicon_xpm);

// 1: Set a frame icon
frame->SetIcon(icon);

// 2: Add an icon to a wxImageList
wxImageList* imageList = new wxImageList(16, 16);
imageList->Add(icon);

// 3: Draw the icon at (10, 10)
wxClientDC dc(window);
dc.DrawIcon(icon, 10, 10);

Associating an Icon with an Application

Associating an icon with an application (so the operating system can present
a clickable graphic to the user) cannot be done from within the wxWidgets
toolkit, and this is one of the few areas where you need to use a different tech-
nique for each platform.

On Windows, you need to add a resource script (extension .rc) to your
makefile or project file and add an ICON statement to the .rc file—
for example:

aardvarkpro ICON aardvarkpro.ico
#include “wx/msw/wx.rc”

Here, aardvarkpro.ico is the name of a Windows icon file with multiple resolu-
tions and depths (typically at 48×48, 32×32 and 16×16 resolutions). When
showing the icon in Windows Explorer, Windows looks alphabetically for the
first resource, so you may want to prepend a few a’s to your chosen resource,
just to make sure it’ll be found first; otherwise, you’ll see an unexpected icon
on the desktop or in a folder.

On the Mac, you need to prepare an application bundle containing some
ICNS files. See the installation section in Chapter 20, “Perfecting Your
Application,” for more on bundles; the relevant sections of a bundle’s
Info.plist file might look like this:

<key>CFBundleDocumentTypes</key>
<array>

<dict>
<key>CFBundleTypeExtensions</key>
<array>

274 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 274

<string>pjd</string>
</array>
<key>CFBundleTypeIconFile</key>
<string>dialogblocks-doc.icns</string>
<key>CFBundleTypeName</key>
<string>pjdfile</string>
<key>CFBundleTypeRole</key>
<string>Editor</string>

</dict>
</array>
<key>CFBundleIconFile</key>
<string>dialogblocks-app.icns</string>

...

The icons for the application and its document types are specified with the
CFBundleIconFile and CFBundleTypeIconFile properties. You can create ICNS
files with the icon editor that Apple provides. If you predominantly work on
another platform, you might want to create a number of different icons in
16×16, 32×32, 48×48, and 128×128 resolutions, save them as PNGs, copy them
to the Mac, and then open each file and copy and paste its contents into the
appropriate icon editor location. Make sure that each PNG file has a mask that
the editor can use to construct the icon.

On Linux, the GNOME and KDE environments have their own methods
for providing an icon to use with the application, described briefly in Chapter 20.

PROGRAMMING WITH WXCURSOR

A cursor is used to give feedback on the mouse pointer position. You can
change the cursor for a given window—using different cursors gives a cue to
the user to expect specific mouse behavior. Like icons, cursors are small, trans-
parent images that can be created using platform-specific as well as generic
constructors. Some of these constructors take a hotspot position relative to the
top-left corner of the cursor image, with which you specify the location of the
actual pointer “tip.”

Table 10-4 shows the cursor functions.

Table 10-4 wxCursor Functions

wxCursor A cursor can be created from a wxImage, raw data (char[]), a stock
cursor identifier, or a file name and type.

Ok Returns true if the cursor’s data is present.

Programming with wxCursor 275

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 275

Creating a wxCursor

The easiest way to create a cursor is to pass a stock cursor identifier to the cur-
sor constructor, as the following example shows.

// Create a cursor from a stock identifier
wxCursor cursor(wxCURSOR_WAIT);

Table 10-5 lists the available identifiers and their appearances (subject to
some variation between platforms).

You can also use the predefined cursor pointers wxSTANDARD_CURSOR,
wxHOURGLASS_CURSOR, and wxCROSS_CURSOR.

Table 10-5 Stock Cursor Identifiers

wxCURSOR_ARROW Standard arrow cursor.

wxCURSOR_RIGHT_ARROW Standard arrow cursor pointing
to the right.

wxCURSOR_BLANK Transparent cursor.

wxCURSOR_BULLSEYE Bullseye cursor.

wxCURSOR_CROSS Cross cursor.

wxCURSOR_HAND Hand cursor.

wxCURSOR_IBEAM I-beam cursor (vertical line).

wxCURSOR_LEFT_BUTTON Represents a mouse with the left
button depressed (GTK+ only).

wxCURSOR_MAGNIFIER Magnifier cursor.

wxCURSOR_MIDDLE_BUTTON Represents a mouse with the middle
button depressed (GTK+ only).

wxCURSOR_NO_ENTRY No-entry sign cursor.

wxCURSOR_PAINT_BRUSH Paintbrush cursor.

wxCURSOR_PENCIL Pencil cursor.

wxCURSOR_POINT_LEFT A cursor that points left.

276 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 2:55 PM Page 276

wxCURSOR_POINT_RIGHT A cursor that points right.

wxCURSOR_QUESTION_ARROW An arrow and question mark.

wxCURSOR_RIGHT_BUTTON Represents a mouse with the right
button depressed (GTK+ only).

wxCURSOR_SIZENESW Sizing cursor pointing NE-SW.

wxCURSOR_SIZENS Sizing cursor pointing N-S.

wxCURSOR_SIZENWSE Sizing cursor pointing NW-SE.

wxCURSOR_SIZEWE Sizing cursor pointing W-E.

wxCURSOR_SIZING General sizing cursor.

wxCURSOR_SPRAYCAN Spraycan cursor.

wxCURSOR_WAIT Wait cursor.

wxCURSOR_WATCH Watch cursor.

wxCURSOR_ARROWWAIT Cursor with both an arrow and an
hourglass.

wxCursor can load a Windows cursor resource on Windows or a Mac OS X cur-
sor resource on Mac OS X:

// Cursor from a Windows resource
wxCursor cursor(wxT(“cursor_resource”), wxBITMAP_TYPE_CUR_RESOURCE,

hotSpotX, hotSpotY);

// Cursor from a Mac OS cursor resource
wxCursor cursor(wxT(“cursor_resource”), wxBITMAP_TYPE_MACCUR_RESOURCE);

You can create a custom cursor by specifying a wxImage object. The “hotspot”
position needs to be specified using wxImage::SetOptionInt because the actu-
al mouse pointer position may not correspond to the top-left corner of the
cursor image. For example, a cross-hair cursor would have the hotspot in

Programming with wxCursor 277

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 277

the center of the image. Here’s some code that loads a PNG image and makes
a cursor out of it:

// Create a cursor from a wxImage
wxImage image(wxT(“cursor.png”), wxBITMAP_TYPE_PNG);
image.SetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_X, 5);
image.SetOptionInt(wxIMAGE_OPTION_CUR_HOTSPOT_Y, 5);
wxCursor cursor(image);

Using wxCursor

Each window can have an associated cursor, which will be shown when the
mouse pointer moves into the window. If there is no associated cursor, the cur-
sor for an ancestor window will be shown, and if there is no ancestor with a
cursor set, the standard cursor will be shown.

Set the cursor for a window like this:

window->SetCursor(wxCursor(wxCURSOR_WAIT));

Using wxSetCursorEvent

On Windows and Mac OS X, there is a little wrinkle that you may need to be
aware of, particularly if you implement your own container windows. Say you
implement your own splitter window that arranges its children such that only
a small part of the splitter window is visible; this is used as the draggable
divider or “sash.” You then set an appropriate cursor for the splitter (say,
wxCURSOR_WE) so the sash indicates that it can be dragged. If the children of the
splitter window don’t have cursors specified, they may inappropriately show
the parent’s cursor that is intended only for the sash.

To indicate that the cursor should only be used when the mouse pointer
is over the sash and that no cursor should be set otherwise, you need to define
an event handler for wxSetCursorEvent. This event is generated on Windows
and Mac OS X when the cursor should be set (normally as the mouse pointer
moves over the window). Your event handler should call
wxSetCursorEvent::SetCursor if you want to indicate a particular cursor for this
window, as follows:

BEGIN_EVENT_TABLE(wxSplitterWindow, wxWindow)
EVT_SET_CURSOR(wxSplitterWindow::OnSetCursor)

END_EVENT_TABLE()

// Indicate that the cursor should only be set for the sash
void wxSplitterWindow::OnSetCursor(wxSetCursorEvent& event)
{

// If we don’t do this, the resizing cursor might be set for

278 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 278

// child windows. Here, we explicitly say that our cursor
// should not be used for child windows that overlap us.

if (SashHitTest(event.GetX(), event.GetY(), 0))
{

// Use default processing
event.Skip();

}
//else: Do nothing, in particular, don’t call Skip()

}

In this example, if the mouse pointer is over the sash, SashHitTest returns true,
and Skip is called, which makes the event handler “fail.” This is equivalent to
defining no cursor event handler at all, and it causes wxWidgets to display the
window’s cursor (wxCURSOR_WE) as normal. If SashHitTest returns false, howev-
er, it means the cursor is over a child window, and the cursor for the splitter
window should not be used. Allowing the handler to “succeed” (by not calling
Skip) without setting a cursor indicates to wxWidgets that we should treat the
splitter window as having no cursor. As a result, the child window will cor-
rectly not inherit the parent’s cursor, even if it has no known cursor of its own.
(If the child window is a wxTextCtrl, for example, the native implementation
will provide its own cursor, but wxWidgets has no knowledge of it.)

PROGRAMMING WITH WXIMAGE

Use wxImage when you need to manipulate images in a platform-independent
manner, or as an intermediate step for loading or saving image files. Images
are stored using a byte per pixel for each of the red, green, and blue channels,
plus a further byte per pixel if an alpha channel is present.

The major wxImage functions are listed in Table 10-6.

Table 10-6 wxImage Functions

wxImage An image can be created given a width and height,
another image, XPM data, raw data (char[]) and
optional alpha data, a file name and type, or an input
stream.

ConvertAlphaToMask Converts the alpha channel (if any) to a mask.
ConvertToMono Converts to a new monochrome image.
Copy Returns an identical copy without using reference

counting.
Create Creates an image of a given size, optionally initializing

it from data.
Destroy Destroys the internal data if no other object is using it.
GetData, SetData Gets and sets its pointer to internal data (unsigned

char*).

Programming with wxImage 279

(continues)

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 279

Table 10-6 wxImage Functions (Continued)

GetImageCount Returns the number of images in a file or stream.
GetOption, GetOptionInt, Gets, sets, and tests for the presence of options.
SetOption, HasOption
GetSubImage Returns an area of the image as a new image.
GetWidth, GetHeight Returns the image size.
GetRed, GetGreen, GetBlue, Gets and sets the red, blue, green, and alpha value
SetRGB, GetAlpha, SetAlpha for a pixel.
HasMask, GetMaskRed, Functions for testing for the presence of a mask
GetMaskGreen, GetMaskBlue, and setting and getting the mask color.
SetMaskColour

LoadFile, SaveFile Files can be loaded and saved using various
formats.

Mirror Mirrors the image in either orientation, returning a
new image.

Ok Returns true if the image is initialized.
Paste Pastes an image into this image at a given position.
Rotate, Rotate90 Rotates the image, returning a new image.
SetMaskFromImage Sets a mask, specifying an image and color to use

for the transparent area.
Scale, Rescale Scales to a new image or scales in place.

Loading and Saving Images

wxImage can load and save in a variety of formats, using image handlers that
plug into wxImage and provide extensibility. The wxImage file-handling capabili-
ties are used as a fallback for the other bitmap classes for when they don’t pro-
vide appropriate native implementations.

Table 10-7 shows the image handlers available on all platforms support-
ed by wxWidgets. wxBMPHandler is always installed by default. To use other
image formats, install the appropriate handler with wxImage::AddHandler or
wxInitAllImageHandlers.

Table 10-7 Available Image Handlers

wxBMPHandler For loading and saving Windows bitmap files.
wxPNGHandler For loading and saving PNG files. Images with transparency or

an alpha channel are supported.
wxJPEGHandler For loading and saving JPEG files.
wxGIFHandler GIF files: only for loading, due to legal issues.
wxPCXHandler For loading and saving PCX files. wxPCXHandler will count the

number of different colors in the image; if there are 256 or fewer
colors, it will save as 8-bit; otherwise it will save as 24-bit.

280 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 280

wxPNMHandler For loading and saving PNM files. Loading PNMs only works for
ASCII or raw RGB images. When saving in PNM format,
wxPNMHandler will always save as raw RGB.

wxTIFFHandler For loading and saving TIFF files.
wxIFFHandler For loading IFF files.
wxXPMHandler For loading and saving XPM files.
wxICOHandler For loading and saving Windows icon files.
wxCURHandler For loading and saving Windows cursor files.
wxANIHandler For loading Windows animated cursor files.

If you will be using a specific set of formats, you might typically have
these in your wxApp::OnInit function:

#include “wx/image.h”

wxImage::AddHandler(new wxPNGHandler);
wxImage::AddHandler(new wxJPEGHandler);
wxImage::AddHandler(new wxGIFHandler);
wxImage::AddHandler(new wxXPMHandler);

Alternatively, you can just call:

wxInitAllImageHandlers();

Here are some different ways of loading and saving images from files and
streams. Note that when loading files, you should normally use absolute paths
instead of depending on the setting of the current directory.

// Load image using constructor and specific type
wxImage image(wxT(“image.png”), wxBITMAP_TYPE_PNG);
if (image.Ok())
{

...
}

// Leave wxImage to work out the image type
wxImage image(wxT(“image.png”));

// Two-step loading
wxImage image;
if (image.LoadFile(wxT(“image.png”)))
{

...
}

// Two-step loading with an index into a multi-image file:
// load image number 2 if available
wxImage image;
int imageCount = wxImage::GetImageCount(wxT(“image.tif”));
if (imageCount > 2)

image.LoadFile(wxT(“image.tif”), wxBITMAP_TYPE_TIFF, 2);

Programming with wxImage 281

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 281

// Load from a stream
wxFileInputStream stream(wxT(“image.tif”));
wxImage image;
image.LoadFile(stream, wxBITMAP_TYPE_TIF);

// Save to a file
image.SaveFile(wxT(“image.png”)), wxBITMAP_TYPE_PNG);

// Save to a stream
wxFileOutputStream stream(wxT(“image.tif”));
image.SaveFile(stream, wxBITMAP_TYPE_TIF);

Images will be saved as 24-bit files, with the exception of XPM and PCX for-
mats, whose handlers will count the number of colors and save with the appro-
priate depth. JPEG has a quality setting that you can set before saving the file.
The setting is a number between 0 and 100, where 0 is poor quality and high
compression, and 100 is high quality and poor compression.

// Save with reasonable quality and compression
image.SetOption(wxIMAGE_OPTION_QUALITY, 80);
image.SaveFile(wxT(“picture.jpg”), wxBITMAP_TYPE_JPEG);

You also might want to use wxImage::SetOption when saving an XPM to a
stream—because no file name is passed, the handler won’t know what name
to use for the C variable that is part of the XPM data. For example:

// Save XPM to a stream
image.SetOption(wxIMAGE_OPTION_FILENAME, wxT(“myimage”));
image.SaveFile(stream, wxBITMAP_TYPE_XPM);

Note that it will append _xpm to the file name that you specify.

Transparency

There are two ways of using transparency with wxImage: masks and alpha
channels. One color value of the image may be used as a mask color, which will
lead to the automatic creation of a wxMask object when converted to a wxBitmap.

wxImage also supports alpha channel data. In addition to a byte for the
red, green, and blue color components for each pixel, it also stores a byte rep-
resenting the pixel opacity. The alpha value of 0 corresponds to a transparent
pixel (zero opacity), and the value of 255 means that the pixel is 100% opaque.

Not all images have an alpha channel, and before using GetAlpha, you
should determine whether this image contains alpha values with HasAlpha.
Currently, only images loaded from PNG files or assigned an alpha channel
with SetAlpha can have an alpha channel. Saving images with an alpha chan-

282 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 282

nel is not yet supported. Drawing with the alpha channel is supported by con-
verting the image to a wxBitmap and calling wxDC::DrawBitmap or wxDC::Blit.

The following code shows how to create a wxImage with a mask. The image
will be blue, containing a transparent rectangle.

// Create masked image
// First, draw on a wxBitmap
wxBitmap bitmap(400, 400);
wxMemoryDC dc;
dc.SelectObject(bitmap);
dc.SetBackground(*wxBLUE_BRUSH);
dc.Clear();
dc.SetPen(*wxRED_PEN);
dc.SetBrush(*wxRED_BRUSH);
dc.DrawRectangle(50, 50, 200, 200);
dc.SelectObject(wxNullBitmap);

// Convert the bitmap to an image
wxImage image = bitmap.ConvertToImage();

// Set the mask color to red
image.SetMaskColour(255, 0, 0);

Another method is to create the mask from another image. In the following
example, image.bmp contains the main image, and mask.bmp has black pixels
where the transparent area should be.

// Load image and its mask
wxImage image(wxT(“image.bmp”), wxBITMAP_TYPE_BMP);
wxImage maskImage(wxT(“mask.bmp”), wxBITMAP_TYPE_BMP);

// Specify black for the transparent area
image.SetMaskFromImage(maskImage, 0, 0, 0);

If you have loaded a transparent image from disk, you can check for trans-
parency and retrieve the mask color:

// Load transparent image
wxImage image(wxT(“image.png”), wxBITMAP_TYPE_PNG);

// Retrieve the mask
if (image.HasMask())
{

wxColour maskColour(image.GetMaskRed(),
image.GetMaskGreen(),
image.GetMaskBlue());

}

Programming with wxImage 283

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 283

Transformations

wxImage supports scaling, rotating, and mirroring transformations. Here are
some examples:

// Scale an image to 200x200 and assign to another image.
// image1 remains unmodified.
wxImage image2 = image1.Scale(200, 200);

// Rescale an image to 200x200
image1.Rescale(200, 200);

// Rotate by a specified number of radians.
// image1 remains unmodified.
wxImage image2 = image1.Rotate(0.5);

// Rotate by 90 degrees in the clockwise direction.
// image1 remains unmodified.
wxImage image2 = image1.Rotate90(true);

// Mirror the image horizontally.
// image1 remains unmodified.
wxImage image2 = image1.Mirror(true);

Color Reduction

If you need to reduce the number of colors in an image, you can use the static
functions of the wxQuantize class. The main function of interest, Quantize, takes
an input image, an output image, an optional wxPalette** to get a new palette
containing the reduced colors, and the desired number of colors. You can also
pass an unsigned char** variable to retrieve an 8-bit representation of the out-
put image and a style for further control of what is returned; see the reference
manual for more on these.

The following code shows how to reduce an image to a maximum of 256 colors:

#include “wx/image.h”
#include “wx/quantize.h”

wxImage image(wxT(“image.png”));

int maxColorCount = 256;
int colors = image.CountColours();
wxPalette* palette = NULL;
if (colors > maxColorCount)
{

wxImage reducedImage;
if (wxQuantize::Quantize(image, reducedImage,

& palette, maxColorCount))
{

colors = reducedImage.CountColours();
image = reducedImage;

}
}

284 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 284

An image can have a wxPalette associated with it, for example when the image
has been loaded from a GIF file. However, the image is still in RGB format, and
the palette merely indicates the original mapping between index values and
RGB values. wxPalette can also be set for a wxImage so that SaveFile can save it
in a format that has a limited number of colors. For example, the Windows
BMP handler determines whether the wxBMP_8BPP_PALETTE image option is set
and, if so, uses the image’s palette; if the wxBMP_8BPP option is set, it does its
own quantization. Some handlers always do their own color reduction, such as
PCX, unless they find that the number of unique colors is already low enough.

For more on wxPalette, please see “wxPalette” in Chapter 5.

Manipulating wxImage Data Directly

You can access image data with GetData for faster manipulation than using
GetRed, GetBlue, GetGreen, and SetRGB. Here’s an example of converting a color
image to a grayscale:

void wxImage::ConvertToGrayScale(wxImage& image)
{

double red2Gray = 0.297;
double green2Gray = 0.589;
double blue2Gray = 0.114;
int w = image.GetWidth(), h = image.GetHeight();
unsigned char *data = image.GetData();

int x,y;
for (y = 0; y < h; y++)

for (x = 0; x < w; x++)
{

long pos = (y * w + x) * 3;

char g = (char) (data[pos]*red2Gray +
data[pos+1]*green2Gray +
data[pos+2]*blue2Gray);

data[pos] = data[pos+1] = data[pos+2] = g;
}

}

IMAGE LISTS AND ICON BUNDLES

Sometimes it’s useful to aggregate a number of images. You can use
wxImageList directly in your application or in conjunction with some of the
wxWidgets controls that require image lists when setting icons. wxNotebook,
wxTreeCtrl, and wxListCtrl all support wxImageList to identify the icons used in
the controls. You can also draw an individual image in a wxImageList on a
device context.

Image Lists and Icon Bundles 285

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 285

Create a wxImageList with the width and height of each image, a boolean
to specify whether a mask will be used, and the initial size of the list (purely
for internal optimization purposes). Then add one or more wxBitmap or wxIcon
images. You can’t add a wxImage directly, but you can pass one to wxBitmap’s con-
structor. wxImageList::Add returns an integer index you can use to identify that
image; after you have added an image, the original image can be destroyed
because wxImageList makes a copy of it.

Here are some examples of creating a wxImageList and adding images to it.

// Create a wxImageList
wxImageList *imageList = new wxImageList(16, 16, true, 1);

// Add a bitmap with transparency from a PNG
wxBitmap bitmap1(wxT(“image.png”), wxBITMAP_TYPE_PNG);
imageList->Add(bitmap1);

// Add a bitmap with transparency from another bitmap
wxBitmap bitmap2(wxT(“image.bmp”), wxBITMAP_TYPE_BMP);
wxBitmap maskBitmap(wxT(“mask.bmp”), wxBITMAP_TYPE_BMP);
imageList->Add(bitmap2, maskBitmap);

// Add a bitmap with transparency specified with a color
wxBitmap bitmap3(wxT(“image.bmp”), wxBITMAP_TYPE_BMP);
imageList->Add(bitmap3, *wxRED);

// Add an icon
#include “folder.xpm”
wxIcon icon(folder_xpm);
imageList->Add(icon);

You can draw an image to a device context, passing flags that determine how
the image will be drawn. Pass wxIMAGELIST_DRAW_TRANSPARENT to draw with
transparency, and also one of these values to indicate the state that should be
drawn: wxIMAGELIST_DRAW_NORMAL, wxIMAGELIST_DRAW_SELECTED, or
wxIMAGELIST_DRAW_FOCUSED.

// Draw all the images in the list
wxClientDC dc(window);
size_t i;
for (i = 0; i < imageList->GetImageCount(); i++)
{

imageList->Draw(i, dc, i*16, 0, wxIMAGELIST_DRAW_NORMAL|
wxIMAGELIST_DRAW_TRANSPARENT);

}

To associate icons with notebook tabs, create an image list containing 16×16
icons, and call wxNotebook::SetImageList or wxNotebook::AssignImageList. If you
use the first form, the notebook doesn’t delete the image list when it is
destroyed; with the second form, the notebook takes over management of the
list, and you don’t have to worry about destroying it yourself. Now when you
add pages, you can specify the index of an icon to use as the image next to the
text label (or instead of it, if the text label is empty). The following code cre-
ates a notebook and adds two pages with icons on the tabs.

286 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 286

// Create a wxImageList
wxImageList *imageList = new wxImageList(16, 16, true, 1);

// Add some icons
wxBitmap bitmap1(wxT(“folder.png”), wxBITMAP_TYPE_PNG);
wxBitmap bitmap2(wxT(“file.png”), wxBITMAP_TYPE_PNG);
int folderIndex = imageList->Add(bitmap1);
int fileIndex = imageList->Add(bitmap2);

// Create a notebook and two pages
wxNotebook* notebook = new wxNotebook(parent, wxID_ANY);
wxPanel* page1 = new wxPanel(notebook, wxID_ANY);
wxPanel* page2 = new wxPanel(notebook, wxID_ANY);

// Assign the image list
notebook->AssignImageList(imageList);

// Add the pages, with icons
notebook->AddPage(page1, wxT(“Folder options”), true, folderIndex);
notebook->AddPage(page2, wxT(“File options”), false, fileIndex);

wxTreeCtrl and wxListCtrl work in a similar way, with the option to assign or
set the image list.

If you have a lot of icons and find it hard to keep track of icons by inte-
ger index, you might want to write a class that maps string names to the image
list index. A simple implementation might look like this:

#include “wx/hashmap.h”

WX_DECLARE_STRING_HASH_MAP(int, IconNameToIndexHashMap);

// Class to refer to image indices by name
class IconNameToIndex
{
public:

IconNameToIndex() {}

// Add a named bitmap to the image list
void Add(wxImageList* list, const wxBitmap& bitmap,

const wxString& name) {
m_hashMap[name] = list->Add(bitmap);

}

// Add a named icon to the image list
void Add(wxImageList* list, const wxIcon& icon,

const wxString& name) {
m_hashMap[name] = list->Add(icon);

}

// Find the index from the name
int Find(const wxString& name) { return m_hashMap[name]; }

private:
IconNameToIndexHashMap m_hashMap;

};

Image Lists and Icon Bundles 287

Smart_Ch10f.qxd 6/13/05 9:12 AM Page 287

The wxIconBundle class also aggregates images, but its purpose is to store an
icon in multiple resolutions rather than multiple different images. This
enables the system to choose the appropriate resolution for a given purpose.
For example, the icon shown in the title bar of a frame may be smaller than
the icon shown in a file or task manager. Here are some examples of creating
and using an icon bundle.

// Create a bundle with a single icon
#include “file16x16.xpm”
wxIconBundle iconBundle(wxIcon(file16x16_xpm));

// Add a further icon from a file
iconBundle.Add(wxIcon(wxT(“file32x32.png”), wxBITMAP_TYPE_PNG));

// Creates an icon bundle from several images in one file
wxIconBundle iconBundle2(wxT(“multi-icons.tif”), wxBITMAP_TYPE_TIF);

// Gets the icon with the given size, or if not found, one with size
// wxSYS_ICON_X, wxSYS_ICON_Y
wxIcon icon = iconBundle.GetIcon(wxSize(16,16));

// Associates the icon bundle with a frame
wxFrame* frame = new wxFrame(parent, wxID_ANY);
frame->SetIcons(iconBundle);

Under Windows, SetIcons extracts 16×16 and 32×32 icons from the icon
bundle.

CUSTOMIZING ART IN WXWIDGETS

wxArtProvider is a class that allows you to customize the built-in graphics
(“art”) in a wxWidgets application. For example, you might want to replace the
standard icons used by the wxWidgets HTML Help viewer or the icons used by
the generic dialogs such as the log dialog.

wxWidgets provides a standard wxArtProvider object, and parts of the
framework that need icons and bitmaps call wxArtProvider::GetBitmap and
wxArtProvider::GetIcon to retrieve a graphic.

Art is specified by two identifiers: the art identifier (wxArtID) and client
identifier (wxArtClient). The client identifier is only a hint in case different
windows need different graphics for the same art identifier. As an example,
the wxHTML help window uses this code to get a bitmap for the Back toolbar
button:

wxBitmap bmp = wxArtProvider::GetBitmap(wxART_GO_BACK,wxART_TOOLBAR);

288 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/13/05 9:12 AM Page 288

You can browse the identifiers and graphics that are built into wxWidgets by
compiling and running samples/artprov in your wxWidgets distribution.
Figure 10-1 shows the browser in action.

To provide your own replacements for wxWidgets art, simply derive a
new class from wxArtProvider, override CreateBitmap, and call
wxArtProvider::PushProvider from your application’s OnInit function to make it
known to wxWidgets. Here’s an example that replaces most of the wxHTML help
window artwork.

// XPMs with the art
#include “bitmaps/helpbook.xpm”
#include “bitmaps/helppage.xpm”
#include “bitmaps/helpback.xpm”
#include “bitmaps/helpdown.xpm”
#include “bitmaps/helpforward.xpm”
#include “bitmaps/helpoptions.xpm”
#include “bitmaps/helpsidepanel.xpm”
#include “bitmaps/helpup.xpm”
#include “bitmaps/helpuplevel.xpm”
#include “bitmaps/helpicon.xpm”

#include “wx/artprov.h”

// The art provider class
class MyArtProvider : public wxArtProvider
{
protected:

virtual wxBitmap CreateBitmap(const wxArtID& id,
const wxArtClient& client,
const wxSize& size);

};

// CreateBitmap function
wxBitmap MyArtProvider::CreateBitmap(const wxArtID& id,

const wxArtClient& client,
const wxSize& size)

Customizing Art in wxWidgets 289

Figure 10-1 Art resources browser

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 289

{
if (id == wxART_HELP_SIDE_PANEL)

return wxBitmap(helpsidepanel_xpm);
if (id == wxART_HELP_SETTINGS)

return wxBitmap(helpoptions_xpm);
if (id == wxART_HELP_BOOK)

return wxBitmap(helpbook_xpm);
if (id == wxART_HELP_FOLDER)

return wxBitmap(helpbook_xpm);
if (id == wxART_HELP_PAGE)

return wxBitmap(helppage_xpm);
if (id == wxART_GO_BACK)

return wxBitmap(helpback_xpm);
if (id == wxART_GO_FORWARD)

return wxBitmap(helpforward_xpm);
if (id == wxART_GO_UP)

return wxBitmap(helpup_xpm);
if (id == wxART_GO_DOWN)

return wxBitmap(helpdown_xpm);
if (id == wxART_GO_TO_PARENT)

return wxBitmap(helpuplevel_xpm);
if (id == wxART_FRAME_ICON)

return wxBitmap(helpicon_xpm);
if (id == wxART_HELP)

return wxBitmap(helpicon_xpm);

// Any wxWidgets icons not implemented here
// will be provided by the default art provider.
return wxNullBitmap;

}

// Initialization
bool MyApp::OnInit()
{

...

wxArtProvider::PushProvider(new MyArtProvider);

...
return true;

}

SUMMARY

In this chapter, we’ve seen how to use the four major image classes—wxBitmap,
wxIcon, wxCursor, and wxImage—and two classes for aggregating images—
wxImageList and wxIconBundle. We’ve also looked at how you can replace the
standard wxWidgets icons and bitmaps with your own images. For examples
of using image classes, see samples/image, samples/listctrl, and samples/
dragimag in your wxWidgets distribution.

Next, we’ll tackle the classes that you use to implement the transfer of
data objects via the clipboard or drag and drop.

290 Programming with Images Chapter 10

Smart_Ch10f.qxd 6/10/05 10:26 AM Page 290

C H A P T E R 11

Clipboard and Drag and Drop

Most applications offer transfer of data to and from the clipboard via copy, cut,
and paste. It’s a basic way of implementing interoperation between your appli-
cation and others. More sophisticated applications also allow the user to drag
objects between windows, either within a single application or between two
applications. For example, dragging a file from a file browser to an application
window causes the data to fill the window, be added to a list, or some other
behavior. This can be a much faster way to associate data with the application
than using menus and dialogs to achieve the same thing, and your users will
appreciate having it as an option.

Clipboard and drag and drop operations share some classes in
wxWidgets, reflecting the fact that they both deal with data transfer, and so
this chapter deals with both topics together. We’ll see how to use the standard
data objects that wxWidgets provides, as well as how to implement our own.

DATA OBJECTS

The wxDataObject class is at the heart of both clipboard and drag and drop.
Instances of classes derived from wxDataObject represent the data that is being
dragged by the mouse during a drag and drop operation or copied to or pasted
from the clipboard. wxDataObject is a “smart” piece of data because it knows
which formats it supports (via GetFormatCount and GetAllFormats) and knows
how to render itself in any of them (via GetDataHere). It can also receive its
value from outside the application in a format it supports if it implements the
SetData method. We’ll see how to do that later in the chapter.

Standard data formats such as wxDF_TEXT are identified by integers, and
custom data formats are identified by a text string. The wxDataFormat class rep-
resents both of these kinds of identifiers by virtue of a constructor for each.
Table 11-1 lists the standard data formats.

291

Smart_Ch11f.qxd 6/10/05 11:20 AM Page 291

Table 11-1 Standard Data Formats

wxDF_INVALID An invalid format, used as default argument for functions
taking a wxDataFormat argument.

wxDF_TEXT Text format. Standard data object: wxTextDataObject.

wxDF_BITMAP Bitmap format. Standard data object: wxBitmapDataObject.

wxDF_METAFILE Metafile (Windows only). Standard data object:
wxMetafileData Object.

wxDF_FILENAME A list of file names. Standard data object:
wxFileDataObject.

You can also create a custom data format by passing an arbitrary string to the
wxDataFormat constructor. The format will be registered the first time it is ref-
erenced.

Both clipboard and drag and drop deal with a source (data provider) and
a target (data receiver). These may be in the same application and even the
same window when, for example, you drag some text from one position to
another in a word processor. Let’s describe what each should do.

Data Source Duties

The data source is responsible for creating a wxDataObject containing the data
to be transferred. Then the data source should either pass the wxDataObject to
the clipboard using the SetData function or pass it to a wxDropSource object
when dragging starts and call the DoDragDrop function.

The main difference from a clipboard operation is that the object for clip-
board transfer must always be created on the heap using new and will be freed
by the clipboard when it is no longer needed. Indeed, it is not known in
advance when, if ever, the data will be pasted from the clipboard. On the other
hand, the object for the drag and drop operation must exist only while
DoDragDrop executes and may be safely deleted afterwards, so it can be created
either on the heap or on the stack (that is, as a local variable).

Another small difference is that in the case of a clipboard operation, the
application usually knows in advance whether it copies or cuts data. In a clip-
board cut, the data is copied and then removed from the object being edited.
This usually depends on which menu item the user chose. But for drag and
drop, the application can only know this information after DoDragDrop returns.

Data Target Duties

To receive data from the clipboard (that is, a paste operation), you should cre-
ate a wxDataObject derived class that supports the data formats you need and
pass it to wxClipboard::GetData. If it returns false, no data in any of the sup-
ported formats is available. If it returns true, the data has been successfully
transferred to wxDataObject.

292 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:20 AM Page 292

For the drag and drop case, the wxDropTarget::OnData virtual function will
be called when a data object is dropped, from which the data itself may be
requested by calling the wxDropTarget::GetData method.

USING THE CLIPBOARD

To use the clipboard, you call member functions of the global pointer
wxTheClipboard.

Before copying or pasting, you must take temporary ownership of the
clipboard by calling wxClipboard::Open. If this operation returns true, you now
own the clipboard. Call wxClipboard::SetData to put data on the clipboard
or wxClipboard::GetData to retrieve data from the clipboard. Call
wxClipboard::Close to close the clipboard and relinquish ownership. You
should keep the clipboard open only as long as you are using it.

wxClipboardLocker is a helpful class that will open the clipboard (if possi-
ble) in its constructor and close it in its destructor, so you can write

wxClipboardLocker locker;
if (!locker)
{

... report an error and return ...
}
... use the clipboard ...

The following code shows how to write text to and read text from the clipboard:

// Write some text to the clipboard
if (wxTheClipboard->Open())
{

// Data objects are held by the clipboard,
// so do not delete them in the app.
wxTheClipboard->SetData(new wxTextDataObject(wxT(“Some text”)));
wxTheClipboard->Close();

}

// Read some text
if (wxTheClipboard->Open())
{

if (wxTheClipboard->IsSupported(wxDF_TEXT))
{

wxTextDataObject data;
wxTheClipboard->GetData(data);
wxMessageBox(data.GetText());

}
wxTheClipboard->Close();

}

Using the Clipboard 293

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 293

Here’s the same thing, but with bitmaps:

// Write a bitmap to the clipboard
wxImage image(wxT(“splash.png”), wxBITMAP_TYPE_PNG);
wxBitmap bitmap(image.ConvertToBitmap());
if (wxTheClipboard->Open())
{

// Data objects are held by the clipboard,
// so do not delete them in the app.
wxTheClipboard->SetData(new wxBitmapDataObject(bitmap));
wxTheClipboard->Close();

}

// Read a bitmap
if (wxTheClipboard->Open())
{

if (wxTheClipboard->IsSupported(wxDF_BITMAP))
{

wxBitmapDataObject data;
wxTheClipboard->GetData(data);
bitmap = data.GetBitmap();

}
wxTheClipboard->Close();

}

If you implement clipboard operations, you will have to update the user inter-
face to enable or disable clipboard commands, whether they are menu items,
toolbar buttons, or ordinary buttons. This is a job for the wxWidgets user inter-
face update mechanism, which sends wxUpdateUIEvent events to your applica-
tion in idle time; refer to Chapter 9, “Creating Custom Dialogs,” for details.
The idle time updating allows your interface to be updated even when data is
copied to the clipboard without your application’s knowledge.

Some controls, such as wxTextCtrl, already implement user interface
update events. If you use the standard identifiers wxID_CUT, wxID_COPY, and
wxID_PASTE for your menus and toolbars and arrange for command events from
the focused control to be processed first, the interface will be updated as the
user expects. Chapter 20, “Perfecting Your Application,” shows how to direct
command events to the focused control by overriding wxFrame::ProcessEvent.

IMPLEMENTING DRAG AND DROP

You may implement drag sources, drag targets, or both in your application.

Implementing a Drag Source

To implement a drag source—that is, to provide the data that may be dragged
by the user to a target—you use an instance of the wxDropSource class. Note
that the following describes what happens after your application has decided
that a drag is starting—the logic to detect the mouse motion that indicates the
start of a drag is left entirely up to the application. Some controls help you by

294 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 294

generating an event when dragging is starting, so you don’t have to code the
logic yourself (which could potentially interfere with the native mouse behav-
ior for the control). This chapter provides a summary of when wxWidgets noti-
fies you of the start of a drag.

The following steps are involved, as seen from the perspective of the drop
source.

1. Preparation

First of all, a data object must be created and initialized with the data you
want to drag. For example:

wxTextDataObject myData(wxT(“This text will be dragged.”));

2. Drag Start

To start the dragging process, typically in response to a mouse click, you must
create a wxDropSource object and call wxDropSource::DoDragDrop, like this:

wxDropSource dragSource(this);
dragSource.SetData(myData);
wxDragResult result = dragSource.DoDragDrop(wxDrag_AllowMove);

The flags you can pass to DoDragDrop are listed in Table 11-2.

Table 11-2 Flags for DoDragDrop

wxDrag_CopyOnly Only allow copying.
wxDrag_AllowMove Allow moving.
wxDrag_DefaultMove The default operation is to move the data.

When creating the wxDropSource object, you have the option of also specifying
the window that initiates the drag, and three cursors for Copy, Move, and
Can’t Drop feedback. These are actually icons in GTK+ and cursors on other
platforms, so the macro wxDROP_ICON can be used to hide this difference, as we’ll
see in our text drop example shortly.

3. Dragging

The call to DoDragDrop blocks the program until the user releases the mouse
button (unless you override the GiveFeedback function to do something special).
When the mouse moves in a window of a program that understands the same
drag and drop protocol, the corresponding wxDropTarget methods are called—
see the following section, “Implementing a Drop Target.”

Implementing Drag and Drop 295

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 295

4. Processing the Result

DoDragDrop returns an effect code, which is one of the values of the wxDragResult
type, as listed in Table 11-3.

Table 11-3 wxDragResult Return Types from DoDragDrop

wxDragError An error prevented the drag and drop operation from completing.
wxDragNone The drop target didn’t accept the data.
wxDragCopy The data was successfully copied.
wxDragMove The data was successfully moved (Windows only).
wxDragLink This was a link operation.
wxDragCancel The user canceled the operation.

Respond to the result of DoDragDrop appropriately in your application. If the
return value was wxDragMove, it’s normal to delete the data associated with the
drop source and update the display. A return value of wxDragNone means that
the drag was cancelled. For example:

switch (result)
{

case wxDragCopy: /* Data was copied or linked:
do nothing special */

case wxDragLink:
break;

case wxDragMove: /* Data was moved: delete original */
DeleteMyDraggedData();
break;

default: /* Drag was cancelled, or the data was
not accepted, or there was an error:
do nothing */

break;
}

Here’s an example showing how to implement a text drop source. DnDWindow
contains a member variable m_strText—when the left mouse button is clicked,
a drag operation is started using the value of m_strText. The result of the drag
operation is reported in a message box. In practice, the drag operation wouldn’t
be started until the pointer has been dragged a minimum distance so that sim-
ple left-click actions can be distinguished from a drag.

void DnDWindow::OnLeftDown(wxMouseEvent& event)
{

if (!m_strText.IsEmpty())
{

// start drag operation
wxTextDataObject textData(m_strText);
wxDropSource source(textData, this,

296 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 296

wxDROP_ICON(dnd_copy),
wxDROP_ICON(dnd_move),
wxDROP_ICON(dnd_none));

int flags = 0;
if (m_moveByDefault)

flags |= wxDrag_DefaultMove;
else if (m_moveAllow)

flags |= wxDrag_AllowMove;

wxDragResult result = source.DoDragDrop(flags);

const wxChar *pc;
switch (result)
{

case wxDragError: pc = wxT(“Error!”); break;
case wxDragNone: pc = wxT(“Nothing”); break;
case wxDragCopy: pc = wxT(“Copied”); break;
case wxDragMove: pc = wxT(“Moved”); break;
case wxDragCancel: pc = wxT(“Cancelled”); break;
default: pc = wxT(“Huh?”); break;

}

wxMessageBox(wxString(wxT(“Drag result: “)) + pc);
}

}

Implementing a Drop Target

To implement a drop target—that is, to receive the data dropped by the user—
you associate a wxDropTarget object with a window using wxWindow::SetDrop
Target. You must derive your own class from wxDropTarget and override its pure
virtual methods. In particular, override OnDragOver to return a wxDragResult
code indicating how the cursor should change when it’s over the given point in
the window, and override OnData to react to the drop. Alternatively, you may
derive from wxTextDropTarget or wxFileDropTarget and override their OnDropText
or OnDropFiles method.

The following steps happen in a drag and drop operation from the per-
spective of a drop target.

1. Initialization

wxWindow::SetDropTarget is called during window creation to associate the drop
target with the window. At creation, or during subsequent program execu-
tion, a data object is associated with the drop target using wxDropTarget::
SetDataObject. This data object will be responsible for the format negotiation
between the drag source and the drop target.

Implementing Drag and Drop 297

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 297

298 Clipboard and Drag and Drop Chapter 11

2. Dragging

As the mouse moves over the target during a drag operation, wxDropTarget::
OnEnter, wxDropTarget::OnDragOver and wxDropTarget::OnLeave are called as
appropriate, each returning a suitable wxDragResult so that the drag imple-
mentation can give suitable visual feedback.

3. Drop

When the user releases the mouse button over a window, wxWidgets asks
the associated wxDropTarget object if it accepts the data by calling
wxDataObject::GetAllFormats. If the data type is accepted, then wxDrop

Target::OnData will be called, and the wxDataObject belonging to the drop tar-
get can be filled with data. wxDropTarget::OnData returns a wxDragResult, which
is then returned from wxDropSource::DoDragDrop.

Using Standard Drop Targets

wxWidgets provides classes derived from wxDropTarget so that you don’t have
to program everything yourself for commonly used cases. You just derive from
the class and override a virtual function to get notification of the drop.

wxTextDropTarget receives dropped text—just override OnDropText to do
something with the dropped text. The following example implements a drop
target that appends dropped text to a list box.

// A drop target that adds text to a listbox
class DnDText : public wxTextDropTarget
{
public:

DnDText(wxListBox *owner) { m_owner = owner; }

virtual bool OnDropText(wxCoord x, wxCoord y,
const wxString& text)

{
m_owner->Append(text);
return true;

}

private:
wxListBox *m_owner;

};

// Set the drop target
wxListBox* listBox = new wxListBox(parent, wxID_ANY);
listBox->SetDropTarget(new DnDText(listBox));

The next example shows how to use wxFileDropTarget, which accepts files
dropped from the system’s file manager (such as Explorer on Windows) and
reports the number of files dropped and their names.

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 298

// A drop target that adds filenames to a list box
class DnDFile : public wxFileDropTarget
{
public:

DnDFile(wxListBox *owner) { m_owner = owner; }

virtual bool OnDropFiles(wxCoord x, wxCoord y,
const wxArrayString& filenames)

{
size_t nFiles = filenames.GetCount();
wxString str;
str.Printf(wxT(“%d files dropped”), (int) nFiles);
m_owner->Append(str);
for (size_t n = 0; n < nFiles; n++) {

m_owner->Append(filenames[n]);
}

return true;
}

private:
wxListBox *m_owner;

};

// Set the drop target
wxListBox* listBox = new wxListBox(parent, wxID_ANY);
listBox->SetDropTarget(new DnDFile(listBox));

Creating a Custom Drop Target

Now we’ll create a custom drop target that can accept URLs (web addresses).
This time we need to override OnData and OnDragOver, and we introduce a vir-
tual function OnDropURL that derived classes can override.

// A custom drop target that accepts URL objects
class URLDropTarget : public wxDropTarget
{
public:

URLDropTarget() { SetDataObject(new wxURLDataObject); }

void OnDropURL(wxCoord x, wxCoord y, const wxString& text)
{

// Of course, a real program would do something more
// useful here...
wxMessageBox(text, wxT(“URLDropTarget: got URL”),

wxICON_INFORMATION | wxOK);
}

// URLs can’t be moved, only copied
virtual wxDragResult OnDragOver(wxCoord x, wxCoord y,

wxDragResult def)
{

return wxDragLink;
}

Implementing Drag and Drop 299

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 299

300 Clipboard and Drag and Drop Chapter 11

// translate this to calls to OnDropURL() just for convenience
virtual wxDragResult OnData(wxCoord x, wxCoord y,

wxDragResult def)
{

if (!GetData())
return wxDragNone;

OnDropURL(x, y, ((wxURLDataObject *)m_dataObject)->GetURL());

return def;
}

};

// Set the drop target
wxListBox* listBox = new wxListBox(parent, wxID_ANY);
listBox->SetDropTarget(new URLDropTarget);

More on wxDataObject

As we’ve seen, a wxDataObject represents data that can be copied to or from the
clipboard or dragged and dropped. The important thing about wxDataObject is
that it is a “smart” piece of data, unlike the usual dumb data containers such
as memory buffers or files. Being “smart” means that the data object itself
should know what data formats it supports and how to render itself in each of
its supported formats.

A supported format is the format in which the data can be requested
from a data object or from which the data object may be set. In the general
case, an object may support different formats on input and output, so it may
be able to render itself in a given format but not be created from data in this
format, or vice versa.

Several solutions are available to you when you need to use a
wxDataObject class:

1. Use one of the built-in classes. You may use wxTextDataObject, wxBitmap
DataObject, or wxFileDataObject in the simplest cases when you only need
to support one format and your data is text, a bitmap, or a list of files.

2. Use wxDataObjectSimple. Deriving from wxDataObjectSimple is the sim-
plest solution for custom data—you will only support one format, and
so you probably won’t be able to communicate with other programs,
but data transfer will work in your program (or between different
copies of it).

3. Derive from wxCustomDataObject (a subclass of wxDataObjectSimple) for
user-defined formats.

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 300

4. Use wxDataObjectComposite. This is a simple but powerful solution that
allows you to support any number of formats (either standard or custom
if you combine it with the previous solutions).

5. Use wxDataObject directly. This is the solution for maximum flexibility
and efficiency, but it is also the most difficult to implement.

The easiest way to use drag and drop and the clipboard with multiple formats
is by using wxDataObjectComposite, but it is not the most efficient one because
each wxDataObjectSimple contains all the data in its specific format. Imagine
that you want to paste to the clipboard 200 pages of text in your proprietary
format, as well as Word, RTF, HTML, Unicode, and plain text. Even today’s
computers would struggle to support this task. For efficiency, you will have to
derive from wxDataObject directly, make it enumerate its formats, and provide
the data in the requested format on demand.

The underlying data transfer mechanisms for clipboard and drag and
drop don’t copy any data until another application actually requests it. So
although a user may think that the data resides in the clipboard after press-
ing the application’s Copy command, in reality it may only have been declared
to be available.

Deriving from wxDataObject

Let’s look at what’s needed to derive a new class from wxDataObject. Deriving
from the other classes mentioned earlier is similar but easier, so we won’t
cover them all here.

Each class derived directly from wxDataObject must override and imple-
ment all of its functions that are pure virtual in the base class. Data objects
that only render their data or only set it (that is, work in only one direction)
should return 0 from GetFormatCount for the unsupported direction.

GetAllFormats takes an array of wxDataFormat values and a Direction (Get
or Set). Copy all the supported formats in the given direction to the formats
array. GetFormatCount determines the number of elements in the array.

GetDataHere takes a wxDataFormat and a void* buffer, returning true on
success and false otherwise. It must write the data for the given format into
the buffer. This can be arbitrary binary or text data that need only be recog-
nized by SetData.

GetDataSize takes a wxDataFormat and returns the data size for the given
format.

GetFormatCount returns the number of available formats for rendering or
setting the data.

GetPreferredFormat takes a Direction and returns the preferred
wxDataFormat for this direction.

SetData takes a wxDataFormat, integer buffer length, and void* buffer. You
interpret the data in the buffer in the required way for this object, such as
copying it to an internal structure. This function should return true on success
and false on failure.

Implementing Drag and Drop 301

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 301

The wxWidgets Drag and Drop Sample

We’ll use the wxWidgets drag and drop sample in samples/dnd to demonstrate
how to write a custom wxDataObject with a user-defined data format. The sam-
ple shows a simple shape—a triangle, rectangle, or ellipse—and allows you to
edit it, drag it to a new position, and copy it to and paste it back from the clip-
board. You can show the shape frame with the New Frame command on the
File menu. This window is illustrated in Figure 11-1.

302 Clipboard and Drag and Drop Chapter 11

Figure 11-1 The wxWidgets drag and drop sample

The shapes are modeled with classes derived from DnDShape, and the data
object is called DnDShapeDataObject. Before examining the implementation of
DndShapeDataObject, let’s see how the application will use them.

When a clipboard copy operation is invoked, a DnDShapeDataObject will be
added to the clipboard, taking a copy of the current shape in case it’s deleted
while the object is still on the clipboard. Here’s the code to do it:

void DnDShapeFrame::OnCopyShape(wxCommandEvent& event)
{

if (m_shape)
{

wxClipboardLocker clipLocker;
if (!clipLocker)
{

wxLogError(wxT(“Can’t open the clipboard”));
return;

}

wxTheClipboard->AddData(new DnDShapeDataObject(m_shape));
}

}

A clipboard paste is also straightforward, calling wxClipboard::GetData to try to
get shape data from the clipboard and then retrieving the shape data from the
data object. We also show the UI update handler that will enable the Paste

Smart_Ch11f.qxd 6/10/05 3:30 PM Page 302

menu command only if there is shape data on the clipboard. shapeFormatId is a
global variable containing the shape format name, wxShape.

void DnDShapeFrame::OnPasteShape(wxCommandEvent& event)
{

wxClipboardLocker clipLocker;
if (!clipLocker)
{

wxLogError(wxT(“Can’t open the clipboard”));
return;

}

DnDShapeDataObject shapeDataObject(NULL);
if (wxTheClipboard->GetData(shapeDataObject))
{

SetShape(shapeDataObject.GetShape());
}
else
{

wxLogStatus(wxT(“No shape on the clipboard”));
}

}

void DnDShapeFrame::OnUpdateUIPaste(wxUpdateUIEvent& event)
{

event.Enable(wxTheClipboard->
IsSupported(wxDataFormat(shapeFormatId)));

}

To implement drag and drop, a drop target class is required that will notify the
application when data is dropped. Objects of class DnDShapeDropTarget contain
a DnDShapeDataObject that is ready to receive data when its OnData member is
called. Here’s the declaration (and implementation) of DnDShapeDropTarget:

class DnDShapeDropTarget : public wxDropTarget
{
public:

DnDShapeDropTarget(DnDShapeFrame *frame)
: wxDropTarget(new DnDShapeDataObject)

{
m_frame = frame;

}

// override base class (pure) virtuals
virtual wxDragResult OnEnter(wxCoord x, wxCoord y, wxDragResult def)
{

m_frame->SetStatusText(_T(“Mouse entered the frame”));
return OnDragOver(x, y, def);

}

virtual void OnLeave()
{

m_frame->SetStatusText(_T(“Mouse left the frame”));
}

virtual wxDragResult OnData(wxCoord x, wxCoord y, wxDragResult def)

Implementing Drag and Drop 303

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 303

{
if (!GetData())
{

wxLogError(wxT(“Failed to get drag and drop data”));

return wxDragNone;
}

// Notify the frame of the drop
m_frame->OnDrop(x, y,

((DnDShapeDataObject *)GetDataObject())->GetShape());

return def;
}

private:
DnDShapeFrame *m_frame;

};

The target is set when the shape frame is created during application initial-
ization:

DnDShapeFrame::DnDShapeFrame(wxFrame *parent)
: wxFrame(parent, wxID_ANY, _T(“Shape Frame”))

{
...
SetDropTarget(new DnDShapeDropTarget(this));
...

}

A drag starts when a left mouse button click is detected, and the event han-
dler creates a wxDropSource passing a DnDShapeDataObject before calling
DoDragDrop to initiate the drag operation. DndShapeFrame::OnDrag looks like this:

void DnDShapeFrame::OnDrag(wxMouseEvent& event)
{

if (!m_shape)
{

event.Skip();
return;

}

// start drag operation
DnDShapeDataObject shapeData(m_shape);
wxDropSource source(shapeData, this);

const wxChar *pc = NULL;
switch (source.DoDragDrop(true))
{

default:
case wxDragError:

wxLogError(wxT(“An error occured during drag and drop”));
break;

case wxDragNone:

304 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 304

SetStatusText(_T(“Nothing happened”));
break;

case wxDragCopy:
pc = _T(“copied”);
break;

case wxDragMove:
pc = _T(“moved”);
if (ms_lastDropTarget != this)
{

// don’t delete the shape if we dropped it
// on ourselves!
SetShape(NULL);

}
break;

case wxDragCancel:
SetStatusText(_T(“Drag and drop operation cancelled”));
break;

}

if (pc)
{

SetStatusText(wxString(_T(“Shape successfully “)) + pc);
}
//else: status text already set

}

When the drop is signaled by the user releasing the mouse button, wxWidgets
calls DnDShapeDropTarget::OnData, which in turn calls DndShapeFrame::OnDrop
with a new DndShape to set at the drop position. This completes the drag and
drop operation.

void DnDShapeFrame::OnDrop(wxCoord x, wxCoord y, DnDShape *shape)
{

ms_lastDropTarget = this;

wxPoint pt(x, y);

wxString s;
s.Printf(wxT(“Shape dropped at (%d, %d)”), pt.x, pt.y);
SetStatusText(s);

shape->Move(pt);
SetShape(shape);

}

The only remaining tricky bit is to implement the custom wxDataObject. We’ll
show the implementation in parts for clarity. First, we’ll see the custom format
identifier declaration, the DndShapeDataObject class declaration, its constructor
and destructor, and its data members.

Implementing Drag and Drop 305

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 305

The format identifier is shapeFormatId, and it is a global variable used
throughout the sample. The constructor takes a new copy of the shape (if one
is passed) by using GetDataHere; the copy could also have been implemented by
using a DndShape::Clone function, had one been provided. The DnDShapeData
Object destructor will delete this shape object.

DndShapeDataObject can provide bitmap and (on supported platforms)
metafile renderings of its shape, so it also has wxBitmapDataObject and
wxMetaFileDataObject members (and associated flags to indicate whether
they’re valid) to cache these formats when asked for them.

// Custom format identifier
static const wxChar *shapeFormatId = wxT(“wxShape”);

class DnDShapeDataObject : public wxDataObject
{
public:

// ctor doesn’t copy the pointer, so it shouldn’t go away
// while this object is alive
DnDShapeDataObject(DnDShape *shape = (DnDShape *)NULL)
{

if (shape)
{

// we need to copy the shape because the one
// we’ve handled may be deleted while it’s still on
// the clipboard (for example) - and we reuse the
// serialisation methods here to copy it
void *buf = malloc(shape->DnDShape::GetDataSize());
shape->GetDataHere(buf);
m_shape = DnDShape::New(buf);

free(buf);
}
else
{

// nothing to copy
m_shape = NULL;

}

// this string should uniquely identify our format, but
// is otherwise arbitrary
m_formatShape.SetId(shapeFormatId);

// we don’t draw the shape to a bitmap until it’s really
// needed (i.e. we’re asked to do so)
m_hasBitmap = false;
m_hasMetaFile = false;

}

virtual ~DnDShapeDataObject() { delete m_shape; }

// after a call to this function, the shape is owned by the
// caller and it is responsible for deleting it
DnDShape *GetShape()
{

DnDShape *shape = m_shape;

306 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 306

m_shape = (DnDShape *)NULL;
m_hasBitmap = false;
m_hasMetaFile = false;

return shape;
}

// The other member functions omitted
...

// The data members
private:

wxDataFormat m_formatShape; // our custom format
wxBitmapDataObject m_dobjBitmap; // it handles bitmaps
bool m_hasBitmap; // true if m_dobjBitmap valid
wxMetaFileDataObject m_dobjMetaFile;// handles metafiles
bool m_hasMetaFile;// true if MF valid
DnDShape *m_shape; // our data

};

Next, let’s look at the functions that need to be provided to answer questions
about the data that the object provides. GetPreferredFormat simply returns the
“native” format for this object, m_formatShape, which we initialized with wxShape
in the constructor. GetFormatCount determines whether the custom format can
be used for setting and getting data—bitmap and metafile formats can only be
handled when getting data. GetDataSize returns a suitable size depending on
what kind of data is requested, if necessary creating the data in bitmap or
metafile format in order to find out its size.

virtual wxDataFormat GetPreferredFormat(Direction dir) const
{

return m_formatShape;
}

virtual size_t GetFormatCount(Direction dir) const
{

// our custom format is supported by both GetData()
// and SetData()
size_t nFormats = 1;
if (dir == Get)
{

// but the bitmap format(s) are only supported for output
nFormats += m_dobjBitmap.GetFormatCount(dir);
nFormats += m_dobjMetaFile.GetFormatCount(dir);

}

return nFormats;
}

virtual void GetAllFormats(wxDataFormat *formats, Direction dir)
const

{
formats[0] = m_formatShape;
if (dir == Get)
{

Implementing Drag and Drop 307

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 307

// in Get direction we additionally support bitmaps and
metafiles

//under Windows
m_dobjBitmap.GetAllFormats(&formats[1], dir);

// don’t assume that m_dobjBitmap has only 1 format
m_dobjMetaFile.GetAllFormats(&formats[1 +

m_dobjBitmap.GetFormatCount(dir)], dir);
}

}

virtual size_t GetDataSize(const wxDataFormat& format) const
{

if (format == m_formatShape)
{

return m_shape->GetDataSize();
}
else if (m_dobjMetaFile.IsSupported(format))
{

if (!m_hasMetaFile)
CreateMetaFile();

return m_dobjMetaFile.GetDataSize(format);
}
else
{

wxASSERT_MSG(m_dobjBitmap.IsSupported(format),
wxT(“unexpected format”));

if (!m_hasBitmap)
CreateBitmap();

return m_dobjBitmap.GetDataSize();
}

}

GetDataHere copies data into a void* buffer, again depending on what format is
requested, as follows:

virtual bool GetDataHere(const wxDataFormat& format, void
➥*pBuf) const

{
if (format == m_formatShape)
{

// Uses a ShapeDump struct to stream itself to void*
m_shape->GetDataHere(pBuf);

return true;
}
else if (m_dobjMetaFile.IsSupported(format))
{

if (!m_hasMetaFile)
CreateMetaFile();

return m_dobjMetaFile.GetDataHere(format, pBuf);
}
else
{

308 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 308

wxASSERT_MSG(m_dobjBitmap.IsSupported(format),
wxT(“unexpected format”));

if (!m_hasBitmap)
CreateBitmap();

return m_dobjBitmap.GetDataHere(pBuf);
}

}

SetData only deals with the native format, so all it has to do is call
DndShape::New to make a shape out of the supplied buffer:

virtual bool SetData(const wxDataFormat& format,
size_t len, const void *buf)

{
wxCHECK_MSG(format == m_formatShape, false,

wxT(“unsupported format”));

delete m_shape;
m_shape = DnDShape::New(buf);

// the shape has changed
m_hasBitmap = false;
m_hasMetaFile = false;

return true;
}

The way that DndShape serializes itself in and out of a void* buffer is quite
straightforward: it uses a ShapeDump structure that stores the shape’s details.
Here’s how:

// Static function that creates a shape from a void* buffer
DnDShape *DnDShape::New(const void *buf)
{

const ShapeDump& dump = *(const ShapeDump *)buf;
switch (dump.k)
{

case Triangle:
return new DnDTriangularShape(

wxPoint(dump.x, dump.y),
wxSize(dump.w, dump.h),
wxColour(dump.r, dump.g, dump.b));

case Rectangle:
return new DnDRectangularShape(

wxPoint(dump.x, dump.y),
wxSize(dump.w, dump.h),
wxColour(dump.r, dump.g, dump.b));

case Ellipse:
return new DnDEllipticShape(

wxPoint(dump.x, dump.y),
wxSize(dump.w, dump.h),
wxColour(dump.r, dump.g, dump.b));

Implementing Drag and Drop 309

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 309

default:
wxFAIL_MSG(wxT(“invalid shape!”));
return NULL;

}
}

// Gets the data size
size_t DndShape::GetDataSize() const
{

return sizeof(ShapeDump);
}

// Serialises into a void* buffer
void DndShape::GetDataHere(void *buf) const
{

ShapeDump& dump = *(ShapeDump *)buf;
dump.x = m_pos.x;
dump.y = m_pos.y;
dump.w = m_size.x;
dump.h = m_size.y;
dump.r = m_col.Red();
dump.g = m_col.Green();
dump.b = m_col.Blue();
dump.k = GetKind();

}

Finally, going back to the DnDShapeDataObject class, the functions that create
data in metafile and bitmap formats when required look like this:

void DnDShapeDataObject::CreateMetaFile() const
{

wxPoint pos = m_shape->GetPosition();
wxSize size = m_shape->GetSize();

wxMetaFileDC dcMF(wxEmptyString, pos.x + size.x, pos.y + size.y);

m_shape->Draw(dcMF);

wxMetafile *mf = dcMF.Close();

DnDShapeDataObject *self = (DnDShapeDataObject *)this;
self->m_dobjMetaFile.SetMetafile(*mf);
self->m_hasMetaFile = true;

delete mf;
}

void DnDShapeDataObject::CreateBitmap() const
{

wxPoint pos = m_shape->GetPosition();
wxSize size = m_shape->GetSize();
int x = pos.x + size.x,

y = pos.y + size.y;
wxBitmap bitmap(x, y);
wxMemoryDC dc;
dc.SelectObject(bitmap);
dc.SetBrush(wxBrush(wxT(“white”), wxSOLID));

310 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 310

dc.Clear();
m_shape->Draw(dc);
dc.SelectObject(wxNullBitmap);

DnDShapeDataObject *self = (DnDShapeDataObject *)this;
self->m_dobjBitmap.SetBitmap(bitmap);
self->m_hasBitmap = true;

}

Our custom data object implementation is now complete, apart from the
details of how shapes draw themselves and the code to create GUI. For these
details, please see the drag and drop sample source in samples/dnd in your
wxWidgets distribution.

Drag and Drop Helpers in wxWidgets

Here are some of the controls that give you a helping hand when implement-
ing drag and drop.

wxTreeCtrl

You can use the EVT_TREE_BEGIN_DRAG or EVT_TREE_BEGIN_RDRAG event table
macros to intercept the start of left or right dragging, as determined by the
internal tree control mouse-handling code. In your handler for the start of the
drag, call wxTreeEvent::Allow if you want wxTreeCtrl to use its own drag imple-
mentation and send an EVT_TREE_END_DRAG event. If you elect to use the tree
control’s implementation for dragging, a drag image will be created and moved
as the mouse is dragged around the tree control. The drop behavior is deter-
mined entirely by application code in the “end drag” handler.

The following example shows how to use the tree control’s drag and drop
events. When the user drags and drops an item onto another item, a copy will
be appended after the second item.

BEGIN_EVENT_TABLE(MyTreeCtrl, wxTreeCtrl)
EVT_TREE_BEGIN_DRAG(TreeTest_Ctrl, MyTreeCtrl::OnBeginDrag)
EVT_TREE_END_DRAG(TreeTest_Ctrl, MyTreeCtrl::OnEndDrag)

END_EVENT_TABLE()

void MyTreeCtrl::OnBeginDrag(wxTreeEvent& event)
{

// need to explicitly allow drag
if (event.GetItem() != GetRootItem())
{

m_draggedItem = event.GetItem();

wxLogMessage(wxT(“OnBeginDrag: started dragging %s”),
GetItemText(m_draggedItem).c_str());

Implementing Drag and Drop 311

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 311

event.Allow();
}
else
{

wxLogMessage(wxT(“OnBeginDrag: this item can’t be
➥dragged.”));

}
}

void MyTreeCtrl::OnEndDrag(wxTreeEvent& event)
{

wxTreeItemId itemSrc = m_draggedItem,
itemDst = event.GetItem();

m_draggedItem = (wxTreeItemId)0l;

// where to copy the item?
if (itemDst.IsOk() && !ItemHasChildren(itemDst))
{

// copy to the parent then
itemDst = GetItemParent(itemDst);

}

if (!itemDst.IsOk())
{

wxLogMessage(wxT(“OnEndDrag: can’t drop here.”));
return;

}

wxString text = GetItemText(itemSrc);
wxLogMessage(wxT(“OnEndDrag: ‘%s’ copied to ‘%s’.”),

text.c_str(), GetItemText(itemDst).c_str());

// append the item here
int image = wxGetApp().ShowImages() ? TreeCtrlIcon_File : -1;
AppendItem(itemDst, text, image);

}

If you want to handle a drag operation your own way, for example using
wxDropSource, you can omit the wxTreeEvent::Allow call in the drag start han-
dler and start the drag operation using your chosen method. The tree drag end
event will not be sent because it’s up to your code to decide how the drag ends
(if using wxDropSource::DoDragDrop, the drag end detection is handled for you).

wxListCtrl

This class doesn’t provide any default drag image or an end of drag notifica-
tion, but it does let you know when to start a drag operation for an item; use
the EVT_LIST_BEGIN_DRAG or EVT_LIST_BEGIN_RDRAG event table macros and imple-
ment your own drag and drop code. You can also detect when column dividers
are being dragged by using EVT_LIST_COL_BEGIN_DRAG, EVT_LIST_COL_DRAGGING

and EVT_LIST_COL_END_DRAG.

312 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 312

wxDragImage

wxDragImage is a handy class to use when implementing your own drag and
drop; it draws an image on top of a window, and it provides methods to move
the image without damaging the window underneath. The generic implemen-
tation does this by saving a copy of the underlying window and repainting it
along with the image when necessary.

Figure 11-2 shows the main window of the wxDragImage sample, which you
can find in samples/dragimag in your wxWidgets distribution. When the three
puzzle shapes are dragged, a different drag image is used for each: the shape
itself, an icon, and an image dynamically created out of a text string. If you
check Use Whole Screen for Dragging, then the shape may be dragged outside
of the window. On Windows, the sample may be compiled using either the
generic wxDragImage implementation (the default), or the native class by setting
the value of wxUSE_GENERIC_DRAGIMAGE to 1 in dragimag.cpp.

Implementing Drag and Drop 313

Figure 11-2 The wxDragImage sample

When the start of a drag operation is detected, create a wxDragImage object
and store it somewhere that you can access it as the drag progresses. Call
BeginDrag to start and EndDrag to stop the drag. To move the image, initially call
Show and then Move. If you want to update the screen contents during the drag
(for example, highlight an item as in the dragimag sample), call Hide, update the
window, call Move, and then call Show.

You can drag within one window, or you can use full-screen dragging
either across the whole screen or across just one area of it to save resources. If
you want the user to drag between two windows with different top-level par-
ents, then you will need to use full-screen dragging. Full-screen dragging is not
ideal because it takes a snapshot of the screen at the start of the drag and
doesn’t take into account changes that are happening in other applications
during the drag.

Smart_Ch11f.qxd 6/10/05 3:30 PM Page 313

In the following example, based on the sample illustrated in Figure 11-2,
MyCanvas displays a number of shapes of class DragShape, each of which has a
bitmap associated with it. When dragging starts, a new wxDragImage is created
using the shape’s bitmap, and BeginDrag is called. When mouse motion is
detected, wxDragImage::Move is called to render the shape at the appropriate
position on the window. Finally, when the left mouse button is released, the
drag image is destroyed, and the dragged shape is redrawn in its new position.

void MyCanvas::OnMouseEvent(wxMouseEvent& event)
{

if (event.LeftDown())
{

DragShape* shape = FindShape(event.GetPosition());
if (shape)
{

// We tentatively start dragging, but wait for
// mouse movement before dragging properly.
m_dragMode = TEST_DRAG_START;
m_dragStartPos = event.GetPosition();
m_draggedShape = shape;

}
}
else if (event.LeftUp() && m_dragMode != TEST_DRAG_NONE)
{

// Finish dragging
m_dragMode = TEST_DRAG_NONE;

if (!m_draggedShape || !m_dragImage)
return;

m_draggedShape->SetPosition(m_draggedShape->GetPosition()
+ event.GetPosition() - m_dragStartPos);

m_dragImage->Hide();
m_dragImage->EndDrag();
delete m_dragImage;
m_dragImage = NULL;

m_draggedShape->SetShow(true);
m_draggedShape->Draw(dc);
m_draggedShape = NULL;

}
else if (event.Dragging() && m_dragMode != TEST_DRAG_NONE)
{

if (m_dragMode == TEST_DRAG_START)
{

// We will start dragging if we’ve moved beyond a
// couple of pixels
int tolerance = 2;
int dx = abs(event.GetPosition().x - m_dragStartPos.x);
int dy = abs(event.GetPosition().y - m_dragStartPos.y);
if (dx <= tolerance && dy <= tolerance)

return;

// Start the drag.
m_dragMode = TEST_DRAG_DRAGGING;

314 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 314

if (m_dragImage)
delete m_dragImage;

// Erase the dragged shape from the canvas
m_draggedShape->SetShow(false);

wxClientDC dc(this);
EraseShape(m_draggedShape, dc);
DrawShapes(dc);

m_dragImage = new wxDragImage(
m_draggedShape-

//>GetBitmap());

// The offset between the top-left of the shape image and
// the current shape position
wxPoint beginDragHotSpot = m_dragStartPos –

m_draggedShape-
//>GetPosition();

// Always assume coordinates relative to the capture
// window (client coordinates)
if (!m_dragImage->BeginDrag(beginDragHotSpot, this))
{

delete m_dragImage;
m_dragImage = NULL;
m_dragMode = TEST_DRAG_NONE;

} else
{

m_dragImage->Move(event.GetPosition());
m_dragImage->Show();

}
}
else if (m_dragMode == TEST_DRAG_DRAGGING)
{

// Move the image
m_dragImage->Move(event.GetPosition());

}
}

}

If you want to draw the image yourself during the drag, instead of just pass-
ing a bitmap as the dragged image, use wxGenericDragImage and override
wxDragImage::DoDrawImage and wxDragImage::GetImageRect. wxDragImage is an
alias for wxGenericDragImage on non-Windows platforms. The Windows imple-
mentation doesn’t support DoDrawImage and is also limited to drawing rather
ghostly translucent images, so you will probably want to use
wxGenericDragImage on all platforms.

When you start a drag, just before calling wxDragImage::Show, you nor-
mally need to first erase the object you’re about to drag so that wxDragImage can
maintain a backing bitmap consisting of the window without the dragged
object, and so that the object can be superimposed onto this snapshot as it is
dragged. This will cause a slight flicker at the start of the drag. To eliminate

Implementing Drag and Drop 315

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 315

this (for wxGenericDragImage only), override the function UpdateBacking

FromWindow and on the memory device context passed to you, draw the window
contents minus the object about to be dragged. Now you don’t have to erase the
object before the drag image is shown, and the next time the image is moved,
the correct window contents will be drawn, resulting in a completely smooth
drag operation.

SUMMARY

In this chapter, we’ve seen how to transfer data to and from the clipboard.
We’ve also seen how to implement drag and drop from the point of view of both
the data being dropped and the window that’s receiving the data, and
we’ve covered other areas of wxWidgets related to drag and drop. Check
out samples/dnd, samples/dragimag, and samples/treectrl in your wxWidgets
distribution for further insight.

In the next chapter, we will be returning to the topic of windows and
describing some advanced classes that will help you take your application to
new levels of sophistication.

316 Clipboard and Drag and Drop Chapter 11

Smart_Ch11f.qxd 6/10/05 11:21 AM Page 316

C H A P T E R 12

Advanced Window Classes

Although this book can’t cover all the classes in wxWidgets in detail, it’s worth
looking at a few of the more advanced GUI classes that can contribute to the
creation of a more interesting application. This chapter covers the following
topics:

� wxTreeCtrl; a control that helps you model hierarchical data.
� wxListCtrl; a flexible control for showing lists of text labels and icons in

several styles.
� wxWizard; a special dialog to guide your user through a specific task using

a sequence of pages.
� wxHtmlWindow; a highly versatile, lightweight HTML control for use in any-

thing from “About” boxes to report windows.
� wxGrid; a feature-rich control for displaying tabular data.
� wxTaskBarIcon; a quick way for your users to access features in your appli-

cation from the system tray or equivalent.
� Writing your own controls. The necessary steps to build a well-behaved

“custom control.”

WXTREECTRL

A tree control presents information as a hierarchy, with items that may be
expanded or collapsed. Figure 12-1 shows the wxWidgets tree control sample,
displaying different font styles and colors. Each item is referenced by the
wxTreeItemId type and has text and an optional icon that can be changed
dynamically. A tree control can be created in single-selection or multiple-
selection mode. To associate data with tree items, derive a class from wxTree
ItemData and use wxTreeCtrl::SetItemData and wxTreeCtrl::GetItemData. The

317

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 317

tree data will be destroyed when the item or tree is destroyed, so you may
want to store only a pointer to the actual data within your tree item data
objects.

318 Advanced Window Classes Chapter 12

Figure 12-1 wxTreeCtrl

Because clicks on tree item images can be detected by the application,
you can simulate controls within the tree by swapping the images according to
the state you want to show for that item. For example, you can easily add sim-
ulated check boxes to your tree.

The following fragment shows how to create a tree window with custom
tree item data and an image list.

#include “wx/treectrl.h”

// Declare a class to hold tree item data
class MyTreeItemData : public wxTreeItemData
{
public:

MyTreeItemData(const wxString& desc) : m_desc(desc) { }

const wxString& GetDesc() const { return m_desc; }

private:
wxString m_desc;

};

// Images for tree items
#include “file.xpm”

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 318

#include “folder.xpm”

// Create the tree
wxTreeCtrl* treeCtrl = new wxTreeCtrl(

this, wxID_ANY, wxPoint(0, 0), wxSize(400, 400),
wxTR_HAS_BUTTONS|wxTR_SINGLE);

wxImageList* imageList = new wxImageList(16, 16);
imageList->Add(wxIcon(folder_xpm);
imageList->Add(wxIcon(file_xpm);
treeCtrl->AssignImageList(imageList);

// Create a root showing the folder icon, and two items showing
// the file icon
wxTreeItemId rootId = treeCtrl->AddRoot(wxT(“Root”), 0, 0,

new MyTreeItemData(wxT(“Root item”)));
wxTreeItemId itemId1 = treeCtrl->AppendItem(rootId,

wxT(“File 1”), 1, 1,
new MyTreeItemData(wxT(“File item 1”)));

wxTreeItemId itemId2 = treeCtrl->AppendItem(rootId,
wxT(“File 2”), 1, 1,
new MyTreeItemData(wxT(“File item 2”)));

wxTreeCtrl Styles

Table 12-1 lists the styles you can pass to the wxTreeCtrl constructor or Create
function; also refer to the available styles for wxWindow in Table 4-1.

Table 12-1 wxTreeCtrl Window Styles

wxTR_DEFAULT_STYLE The styles that are closest to the defaults for
the native control for a particular toolkit.

wxTR_EDIT_LABELS Use this style if you want the user to be able
to edit labels in the tree control.

wxTR_NO_BUTTONS Specifies that no buttons should be drawn.
wxTR_HAS_BUTTONS Use this style to show plus and minus buttons

to the left of parent items.
wxTR_NO_LINES Use this style to hide vertical level connectors.
wxTR_FULL_ROW_HIGHLIGHT Use this style to make the background color

and the selection highlight extend over the
entire horizontal row of the tree control win-
dow. (This style is ignored under Windows
unless you specify wxTR_NO_LINES as well.)

wxTreeCtrl 319

(continues)

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 319

Table 12-1 wxTreeCtrl Window Styles (Continued)

wxTR_LINES_AT_ROOT Use this style to show lines between root
nodes. Only applicable if wxTR_HIDE_ROOT is
set and wxTR_NO_LINES is not set.

wxTR_HIDE_ROOT Use this style to suppress the display of the
root node, effectively causing the first-level
nodes to appear as a series of root nodes.

wxTR_ROW_LINES Use this style to draw a contrasting border
between displayed rows.

wxTR_HAS_VARIABLE_ROW_HEIGHT Use this style to cause row heights to be just
big enough to fit the content. If not set, all
rows use the largest row height. The default is
that this style is unset. Generic implementa-
tion only.

wxTR_SINGLE Specifies that only one item may be selected at
a time. Selecting another item causes the cur-
rent selection, if any, to be deselected. This is
the default.

wxTR_MULTIPLE Use this style to enable a range of items to be
selected. If a second range is selected, the cur-
rent range, if any, is deselected.

wxTR_EXTENDED Use this style to enable disjoint items to be
selected. (Only partially implemented.)

wxTreeCtrl Events

wxTreeCtrl generates wxTreeEvent events, listed in Table 12-2. These events
propagate up the window parent-child hierarchy.

Table 12-2 wxTreeCtrl Events

EVT_TREE_BEGIN_DRAG(id, func) Generated when a left or right drag is
EVT_TREE_BEGIN_RDRAG(id, func) starting. For details on handling these

events, see Chapter 11, “Clipboard and
Drag and Drop.”

EVT_TREE_BEGIN_LABEL_EDIT(id, func) Generated when the user starts or fin-
EVT_TREE_END_LABEL_EDIT(id, func) ishes editing an item label.
EVT_TREE_DELETE_ITEM(id, func) Generated when an item is deleted.
EVT_TREE_GET_INFO(id, func) Generated when an item’s data is

requested.
EVT_TREE_SET_INFO(id, func) Generated when an item’s data is set.

320 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 320

EVT_TREE_ITEM_ACTIVATED(id, func) Generated when an item has been acti-
vated, that is, chosen by double-clicking
or via the keyboard. For example, if the
tree represents a file hierarchy, you
might display a preview of the activated
file.

EVT_TREE_ITEM_COLLAPSED(id, func) Generated when the given item has been
collapsed (all its children are hidden).

EVT_TREE_ITEM_COLLAPSING(id, func) Generated when the given item is about
to be collapsed. This event can be vetoed
to prevent the collapse from taking
place.

EVT_TREE_ITEM_EXPANDED(id, func) Generated when the given item has been
expanded (all its children are exposed).

EVT_TREE_ITEM_EXPANDING(id, func) Generated when the given item is about
to be expanded. This event can be vetoed
to prevent the item from being
expanded.

EVT_TREE_SEL_CHANGED(id, func) Generated when a selection has
changed.

EVT_TREE_SEL_CHANGING(id, func) Generated when a selection is about to
change. This event can be vetoed to pre-
vent the item from being selected.

EVT_TREE_KEY_DOWN(id, func) Used to detect whether a key has been
pressed.

EVT_TREE_ITEM_GET_TOOLTIP(id, func) Enables you to set a tooltip for a particu-
lar item; this is only available on
Windows.

wxTreeCtrl Member Functions

These are the important wxTreeCtrl functions.
Use AddRoot to create the first item and then AppendItem, InsertItem, or

PrependItem to add subsequent items. Remove an item with Delete, clear all
items with DeleteAllItems, or remove all of an item’s immediate descendants
with DeleteChildren.

Set an item’s label with SetItemText; you can change the label’s appear-
ance with SetItemTextColour, SetItemBackgroundColour, SetItemBold, and
SetItemFont.

If you show images in your tree items, use SetImageList or AssignImage
List to associate a wxImageList with the tree control. Each item can show an
image for each of the possible item states: wxTreeItemIcon_Normal,
wxTreeItemIcon_Selected, wxTreeItemIcon_Expanded, and wxTreeItemIcon_Selected
Expanded. Use SetItemImage to pass an index into the tree control’s image list

wxTreeCtrl 321

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 321

and an optional state. If only the image for the normal state is specified, it will
be used for the other states, too.

Scroll an item into view with ScrollTo, or use EnsureVisible if items may
need to be expanded to show the desired item. Expand shows the children of an
item. Collapse an item that has children with Collapse or CollapseAndReset:
the latter also removes the children. This is useful if you’re implementing a
tree control with a very large number of items. You may want to add items
only when they are visible—that is, when you process an EVT_TREE_ITEM_EXPANDING
event. In this case, you will need to use SetItemHasChildren to provide visual
feedback that an unexpanded item has children, even when it doesn’t.

You can select or deselect an item with SelectItem. For a single-selection
tree, you can get the currently selected item with GetSelection. If there is no
selection, it returns an invalid wxTreeItemId, such that a call to wxTree
ItemId::IsOk returns false. For a multiple-selection tree, retrieve all the selec-
tions with GetSelections by passing a wxArrayTreeItemItemIds reference to the
function. Unselect removes the current selection for a single-selection tree,
whereas UnselectAll removes all selections from a multiple-selection tree.
UnselectItem can be used in a multiple-selection tree to deselect a specific
item.

There are several ways to traverse the tree: you can start at the top with
GetRootItem and iterate through the children of an item with GetFirstChild
and GetNextChild. Find the next and previous siblings of an item with
GetNextSibling and GetPrevSibling, determine whether an item has children
with ItemHasChildren, and get the parent of an item with GetParent. GetCount
returns the total number of items in the tree, and GetChildrenCount counts the
number of descendants for the given item.

HitTest is a useful function if you’re implementing drag and drop—it
enables you to find the item under the mouse position, together with the part
of the item. See the reference manual for the flags returned by HitTest. You
can find the bounding rectangle for an item with GetBoundingRect.

For more information on these functions, see the reference manual and
the wxTreeCtrl sample in samples/treectrl.

WXLISTCTRL

The list control displays items in one of four views: a multi-column list view, a
multi-column report view with optional icons, a large icon view, and a small
icon view. See Figure 12-2 for examples of these views from the wxListCtrl
sample. Each item in a list control is identified by a long integer index repre-
senting its zero-based position in the list, which will change as items are
added and deleted or as the content is sorted. Unlike the tree control, the
default is to allow multiple selections, and single-selection can be specified
with a window style. You can supply a sort function if you need the items to be
sorted. The report view can display an optional header, whose columns

322 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 322

respond to mouse clicks—useful for sorting the contents of the column, for
example. The widths of a report view’s columns can be changed either by the
application or by dragging on the column dividers.

wxListCtrl 323

Figure 12-2 wxListCtrl in report, list, icon, and small icon modes

Client data can be associated with items, but it works differently from
wxTreeCtrl. Each item has a long integer available for client data, so if you
have objects to associate with items, this must be done by the application—for
example, with a mapping from long integer to object pointer—and you must
free this data yourself.

wxListCtrl Styles

Table 12-3 lists the styles you can pass to the wxListCtrl constructor or Create
function. Also refer to the available styles for wxWindow in Table 4-1.

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 323

Table 12-3 wxListCtrl Window Styles

wxLC_LIST A multicolumn list view with optional small icons.
Columns are computed automatically—you don’t set
columns as in wxLC_REPORT. In other words, the list
wraps, unlike a wxListBox.

wxLC_REPORT A single or multicolumn report view with optional
header.

wxLC_VIRTUAL Specifies that the application provides text on demand;
may only be used with wxLC_REPORT.

wxLC_ICON Large icon view with optional labels.
wxLC_SMALL_ICON Small icon view with optional labels.
wxLC_ALIGN_TOP Icons align to the top. Windows only.
wxLC_ALIGN_LEFT Icons align to the left.
wxLC_AUTO_ARRANGE Icons arrange themselves. Windows only.
wxLC_EDIT_LABELS Labels are editable; the application will be notified

when editing starts.
wxLC_NO_HEADER No header will be shown in report mode.
wxLC_SINGLE_SEL Specifies single-selection; the default is multiple-

selection.
wxLC_SORT_ASCENDING Sorts in ascending order. The application must still sup-

ply a comparison callback in SortItems.
wxLC_SORT_DESCENDING Sorts in descending order. The application must still

supply a comparison callback in SortItems.
wxLC_HRULES Draws light horizontal rules between rows in report

mode.
wxLC_VRULES Draws light horizontal rules between columns in report

mode.

wxListCtrl Events

wxListCtrl generates wxListEvent events, described in Table 12-4. These
events propagate up the window parent-child hierarchy. Events dealing with
a single item return the item index with wxListEvent::GetIndex.

Table 12-4 wxListCtrl Events

EVT_LIST_BEGIN_DRAG(id, func) Use these events to detect a drag start
EVT_LIST_BEGIN_RDRAG(id, func) event; you need to supply code to

implement the rest of the drag behav-
ior. Call wxListEvent::GetPoint to
get the position of the mouse pointer.

324 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 324

EVT_LIST_BEGIN_LABEL_EDIT(id, func) Use these events to detect when the
EVT_LIST_END_LABEL_EDIT(id, func) user has started or finished editing a

label. The edit can be vetoed by calling
the event object’s Veto function.
wxListEvent::GetText returns the
label.

EVT_LIST_DELETE_ITEM(id, func) These events tell you when an item was
EVT_LIST_DELETE_ALL_ITEMS(id, func) deleted or when all items were deleted.
EVT_LIST_ITEM_SELECTED(id, func) Used to detect a selection or deselection
EVT_LIST_ITEM_DESELECTED(id, func) event.
EVT_LIST_ITEM_ACTIVATED(id, func) Detect an activation with the Enter key

or a double-click.
EVT_LIST_ITEM_FOCUSED(id, func) Use to be notified when the focus has

changed to a different item.
EVT_LIST_ITEM_MIDDLE_CLICK(id, func) Use to detect when the middle or right
EVT_LIST_ITEM_RIGHT_CLICK(id, func) mouse button has been clicked.
EVT_LIST_KEY_DOWN(id, func) Use to detect when a key has been

pressed. Use wxListEvent::GetKeyCode
to find the key pressed.

EVT_LIST_INSERT_ITEM(id, func) Use to detect the insertion of an item.
EVT_LIST_COL_CLICK(id, func) Use to detect a left or right mouse click
EVT_LIST_COL_RIGHT_CLICK(id, func) on a column. Use wxListEvent::Get

Column in conjunction with these
events.

EVT_LIST_COL_BEGIN_DRAG(id, func) Generated when a column is being
EVT_LIST_COL_DRAGGING(id, func) resized; you can veto the begin drag
EVT_LIST_COL_END_DRAG(id, func) event. Use wxListEvent::GetColumn in

conjunction with these events.

EVT_LIST_CACHE_HINT(id, func) If you are implementing a virtual list
control, you may want to update inter-
nal data structures before a range of
items is drawn. Use this event to do the
updating at the right time, calling
wxListEvent::GetCacheFrom and
wxListEvent::GetCacheTo to find the
items that need updating.

wxListItem

wxListItem is a class you can use to insert an item, set an item’s properties, or
retrieve information from an item.

Use SetMask to indicate which properties you want to be taken into
account, as described in Table 12-5.

wxListCtrl 325

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 325

Table 12-5 wxListItem Mask Flags

wxLIST_MASK_STATE The state property is valid.
wxLIST_MASK_TEXT The text property is valid.
wxLIST_MASK_IMAGE The image property is valid.
wxLIST_MASK_DATA The data property is valid.
wxLIST_MASK_WIDTH The width property is valid.
wxLIST_MASK_FORMAT The format property is valid.

Call SetId to set the zero-based item position, and call SetColumn to set the
zero-based column position if the control is in report mode.

Call SetState to set the item state, as listed in Table 12-6.

Table 12-6 wxListItem State Styles

wxLIST_STATE_DONTCARE We don’t care what the state is.
wxLIST_STATE_DROPHILITED The item is highlighted to receive a drop event

(Windows only).
wxLIST_STATE_FOCUSED The item has the focus.
wxLIST_STATE_SELECTED The item is selected.
wxLIST_STATE_CUT The item is in the cut state (Windows only).

Call SetStateMask to indicate which states you are modifying. This method
uses the same symbols as for SetState.

Call SetText to set the label or header text, and call SetImage to set the
zero-based index into an image list.

Call SetData with a long integer argument to associate data with the item.
For columns only, call SetFormatwith wxLIST_FORMAT_LEFT,wxLIST_FORMAT_RIGHT,

or wxLIST_FORMAT_CENTRE (identical to wxLIST_FORMAT_CENTER). Also for columns
only, call SetColumnWidth to set the column’s width.

Other functions set various additional visual properties: SetAlign,
SetBackgroundColour, SetTextColour, and SetFont. These don’t require a mask
flag to be specified. All wxListItem functions have equivalent accessors pre-
fixed by Get for retrieving information about an item.

Here’s an example of using wxListItem to select the second item, set its
text label, and color it red:

wxListItem item;
item.SetId(1);
item.SetMask(wxLIST_MASK_STATE|wxLIST_MASK_TEXT);
item.SetStateMask(wxLIST_STATE_SELECTED);
item.SetState(wxLIST_STATE_SELECTED);
item.SetTextColour(*wxRED);
item.SetText(wxT(“Red thing”));

listCtrl->SetItem(item);

326 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 326

As an alternative to using wxListItem, you can set and get properties for an
item with wxListCtrl convenience functions such as SetItemText, SetItemImage,
SetItemState, GetItemText, GetItemImage, GetItemState, and so on as described in
the following.

wxListCtrl Member Functions

These are the important wxListCtrl functions.
Call Arrange to arrange the items in icon or small icon view, on Windows

only.
Use AssignImageList to associate an image list and have wxListCtrl han-

dle its deletion; use SetImageList if you don’t want wxListCtrl to delete it. Pass
wxIMAGE_LIST_NORMAL or wxIMAGE_LIST_SMALL to tell wxListCtrl what set of icons
this image list will be used for. GetImageList retrieves a pointer to either list.

InsertItem inserts an item at the specified position in the control. You can
pass a wxListItem object having set its member variables. Alternatively, you
can pass an item index and a string label, or an item index and an image
index, or an item index, a label, and an image index. InsertColumn inserts a col-
umn in report view.

ClearAll deletes all items and (in report view) columns, and it generates
an all-items deletion event. DeleteAllItems deletes all items but not columns
and generates an all-items deletion event. DeleteItem deletes a single item and
generates an item deletion event. DeleteColumn deletes a column in report view.

Use SetItem to set information about an item: you can pass a wxListItem
object as explained previously, or you can pass an index, column, label, and
image index. GetItem can be used to get information about the index specified
with wxListItem::SetId.

Call SetItemData with an index and a long data value to associate application-
defined data with the item. For most platforms, you can store a pointer in this
integer value, but on some platforms, a pointer will not fit into an integer. In
these cases, you can use a hashmap to map from integer to object pointer, for
example. GetItemData retrieves the item for the given index. Note that if the
position of an item moves due to sorting, insertion, or removal, the index of the
item may change, but its item data will remain the same, so this is a way of
identifying an item.

Use SetItemImage to change the image associated with an item; it takes
an item index and an index into the image list.

SetItemState sets the state for the given item; you must supply a state
mask to specify which state flags are being changed. See the description for
wxListItem in the previous section for more details. GetItemState is used to
retrieve the state for a given item.

Use SetItemText to set the item’s label and GetItemText to retrieve the
label.

wxListCtrl 327

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 327

SetTextColour sets the text color for all items, and SetBackgroundColour
sets the background color for the control. SetItemTextColour and
SetItemBackgroundColour set an individual item’s text and background colors,
in report view only. The usual getters are available to retrieve text and back-
ground colors.

EditLabel starts editing a label and sends a wxEVT_LIST_BEGIN_LABEL_EDIT
event. You can get the current text control used for editing with GetEditControl
(Windows only).

Use EnsureVisible if you need a particular item to be visible. ScrollList
scrolls by a given number of pixels in each orientation (Windows only). Use
RefreshItem or RefreshItems to refresh the appearance of an item or a range of
items, particularly when using a virtual list control when the underlying data
has changed. GetTopItem returns the index of the topmost visible item when in
list or report view.

FindItem is a versatile overloaded function that can be used to search for
items with a given label, data, or position. GetNextItem is used to search for an
item with the given state (for example, to find all selected items). Use HitTest
to find an item at a given point. GetItemPosition returns the position of an
item in icon or small icon view in client coordinates, and GetItemRect returns
an item’s size and position in client coordinates.

You can change the style of a wxListCtrl dynamically, without having to
destroy and re-create it: use SetSingleStyle to set a style such as wxLC_REPORT.
Pass false to this function to remove the style.

Use SetColumn in report mode to set information about a column, such as
header label and width: see wxListItem in the previous section. Use
SetColumnWidth to set a column’s width, as a simpler alternative to SetColumn.
You can get column information with GetColumn and GetColumnWidth. Get the
number of columns with GetColumnCount (report view only).

Get the number of items in a list control with GetItemCount and the num-
ber of selected items with GetSelectedItemCount. GetCountPerPage returns the
number of items that can fit vertically in the visible area of the control (in list
or report view) or the total number of items in the control (icon or small icon
view).

Finally, SortItems can be used to sort the items in a list control. Pass the
address of a wxListCtrlCompare function that takes two item data values and a
further data integer, and returns an integer representing the ordering of the
two items. This integer should be zero for identity, negative if the first is less
than the second, and positive if the first is greater than the second. For sorting
to work, you must associate a long integer value with each item (via
wxListItem::SetData, for example). These values will be passed to the compari-
son function.

328 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 328

Using wxListCtrl

The following fragment shows how to create and populate a report list control.
The list has three columns and ten items, each with a 16×16 file icon at the
start of the row.

#include “wx/listctrl.h”

// Images for report items
#include “file.xpm”
#include “folder.xpm”

// Create a list in report mode
wxListCtrl* listCtrlReport = new wxListCtrl(

this, wxID_ANY, wxDefaultPosition, wxSize(400, 400),
wxLC_REPORT|wxLC_SINGLE_SEL);

// Assign an image list to the control
wxImageList* imageList = new wxImageList(16, 16);
imageList->Add(wxIcon(folder_xpm));
imageList->Add(wxIcon(file_xpm));
listCtrlReport->AssignImageList(imageList, wxIMAGE_LIST_SMALL);

// Insert three columns
wxListItem itemCol;
itemCol.SetText(wxT(“Column 1”));
itemCol.SetImage(-1);
listCtrlReport->InsertColumn(0, itemCol);
listCtrlReport->SetColumnWidth(0, wxLIST_AUTOSIZE);

itemCol.SetText(wxT(“Column 2”));
itemCol.SetAlign(wxLIST_FORMAT_CENTRE);
listCtrlReport->InsertColumn(1, itemCol);
listCtrlReport->SetColumnWidth(1, wxLIST_AUTOSIZE);

itemCol.SetText(wxT(“Column 3”));
itemCol.SetAlign(wxLIST_FORMAT_RIGHT);
listCtrlReport->InsertColumn(2, itemCol);
listCtrlReport->SetColumnWidth(2, wxLIST_AUTOSIZE);

// Insert ten items
for (int i = 0; i < 10; i++)
{

int imageIndex = 0;
wxString buf;

// Insert an item, with a string for column 0,
// and image index 0
buf.Printf(wxT(“This is item %d”), i);
listCtrlReport->InsertItem(i, buf, imageIndex);

// The item may change position due to e.g. sorting,
// so store the original index in the item’s data
listCtrlReport->SetItemData(i, i);

// Set a string for column 1
buf.Printf(wxT(“Col 1, item %d”), i);
listCtrlReport->SetItem(i, 1, buf);

wxListCtrl 329

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 329

// Set a string for column 2
buf.Printf(wxT(“Item %d in column 2”), i);
listCtrlReport->SetItem(i, 2, buf);

}

Virtual List Controls

Normally, wxListCtrl stores the label, image, and visual attributes for each
item. This is fine for a modest amount of data, but if you have thousands of
items, you may want to consider implementing a virtual list control. You sup-
ply the virtual functions OnGetItemLabel, OnGetItemImage, and OnGetItemAttr for
the control to call when it needs the information. You must call SetItemCount to
indicate how many items there are in the list control because you won’t be
appending any items in the usual way. You can optionally use
EVT_LIST_CACHE_HINT to update your internal structures for a given range of
items, just before painting is about to happen. Here are trivial examples of the
three overridden functions:

wxString MyListCtrl::OnGetItemText(long item, long column) const
{

return wxString::Format(wxT(“Column %ld of item %ld”), column, item);
}

int MyListCtrl::OnGetItemImage(long WXUNUSED(item)) const
{

// Return the zeroth image for all items
return 0;

}

wxListItemAttr *MyListCtrl::OnGetItemAttr(long item) const
{

// Use internally stored attributes for every other items
return item % 2 ? NULL : (wxListItemAttr *)&m_attr;

}

To create and populate the virtual list, we don’t append any items; we simply
set the item count to a ridiculously large number:

virtualListCtrl = new MyListCtrl(parent, wxID_ANY,
wxDefaultPosition, wxDefaultSize, wxLC_REPORT|wxLC_VIRTUAL);

virtualListCtrl->SetImageList(imageListSmall, wxIMAGE_LIST_SMALL);

virtualListCtrl->InsertColumn(0, wxT(“First Column”));
virtualListCtrl->InsertColumn(1, wxT(“Second Column”));
virtualListCtrl->SetColumnWidth(0, 150);
virtualListCtrl->SetColumnWidth(1, 150);

virtualListCtrl->SetItemCount(1000000);

330 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 330

When the underlying data changes in the control, set the item count if it has
changed and call wxListCtrl::RefreshItem or wxListCtrl::RefreshItems.

For a full sample, please see samples/listctrl.

WXWIZARD

The wizard is a great way to break a complex set of choices and settings down
into a sequence of simple dialogs. It can be presented to novice users to help
them get started with a particular feature in an application, such as gathering
information for a new project, exporting data, and so on. Often the settings
presented in a wizard can be altered elsewhere in the application’s user inter-
face, but presenting them in a wizard focuses the user on the essentials for
getting a specific task completed.

A wizard comprises a series of dialog-like pages set inside a window that
normally has an image on the left (the same for all pages, or different for each
page), and a row of buttons along the bottom for navigating between pages
and getting help. As the user progresses through the wizard, the old page is
hidden and a new one is shown. The path through a wizard can be determined
by choices the user makes, so not all available pages are necessarily shown
each time a wizard is presented.

When the standard wizard buttons are pressed, events are sent to the
pages (and to the wxWizard object). You can catch events either in the page
class or in a class derived from wxWizard.

To show a wizard, create an instance of wxWizard (or a derived class) and
create the pages as children of the wizard. You can use wxWizardPageSimple (or
a derived class) and chain the pages together with wxWizardPageSimple::Chain.
Or, if you need to determine the path through the wizard dynamically accord-
ing to user selections, you can derive from wxWizardPage and override GetPrev
and GetNext. Add each page to the sizer returned by GetPageAreaSizer so that
the wizard can adapt its size to the largest page.

wxWizard’s only special window style is wxWIZARD_EX_HELPBUTTON, which
adds a Help button to the wizard’s row of standard buttons. This is an “extra”
style, which must be set with SetExtraStyle before Create is called.

wxWizard Events

wxWizard generates wxWizardEvent events, which are described in Table 12-7.
These events are sent first to the page, and if not processed, to the wizard
itself. Except for EVT_WIZARD_FINISHED, event handlers can call wxWizard

Event::GetPage to determine the currently active page.

wxWizard 331

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 331

Table 12-7 wxWizard Events

EVT_WIZARD_PAGE_CHANGED(id, func) Use this event to detect when a page has
been changed. The event handler func-
tion can call wxWizardEvent::
GetDirection (true if going forward).

EVT_WIZARD_PAGE_CHANGING(id, func) Use to detect when a page is about to be
changed (including when the Finish but-
ton was clicked); the event can be vetoed.
The event handler function can call
wxWizardEvent::GetDirection (true if
going forward).

EVT_WIZARD_CANCEL(id, func) Used to detect when the user has clicked
the Cancel button; this can be vetoed.

EVT_WIZARD_HELP(id, func) Use to show help when the user clicks on
the Help button.

EVT_WIZARD_FINISHED(id, func) Use to react to the user clicking on the
Finish button. This event is generated
just after the dialog has been closed.

wxWizard Member Functions

These are the main member functions for wxWizard.
GetPageAreaSizer returns the sizer that manages the page area. Add all

pages to this sizer, or one page from which the others can be reached with
GetNext, to make the wizard size itself according to the maximum page size. If
you don’t do this, you should call FitToPage for the first page before running the
wizard, or for all pages if calling wxWizardPage::GetNext might not visit all pages.

GetCurrentPage returns the current active page, or NULL if RunWizard is not
executing.

GetPageSize returns the size available for all pages. You can use
SetPageSize to set the page size used by all pages, but this is deprecated in
favor of adding pages to the sizer returned by GetPageAreaSizer.

Call RunWizard to set the wizard running, passing the first page to be
shown. RunWizard returns true if the user successfully finished the wizard, or
false if the user cancelled it.

To specify the border around the page area, call SetBorder. The default
is zero.

wxWizard Example

Let’s examine the wxWizard sample from the wxWidgets distribution. It con-
sists of four pages, illustrated in Figure 12-3 (the numbers are for clarity and
are not on the actual dialogs).

332 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 332

Figure 12-3 Wizard sample

wxWizard 333

The first page is so simple that it doesn’t have its own derived class—the
driving function MyFrame::OnRunWizard simply creates an instance of
wxWizardPageSimple and adds a static text control to it, like this:

#include “wx/wizard.h”

wxWizard *wizard = new wxWizard(this, wxID_ANY,
wxT(“Absolutely Useless Wizard”),
wxBitmap(wiztest_xpm),
wxDefaultPosition,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER);

// PAGE 1
wxWizardPageSimple *page1 = new wxWizardPageSimple(wizard);
wxStaticText *text = new wxStaticText(page1, wxID_ANY,

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 333

wxT(“This wizard doesn’t help you\nto do anything at all.\n”)
wxT(“\n”)
wxT(“The next pages will present you\nwith more useless controls.”),

wxPoint(5,5));

The second page, wxCheckboxPage, is derived from wxWizardPage and implements
GetPrev and GetNext. GetPrev always returns the first page, but GetNext can
return either the next page or the last page, depending on whether the user
checked Skip the Next Page. Here’s the declaration and implementation of
wxCheckBoxPage:

// this shows how to dynamically (i.e. during run-time) arrange
// the page order
// PAGE 2
class wxCheckboxPage : public wxWizardPage
{
public:

wxCheckboxPage(wxWizard *parent,
wxWizardPage *prev,
wxWizardPage *next)

: wxWizardPage(parent)
{

m_prev = prev;
m_next = next;

wxBoxSizer *mainSizer = new wxBoxSizer(wxVERTICAL);

mainSizer->Add(
new wxStaticText(this, wxID_ANY, wxT(“Try checking the box

below and\n”)
wxT(“then going back and clearing it”)),

0, // No vertical stretching
wxALL,
5 // Border width

);

m_checkbox = new wxCheckBox(this, wxID_ANY,
wxT(“&Skip the next page”));

mainSizer->Add(
m_checkbox,
0, // No vertical stretching
wxALL,
5 // Border width

);

SetSizer(mainSizer);
mainSizer->Fit(this);

}

// implement wxWizardPage functions
virtual wxWizardPage *GetPrev() const { return m_prev; }
virtual wxWizardPage *GetNext() const
{

return m_checkbox->GetValue() ? m_next->GetNext() : m_next;

334 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 334

}

private:
wxWizardPage *m_prev,

*m_next;

wxCheckBox *m_checkbox;
};

The third page, wxRadioboxPage, intercepts cancel and page changing events. If
you try to cancel at this point, you will be asked to confirm the cancel: if you
click on No, wxWizardEvent::Veto will be called and the wizard will not be can-
celled. OnWizardPageChanging vetoes any attempt to go forwards or backwards
that hasn’t first been specified using the radio buttons. In a realistic applica-
tion, you might use the page changing event to ensure that the user has filled
out all mandatory fields in this page before proceeding. Or you may want to
prevent the user from going back one page for some reason. This is the code for
wxRadioboxPage:

// This is a more complicated example of validity checking:
// using events we may allow the user to return to the previous
// page, but not to proceed. It also demonstrates how to
// intercept a Cancel button press.
// PAGE 3
class wxRadioboxPage : public wxWizardPageSimple
{
public:

// directions in which we allow the user to proceed from this
// page
enum
{

Forward, Backward, Both, Neither
};

wxRadioboxPage(wxWizard *parent) : wxWizardPageSimple(parent)
{

// should correspond to the enum above
static wxString choices[] = { wxT(“forward”), wxT(“backward”),

wxT(“both”), wxT(“neither”) };

m_radio = new wxRadioBox(this, wxID_ANY, wxT(“Allow to proceed:”),
wxDefaultPosition, wxDefaultSize,
WXSIZEOF(choices), choices,
1, wxRA_SPECIFY_COLS);

m_radio->SetSelection(Both);

wxBoxSizer *mainSizer = new wxBoxSizer(wxVERTICAL);
mainSizer->Add(

m_radio,
0, // No stretching
wxALL,
5 // Border

);
SetSizer(mainSizer);

wxWizard 335

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 335

mainSizer->Fit(this);
}

// wizard event handlers
void OnWizardCancel(wxWizardEvent& event)
{

if (wxMessageBox(wxT(“Do you really want to cancel?”),
wxT(“Question”),
wxICON_QUESTION | wxYES_NO, this) != wxYES)

{
// not confirmed
event.Veto();

}
}

void OnWizardPageChanging(wxWizardEvent& event)
{

int sel = m_radio->GetSelection();

if (sel == Both)
return;

if (event.GetDirection() && sel == Forward)
return;

if (!event.GetDirection() && sel == Backward)
return;

wxMessageBox(wxT(“You can’t go there”), wxT(“Not allowed”),
wxICON_WARNING | wxOK, this);

event.Veto();
}

private:
wxRadioBox *m_radio;

DECLARE_EVENT_TABLE()
};

The fourth and last page, wxValidationPage, overrides TransferDataFromWindow
to do a validation check on the state of the check box. TransferDataFromWindow
is called whenever the Back or Next buttons are clicked, and if the validation
or data transfer fails, the page is not changed. As with all dialogs, instead of
overriding TransferDataFromWindow, you can use validators for the page con-
trols. This page also demonstrates the use of an image for a particular page,
overriding the image passed to the wizard constructor. Here’s the code for
wxValidationPage:

// This shows how to simply control the validity of the user input
// by just overriding TransferDataFromWindow() - of course, in a
// real program, the check wouldn’t be so trivial and the data
// will be saved somewhere too.
//

336 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 336

// It also shows how to use a different bitmap for one of the pages.
// PAGE 4
class wxValidationPage : public wxWizardPageSimple
{
public:

wxValidationPage(wxWizard *parent) : wxWizardPageSimple(parent)
{

m_bitmap = wxBitmap(wiztest2_xpm);

m_checkbox = new wxCheckBox(this, wxID_ANY,
wxT(“&Check me”));

wxBoxSizer *mainSizer = new wxBoxSizer(wxVERTICAL);
mainSizer->Add(

new wxStaticText(this, wxID_ANY,
wxT(“You need to check the checkbox\n”)
wxT(“below before going to the next page\n”)),

0,
wxALL,
5

);

mainSizer->Add(
m_checkbox,
0, // No stretching
wxALL,
5 // Border

);
SetSizer(mainSizer);
mainSizer->Fit(this);

}

virtual bool TransferDataFromWindow()
{

if (!m_checkbox->GetValue())
{

wxMessageBox(wxT(“Check the checkbox first!”),
wxT(“No way”),
wxICON_WARNING | wxOK, this);

return false;
}
return true;

}

private:
wxCheckBox *m_checkbox;

};

The code that puts all the pages together and starts the wizard looks like this:

void MyFrame::OnRunWizard(wxCommandEvent& event)
{

wxWizard *wizard = new wxWizard(this, wxID_ANY,
wxT(“Absolutely Useless Wizard”),
wxBitmap(wiztest_xpm),
wxDefaultPosition,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER);

wxWizard 337

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 337

// a wizard page may be either an object of a predefined class
wxWizardPageSimple *page1 = new wxWizardPageSimple(wizard);
wxStaticText *text = new wxStaticText(page1, wxID_ANY,

wxT(“This wizard doesn’t help you\nto do anything at all.\n”)
wxT(“\n”)
wxT(“The next pages will present you\nwith more useless

controls.”),
wxPoint(5,5)
);

// ... or a derived class
wxRadioboxPage *page3 = new wxRadioboxPage(wizard);
wxValidationPage *page4 = new wxValidationPage(wizard);

// set the page order using a convenience function – could
// also use SetNext/Prev directly as below
wxWizardPageSimple::Chain(page3, page4);

// this page is not a wxWizardPageSimple, so we use SetNext/Prev
// to insert it into the chain of pages
wxCheckboxPage *page2 = new wxCheckboxPage(wizard, page1, page3);
page1->SetNext(page2);
page3->SetPrev(page2);

// allow the wizard to size itself around the pages
wizard->GetPageAreaSizer()->Add(page1);

if (wizard->RunWizard(page1))
{

wxMessageBox(wxT(“The wizard successfully completed”),
wxT(“That’s all”), wxICON_INFORMATION | wxOK);

}

wizard->Destroy();
}

When the wizard is finished or canceled, MyFrame intercepts the events and, in
this example, reports them on the frame’s status bar. You could equally inter-
cept these events in a class derived from wxWizard.

The full listing of the sample can be found in Appendix J, “Code Listings,”
and the code can be found in examples/chap12 on the CD-ROM.

WXHTMLWINDOW

wxHtmlWindow is used by wxWidgets’ built-in help system, and it is also a great
control to use in your applications whenever you need to display formatted
text and graphics, such as reports. It can display a useful subset of HTML,
including tables, but not frames. Features include animated GIFs, high-
lighted links, fonts, background color, nested lists, centering, right-alignment,
horizontal rules, character encoding support, and more. It doesn’t support
style sheets, but you can normally achieve the effects you want by writing or

338 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 338

generating the appropriate tags. HTML text is selectable and can be copied to
the clipboard or returned to the application as plain text.

Figure 12-4 shows the wxHtmlWindow demo program that you can compile
and run in samples/html/test.

wxHtmlWindow 339

Figure 12-4 The wxHtmlWindow demo program

Because wxHtmlWindow is small and fast (unlike a full web browser), you
can use it liberally in your application. Figure 12-5 shows an example of
wxHtmlWindow in an “About” box.

Figure 12-5 wxHtmlWindow in an About box

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 339

The code to create this dialog is shown in Listing 12-1. In this example,
the HTML control is sized to fit the HTML that has been loaded, and then the
dialog sizers set the dialog to fit around the wxHtmlWindow.

Listing 12-1 Code to Create an HTML About Box

#include “wx/html/htmlwin.h”

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(event))
{

wxBoxSizer *topsizer;
wxHtmlWindow *html;
wxDialog dlg(this, wxID_ANY, wxString(_(“About”)));

topsizer = new wxBoxSizer(wxVERTICAL);

html = new wxHtmlWindow(&dlg, wxID_ANY, wxDefaultPosition,
wxSize(380, 160), wxHW_SCROLLBAR_NEVER);

html->SetBorders(0);

html->LoadPage(wxT(“data/about.htm”));

// Fit the HTML window to the size of its contents
html->SetSize(html->GetInternalRepresentation()->GetWidth(),

html->GetInternalRepresentation()->GetHeight());

topsizer->Add(html, 1, wxALL, 10);

topsizer->Add(new wxStaticLine(&dlg, wxID_ANY), 0, wxEXPAND | wxLEFT |
wxRIGHT, 10);

wxButton *but = new wxButton(&dlg, wxID_OK, _(“OK”));
but->SetDefault();

topsizer->Add(but, 0, wxALL | wxALIGN_RIGHT, 15);

dlg.SetSizer(topsizer);
topsizer->Fit(&dlg);

dlg.ShowModal();
}

Listing 12-2 shows the HTML that displays as in the sample screenshot.

Listing 12-2 HTML for the About Box Sample

<html>
<body bgcolor=”#FFFFFF”>
<table cellspacing=3 cellpadding=4 width=”100%”>

340 Advanced Window Classes Chapter 12

(continues)

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 340

Listing 12-2 (continued)
<tr>
<td bgcolor=”#101010”>
<center>

wxHTML Library Sample

0.2.0

</center>
</td>

</tr>
<tr>
<td bgcolor=”#73A183”>
Copyright (C) 1999 Vaclav Slavik<p>

<table cellpadding=0 cellspacing=0 width=”100%”>
<tr>
<td width=”65%”>
Vaclav Slavik<p>

</td>
<td valign=top>

</td>
</tr>

</table>

Licenced under wxWindows Library Licence, Version 3.

</td>

</tr>
</table>
</body>
</html>

See also the wxHtmlListBox class as described in the section “wxListBox and
wxCheckListBox” in Chapter 4, “Window Basics.”

wxHtmlWindow Styles

Table 12-8 lists the styles you can pass to the wxHtmlWindow constructor or
Create function. Also refer to the available styles for wxWindow in Table 4-1.

Table 12-8 wxHtmlWindow Window Styles

wxHW_SCROLLBAR_NEVER Never displays scrollbars.

wxHW_SCROLLBAR_AUTO Displays scrollbars only if the page size exceeds the
window size.

wxHW_NO_SELECTION Prevents the user from selecting text. Normally, text can
be selected.

wxHtmlWindow 341

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 341

wxHtmlWindow Member Functions

These are the main member functions for wxHtmlWindow.
GetInternalRepresentation returns the top-level wxHtmlContainerCell

object, whose size you can query with GetWidth and GetHeight to get the overall
size of the HTML.

LoadFile loads HTML from a file and displays it. LoadPage takes a
location, which may be a URL. Examples of locations include:

http://www.wxwindows.org/front.htm # A URL
file:myapp.zip#zip:html/index.htm # Gets index.htm from myapp.zip

SetPage sets the page using an HTML string rather than a file name or
location.

OnCellClicked is called when there was a mouse click inside a cell. It
takes a wxHtmlCell pointer, x and y coordinates, and a wxMouseEvent reference.
The default behavior is to call OnLinkClicked if the cell contains a hyperlink.

OnLinkClicked takes a wxHtmlLinkInfo reference, and its default behavior
is to load the linked page with LoadPage. You can override this behavior, for
example to show the application’s home page in the default browser when the
user clicks on the link in your “About” box.

You can also override OnOpeningURL, which is called when a URL is being
opened, and OnCellMouseHover, called when the mouse moves over an HTML
cell.

ReadCustomization and WriteCustomization are used to preserve fonts and
borders, and they take a wxConfig* argument and optional path to use in the
configuration object.

You can select text with the functions SelectAll, SelectLine, and
SelectWord. SelectionToText returns a string with the plain text in the selec-
tion. ToText returns the entire page as plain text.

Call SetBorders to set the space around the HTML. SetFonts enables you
to set the faces for normal and fixed fonts, and optionally you can pass an
array of seven integers specifying the point sizes of the seven font sizes.

AppendToPage can be used to add HTML to the current page and refresh
the window.

You can write a custom wxHtmlFilter to read special files, and you can call
AddFilter to register it with wxHtmlWindow. For example, you might write a filter
to decrypt an encrypted HTML e-book.

GetOpenedAnchor, GetOpenedPage, and GetOpenedPageTitle return informa-
tion about the currently loaded page.

wxHtmlWindow has a history mechanism, which you can access with
HistoryBack, HistoryForward, HistoryCanBack, HistoryCanForward, and HistoryClear.

342 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 342

Embedding Windows in HTML Pages

You can also add windows, including your own custom controls, to an HTML
page, as Figure 12-6 shows. This is done by writing a custom “tag handler,”
which parses the HTML fragment for a specified tag name and creates and
inserts a window.

wxHtmlWindow 343

Figure 12-6 Embedded HTML widget demo

This is part of the HTML page shown in the screenshot:

<mybind name=”(small one)” x=150 y=30>
<hr>
<mybind name=”a widget with floating width” float=y x=”50” y=50>
<hr>
Here you can find multiple widgets at the same line:

here
<mybind name=”widget_1” x=”100” y=30>
...and here:
<mybind name=”widget_2” x=”150” y=30>

The code to implement the custom HTML tag mybind looks like this:

#include “wx/html/m_templ.h”

TAG_HANDLER_BEGIN(MYBIND, “MYBIND”)

TAG_HANDLER_PROC(tag)
{

wxWindow *wnd;
int ax, ay;
int fl = 0;

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 343

tag.ScanParam(wxT(“X”), wxT(“%i”), &ax);
tag.ScanParam(wxT(“Y”), wxT(“%i”), &ay);

if (tag.HasParam(wxT(“FLOAT”))) fl = ax;

wnd = new wxTextCtrl(m_WParser->GetWindow(), wxID_ANY,
tag.GetParam(wxT(“NAME”)),

wxPoint(0,0), wxSize(ax, ay), wxTE_MULTILINE);

wnd->Show(true);

m_WParser->GetContainer()->InsertCell(new wxHtmlWidgetCell(wnd, fl));

return false;
}

TAG_HANDLER_END(MYBIND)

TAGS_MODULE_BEGIN(MyBind)
TAGS_MODULE_ADD(MYBIND)

TAGS_MODULE_END(MyBind)

This technique might be useful if you wanted to create a whole user interface
around wxHtmlWindow, possibly using scripts to generate the HTML and
respond to input, like a web form. Another example is a registration dialog,
with text controls for the user to enter his or her details and a Register button
that sends the details to your organization. Or you might want to generate a
report with items that can be selected and viewed in more detail by toggling
a check box next to each item.

For more details of how to write your own tag handlers, see samples/
html/widget and the wxWidgets reference manual.

HTML Printing

It’s likely that if you use wxHtmlWindow extensively within your application,
you’ll want to print HTML files, too. wxWidgets provides a class to make this
easy, appropriately called wxHtmlEasyPrinting. Create one instance of this class
for the lifetime of your application and then call PreviewFile and PrintFile
with the name of the local HTML file to print. You can also call PageSetup to
show the page setup dialog, and you can retrieve the print and page setup set-
tings using GetPrintData and GetPageSetupData. Customize the header and
footer of the printout with SetHeader and SetFooter, which can contain the key-
words @PAGENUM@ (the current page) and @PAGESCNT@ (the total number of pages).

This fragment from the sample in samples/html/printing demonstrates
the basic principles and shows how to change the font sizes.

#include “wx/html/htmlwin.h”
#include “wx/html/htmprint.h”

344 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 344

MyFrame::MyFrame(const wxString& title,
const wxPoint& pos, const wxSize& size)

: wxFrame((wxFrame *)NULL, wxID_ANY, title, pos, size)
{

...

m_Name = wxT(“testfile.htm”);

m_Prn = new wxHtmlEasyPrinting(_(“Easy Printing Demo”), this);
m_Prn->SetHeader(m_Name + wxT(“(@PAGENUM@/@PAGESCNT@)<hr>”),

wxPAGE_ALL);
}

MyFrame::~MyFrame()
{

delete m_Prn;
}

void MyFrame::OnPageSetup(wxCommandEvent& event)
{

m_Prn->PageSetup();
}

void MyFrame::OnPrint(wxCommandEvent& event)
{

m_Prn->PrintFile(m_Name);
}

void MyFrame::OnPreview(wxCommandEvent& event)
{

m_Prn->PreviewFile(m_Name);
}

void MyFrame::OnPrintSmall(wxCommandEvent& event)
{

int fontsizes[] = { 4, 6, 8, 10, 12, 20, 24 };
m_Prn->SetFonts(wxEmptyString, wxEmptyString, fontsizes);

}

void MyFrame::OnPrintNormal(wxCommandEvent& event)
{

m_Prn->SetFonts(wxEmptyString, wxEmptyString, 0);
}

void MyFrame::OnPrintHuge(wxCommandEvent& event)
{

int fontsizes[] = { 20, 26, 28, 30, 32, 40, 44 };
m_Prn->SetFonts(wxEmptyString, wxEmptyString, fontsizes);

}

wxHtmlWindow 345

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 345

For examples of all the preceding wxHTML topics, see the samples under
samples/html in your wxWidgets distribution.

WXGRID

wxGrid is a versatile and somewhat complex class for presenting information
in a tabular form. You could make a property sheet out of a grid with name
and value columns, create a general-purpose spreadsheet by adding your own
formula evaluation code, show a table from a database, or display statistical
data generated by your application. In some situations, you might consider
wxGrid as an alternative to wxListCtrl in report mode, particularly if you need
to display images or arbitrary graphics in cells.

A grid can display optional row and column headers, drawn in a similar
way to the headers in a spreadsheet application. The user can drag column
and row dividers, select one or more cells, and click a cell to edit it. Each cell in
a grid has its own attributes for font, color, and alignment and also may have
its own specialized renderer (for drawing the data) and editor (for editing the
data). You can write your own renderers and editors: see include/wx/generic/
grid.h and src/generic/grid.cpp in your wxWidgets distribution for guidance.
By default, a grid cell will use a simple string renderer and editor. If you have
complex requirements for cell formatting, then rather than set attributes for
each cell, you can create an “attribute provider” class that dynamically returns
attributes for each cell when needed.

You can also create a potentially enormous “virtual” grid where storage is
provided by the application, not by wxGrid. To do this, you derive a class from
wxGridTableBase and override functions including GetValue, GetNumberRows, and
GetNumberCols. These functions will reflect data stored in your application or
perhaps in a database. Then plug the table into a grid using SetTable, and the
grid will use your data. These more advanced techniques are demonstrated in
samples/grid in your wxWidgets distribution, as shown in Figure 12-7.

346 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 346

Listing 12-3 shows an example of creating a simple grid with eight rows
and ten columns.

Listing 12-3 Simple Use of wxGrid

#include “wx/grid.h”

// Create a wxGrid object
wxGrid* grid = new wxGrid(frame, wxID_ANY,

wxDefaultPosition, wxSize(400, 300));
// Then we call CreateGrid to set the dimensions of the grid
// (8 rows and 10 columns in this example)
grid->CreateGrid(8, 10);

// We can set the sizes of individual rows and columns
// in pixels
grid->SetRowSize(0, 60);
grid->SetColSize(0, 120);

// And set grid cell contents as strings
grid->SetCellValue(0, 0, wxT(“wxGrid is good”));

// We can specify that some cells are read-only
grid->SetCellValue(0, 3, wxT(“This is read-only”));
grid->SetReadOnly(0, 3);

// Colors can be specified for grid cell contents
grid->SetCellValue(3, 3, wxT(“green on grey”));
grid->SetCellTextColour(3, 3, *wxGREEN);
grid->SetCellBackgroundColour(3, 3, *wxLIGHT_GREY);

wxGrid 347

Figure 12-7 wxGrid

(continues)

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 347

Listing 12-3 (continued)
// We can specify that some cells will store numeric
// values rather than strings. Here we set grid column 5
// to hold floating point values displayed with width of 6
// and precision of 2
grid->SetColFormatFloat(5, 6, 2);
grid->SetCellValue(0, 6, wxT(“3.1415”));

// Set the grid size to the minimum required to show the content
grid->Fit();

// Set the parent frame client size to fit the grid
frame->SetClientSize(grid->GetSize());

The wxGrid System of Classes

As you have probably gathered by now, wxGrid is not really a single class—it’s
a set of interacting classes. Table 12-9 clarifies what’s available and how the
classes relate to each other.

Table 12-9 wxGrid Classes

wxGrid The main grid window class, containing further windows
that manage cells, rows, and columns.

wxGridTableBase A base class enabling an application to provide data to a
virtual grid. An instance of a derived class plugs into wxGrid
with SetTable.

wxGridCellAttr Holds visual attributes used to render a cell. You can implic-
itly change attributes using convenience functions such as
SetCellTextColour. You can set attributes for a cell with
SetAttr or for a whole row or column with SetRowAttr and
SetColAttr. You can provide a GetAttr function in your
table class to return attributes for a given cell.

wxGridCellRenderer This class is responsible for actually drawing the cell in the
grid. You can pass it to wxGridCellAttr (or use wxGrid::
SetCellRenderer) to change the format of one cell, or you
can pass it to wxGrid::SetDefaultRenderer to change the
appearance of all cells. This is an abstract class, and you
will normally use one of the predefined derived classes
or derive your own class from it. Examples include
wxGridCellStringRenderer, wxGridCellNumberRenderer,
wxGridCellFloatRenderer, and wxGridCellBoolRenderer.

348 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 348

wxGridCellEditor This class is responsible for providing and manipu-
lating the in-place edit controls for the grid.
Instances of classes derived from wxGridCellEditor
can be associated with the cell attributes for individ-
ual cells, rows, columns, or even for the entire grid.
For example, use wxGrid::SetCellEditor to set an
editor for one cell. Examples of editors include
wxGridCellTextEditor, wxGridCellFloatEditor,
wxGridCellBoolEditor, wxGridCellNumberEditor,
and wxGridCellChoiceEditor.

wxGridEvent Contains information about various grid events,
such as mouse clicks on cells, data changing in a cell,
a cell being selected, and a cell editor being shown
or hidden.

wxGridRangeSelectEvent This event is sent when the user selects a range of
cells.

wxGridSizeEvent This event class contains information about a
row/column resize event.

wxGridEditorCreatedEvent This event is sent when an editor is created.
wxGridCellCoords A class representing a cell in the grid. Use GetRow

and GetCol to retrieve its position.
wxGridCellCoordsArray An array of wxGridCellCoords objects. This object

is returned by the functions GetSelectedCell,
GetSelectionBlockTopLeft, and
GetSelectionBlockBottomRight.

wxGrid Events

Table 12-10 lists the major grid events you can catch. Note that each
EVT_GRID_... macro also has a form EVT_GRID_CMD_... that takes an identifier
and can be used by an ancestor of the grid to avoid the need for deriving a new
class.

Table 12-10 wxGrid Events

EVT_GRID_CELL_LEFT_CLICK(func) The user clicked a cell with the left mouse
button.

EVT_GRID_CELL_RIGHT_CLICK(func) The user clicked a cell with the right
mouse button.

EVT_GRID_CELL_LEFT_DCLICK(func) The user double-clicked a cell with the left
mouse button.

wxGrid 349

(continues)

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 349

Table 12-10 wxGrid Events (Continued)

EVT_GRID_CELL_RIGHT_DCLICK(func) The user double-clicked a cell with the
right mouse button.

EVT_GRID_LABEL_LEFT_CLICK(func) The user clicked a label with the left
mouse button.

EVT_GRID_LABEL_RIGHT_CLICK(func) The user clicked a label with the right
mouse button.

EVT_GRID_LABEL_LEFT_DCLICK(func) The user double-clicked a label with the
left mouse button.

EVT_GRID_LABEL_RIGHT_DCLICK(func) The user double-clicked a label with the
right mouse button.

EVT_GRID_CELL_CHANGE(func) The user changed the data in a cell.
EVT_GRID_SELECT_CELL(func) The user moved to and selected a cell.
EVT_GRID_EDITOR_HIDDEN(func) The editor for a cell was hidden.
EVT_GRID_EDITOR_SHOWN(func) The editor for a cell was shown.
EVT_GRID_COL_SIZE(func) The user resized a column by dragging it.
EVT_GRID_ROW_SIZE(func) The user resized a row by dragging it.
EVT_GRID_RANGE_SELECT(func) The user selected a group of contiguous

cells.
EVT_GRID_EDITOR_CREATED(func) The editor for a cell was created.

wxGrid Member Functions

The following is a selection of the most significant wxGrid functions, grouped
by functionality. For a complete reference, and for the members of other
related classes, please refer to the reference manual.

Functions for Creation, Deletion, and Data Retrieval

These functions relate to creation and deletion of the grid and its cells and
interaction with the data in its table.

AppendCols and AppendRows append columns and rows, respectively, to the
right or bottom of the grid. You can also use InsertCols and InsertRows to
insert them at a given position. If you are using a table, you need to override
similarly named functions in your table class.

Use GetNumberCols and GetNumberRows to return the number of columns or
rows in the grid table associated with the grid.

CreateGrid creates a grid with the specified initial number of rows and
columns. Call this directly after the grid constructor. When you use this func-
tion, wxGrid will create and manage a simple table of string values for you. All
of the grid data will be stored in memory. For applications with more complex
data types or relationships, or for dealing with very large datasets, you should
derive your own grid table class and pass a table object to the grid with
wxGrid::SetTable.

350 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 350

ClearGrid clears all data in the underlying grid table and repaints the
grid. The table is not deleted by this function. If you are using a derived table
class, then you need to override wxGridTableBase::Clear for this function to
have any effect. ClearSelection deselects all cells that are currently selected.

Use DeleteCols and DeleteRows to delete columns and rows, respec-
tively.

GetColLabelValue returns the specified column label. The default grid
table class provides column labels of the form A, B...Z, AA, AB...ZZ, AAA...
If you are using a custom grid table, you can override wxGridTableBase::
GetColLabelValue to provide your own labels. Similarly, GetRowLabelValue

returns the specified row label. The default grid table class provides numeric
row labels. If you are using a custom grid table, you can override wxGridTable
Base::GetRowLabelValue to provide your own labels. Use SetColLabelValue and
SetRowLabelValue to the set the label for a given column or row.

GetCellValue returns the string contained in the cell at the specified
location. For simple applications where a grid object automatically uses a
default grid table of string values, you use this function together with
SetCellValue to access cell values. For more complex applications where you
have derived your own grid table class, you only use this function for cells
that contain string values.

Presentation Functions

These functions relate to the way the grid is displayed.
Use BeginBatch and EndBatch to suppress painting between these calls.

Painting will only be done when GetBatchCount returns zero.
EnableGridLines turns the drawing of grid lines on or off. Call

GridLinesEnabled to determine if they are on or off.
ForceRefresh causes immediate repainting of the grid. Use this instead of

the usual wxWindow::Refresh.
Call Fit to fit the grid window to the smallest size required, given the

current number of rows and columns.
GetCellAlignment gets the arguments to the horizontal and vertical text

alignment values for the grid cell at the specified location. GetColLabel

Alignment gets the current column label alignment, and GetRowLabelAlignment
gets the current row label alignment. GetDefaultCellAlignment gets the default
alignment for a cell. These functions have corresponding setters. Horizontal
alignment will be one of wxALIGN_LEFT, wxALIGN_CENTRE (wxALIGN_CENTER), or
wxALIGN_RIGHT. Vertical alignment will be one of wxALIGN_TOP, wxALIGN_CENTRE

(wxALIGN_CENTER), or wxALIGN_BOTTOM.
GetCellBackgroundColour returns the background color of the cell at the

specified location. GetDefaultCellBackgroundColour returns the default back-
ground color for the grid. Get the label background color with GetLabel
BackgroundColour. These functions have corresponding setters.

wxGrid 351

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 351

GetCellFont gets the font for text in the grid cell at the specified location,
and GetDefaultCellFont gets the default font. GetLabelFont gets the font used
for row and column labels. These functions have corresponding setters.

GetCellTextColour returns the text color for the grid cell at the specified
location. Use GetDefaultCellTextColour to get the default cell text color and
GetLabelTextColour to get the label text color. Corresponding setters are pro-
vided.

Change and get the color used for grid lines with SetGridLineColour and
GetGridLineColour.

SetColAttr and SetRowAttr set the cell attributes for all cells in the given
column or row.

To set the format used for a particular column, use SetColFormatBool,
SetColFormatNumber, SetColFormatFloat, and SetColFormatCustom.

Functions for Setting and Getting wxGrid Metrics

The following functions use pixel dimensions.
AutoSize automatically sets the height and width of all rows and columns

to fit their contents. You can also use AutoSizeColumn, AutoSizeColumns,
AutoSizeRow, and AutoSizeRows.

CellToRect returns the rectangle corresponding to the grid cell’s size and
position.

Use SetColMinimalWidth and SetRowMinimalHeight to set the column and
row minimum dimensions, and retrieve them with GetColMinimalWidth and
GetRowMinimalHeight.

Use these functions for getting a variety of dimensions in pixels:
GetColLabelSize, GetDefaultColLabelSize, GetDefaultColSize, GetColSize,
GetDefaultRowLabelSize, GetRowSize, GetDefaultRowSize, and GetRowLabelSize.
There are corresponding setters.

If you need extra space around the grid, call SetMargins.
If you need to find the column or row for a given x or y pixel position, use

XToCol and YToRow. To find the column whose right edge is closest to a given x
position, use XToEdgeOfCol. To find the row whose bottom edge is close to the
given y position, use YToEdgeOfRow.

Selection and Cursor Functions

These functions let you control the grid cursor (current focus position) and
selection.

GetGridCursorCol and GetGridCursorRow return the current column and
row positions of the cursor. Set the cursor position with SetGridCursor.

You can move the cursor one row or column at a time with MoveCursor
Down, MoveCursorLeft, MoveCursorRight, and MoveCursorUp. To do the same thing
but to skip to the next non-empty cell in the row or column, use MoveCursor
DownBlock, MoveCursorLeftBlock, MoveCursorRightBlock, and MoveCursorUpBlock.

352 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 352

Move a page at a time with MovePageDown and MovePageUp, where a page is
determined by the size of the grid window.

GetSelectionMode returns one of wxGrid::wxGridSelectCells (the default
mode where individual cells are selected), wxGrid::wxGridSelectRows (selections
consist of whole rows), and wxGrid::wxGridSelectColumns (selections consist of
whole columns). Set the selection mode with SetSelectionMode.

You can retrieve all selected cells with GetSelectedCells, which returns a
wxGridCellCoordsArray object containing the cells GetSelectedCols and
GetSelectedRows. Because a user can select several non-contiguous blocks of
cells, both GetSelectionBlockTopLeft and GetSelectionBlockBottomRight return
a wxGridCellCoordsArray. You can identify the blocks by iterating through these
arrays.

Call IsInSelection with with a row and column or wxGridCellCoords object
to determine whether the cell is within the selection. IsSelection returns true
if there are any selections in the grid.

Select everything in the grid with SelectAll, select a whole column with
SelectCol, and select a whole row with SelectRow. You can select a rectangular
block with SelectBlock, passing the top-left and bottom-right cell coordinates
as either four integers or two wxGridCellCoords objects.

Miscellaneous wxGrid Functions

These functions deal with various other types of wxGrid functionality.
GetTable retrieves the table associated with the grid, holding the actual

data displayed by the grid. If you use CreateGrid, wxGrid creates a table of
string data itself. Alternatively, you can use SetTable to set your own table
object.

GetCellEditor and SetCellEditor get and set a pointer to the editor for the
cell at the specified location. Call GetDefaultEditor and SetDefaultEditor to get
and set the default editor used for all cells.

GetCellRenderer and SetCellRenderer get and set a pointer to the renderer
for the grid cell at the specified location. Call GetDefaultRenderer and
SetDefaultRenderer to get and set the default renderer used for all cells.

ShowCellEditControl and HideCellEditControl show and hide the edit con-
trol for the cell at the current cursor position. This is normally done automati-
cally when the user clicks on a cell to edit it or presses Enter or Escape (or
clicks on another window) to finish editing. SaveEditControlValue transfers the
value of the in-place edit control to the cell—you may want to call this before
closing a grid or retrieving values from a grid to make sure the grid reflects
the latest edits.

EnableCellEditControl enables or disables in-place editing of grid cell
data. The grid will issue either a wxEVT_GRID_EDITOR_SHOWN or wxEVT_GRID_
EDITOR_HIDDEN event when this function is called. Call IsCellEditControl
Enabled to determine if the cell can be edited. IsCurrentCellReadOnly returns
true if the current cell is read-only.

wxGrid 353

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 353

EnableDragColSize enables or disables column sizing by dragging with the
mouse. EnableDragGridSize enables or disables row and column resizing by
dragging gridlines with the mouse. EnableDragRowSize enables or disables row
sizing by dragging with the mouse.

EnableEditing sets the whole grid as read-only if the argument is false. If
the argument is true, the grid is set to the default state where cells may be
edited. In the default state, you can set single grid cells and whole rows and
columns to be editable or read-only via wxGridCellAttribute::SetReadOnly. For
single cells, you can also use the convenience function wxGrid::SetReadOnly.
Call IsEditable to determine whether the grid is editable.

You can make a cell read-only with SetReadOnly and retrieve its read-only
status with IsReadOnly.

IsVisible returns true if the cell is wholly or partially visible in the grid
window. You can make sure a cell is visible by calling MakeCellVisible.

WXTASKBARICON

This class installs an icon on the system tray (Windows, Gnome, or KDE) or
dock (Mac OS X). Clicking on the icon will pop up a menu that the application
supplies, and an optional tooltip can be shown when the mouse hovers over
the icon. This technique gives quick access to important application function-
ality without having to use the regular application user interface. The applica-
tion can display status information by switching icons, as per the battery and
connection indicators in Windows.

Figure 12-8 shows the result of running the wxTaskBarIcon sample on
Windows (see samples/taskbar). The wxWidgets icon is installed, and hovering
the mouse pointer over the icon shows the tooltip text “wxTaskBarIconSample.”
Right-clicking on the icon shows the menu with three options. Selecting Set
New Icon sets the icon to a smiley face and also resets the tooltip text to a new
string.

354 Advanced Window Classes Chapter 12

Figure 12-8 wxTaskBarIcon on Windows

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 354

The implementation of a wxTaskBarIcon-derived class can be very simple,
as Listing 12-4 shows (taken from the wxTaskBarIcon sample). The derived
class MyTaskBarIcon overrides CreatePopupMenu and implements event handlers
to intercept a left double-click and three menu commands.

Listing 12-4 Deriving from wxTaskBarIcon

class MyTaskBarIcon: public wxTaskBarIcon
{
public:

MyTaskBarIcon() {};

void OnLeftButtonDClick(wxTaskBarIconEvent&);
void OnMenuRestore(wxCommandEvent&);
void OnMenuExit(wxCommandEvent&);
void OnMenuSetNewIcon(wxCommandEvent&);

virtual wxMenu *CreatePopupMenu();

DECLARE_EVENT_TABLE()
};

enum {
PU_RESTORE = 10001,
PU_NEW_ICON,
PU_EXIT,

};

BEGIN_EVENT_TABLE(MyTaskBarIcon, wxTaskBarIcon)
EVT_MENU(PU_RESTORE, MyTaskBarIcon::OnMenuRestore)
EVT_MENU(PU_EXIT, MyTaskBarIcon::OnMenuExit)
EVT_MENU(PU_NEW_ICON,MyTaskBarIcon::OnMenuSetNewIcon)
EVT_TASKBAR_LEFT_DCLICK (MyTaskBarIcon::OnLeftButtonDClick)

END_EVENT_TABLE()

void MyTaskBarIcon::OnMenuRestore(wxCommandEvent&)
{

dialog->Show(true);
}

void MyTaskBarIcon::OnMenuExit(wxCommandEvent&)
{

dialog->Close(true);
}

void MyTaskBarIcon::OnMenuSetNewIcon(wxCommandEvent&)
{

wxIcon icon(smile_xpm);

if (!SetIcon(icon, wxT(“wxTaskBarIcon Sample - a different icon”)))
wxMessageBox(wxT(“Could not set new icon.”));

}

wxTaskBarIcon 355

(continues)

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 355

Listing 12-4 (continued)
// Overridables
wxMenu *MyTaskBarIcon::CreatePopupMenu()
{

wxMenu *menu = new wxMenu;

menu->Append(PU_RESTORE, wxT(“&Restore TBTest”));
menu->Append(PU_NEW_ICON,wxT(“&Set New Icon”));
menu->Append(PU_EXIT, wxT(“E&xit”));

return menu;
}

void MyTaskBarIcon::OnLeftButtonDClick(wxTaskBarIconEvent&)
{

dialog->Show(true);
}

The rest of the code to show a dialog and install the initial icon is equally
straightforward, as Listing 12-5 shows.

Listing 12-5 Showing a Taskbar Icon

#include “wx/wx.h”
#include “wx/taskbar.h”

// Define a new application
class MyApp: public wxApp
{
public:

bool OnInit(void);
};

class MyDialog: public wxDialog
{
public:

MyDialog(wxWindow* parent, const wxWindowID id, const wxString& title,
const wxPoint& pos, const wxSize& size, const long windowStyle =

wxDEFAULT_DIALOG_STYLE);
~MyDialog();

void OnOK(wxCommandEvent& event);
void OnExit(wxCommandEvent& event);
void OnCloseWindow(wxCloseEvent& event);
void Init(void);

protected:
MyTaskBarIcon *m_taskBarIcon;

DECLARE_EVENT_TABLE()
};

#include “../sample.xpm”

356 Advanced Window Classes Chapter 12

(continues)

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 356

Listing 12-5
#include “smile.xpm”

MyDialog *dialog = NULL;

IMPLEMENT_APP(MyApp)

bool MyApp::OnInit(void)
{

// Create the main frame window
dialog = new MyDialog(NULL, wxID_ANY, wxT(“wxTaskBarIcon Test

Dialog”), wxDefaultPosition, wxSize(365, 290));

dialog->Show(true);

return true;
}

BEGIN_EVENT_TABLE(MyDialog, wxDialog)
EVT_BUTTON(wxID_OK, MyDialog::OnOK)
EVT_BUTTON(wxID_EXIT, MyDialog::OnExit)
EVT_CLOSE(MyDialog::OnCloseWindow)

END_EVENT_TABLE()

MyDialog::MyDialog(wxWindow* parent, const wxWindowID id, const wxString&
title,

const wxPoint& pos, const wxSize& size, const long windowStyle):
wxDialog(parent, id, title, pos, size, windowStyle)

{
Init();

}

MyDialog::~MyDialog()
{

delete m_taskBarIcon;
}

void MyDialog::OnOK(wxCommandEvent& WXUNUSED(event))
{

Show(false);
}

void MyDialog::OnExit(wxCommandEvent& WXUNUSED(event))
{

Close(true);
}

void MyDialog::OnCloseWindow(wxCloseEvent& WXUNUSED(event))
{

Destroy();
}

void MyDialog::Init(void)
{
(void)new wxStaticText(this, wxID_ANY, wxT(“Press ‘Hide me’ to hide me,

Exit to quit.”),
wxPoint(10, 20));

wxTaskBarIcon 357

(continues)

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 357

Listing 12-5 (continued)
(void)new wxStaticText(this, wxID_ANY, wxT(“Double-click on the taskbar

icon to show me again.”),
wxPoint(10, 40));

(void)new wxButton(this, wxID_EXIT, wxT(“Exit”), wxPoint(185, 230),
wxSize(80, 25));
(new wxButton(this, wxID_OK, wxT(“Hide me”), wxPoint(100, 230),

wxSize(80, 25)))->SetDefault();
Centre(wxBOTH);

m_taskBarIcon = new MyTaskBarIcon();
if (!m_taskBarIcon->SetIcon(wxIcon(sample_xpm), wxT(“wxTaskBarIcon

Sample”)))
wxMessageBox(wxT(“Could not set icon.”));

}

wxTaskBarIcon Events

To process events from a taskbar icon, use the event handler macros listed in
Table 12-11 to direct input to member functions that take a wxTaskBarIcon
Event argument. Note that not all ports are required to send these events, and
so you should override CreatePopupMenu if you want to show a popup menu in
reaction to a mouse click. Note also that wxTaskBarIconEvent doesn’t pass any
mouse status information such as position.

Table 12-11 wxTaskBarIcon Events

EVT_TASKBAR_MOVE(func) The mouse moved over the icon.
EVT_TASKBAR_LEFT_DOWN(func) The left mouse button was pressed

down.
EVT_TASKBAR_LEFT_UP(func) The left mouse button was released.
EVT_TASKBAR_RIGHT_DOWN(func) The right mouse button was pressed

down.
EVT_TASKBAR_RIGHT_UP(func) The right mouse button was released.
EVT_TASKBAR_LEFT_DCLICK(func) The left mouse button was double-

clicked.
EVT_TASKBAR_RIGHT_DCLICK(func) The right mouse button was double-

clicked.

wxTaskBarIcon Member Functions

The wxTaskBarIcon API is very simple. These are all the member functions for
this class.

358 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 358

CreatePopupMenu is a virtual function that should be overridden by the
derived class to return a new wxMenu when called by wxWidgets in response to
a wxEVT_TASKBAR_RIGHT_DOWN event (this event is simulated on Mac OS X).
wxWidgets will also delete the menu when it is dismissed.

IsIconInstalled returns true if SetIcon was successfully called.
IsOk returns true if the wxTaskBarIcon object initialized successfully.
PopupMenu shows a menu at the current position. It’s not recommended to

call this directly; instead, override CreatePopupMenu and let wxWidgets show
the menu for you.

RemoveIcon removes the icon previously set with SetIcon.
SetIcon sets an icon (wxIcon) and optional tooltip text. You can call this

multiple times.

WRITING YOUR OWN CONTROLS

This section discusses how you can create your own controls in wxWidgets.
wxWidgets does not have the concept of a “custom control” in the sense of a
binary, drop-in component to which Windows programmers might be accus-
tomed. Third-party controls are usually supplied as source code and follow the
same pattern as generic controls within wxWidgets, such as wxCalendarCtrl
and wxGrid. We’re using the term “control” loosely here because controls do not
have to be derived from wxControl; you might want to use wxScrolledWindow as
a base class, for example.

Ten major tasks are involved in writing a new control:

1. Write a class declaration that has a default constructor, a constructor
that creates the window, a Create function, and preferably an Init func-
tion to do shared initialization.

2. Add a function DoGetBestSize that returns the best minimal size appro-
priate to this control (based on a label size, for example).

3. Add a new event class for the control to generate, if existing event classes
in wxWidgets are inadequate. A new type of push button might just use
wxCommandEvent, but more complex controls will need a new event class.
Also add event handler macros to use with the event class.

4. Write the code to display the information in the control.
5. Write the code to handle low-level mouse and keyboard events in the con-

trol, and generate appropriate high-level command events that the appli-
cation can handle.

Writing Your Own Controls 359

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 359

6. Write any default event handlers that the control might have—for exam-
ple, handling wxID_COPY or wxID_UNDO commands or UI update commands.

7. Optionally, write a validator class that an application can use with the
control (to make it easy to transfer data to and from the control) and val-
idate its contents.

8. Optionally, write a resource handler class so that your control can be
used with the XRC resource system.

9. Test the control on the platforms you want to support.
10. Write the documentation!

Let’s take the simple example we used in Chapter 3, “Event Handling,” when
discussing custom events: wxFontSelectorCtrl, which you can find in
examples/chap03 on the CD-ROM. This class shows a font preview on which the
user can click to change the font using the standard font selector dialog.
Changing the font causes a wxFontSelectorCtrlEvent to be sent, which can be
caught by providing an event handler for EVT_FONT_SELECTION_CHANGED(id,
func).

The control is illustrated in Figure 12-9 and is shown with a static text
control above it.

360 Advanced Window Classes Chapter 12

Figure 12-9 wxFontSelectorCtrl

The Custom Control Declaration

The following code is the class declaration for wxFontSelectorCtrl.
DoGetBestSize returns a fairly arbitrary size, 200 × 40 pixels, which will be
used if no minimum size is passed to the constructor.

/*!
* A control for displaying a font preview.
*/

class wxFontSelectorCtrl: public wxControl
{

DECLARE_DYNAMIC_CLASS(wxFontSelectorCtrl)
DECLARE_EVENT_TABLE()

public:

// Constructors
wxFontSelectorCtrl() { Init(); }

wxFontSelectorCtrl(wxWindow* parent, wxWindowID id,

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 360

const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxSUNKEN_BORDER,
const wxValidator& validator = wxDefaultValidator)

{
Init();
Create(parent, id, pos, size, style, validator);

}

// Creation
bool Create(wxWindow* parent, wxWindowID id,

const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxSUNKEN_BORDER,
const wxValidator& validator = wxDefaultValidator);

// Common initialization
void Init() { m_sampleText = wxT(“abcdeABCDE”); }

// Overrides
wxSize DoGetBestSize() const { return wxSize(200, 40); }

// Event handlers
void OnPaint(wxPaintEvent& event);
void OnMouseEvent(wxMouseEvent& event);

// Accessors
void SetFontData(const wxFontData& fontData) { m_fontData = fontData;

};
const wxFontData& GetFontData() const { return m_fontData; };
wxFontData& GetFontData() { return m_fontData; };

void SetSampleText(const wxString& sample);
const wxString& GetSampleText() const { return m_sampleText; };

protected:
wxFontData m_fontData;
wxString m_sampleText;

};

To store the font information associated with the control, we are using a
wxFontData object, as used by wxFontDialog, so that we can store a color selec-
tion along with the font.

The control’s RTTI event table macros and creation code look like this:

BEGIN_EVENT_TABLE(wxFontSelectorCtrl, wxControl)
EVT_PAINT(wxFontSelectorCtrl::OnPaint)
EVT_MOUSE_EVENTS(wxFontSelectorCtrl::OnMouseEvent)

END_EVENT_TABLE()

IMPLEMENT_DYNAMIC_CLASS(wxFontSelectorCtrl, wxControl)

bool wxFontSelectorCtrl::Create(wxWindow* parent, wxWindowID id,
const wxPoint& pos, const wxSize& size, long style,
const wxValidator& validator)

{
if (!wxControl::Create(parent, id, pos, size, style, validator))

Writing Your Own Controls 361

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 361

return false;

SetBackgroundColour(wxSystemSettings::GetColour(
wxSYS_COLOUR_WINDOW));

m_fontData.SetInitialFont(GetFont());
m_fontData.SetChosenFont(GetFont());
m_fontData.SetColour(GetForegroundColour());

// Tell the sizers to use the given or best size
SetBestFittingSize(size);

return true;
}

The call to SetBestFittingSize tells the sizer layout algorithm to use either the
initial size or the “best” size returned from DoGetBestSize as the minimal con-
trol size. The control can stretch to be bigger than this size, according to the
flags passed when the control is added to a sizer.

Adding DoGetBestSize

Implementing DoGetBestSize lets wxWidgets know the optimal minimal size of
the control. Providing this information means that a control can be created
with default size (wxDefaultSize) and it will size itself sensibly. We’ve chosen a
somewhat arbitrary but reasonable size of 200 × 40 pixels, which will normally
be overridden by application code. A control such as a label or button has a
natural default size, but other controls don’t, such as a scrolled window with
no child windows. If your control falls into this category, your DoGetBestSize
can call wxWindow::DoGetBestSize, or you can omit the function altogether. You
will need to rely on the application passing a non-default size to the control’s
constructor or the control being sized appropriately by a parent sizer.

If your control can have child windows of arbitrary size, and you
want your control to size itself according to these child windows, you can
find each child’s size using GetAdjustedBestSize, and you can return a size
that fits around these. For example, say we’re implementing a window that
contains two child windows, arranged horizontally. We might have this
implementation:

wxSize ContainerCtrl::DoGetBestSize() const
{

// Get best sizes of subwindows
wxSize size1, size2;
if (m_windowOne)

size1 = m_windowOne->GetAdjustedBestSize();
if (m_windowTwo)

size2 = m_windowTwo->GetAdjustedBestSize();

362 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 362

// The windows are laid out horizontally. Find
// the total window size.
wxSize bestSize;
bestSize.x = size1.x + size2.x;
bestSize.y = wxMax(size1.y, size2.y);

return bestSize;
}

Defining a New Event Class

We covered the topic of creating a new event class (wxFontSelectorCtrlEvent)
and event table macro (EVT_FONT_SELECTION_CHANGED) in Chapter 3. An applica-
tion that uses the font selector control doesn’t have to catch this event at all
because data transfer is handled separately. In a more complex control, the
event class would have specific functions; we could have provided information
about the font in the event class, for example, so that handlers could retrieve
the selected font with wxFontSelectorCtrlEvent::GetFont.

Displaying Information on the Control

Our control has a very simple paint event handler, centering the sample text
on the control as follows:

void wxFontSelectorCtrl::OnPaint(wxPaintEvent& event)
{

wxPaintDC dc(this);

wxRect rect = GetClientRect();

int topMargin = 2;
int leftMargin = 2;

dc.SetFont(m_fontData.GetChosenFont());
wxCoord width, height;
dc.GetTextExtent(m_sampleText, & width, & height);

int x = wxMax(leftMargin, ((rect.GetWidth() - width) / 2)) ;
int y = wxMax(topMargin, ((rect.GetHeight() - height) / 2)) ;

dc.SetBackgroundMode(wxTRANSPARENT);
dc.SetTextForeground(m_fontData.GetColour());
dc.DrawText(m_sampleText, x, y);
dc.SetFont(wxNullFont);

}

For drawing standard elements, such as a splitter sash or a border, consider
using wxNativeRenderer (please see the reference manual for more details).

Writing Your Own Controls 363

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 363

Handling Input

Our control detects a left-click and shows a font dialog. If the user confirmed
the choice, the font data is retrieved from the font dialog, and an event is sent
to the control using ProcessEvent. This event can be processed by a function in
a class derived from wxFontSelectorCtrl or a function in the dialog (or other
window) containing the control.

void wxFontSelectorCtrl::OnMouseEvent(wxMouseEvent& event)
{

if (event.LeftDown())
{

// Get a parent for the font dialog
wxWindow* parent = GetParent();
while (parent != NULL &&

!parent->IsKindOf(CLASSINFO(wxDialog)) &&
!parent->IsKindOf(CLASSINFO(wxFrame)))

parent = parent->GetParent();

wxFontDialog dialog(parent, m_fontData);
dialog.SetTitle(_(“Please choose a font”));

if (dialog.ShowModal() == wxID_OK)
{

m_fontData = dialog.GetFontData();
m_fontData.SetInitialFont(

dialog.GetFontData().GetChosenFont());

Refresh();

wxFontSelectorCtrlEvent event(
wxEVT_COMMAND_FONT_SELECTION_CHANGED, GetId());

event.SetEventObject(this);
GetEventHandler()->ProcessEvent(event);

}
}

}

This class has no keyboard handling, but you could interpret an Enter key
press to do the same as left-click. You could also draw a focus rectangle to indi-
cate that the control has the focus, using wxWindow::FindFocus to determine
whether this is the focused window. You would need to intercept focus events
with EVT_SET_FOCUS and EVT_KILL_FOCUS to refresh the control so that the cor-
rect focus graphic is drawn.

Defining Default Event Handlers

If you look at implementations of wxTextCtrl, for example src/msw/textctrl.cpp,
you will find that standard identifiers such as wxID_COPY, wxID_PASTE,
wxID_UNDO, and wxID_REDO have default command event and UI update event
handlers. This means that if your application is set up to direct events to the
focused control (see Chapter 20, “Perfecting Your Application”), your standard

364 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 364

menu items and toolbar buttons will respond correctly according to the state
of the control. Our example control is not complex enough to warrant these
handlers, but if you implement undo/redo or clipboard operations, you should
provide them. For example:

BEGIN_EVENT_TABLE(wxTextCtrl, wxControl)
...
EVT_MENU(wxID_COPY, wxTextCtrl::OnCopy)
EVT_MENU(wxID_PASTE, wxTextCtrl::OnPaste)
EVT_MENU(wxID_SELECTALL, wxTextCtrl::OnSelectAll)

EVT_UPDATE_UI(wxID_COPY, wxTextCtrl::OnUpdateCopy)
EVT_UPDATE_UI(wxID_PASTE, wxTextCtrl::OnUpdatePaste)
EVT_UPDATE_UI(wxID_SELECTALL, wxTextCtrl::OnUpdateSelectAll)
...

END_EVENT_TABLE()

void wxTextCtrl::OnCopy(wxCommandEvent& event)
{

Copy();
}

void wxTextCtrl::OnPaste(wxCommandEvent& event)
{

Paste();
}

void wxTextCtrl::OnSelectAll(wxCommandEvent& event)
{

SetSelection(-1, -1);
}

void wxTextCtrl::OnUpdateCopy(wxUpdateUIEvent& event)
{

event.Enable(CanCopy());
}

void wxTextCtrl::OnUpdatePaste(wxUpdateUIEvent& event)
{

event.Enable(CanPaste());
}

void wxTextCtrl::OnUpdateSelectAll(wxUpdateUIEvent& event)
{

event.Enable(GetLastPosition() > 0);
}

Implementing Validators

As we saw in Chapter 9, “Creating Custom Dialogs,” validators are a very con-
venient way to specify how data is validated and transferred between vari-
ables and associated controls. When you write a new control class, you can
provide a special validator class to use with it.

Writing Your Own Controls 365

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 365

wxFontSelectorValidator is a validator you can use with wxFontSelector
Ctrl. You can pass font and color pointers or a pointer to a wxFontData object.
These variables are usually declared in the dialog class so that they persist
and can be retrieved when the dialog has been dismissed. Note that the val-
idator is passed as an object, not using the new operator, and the object is
copied by SetValidator before it goes out of scope and is deleted.

For example:

wxFontSelectorCtrl* fontCtrl =
new wxFontSelectorCtrl(this, ID_FONTCTRL,

wxDefaultPosition, wxSize(100, 40), wxSIMPLE_BORDER);

// Either a pointer to a wxFont and optional wxColour...
fontCtrl->SetValidator(wxFontSelectorValidator(& m_font,

& m_fontColor));

// ...or a pointer to a wxFontData
fontCtrl->SetValidator(wxFontSelectorValidator(& m_fontData));

The m_font and m_fontColor variables (or m_fontData variable) will reflect any
changes to the font preview made by the user. This transfer of data happens
when the dialog’s TransferDataFromWindow function is called (which it is by
default, from wxWidgets’ standard wxID_OK handler).

You must implement a default constructor, further constructors that take
pointers to variables, and a Clone function to duplicate the object. The Validate
function should be implemented to check that the data in the control is valid,
showing a message and returning false if not. TransferToWindow and
TransferFromWindow must be implemented to copy the data to and from the con-
trol, respectively.

Here’s the declaration of wxFontSelectorValidator:

/*!
* Validator for wxFontSelectorCtrl
*/

class wxFontSelectorValidator: public wxValidator
{
DECLARE_DYNAMIC_CLASS(wxFontSelectorValidator)
public:

// Constructors
wxFontSelectorValidator(wxFontData *val = NULL);
wxFontSelectorValidator(wxFont *fontVal,

wxColour* colourVal = NULL);
wxFontSelectorValidator(const wxFontSelectorValidator& val);

// Destructor
~wxFontSelectorValidator();

// Make a clone of this validator
virtual wxObject *Clone() const
{ return new wxFontSelectorValidator(*this); }

366 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 366

// Copies val to this object
bool Copy(const wxFontSelectorValidator& val);

// Called when the value in the window must be validated.
// This function can pop up an error message.
virtual bool Validate(wxWindow *parent);

// Called to transfer data to the window
virtual bool TransferToWindow();

// Called to transfer data to the window
virtual bool TransferFromWindow();

wxFontData* GetFontData() { return m_fontDataValue; }

DECLARE_EVENT_TABLE()

protected:
wxFontData* m_fontDataValue;
wxFont* m_fontValue;
wxColour* m_colourValue;

// Checks that the validator is set up correctly
bool CheckValidator() const;

};

We will leave you to peruse the source in fontctrl.cpp to find out how the class
is implemented.

Implementing Resource Handlers

If your class is to be used with XRC files, it is convenient to provide a suitable
resource handler to use with the control. This is not illustrated in our exam-
ple, but refer to the discussion of the XRC system in Chapter 9, and refer also
to the existing handlers in the directories include/wx/xrc and src/xrc in your
wxWidgets distribution.

After the handler is registered by an application, XRC files containing
objects with your control’s properties will be loaded just like any file contain-
ing standard wxWidgets controls. Writing the XRC file is another matter,
though, because design tools cannot currently be made aware of new resource
handlers. However, with DialogBlocks’ simple “custom control definition” facil-
ity, you can set up the name and properties for a custom control, and the cor-
rect XRC definition will be written, even if it can only display an
approximation of the control while editing.

Determining Control Appearance

When writing your own control, you need to give wxWidgets a few hints
about the control’s appearance. Bear in mind that wxWidgets tries to use the
system colors and fonts wherever possible, but also enables an application to

Writing Your Own Controls 367

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 367

customize these attributes where permitted by the native platform. wxWidgets
also lets the application and the control choose whether or not child windows
inherit their attributes from parents. The system for controlling these attrib-
utes is a little involved, but developers won’t have to know about these unless
they heavily customize control colors (which is not recommended) or imple-
ment their own controls.

If explicitly provided by an application, foreground colors and fonts for a
parent window are normally inherited by its children (which may include
your custom control). However, this may be overridden—if the application
has called SetOwnFont for the parent, the child controls will not inherit the
font, and similarly for SetOwnForegroundColour. Also, your control can specify
whether it can inherit its parent’s foreground color by returning true from
ShouldInheritColours (the default for wxControl, but not for wxWindow).
Background colors are not explicitly inherited; preferably, your control should
use the same background as the parent by not painting outside the visible
part of the control.

In order to implement attribute inheritance, your control should call
InheritAttributes from its constructor after window creation. Depending on
platform, you can do this when you call wxControl::Create from within your
constructor.

Some classes implement the static function GetClassDefaultAttributes,
returning a wxVisualAttributes object with background color, foreground color,
and font members. It takes a wxWindowVariant argument used only on Mac OS
X. This function specifies the default attributes for objects of that class and
will be used by functions such as GetBackgroundColour in the absence of specific
settings provided by the application. If you don’t want the default values to be
returned, you can implement it in your class. You will also need to override the
virtual function GetDefaultAttributes, calling GetClassDefaultAttributes, to
allow the correct attributes to be returned for a given object. If your control
has similar attributes to a standard control, you could use its attributes, for
example:

// The static function, for global access
static wxVisualAttributes GetClassDefaultAttributes(

wxWindowVariant variant = wxWINDOW_VARIANT_NORMAL)
{

return wxListBox::GetClassDefaultAttributes(variant);
}

// The virtual function, for object access
virtual wxVisualAttributes GetDefaultAttributes() const
{

return GetClassDefaultAttributes(GetWindowVariant());
}

368 Advanced Window Classes Chapter 12

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 368

The wxVisualAttributes structure is defined as follows:

// struct containing all the visual attributes of a control
struct wxVisualAttributes
{

// the font used for the control’s label or text inside it
wxFont font;

// the foreground color
wxColour colFg;

// the background color; may be wxNullColour if the
// control’s background color is not solid
wxColour colBg;

};

If your control should have a transparent background—for example, if it’s a
static control such as a label—then provide the function HasTransparent
Background as a hint to wxWidgets (currently on Windows only).

Finally, sometimes your control may need to delay certain operations
until the final size or some other property is known. You can use idle time pro-
cessing for this, as described in “Alternatives to Multithreading” in Chapter
17, “Writing Multithreaded Aplications.”

A More Complex Example: wxThumbnailCtrl

The example we looked at previously, wxFontSelectorCtrl, was simple enough
that we could briefly demonstrate the basics of creating new control, event,
and validator classes. However, it’s a bit thin on interesting display and
input code. For a more complex example, take a look at wxThumbnailCtrl in
examples/chap12/thumbnail on the CD-ROM. This control displays a scrolling
page of thumbnails (little images) and can be used in any application that
deals with images. (In fact, it’s not limited to images; you can define your own
classes derived from wxThumbnailItem to display thumbnails for other file types,
or for images within archives, for example.)

Figure 12-10 shows the control being used with a wxGenericDirCtrl inside
an image selection dialog (wxThumbnailBrowserDialog). The supplied sample
comes with a selection of images in the images subdirectory for demonstration
purposes.

The class illustrates the following topics, among others:

� Mouse input: Items can be selected with left-click or multiply selected
by holding down the Control key.

� Keyboard input: The thumbnail grid can be navigated and scrolled with
the arrow keys, and items can be selected by holding down the Shift key.

� Focus handling: “Set” and “kill” focus events are used to update the cur-
rently focused item when the control itself receives or loses the focus.

Writing Your Own Controls 369

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 369

� Optimized drawing: Painting uses wxBufferedPaintDC for flicker-free
updates and also checks the update region to eliminate unnecessary
drawing.

� Scrolling: The control derives from wxScrolledWindow and adjusts its
scrollbars according to the number of items in the control.

� Custom events: wxThumbnailEvent is generated with several event types
including selection, deselection, and right-click.

370 Advanced Window Classes Chapter 12

Figure 12-10 wxThumbnailCtrl used in an image selection dialog

wxThumbnailCtrl doesn’t load a directory full of images itself; for flexibil-
ity, wxThumbnailItem objects are explicitly added, as the following code shows:

// Create a multiple-selection thumbnail control
wxThumbnailCtrl* imageBrowser =

new wxThumbnailCtrl(parent, wxID_ANY,
wxDefaultPosition, wxSize(300, 400),
wxSUNKEN_BORDER|wxHSCROLL|wxVSCROLL|wxTH_TEXT_LABEL|
wxTH_IMAGE_LABEL|wxTH_EXTENSION_LABEL|wxTH_MULTIPLE_SELECT);

// Set a nice big thumbnail size
imageBrowser->SetThumbnailImageSize(wxSize(200, 200));

// Don’t paint while filling the control
imageBrowser->Freeze();

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 370

// Set some bright colors
imageBrowser->SetUnselectedThumbnailBackgroundColour(*wxRED);
imageBrowser->SetSelectedThumbnailBackgroundColour(*wxGREEN);

// Add images from directory ‘path’
wxDir dir;
if (dir.Open(path))
{

wxString filename;

bool cont = dir.GetFirst(&filename, wxT(“*.*”), wxDIR_FILES);
while (cont)
{

wxString file = path + wxFILE_SEP_PATH + filename;
if (wxFileExists(file) && DetermineImageType(file) != -1)
{

imageBrowser->Append(new wxImageThumbnailItem(file));
}

cont = dir.GetNext(&filename);
}

}

// Sort by name
imageBrowser->Sort(wxTHUMBNAIL_SORT_NAME_DOWN);

// Tag and select the first thumbnail
imageBrowser->Tag(0);
imageBrowser->Select(0);

// Delete the second thumbnail
imageBrowser->Delete(1);

// Now display the images
imageBrowser->Thaw();

If you look through the source code in thumbnailctrl.h and thumbnail.cpp, you
should get plenty of ideas for implementing your own controls. Feel free to use
wxThumbnailCtrl in your own applications, too.

SUMMARY

This chapter has covered visual classes that you probably won’t use in your
first explorations of wxWidgets, but you’ll almost certainly want to consider
them as your applications become more sophisticated. Their source also gives
you plenty of tips for learning how to write your own controls, as described in
the final part of this chapter.

Refer also to Appendix D, “Other Features in wxWidgets,” for other
advanced controls distributed with wxWidgets, and Appendix E, “Third-Party
Tools for wxWidgets,” for third-party controls.

Next, we’ll have a look at the data structure classes available in
wxWidgets.

Summary 371

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 371

Smart_Ch12f.qxd 6/10/05 11:21 AM Page 372

C H A P T E R 13

Data Structure Classes

Storing and processing data is an essential part of any application. From sim-
ple classes that store information about size and position to complex types
such as arrays and hash maps, wxWidgets provides a comprehensive selection
of data structures. This chapter presents many of wxWidgets’ data structures,
highlighting the frequently used methods of each structure. Less frequently
used structures and features can be found by reading the complete APIs in the
wxWidgets documentation.

Note that data structure theories and implementations are not covered
in this book. However, anyone should be able to use the data structure classes,
even without understanding their internals.

WHY NOT STL?

First, let’s deal with a question commonly asked about wxWidgets data struc-
ture classes: “Why doesn’t wxWidgets just use the Standard Template Library
(STL)?” The main reason is historical: wxWidgets has existed since 1992, long
before STL could reliably be used across different platforms and compilers. As
wxWidgets has evolved, many of the data structure classes have gravitated
towards an STL-like API, and it is expected that eventually STL equivalents
will replace some wxWidgets classes.

Meanwhile, you can still use STL functionality in your wxWidgets appli-
cations by setting wxUSE_STL to 1 in setup.h (or by passing —enable-stl when
configuring) to base wxString and other containers on the STL equivalents. Be
warned that using STL with wxWidgets can increase both the library size and
compilation time, especially when using GCC.

373

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 373

STRINGS

The benefits of working with a string class instead of standard character
pointers are well established. wxWidgets includes its own string class,
wxString, used both internally and for passing and returning information.
wxString has all the standard operations you expect to find in a string class:
dynamic memory management, construction from other strings, C strings, and
characters, assignment operators, access to individual characters, string con-
catenation and comparison, substring extraction, case conversion, trimming
and padding (with spaces), searching and replacing, C-like printf, stream-like
insertion functions, and more.

Beyond being just another string class, wxString has other useful fea-
tures. wxString fully supports Unicode, including methods for converting to
and from ANSI and Unicode regardless of your build configuration. Using
wxString gives you the ability to pass strings to the library or receive them
back without any conversion process. Lastly, wxString implements 90% of the
STL std::string methods, meaning that anyone familiar with std::string can
use wxString without any learning curve.

Using wxString

Using wxString in your application is very straightforward. Wherever you
would normally use std::string or your favorite string implementation, use
wxString instead. All functions taking string arguments should take const
wxString& (which makes assignment to the strings inside the function faster
because of reference counting), and all functions returning strings should
return wxString, which makes it safe to return local variables.

Because C and C++ programmers are familiar with most string methods,
a long and detailed API reference for wxString has been omitted. Please con-
sult the wxWidgets documentation for wxString, which provides a comprehen-
sive list of all its methods.

You may notice that wxString sometimes has two or more functions
that do the same thing. For example, Length, Len, and length all return the
length of the string. In all cases of such duplication, the usage of
std::string-compatible methods is strongly advised. It will make your code
more familiar to other C++ programmers and will let you reuse the same code
in both wxWidgets and other programs, where you can typedef wxString as
std::string. Also, wxWidgets might start using std::string at some point in
the future, so using these methods will make your programs more forward-
compatible (although the wxString methods would be supported for some time
for backwards compatibility).

374 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 374

wxString, Characters, and String Literals

wxWidgets has a wxChar type which maps either to char or wchar_t depending
on the application build configuration (Unicode or ANSI). As already
mentioned, there is no need for a separate type for char or wchar_t strings
because wxString stores strings using the appropriate underlying C type.
Whenever you work directly with strings that you intend to use with a
wxWidgets class, use wxChar instead of char or wchar_t directly. Doing so
ensures compatibility with both ANSI and Unicode build configuration with-
out complicated preprocessor conditions.

When using wxWidgets with Unicode enabled, standard string literals
are not the correct type: an unmodified string literal is always of type char*. In
order for a string literal to be used in Unicode mode, it must be a wide charac-
ter constant, usually marked with an L. wxWidgets provides the wxT macro
(identical to _T) to wrap string literals for use with or without Unicode. When
Unicode is not enabled, _T is an empty macro, but with Unicode enabled, it
adds the necessary L for the string literal to become a wide character string
constant. For example:

wxChar ch = wxT(‘*’);
wxString s = wxT(“Hello, world!”);
wxChar* pChar = wxT(“My string”);
wxString s2 = pChar;

For more details about using Unicode in your applications, please see Chapter
16, “Writing International Applications.”

Basic wxString to C Pointer Conversions

Because there may be times when you need to access a wxString’s data as a C
type for low-level processing, wxWidgets provides several accessors:

� mb_str returns a C string representation of the string, a const char*,
regardless of whether Unicode is enabled. In Unicode mode, the string is
converted, and data may be lost.

� wc_str returns a wide character representation of the string, a wchar_t*,
regardless of whether Unicode is enabled. In ANSI mode, the string is
converted to Unicode.

� c_str returns a pointer to the string data (const char* in ANSI mode,
const wchar_t* in Unicode mode). No conversion takes place.

You can convert between std::string and wxString by means of c_str, as
follows:

std::string str1 = wxT(“hello”);
wxString str2 = str1.c_str();
std::string str3 = str2.c_str();

Strings 375

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 375

One trap when using wxString is the implicit conversion operator to const char
*. It is advised that you use c_str to indicate clearly when the conversion is
done. The danger of this implicit conversion may be seen in the following code
fragment:

// converts the input string to uppercase, outputs it to the
// screen, and returns the result (buggy)
const char *SayHELLO(const wxString& input)
{

wxString output = input.Upper();

printf(“Hello, %s!\n”, output);

return output;
}

There are two nasty bugs in these four lines. The first is in the call to the
printf function. The implicit conversion to a C string is automatically applied
by the compiler in the case of functions like puts because the argument of puts
is known to be of the type const char *. However, this is not done for printf,
which is a function with a variable number of arguments whose types are
unknown. Such a call to printf might do anything at all (including displaying
the correct string on screen), although the most likely result is a program
crash. The solution is to use c_str:

printf(wxT(“Hello, %s!\n”), output.c_str());

The second bug is that returning the variable named output doesn’t work. The
implicit cast is used again, so the code compiles, but it returns a pointer to a
buffer belonging to a local variable that is deleted as soon as the function exits.
The solution to this problem is also easy: have the function return a wxString
instead of a C string. The corrected code looks like this:

// converts the input string to uppercase, outputs it to the
// screen, and returns the result (corrected)
wxString SayHELLO(const wxString& input)
{

wxString output = input.Upper();

printf(wxT(“Hello, %s!\n”), output.c_str());

return output;
}

Standard C String Functions

Because most programs use character strings, the standard C library provides
quite a few functions to work with them. Unfortunately, some of them have

376 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 376

rather counterintuitive behavior (like strncpy, which doesn’t always termi-
nate the resulting string with a NULL) or are considered unsafe with possible
buffer overflows. Moreover, some very useful functions are not standard at all.
This is why in addition to all wxString functions, there are a few global string
functions that try to correct these problems: wxIsEmpty verifies whether the
string is empty (returning true for NULL pointers), wxStrlen handles NULLs
correctly and returns 0 for them, and wxStricmp is a platform-independent
version of the case-insensitive string comparison function known either as
stricmp or strcasecmp on different platforms.

The “wx/string.h” header also defines wxSnprintf and wxVsnprintf func-
tions that should be used instead of the inherently dangerous standard
sprintf. The “n” functions use snprintf, which does buffer size checks when-
ever possible. You may also use wxString::Printf without worrying about the
vulnerabilities typically found in printf.

Converting to and from Numbers

Programmers often need to convert between string and numeric representa-
tions of numbers, such as when processing user input or displaying the results
of a calculation.

ToLong(long* val, int base=10) attempts to convert the string to a signed
integer in base base. It returns true on success, in which case the number is
stored in the location pointed to by val, or false if the string does not repre-
sent a valid number in the given base. The value of base must be between 2
and 36, inclusive, or a special value 0, which means that the usual rules of C
numbers are applied: if the number starts with 0x, it is considered to be in
base 16; if it starts with 0-, it is considered to be in base 8, and in base 10
otherwise.

ToULong(unsigned long* val, int base=10) works identically to ToLong,
except that the string is converted to an unsigned integer.

ToDouble(double* val) attempts to convert the string to a floating point
number. It returns true on success (the number is stored in the location
pointed to by val) or false if the string does not represent such a number.

Printf(const wxChar* pszFormat, ...) is similar to the C standard func-
tion sprintf, enabling you to put information into a wxString using standard C
string formatting. The number of characters written is returned.

static Format(const wxChar* pszFormat, ...) returns a wxString contain-
ing the results of calling Printf with the passed parameters. The advantage of
Format over Printf is that Format can be used to add to an existing string:

int n = 10;
wxString s = “Some Stuff”;
s += wxString::Format(wxT(“%d”),n);

operator<< can be used to append an int, a float, or a double to a wxString.

Strings 377

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 377

wxStringTokenizer

wxStringTokenizer helps you to break a string into a number of tokens, replac-
ing and expanding the C function strtok. To use it, create a wxStringTokenizer
object and give it the string to tokenize and the delimiters that separate the
tokens. By default, white space characters will be used. Then call GetNextToken
repeatedly until HasMoreTokens returns false.

wxStringTokenizer tkz(wxT(“first:second:third:fourth”), wxT(“:”));
while (tkz.HasMoreTokens())
{

wxString token = tkz.GetNextToken();
// process token here

}

By default, wxStringTokenizer will behave in the same way as strtok if the
delimiters string contains only white space characters. Unlike the standard
functions, however, it will return empty tokens if appropriate for other non-
white space delimiters. This is helpful for parsing strictly formatted data
where the number of fields is fixed but some of them may be empty, as in the
case of tab- or comma-delimited text files.

wxStringTokenizer’s behavior is governed by the last constructor parame-
ter, which may be one of the following:

� wxTOKEN_DEFAULT: Default behavior as described previously; same as
wxTOKEN_STRTOK if the delimiter string contains only white space, and same
as wxTOKEN_RET_EMPTY otherwise.

� wxTOKEN_RET_EMPTY: In this mode, the empty tokens in the middle of the
string will be returned. So a::b: will be tokenized into three tokens a, “”,
and b.

� wxTOKEN_RET_EMPTY_ALL: In this mode, empty trailing tokens (after the last
delimiter character) will be returned as well. a::b: will contain four
tokens: the same as wxTOKEN_RET_EMPTY and another empty one as the last
one.

� wxTOKEN_RET_DELIMS: In this mode, the delimiter character after the end of
the current token is appended to the token (except for the last token,
which has no trailing delimiter). Otherwise, it is the same mode as
wxTOKEN_RET_EMPTY.

� wxTOKEN_STRTOK: In this mode, the class behaves exactly like the standard
strtok function. Empty tokens are never returned.

wxStringTokenizer has two other useful accessors:

� CountTokens returns the number of remaining tokens in the string,
returning 0 when there are no more tokens.

� GetPosition returns the current position of the tokenizer in the original
string.

378 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 378

wxRegEx

wxRegEx represents a regular expression. This class provides support for regu-
lar expression matching and replacement. wxRegEx is either built on top of the
system library (if it is available and has support for POSIX regular expres-
sions, which is the case for most modern Unix variants, including Linux and
Mac OS X) or uses the built-in library by Henry Spencer. Regular expressions,
as defined by POSIX, come in two variations: extended and basic. The built-in
library also adds an advanced mode, which is not available when using the
system library.

On platforms where a system library is available, the default is to use
the built-in library for Unicode builds, and the system library otherwise. Bear
in mind that Unicode is fully supported only by the built-in library. It is possi-
ble to override the default when building wxWidgets. When using the system
library in Unicode mode, the expressions and data are translated to the
default 8-bit encoding before being passed to the library.

Use wxRegEx as you would use any POSIX regular expression processor.
Due to the advanced nature and specialized uses of regular expressions,
please see the wxWidgets documentation for a complete discussion and API
reference.

WXARRAY

wxWidgets provides a dynamic array structure using wxArray, similar to C
arrays in that the member access time is constant. However, these arrays are
dynamic in the sense that they will automatically allocate more memory if
there is not enough of it for adding a new element. Adding items to the arrays
is also implemented in more or less constant time—but the price is pre-
allocating the memory in advance. wxArray also provides range checking,
asserting in debug builds or silently returning in release builds (though your
program might get an unexpected value from array operations).

Array Types

wxWidgets has three different kinds of arrays. All derive from wxBaseArray,
which works with untyped data and cannot be used directly. The macros
WX_DEFINE_ARRAY, WX_DEFINE_SORTED_ARRAY, and WX_DEFINE_OBJARRAY are used to
define a new class deriving from it. The classes are referred to as wxArray,
wxSortedArray, and wxObjArray, but you should keep in mind that no classes
with such names actually exist.

wxArray is suitable for storing integer types and pointers, which it does
not treat as objects in any way—that is, the element referred to by the pointer
is not deleted when the element is removed from the array. It should be noted
that all of wxArray’s functions are inline, so it costs nothing to define as many

wxArray 379

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 379

380 Data Structure Classes Chapter 13

array types as you want (either in terms of the executable size or speed). This
class has one serious limitation: it can only be used for storing integral types
(bool, char, short, int, long, and their unsigned variants) or pointers (of any
kind). Data of type float or double should not be stored in a wxArray.

wxSortedArray is a wxArray variant that should be used when you will be
searching the array frequently. wxSortedArray requires you to define an addi-
tional function for comparing two elements of the array element type and
always stores its items in the sorted order (according to the sort function).
Assuming that you search the array far less frequently than you add to it,
wxSortedArray may lead to huge performance improvements compared
to wxArray. It should be noted that wxSortedArray shares wxArray’s type restric-
tion and should only be used for storing integral types or pointers.

wxObjArray class treats its elements like objects. It can delete them when
they are removed from the array (invoking the correct destructor), and it
copies them using the object’s copy constructor. The definition of the
wxObjArray arrays is split into two parts. First, you should declare the new
wxObjArray class using the WX_DECLARE_OBJARRAY macro. Second, you must
include the file defining the implementation of template type
<wx/arrimpl.cpp> and define the array class with the WX_DEFINE_OBJARRAY
macro from a point where the full declaration of the array elements class is
in scope. This technique will be demonstrated in the array sample code pre-
sented later in this chapter.

wxArrayString

wxArrayString is an efficient container for storing wxString objects and has the
same features as the other wxArray classes. It is also very compact and doesn’t
take more space than a C array wxString[] type (wxArrayString uses its
knowledge of internals of wxString class to achieve this). All of the methods
available in the other wxArray types are also available in wxArrayString.

This class is used in the same way as other dynamic arrays, except that
no WX_DEFINE_ARRAY declaration is needed for it—you can use wxArrayString
directly. When a string is added or inserted in the array, a copy of the string is
created, so the original string may be safely deleted. In general, there is no
need to worry about string memory management when using this class—it
will always free the memory it uses.

The references returned by Item, Last, or operator[] are not constant, so
the array elements may be modified in place:

array.Last().MakeUpper();

There is also a variant of wxArrayString called wxSortedArrayString that has
exactly the same methods as wxArrayString, but always keeps its strings in
alphabetical order. wxSortedArrayString uses binary search in its Index,
which makes it much more efficient if you rarely add strings to the array but

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 380

search for them often. The Insert and Sort methods should not be used with
wxSortedArrayString because they are likely to break the order of items.

Array Construction, Destruction, and Memory Management

Array classes are C++ objects and as such have the appropriate copy construc-
tors and assignment operators. Copying a wxArray copies the elements, but
copying a wxObjArray copies the array’s items. However, for the sake of memory
efficiency, neither of these classes has a virtual destructor. It is not very impor-
tant for wxArray, which has a trivial destructor, but it does mean that you
should avoid deleting wxObjArray through a wxBaseArray pointer and that you
should not derive your own classes from the array classes.

Automatic array memory management is quite trivial: the array
starts by pre-allocating some minimal amount of memory (defined by
WX_ARRAY_DEFAULT_INITIAL_SIZE). When further new items exhaust previously
allocated memory, the array reallocates itself, adding 50% of the currently
allocated amount, but no more than ARRAY_MAXSIZE_INCREMENT. The Shrink
method deallocates any extra memory. The Alloc method can be quite useful if
you know in advance how many items you are going to put in the array, and
using it will prevent the array code from reallocating the memory more often
than needed.

Array Sample Code

The array sample presented here shows the most complex case, using a
wxObjArray to store custom objects. Using a wxArray for primitive types or
pointers would work identically in terms of syntax and semantics, but the
wxArray would never take ownership of the objects.

// Our data class to store in the array
class Customer
{
public:

int CustID;
wxString CustName;

};

// this part might be in a header or source (.cpp) file
// declare our array class:
// this macro declares and partly implements CustomerArray class
// (which derives from wxArrayBase)
WX_DECLARE_OBJARRAY(Customer, CustomerArray);

// the only requirement for the rest is to be AFTER the full
// declaration of Customer (for WX_DECLARE_OBJARRAY forward
// declaration is enough), but usually it will be found in the
// source file and not in the header
#include <wx/arrimpl.cpp>
WX_DEFINE_OBJARRAY(CustomerArray);

wxArray 381

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 381

382 Data Structure Classes Chapter 13

// Used when sorting to compare objects
int arraycompare(Customer** arg1, Customer** arg2)
{

return ((*arg1)->CustID < (*arg2)->CustID);
}

// Show Array operations
void ArrayTest()
{

// Declare an instance of our array
CustomerArray MyArray;

bool IsEmpty = MyArray.IsEmpty(); // will be true

// Create some customers
Customer CustA;
CustA.CustID = 10;
CustA.CustName = wxT(“Bob”);

Customer CustB;
CustB.CustID = 20;
CustB.CustName = wxT(“Sally”);

Customer* CustC = new Customer();
CustC->CustID = 5;
CustC->CustName = wxT(“Dmitri”);

// Append two customers to the array
MyArray.Add(CustA);
MyArray.Add(CustB);

// Insert last customer into arbitrary place in the array
// The array will not own this CustC object, it will own a copy
MyArray.Insert(*CustC, (size_t)0);

int Count = MyArray.GetCount(); // will be 3

// If not found, wxNOT_FOUND is returned
int Index = MyArray.Index(CustB); // will be 2

// Process each customer in the array
for (unsigned int i = 0; i < MyArray.GetCount(); i++)
{

Customer Cust = MyArray[i]; // or MyArray.Item(i);

// Process Customer
}

// Sort the customers according to the sort function
MyArray.Sort(arraycompare);

// Remove Customer A from the array, but do not delete
Customer* pCustA = MyArray.Detach(1);
// We must deallocate the object ourself if using Detach
delete pCustA;

// Remove will also delete the Customer object
MyArray.RemoveAt(1);

// Clears the array, deleting all objects

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 382

MyArray.Clear();

// The array never owned this object
delete CustC;

}

WXLIST AND WXNODE

The wxList class is a doubly linked list that can store data of an arbitrary type.
wxWidgets requires that you explicitly define a new list type for each type of
list data, providing strong type checking for the list’s data type. The wxList
class also allows you to optionally specify a key type for primitive lookups (see
the wxHashMap section if you need a structure with fast random access).

The wxList class makes use of an abstract wxNode class. When you define a
new list, a new node type deriving from wxNodeBase is also created, providing
type-safe node operations. The most important methods of the node class are
the self-explanatory GetNext, GetPrevious, and GetData, which provide access to
the next node, the previous node, and the current node’s data.

The only remarkable operation for a wxList is data deletion. By default,
removing a node does not delete the data being stored by that node. The
DeleteContents method allows you to change this behavior and set the data
itself to be deleted along with the nodes. If you want to empty a list of all data
and delete the data, be sure to call DeleteContents with true before calling
Clear.

Rather than rehash the contents of the manual, a small but comprehen-
sive code example shows the wxList methods as well as how to create and use
your custom list type. Note that the WX_DECLARE_LIST macro would typically
appear in a header file, while the WX_DEFINE_LIST macro would almost always
appear in a source file.

// Our data class to store in the list
class Customer
{
public:

int CustID;
wxString CustName;

};

// this part might be in a header or source file
// declare our list class:
// this macro declares and partly implements CustomerList class
// (which derives from wxListBase)
WX_DECLARE_LIST(Customer, CustomerList);

// the only requirement for the rest is to be AFTER the full
// declaration of Customer (for WX_DECLARE_LIST forward declaration
// is enough), but usually it will be found in the source file and
// not in the header

wxList and wxNode 383

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 383

#include <wx/listimpl.cpp>
WX_DEFINE_LIST(CustomerList);

// Used for sorting to compare objects
int listcompare(const Customer** arg1, const Customer** arg2)
{

return ((*arg1)->CustID < (*arg2)->CustID);
}

// Show List operations
void ListTest()
{

// Declare an instance of our list
CustomerList* MyList = new CustomerList();

bool IsEmpty = MyList->IsEmpty(); // will be true

// Create some customers
Customer* CustA = new Customer;
CustA->CustID = 10;
CustA->CustName = wxT(“Bob”);

Customer* CustB = new Customer;
CustB->CustID = 20;
CustB->CustName = wxT(“Sally”);

Customer* CustC = new Customer;
CustC->CustID = 5;
CustC->CustName = wxT(“Dmitri”);

// Append two customers to the list
MyList->Append(CustA);
MyList->Append(CustB);

// Insert last customer into arbitrary place in the list
MyList->Insert((size_t)0, CustC);

int Count = MyList->GetCount(); // will be 3

// If not found, wxNOT_FOUND is returned
int index = MyList->IndexOf(CustB); // will be 2

// Customized node holds our customized data
CustomerList::Node* node = MyList->GetFirst();

// Traverse the nodes and process the customers
while (node)
{

Customer* Cust = node->GetData();

// Process Customer

node = node->GetNext();
}

// Returns the node at the specified position
node = MyList->Item(0);

// Sort the customers according to the sort function
MyList->Sort(listcompare);

384 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 384

// Remove Customer A node from the list
MyList->DeleteObject(CustA);
// CustA object is NOT deleted by removing the node
delete CustA;

// Returns the node whose client data is the object
node = MyList->Find(CustB);

// Specifies that data should be deleted when node is deleted
MyList->DeleteContents(true);

// Removes node from the list and deletes that node’s
// data (CustB)
MyList->DeleteNode(node);

// Clears the list, and deletes all stored data
// (DeleteContents is true)
MyList->Clear();

delete MyList;
}

WXHASHMAP

The wxHashMap class is a simple, type-safe, and reasonably efficient hash map
class, with an interface that is a subset of the interface of STL containers. In
particular, the interface is modeled after std::map and the non-standard
std::hash_map. By using macros to create hash maps, you can choose from sev-
eral combinations of keys and values, including int, wxString, or void* (arbi-
trary class).

There are three macros for declaring a hash map. To declare a hash map
class named CLASSNAME with wxString keys and VALUE_T values:

WX_DECLARE_STRING_HASH_MAP(VALUE_T, CLASSNAME);

To declare a hash map class named CLASSNAME with void* keys and VALUE_T values:

WX_DECLARE_VOIDPTR_HASH_MAP(VALUE_T, CLASSNAME);

To declare a hash map class named CLASSNAME with arbitrary keys or values:

WX_DECLARE_HASH_MAP(KEY_T, VALUE_T, HASH_T, KEY_EQ_T, CLASSNAME);

HASH_T and KEY_EQ_T are the types used for the hashing function and key com-
parison. wxWidgets provides three predefined hashing functions: wxInteger

Hash for integer types (int, long, short, and their unsigned counterparts),

wxHashMap 385

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 385

wxStringHash for strings (wxString, wxChar*, char*), and wxPointerHash for any
kind of pointer. Similarly, three equality predicates are provided: wxInteger

Equal, wxStringEqual, and wxPointerEqual.
The following code example shows the wxHashMap methods as well as how

to create and use your custom hash type.

// Our data class to store in the hash
class Customer
{

public:
int CustID;
wxString CustName;

};

// Declare our hash map class
// This macro declares and implements CustomerList as a hash map
WX_DECLARE_HASH_MAP(int, Customer*, wxIntegerHash,

wxIntegerEqual, CustomerHash);

void HashTest()
{

// Declare an instance of our list
CustomerHash MyHash;

bool IsEmpty = MyHash.empty(); // will be true

// Create some customers
Customer* CustA = new Customer;
CustA->CustID = 10;
CustA->CustName = wxT(“Bob”);

Customer* CustB = new Customer;
CustB->CustID = 20;
CustB->CustName = wxT(“Sally”);

Customer* CustC = new Customer;
CustC->CustID = 5;
CustC->CustName = wxT(“Dmitri”);

// Add the customers to the hash
MyHash[CustA->CustID] = CustA;
MyHash[CustB->CustID] = CustB;
MyHash[CustC->CustID] = CustC;

int Size = MyHash.size(); // will be 3

// count returns 0 or 1, i.e. is 20 in the hash?
int Present = MyHash.count(20); // will be 1

// Customized iterator for our hash map
CustomerHash::iterator i = MyHash.begin();

// End represents one past the last element
while (i != MyHash.end())
{

386 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 386

// first is the key, second is the value
int CustID = i->first;
Customer* Cust = i->second;

// Process Customer

// Advance to the next element in the hash
i++;

}

// Remove Customer A from the hash
MyHash.erase(10);
// CustA object is NOT deleted by removing from hash
delete CustA;

// Return an iterator to the node with the specified key
CustomerHash::iterator i2 = MyHash.find(21);

// Find returns hash::end if the key was not found
bool NotFound = (i2 == MyHash.end()); // will be true

// This time the find will be successful
i2 = MyHash.find(20);

// Removing an element using the iterator
MyHash.erase(i2);
delete CustB;

// Side-effect: A NULL value is inserted in the hash for key 30
Customer* Cust = MyHash[30]; // Cust will be NULL

// Empties the hash map of all elements
MyHash.clear();

delete CustC;
}

STORING AND PROCESSING DATES AND TIMES

wxWidgets provides a comprehensive wxDateTime class for representing date
and time information with many operations such as formatting, time zones,
date and time arithmetic, and more. Static functions provide information such
as the current date and time, as well as queries such as whether a given year
is a leap year. Note that the wxDateTime class is the appropriate class to use
even when you need to store only date or time information. Helper classes
wxTimeSpan and wxDateSpan provide convenient ways for modifying an existing
wxDateTime object.

Storing and Processing Dates and Times 387

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 387

wxDateTime

The wxDateTime class has too many methods to include in a concise discussion;
the complete API reference is available in the wxWidgets documentation.
What is presented here is an overview of the most frequently used wxDateTime
methods and operations.

Note that although time is always stored internally in Greenwich Mean
Time (GMT), you will usually work in the local time zone. Because of this, all
wxDateTime constructors and modifiers that compose a date or time from com-
ponents (for example hours, minutes, and seconds) assume that these values
are for the local time zone. All methods returning date or time components
(month, day, hour, minute, second, and so on) will also return the correct val-
ues for the local time zone by default; no effort is required to get correct
results for your time zone. If you want to manipulate time zones, please refer
to the documentation.

wxDateTime Constructors and Modifiers

wxDateTime objects can be constructed from Unix timestamps, time-only infor-
mation, date-only information, or complete date and time information. For
each constructor, there is a corresponding Set method that modifies an exist-
ing object to have the specified date or time. There are also individual modi-
fiers such as SetMonth or SetHour that change just one component of the date
or time.

wxDateTime(time_t) constructs an object with the date and time set
according to the specified Unix timestamp.

wxDateTime(const struct tm&) constructs an object using the data from
the C standard tm structure.

wxDateTime(wxDateTime_t hour, wxDateTime_t minute = 0, wxDateTime_t

second = 0, wxDateTime_t millisec = 0) constructs an object based on the spec-
ified time information.

wxDateTime(wxDateTime_t day, Month month = Inv_Month, int year =

Inv_Year, wxDateTime_t hour = 0, wxDateTime_t minute = 0, wxDateTime_t sec-

ond = 0, wxDateTime_t millisec = 0) constructs an object with the specified
date and time information.

wxDateTime Accessors

The accessors for wxDateTime are mostly self-explanatory: GetYear,
GetMonth, GetDay, GetWeekDay, GetHour, GetMinute, GetSecond, GetMillisecond,
GetDayOfYear, GetWeekOfYear, GetWeekOfMonth, and GetYearDay. wxDateTime also
provides the following:

� GetTicks returns the date and time in Unix timestamp format (seconds
since January 1, 1970 at midnight).

� IsValid returns whether or not the object is in a valid state (the object
could have been constructed but never given a date or time).

388 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 388

Getting the Current Time

wxDateTime provides two static methods for retrieving the current time:

� wxDateTime::Now creates a wxDateTime object with the current time, accu-
rate to up the second.

� wxDateTime::UNow creates a wxDateTime object with the current time,
including milliseconds.

Parsing and Formatting Dates

The functions in this section convert wxDateTime objects to and from text. The
conversions to text are mostly trivial: you can use the default date and time
representations for the current locale (FormatDate and FormatTime), use the
international standard representation defined by ISO 8601 (FormatISODate and
FormatISOTime), or specify any format at all by using Format directly.

The conversions from text are more interesting because there are many
more possibilities. The simplest cases can be taken care of with ParseFormat,
which can parse any date in a specified (rigid) format. ParseRfc822Date parses
dates using the format from RFC 822 that defines the format of email mes-
sages on the Internet.

The most interesting functions are ParseTime, ParseDate, and
ParseDateTime, which try to parse the date and/or time in “free” format, allow-
ing them to be specified in a variety of ways. These functions can be used to
parse user input that is not bound by any predefined format. As an example,
ParseDateTime can parse strings such as “tomorrow”, “March first”, and even
“next Sunday”.

Date Comparisons

Two wxDateTime objects can easily be compared using one of many available
comparison functions. All of these methods return true or false.

The following methods all make comparisons to one other wxDateTime
object: IsEqualTo, IsEarlierThan, IsLaterThan, IsSameDate, and IsSameTime.

The following methods all make comparisons using two other wxDateTime
objects: IsStrictlyBetween and IsBetween. The difference between these two is
that IsStrictlyBetween would return false if the wxDateObject in question
exactly equaled one of the range extremes, whereas IsBetween would return
true.

Date Arithmetic

wxWidgets provides two very robust classes for performing arithmetic on
wxDateTime objects: wxTimeSpan and wxDateSpan. wxTimeSpan is simply a difference
in milliseconds and always gives fast, predictable results. On the other hand,
time has larger meaningful units, such as weeks or months. wxDateSpan handles
these operations in the most natural way possible, but note that manipulating

Storing and Processing Dates and Times 389

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 389

intervals of this kind is not always well-defined. For example, Jan 31 plus one
month will give Feb 28 (or 29), the last day of February, and not the non-exis-
tent Feb 31. Of course, this is what is usually wanted, but you still might be
surprised that subtracting back the same interval from Feb 28 will result in
Jan 28 (not the January 31 that we started with).

Many different operations may be performed with the dates, but not all
combinations of them make sense. For example, multiplying a date by a num-
ber is an invalid operation, even though multiplying either of the time span
classes by a number is perfectly valid.

� Addition: A wxTimeSpan or wxDateSpan can be added to wxDateTime result-
ing in a new wxDateTime object. Also, two objects of the same span class
can be added together, resulting in another object of the same class.

� Subtraction: The same operations as addition are valid for subtraction.
Additionally, a difference between two wxDateTime objects can be taken
and will return a wxTimeSpan object.

� Multiplication: A wxTimeSpan or wxDateSpan object can be multiplied by
an integer number, resulting in an object of the same type.

� Unary minus: A wxTimeSpan or wxDateSpan object may be negated,
resulting in an interval of the same magnitude but in the opposite time
direction.

The following small code example demonstrates how to use wxDateSpan and
wxTimeSpan to change the time stored in a wxDateTime object. See the wxWidgets
manual for a complete list of available methods.

void TimeTests()
{

// Get the current day and time
wxDateTime DT1 = wxDateTime::Now();

// A span of 2 weeks and 1 day, or 15 days
wxDateSpan Span1(0, 0, 2, 1);

// Substract 15 days from today
wxDateTime DT2 = DT1 - Span1;

// Static creation of a one-day difference
wxDateSpan Span2 = wxDateSpan::Day();

// Span 3 will now be 14 days
wxDateSpan Span3 = Span1 - Span2;

// 0 days (the span is defined as 2 weeks)
int Days = Span3.GetDays();

// 14 days (2 weeks)
int TotalDays = Span3.GetTotalDays();

// 2 weeks into the past
wxDateSpan Span4 = -Span3;

390 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 390

// A span of 3 months
wxDateSpan Span5 = wxDateSpan::Month() * 3;

// 10 hours, 5 minutes and 6 seconds
wxTimeSpan Span6(10, 5, 6, 0);

// Add the specified amount of time to DT2
wxDateTime DT3 = DT2 + Span6;

// Span7 is 3 times longer than Span6, but in the past
wxTimeSpan Span7 = (-Span6) * 3;

// SpanNeg will be true, the span is negative (in the past)
bool SpanNeg = Span7.IsNegative();

// Static creation of a span of one hour
wxTimeSpan Span8 = wxTimeSpan::Hour();

// One hour is not longer than 30+ hours (uses absolutes)
bool Longer = Span8.IsLongerThan(Span7);

}

HELPER DATA STRUCTURES

wxWidgets makes use of several data structures internally and as parameters
and return types in public library methods. Application programmers are
encouraged to use the wxWidgets helper data structures in their projects.

wxObject

The wxObject class is the base class of all wxWidgets classes, providing run-
time type information, reference counting, virtual destructor declaration, and
optional debugging versions of new and delete. The wxClassInfo class is used to
store meta-data about classes and is used by some of the wxObject methods.

MyWindow* window = wxDynamicCast(FindWindow(ID_MYWINDOW), MyWindow);

IsKindOf takes a wxClassInfo pointer and returns true if the object is of the
specified type. For example:

bool tmp = obj->IsKindOf(CLASSINFO(wxFrame));

Ref takes a const wxObject& and replaces the current object’s data with a refer-
ence to the passed object’s data. The reference count of the current object is
decremented, possibly freeing its data, and the reference count of the passed
object is incremented.

Helper Data Structures 391

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 391

UnRef decrements the reference count of the associated data and deletes
the data if the reference count has fallen to 0.

wxLongLong

The wxLongLong class represents a 64-bit long number. A native 64-bit type is
always used when available, and emulation code is used when the native type
is unavailable. You would usually use this type in exactly the same manner as
any other (built-in) arithmetic type. Note that wxLongLong is a signed type; if
you want unsigned values, use wxULongLong, which has exactly the same API as
wxLongLong except for some logical exceptions (such as the absolute value
method). All of the usual mathematical operations are defined, as well as sev-
eral convenient accessors:

� Abs returns the absolute value of the value as a wxLongLong, either as a
copy if used on a constant reference or modifying it in place if mutable.

� ToLong returns a long representation of the stored value, triggering a
debug assertion if any precision was lost.

� ToString returns the string representation of the stored value in a
wxString.

wxPoint and wxRealPoint

wxPoint is used throughout wxWidgets for specifying integer screen or window
locations. As the names imply, the point classes store coordinate pairs as x
and y values. The data members are declared as public and can be accessed
directly as x and y. wxPoint provides + and – – operators that allow you to
add or subtract by wxPoint or wxSize. wxRealPoint stores coordinates as
double rather than int and provides + and – – operators accepting only other
wxRealPoint objects.

Constructing a wxPoint is very straightforward:

wxPoint myPoint(50, 60);

wxRect

Used for manipulating rectangle information, the wxRect class is used by
wxWidgets mostly with drawing or widget classes, such as wxDC or wxTreeCtrl.
The wxRect class stores an x, y coordinate pair, as well as width and height, all
of which are public. Rectangles can be added and subtracted from each other,
and there are some other calculation methods as well.

GetRight returns the x position of the right edge of the rectangle.
GetBottom returns the y position of the bottom edge of the rectangle.

392 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 392

GetSize returns the size of the rectangle (the height and width) in a
wxSize object.

Inflate increases the size of the rectangle by the specified values, either
uniformly (one parameter) or differently in each direction (two parameters).

Inside determines whether a given point is inside the rectangle. The
point can be specified as separate x and y coordinates or as a wxPoint.

Intersects takes another wxRect object and determines whether the two
rectangles overlap.

Offset moves the rectangle by the specified offset. The offset can be spec-
ified as separate x and y coordinates or as a wxPoint.

A wxRect object can be constructed with data in three different ways. The
following three objects would all represent the exact same rectangle:

wxRect myRect1(50, 60, 100, 200);
wxRect myRect2(wxPoint(50, 60), wxPoint(150, 260));
wxRect myRect3(wxPoint(50, 60), wxSize(100, 200));

wxRegion

A wxRegion represents a simple or complex region on a device context or win-
dow. It uses reference counting, so copying and assignment operations are fast.
The primary use for wxRegion is to define or query clipping or update regions.

Contains returns true if the given coordinate pair, wxPoint, rectangle, or
wxRect is within the region.

GetBox returns a wxRect representing the area of the region.
Intersect returns true if the given rectangle, wxRect, or wxRegion inter-

sects the current region.
Offset moves the region by the specified offset. The offset is specified as

separate x and y coordinates.
Subtract, Union, and Xor change the region in a variety of ways, offering

ten overloads among the three methods. All these methods have overloads
that take a wxRegion or a wxPoint parameter; see the wxWidgets documenta-
tion for a complete list of all available methods.

The following are the four most common ways to create a wxRegion; all
these examples would create an object representing the same region:

wxRegion myRegion1(50, 60, 100, 200);
wxRegion myRegion2(wxPoint(50, 60), wxPoint(150, 260));
wxRect myRect(50, 60, 100, 200);
wxRegion myRegion3(myRect);
wxRegion myRegion4(myRegion1);

Helper Data Structures 393

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 393

You can use the wxRegionIterator class to iterate through the rectangles in a
region, for example to repaint “damaged” areas in a paint event handler, as in
the following example:

// Called when the window needs to be repainted
void MyWindow::OnPaint(wxPaintEvent& event)
{

wxPaintDC dc(this);

wxRegionIterator upd(GetUpdateRegion());
while (upd)
{

wxRect rect(upd.GetRect());

// Repaint this rectangle
...some code...

upd ++ ;
}

}

wxSize

wxSize is used throughout wxWidgets for specifying integer sizes for windows,
controls, canvas objects, and so on. A wxSize object is also frequently returned
when using methods that would return size information.

GetHeight and GetWidth return the height or width.
SetHeight and SetWidth take integer parameters for setting a new height

or width.
Set takes both a height and a width parameter to update the current

size.
A wxSize object is very simply created by specifying a height and a width:

wxSize mySize(100, 200);

wxVariant

The wxVariant class represents a container for any type. A variant’s value can
be changed at runtime, possibly to a different type of value. This class is useful
for reducing the programming for certain tasks, such as an editor for different
data types, or a remote procedure call protocol.

wxVariant can store values of type bool, char, double, long, wxString,
wxArrayString, wxList, wxDateTime, void pointer, and list of variants. However,
an application can extend wxVariant’s capabilities by deriving from the class
wxVariantData and using the wxVariantData form of the wxVariant constructor
or assignment operator to assign this data to a variant. Actual values for

394 Data Structure Classes Chapter 13

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 394

user-defined types will need to be accessed via the wxVariantData object, unlike
basic data types, for which convenience functions such as GetLong can be used.

Bear in mind that not all types can be converted automatically to all
other types; for example, it doesn’t make much sense to convert a boolean into
a wxDateTime object or to convert an integer to a wxArrayString. Use common
sense to decide which conversions are appropriate, and remember that you
can always get the current type using GetType. Here is a small example using
wxVariant:

wxVariant Var;

// Store a wxDateTime, get a wxString
Var = wxDateTime::Now();
wxString DateAsString = Var.GetString();

// Store a wxString, get a double
Var = wxT(“10.25”);
double StringAsDouble = Var.GetDouble();

// Type will be “string”
wxString Type = Var.GetType();

// This is not a valid conversion, a string can’t become a character
// so c will be 0 due to being unable to convert
char c = Var.GetChar();

SUMMARY

The data structures provided by wxWidgets allow you to easily pass and
receive structured data to and from wxWidgets and within your own applica-
tions. By providing powerful data processing methods and classes such as
wxRegEx, wxStringTokenizer, wxDateTime, and wxVariant, almost any data storage
and processing needs can be met by wxWidgets without having to use third-
party libraries.

Next, we’ll look at what wxWidgets offers for reading and writing data
using files and streams.

Summary 395

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 395

Smart_Ch13f.qxd 6/10/05 11:22 AM Page 396

C H A P T E R 14

Files and Streams

In this chapter, we’ll look at the classes that wxWidgets provides for low-level
file access and streaming. wxWidgets’ stream classes not only protect your
application from the idiosyncrasies of different standard C++ libraries but
also provide a complete set of classes including compression, writing to zip
archives, and even socket streaming. We’ll also describe wxWidgets’ virtual file
system facility, which lets your application easily take data from sources other
than normal disk files.

FILE CLASSES AND FUNCTIONS

wxWidgets provides a range of functionality for platform-independent
file handling. We’ll introduce the major classes before summarizing the file
functions.

wxFile and wxFFile

wxFile may be used for low-level input/output. It contains all the usual func-
tions to work with integer file descriptors (opening/closing, reading/writing,
seeking, and so on), but unlike the standard C functions, it reports errors via
wxLog and closes the file automatically in the destructor. wxFFile brings simi-
lar benefits but uses buffered input/output and contains a pointer to a FILE
handle.

You can create a wxFile object by using the default constructor followed
by Create or Open, or you can use the constructor that takes a file name and
open mode (wxFile::read, wxFile::write, or wxFile::read_write). You can also
create a wxFile from an existing file descriptor, passed to the constructor or
Attach function. A wxFile can be closed with Close, which is called automati-
cally (if necessary) when the object is destroyed.

397

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 397

You can get data from the object with Read, passing a void* buffer and the
number of bytes to read. Read will return the actual number of bytes read, or
wxInvalidOffset if there was an error. Use Write to write a void* buffer
or wxString to the file, calling Flush if you need the data to be written to the file
immediately.

To test for the end of the file, use Eof, which will return true if the file
pointer is at the end of the file. (In contrast, wxFFile’s Eof will return true only
if an attempt has been made to read past the end of the file.) You can deter-
mine the length of the file with Length.

Seek and SeekEnd seek to a position in the file, taking an offset specified as
starting from the beginning or end of the file, respectively. Tell returns the
current offset from the start of the file as a wxFileOffset (a 64-bit integer if the
platform supports it, or else a 32-bit integer).

Call the static Access function to determine whether a file can be opened
in a given mode. Exists is another static function that tests the existence of
the given file.

The following code fragment uses wxFile to open a data file and read all
the data into an array.

#include “wx/file.h”

if (!wxFile::Exists(wxT(“data.dat”)))
return false;

wxFile file(wxT(“data.dat”));

if (!file.IsOpened())
return false;

// get the file size
wxFileOffset nSize = file.Length();
if (nSize == wxInvalidOffset)

return false;

// read the whole file into memory
wxUint* data = new wxUint8[nSize];

if (fileMsg.Read(data, (size_t) nSize) != nSize)
{

delete[] data;
return false;

}

file.Close();

To illustrate file writing, here’s a function that will dump the contents of a text
control to a file.

398 Files and Streams Chapter 14

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 398

bool WriteTextCtrlContents(wxTextCtrl* textCtrl,
const wxString& filename)

{
wxFile file;
if (!file.Open(filename, wxFile::write))

return false

int nLines = textCtrl->GetNumberOfLines();
bool ok = true;

for (int nLine = 0; ok && nLine < nLines; nLine++)
{

ok = file.Write(textCtrl->GetLineText(nLine) +
wxTextFile::GetEOL());

}

file.Close();
return ok;

}

wxTextFile

wxTextFile provides a very straightforward way to read and write small files
and process them line-by-line.

Use Open to read a file into memory and split it into lines, and use Write
to save it. You can use GetLine or the array operator to retrieve a specified line,
or you can iterate through the file with GetFirstLine, GetNextLine, and
GetPrevLine. Add lines to the file with AddLine or InsertLine, and remove lines
by passing the line number to RemoveLine. You can clear the whole file with
Clear.

In the following example, each line of a file is prepended with a given
string before being written back to the same file.

#include “wx/textfile.h”

void FilePrepend(const wxString& filename, const wxString& text)
{

wxTextFile file;
if (file.Open(filename))
{

size_t i;
for (i = 0; i < file.GetLineCount(); i++)
{

file[i] = text + file[i];
}
file.Write(filename);

}
}

File Classes and Functions 399

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 399

wxTempFile

wxTempFile is derived from wxFile and uses a temporary file to write data, not
writing to the actual file until Commit is called. When you write a user’s data,
it’s a good idea to write to a temporary file because if an error occurs during
the save operation (such as a power failure, program bug, or other cataclysm),
this error will not corrupt the current file on disk.

Note
The document/view framework does not write to a temporary file when
creating an output stream and calling SaveObject, so you may want to
override DoSaveDocument and construct a wxFileOutputStream from a
wxTempFile object. After writing data, call Sync on the stream followed by
Commit on the temporary file object.

wxDir

wxDir is a portable equivalent of the Unix open/read/closedir functions, which
support enumeration of the files in a directory. wxDir supports enumeration of
files as well as directories. It also provides a flexible way to enumerate files
recursively using Traverse or the simpler GetAllFiles function.

After opening a file with Open (or by passing a path to the constructor),
call GetFirst passing a pointer to a string to receive the found file name. You
can also pass a file specification (defaulting to the empty string to match all
files) and optional flags. Then call GetNext until there are no more matching
files and the function returns false. The file specification can contain wild-
cards, such as “*” (match any number of characters) and “?” (match one charac-
ter). For the flags argument, pass a bit-list of wxDIR_FILES (match files),
wxDIR_DIRS (match directories), wxDIR_HIDDEN (match hidden files), and
wxDIR_DOTDOT (match “.” and “..”). The default is to match everything except “.”
and “..”.

Here’s an example of its use:

#include “wx/dir.h”

wxDir dir(wxGetCwd());

if (!dir.IsOpened())
{

// Deal with the error here - wxDir already logs an error message
// explaining the exact reason of the failure
return;

}

puts(“Enumerating object files in current directory:”);

wxString filename;
wxString filespec = wxT(“*.*”);
int flags = wxDIR_FILES|wxDIR_DIRS;

400 Files and Streams Chapter 14

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 400

bool cont = dir.GetFirst(&filename, filespec, flags);
while (cont)
{

wxLogMessage(wxT(“%s\n”), filename.c_str());

cont = dir.GetNext(&filename);
}

Note that if there is a problem when enumerating files—for example, if the
directory does not exist—wxDir will generate a log message. To suppress this
behavior, use the wxLogNull object to temporarily disable logging:

// Create scope for logNull
{

wxLogNull logNull;

wxDir dir(badDir);
if (!dir.IsOpened())
{

return;
}

}

wxFileName

wxFileName models the name of a file; it can parse and reconstitute the compo-
nents of a file name, and it also provides a variety of file operations, some of
which are static functions. Here are some examples of what you can do with
this class. Please see the reference manual for the many other operations.

#include “wx/filename.h”

// Create a filename from a string
wxFileName fname(wxT(“MyFile.txt”));

// Normalize, including making sure the filename is in its long form
// on Windows
fname.Normalize(wxPATH_NORM_LONG|wxPATH_NORM_DOTS|wxPATH_NORM_TILDE|

wxPATH_NORM_ABSOLUTE);

// Get the full path as a string
wxString filename = fname.GetFullPath();

// Make it relative to the current path
fname.MakeRelativeTo(wxFileName::GetCwd());

// Does the file exist?
bool exists = fname.FileExists();

// Does a different file exist?
bool exists2 = wxFileName::FileExists(wxT(“c:\\temp.txt”));

// Return the name part

File Classes and Functions 401

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 401

wxString name = fname.GetName();

// Return the path part
wxString path = fname.GetPath();

// Return the short version on Windows, or identity
// on other systems
wxString shortForm = fname.GetShortPath();

// Makes a directory
bool ok = wxFileName::Mkdir(wxT(“c:\\thing”));

File Functions

The most commonly used file functions are listed in Table 14-1, and are
defined in wx/filefn.h. See also the wxFileName class, especially the static func-
tions you can use without constructing a wxFileName object, such as
wxFileName::FileExists.

wxWidgets also wraps many of the standard C file functions, such as
wxFopen, wxFputc, and wxSscanf. These are not currently documented, but their
definitions may be found in include/wx/wxchar.h in your wxWidgets distribution.

Table 14-1 File Functions

wxDirExists(dir) Tests whether the directory exists. See also
wxFileName::DirExists.

wxConcatFiles(f1, f2, f3) Concatenates f1 and f2 to f3, returning true on
success.

wxCopyFile(f1, f2, overwrite) Copies f1 to f2, optionally overwriting f2.
Returns true on success.

wxFileExists(file) Tests whether the file exists. See also
wxFileName::FileExists.

wxFileModificationTime(file) Returns the time (as a time_t) of the last file
modification. See also
wxFileName::GetModificationTime, which
returns a wxDateTime.

wxFileNameFromPath(file) Returns the file name part of the path. The rec-
ommended method is to use
wxFileName::SplitPath.

wxGetCwd() Returns the current working directory. See also
wxFileName::GetCwd.

wxGetDiskSpace Returns available disk space on the disk contain-
(path, total, free) ing the given path, returning total space and free

space in the wxLongLong pointer arguments.

402 Files and Streams Chapter 14

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 402

wxIsAbsolutePath(path) Tests whether the given path is absolute or
relative.

wxMkdir(dir, permission=777) Creates the given directory, optionally specifying
an access mask. The parent directory must exist.
Returns true on success.

wxPathOnly(path) Returns the directory part of the given path.
wxRemoveFile(file) Removes the file, returning true on success.
wxRenameFile(file1, file2) Renames the file, returning true on success. This

may return false if the files are on different vol-
umes, for example, in which case a file copy is
required.

wxRmdir(file) Removes the directory, returning true on success.
wxSetWorkingDirectory(file) Sets the current working directory, returning

true on success.

It’s also useful to know about the wxFILE_SEP_PATH symbol, which is the appro-
priate path separator for the platform on which the application is running (for
example, backslash on Windows and forward slash on Unix-based systems).

STREAM CLASSES

Streams offer a higher-level model of reading and writing data than files; you
can write code that doesn’t care whether the stream uses a file, memory, or
even sockets (see Chapter 18, “Programming with wxSocket,” for an example of
using sockets with streams). Some wxWidgets classes that support file
input/output also support stream input/output, such as wxImage.

wxStreamBase is the base class for streams, declaring functions such as
OnSysRead and OnSysWrite to be implemented by derived classes. The derived
classes wxInputStream and wxOutputStream provide the foundation for further
classes for reading and writing, respectively, such as wxFileInputStream and
wxFileOutputStream. Let’s look at the stream classes provided by wxWidgets.

File Streams

wxFileInputStream and wxFileOutputStream are based on the wxFile class and
can be initialized from a file name, a wxFile object, or an integer file descriptor.
Here’s an example of using wxFileInputStream to read in some data, seek to the
beginning of the stream, and retrieve the current position.

#include “wx/wfstream.h”

// The constructor initializes the stream buffer and opens the
// file descriptor associated with the name of the file.
// wxFileInputStream will close the file descriptor on destruction.

Stream Classes 403

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 403

404 Files and Streams Chapter 14

wxFileInputStream inStream(filename);

// Read some bytes
int byteCount = 100;
char data[100];

if (inStream.Read((void*) data, byteCount).
LastError() != wxSTREAM_NOERROR)

{
// Something bad happened.
// For a complete list, see the wxStreamBase documentation.

}

// You can also get the last number of bytes really read.
size_t reallyRead = inStream.LastRead();

// Moves to the beginning of the stream. SeekI returns the last position
// in the stream counted from the beginning.
off_t oldPosition = inStream.SeekI(0, wxFromBeginning);

// What is my current position?
off_t position = inStream.TellI();

Using wxFileOutputStream is similarly straightforward. The following code
uses a wxFileInputStream and wxFileOutputStream to make a copy of a file,
writing in 1024-byte chunks for efficiency. Error checking has been omitted
for the sake of brevity.

// Copy a fixed size of data from an input stream to an
// output stream, using a buffer to speed it up.
void BufferedCopy(wxInputStream& inStream, wxOutputStream& outStream,

size_t size)
{

static unsigned char buf[1024];
size_t bytesLeft = size;

while (bytesLeft > 0)
{

size_t bytesToRead = wxMin((size_t) sizeof(buf), bytesLeft);

inStream.Read((void*) buf, bytesToRead);
outStream.Write((void*) buf, bytesToRead);

bytesLeft -= bytesToRead;
}

}

void CopyFile(const wxString& from, const wxString& to)
{

wxFileInputStream inStream(from);
wxFileOutputStream outStream(to);

BufferedCopy(inStream, outStream, inStream.GetSize());
}

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 404

wxFFileInputStream and wxFFileOutputStream are identical to wxFileInputStream
and wxFileOutputStream, except that they are based on the wxFFile class
instead of wxFile. They can therefore be initialized from a FILE pointer or
wxFFile object. The behavior of end-of-file handling also differs:
wxFileInputStream will report wxSTREAM_EOF after having read the last byte,
whereas wxFFileInputStream will report wxSTREAM_EOF after trying to read past
the last byte.

Memory and String Streams

wxMemoryInputStream and wxMemoryOutputStream use an internal buffer for
streaming data. The constructors for both of these classes take a char* buffer
and size, which can be omitted to let the class allocate space dynamically. We’ll
see a memory stream being used shortly.

wxStringInputStream takes a wxString reference from which data is to be
read. wxStringOutputStream takes an optional wxString pointer to which to
stream the data; if this is omitted, an internal string is created that can be
accessed with GetString.

Reading and Writing Data Types

So far, we’ve described stream classes that access raw bytes, which must be
converted to something useful by the application. To help with this process,
you can use four classes to read and write data at a higher level:
wxTextInputStream, wxTextOutputStream, wxDataInputStream, and wxDataOutput
Stream. Objects of these classes are constructed by referring to existing
streams, and they provide insertion and extraction operators for use with a
variety of C++ types.

wxTextInputStream reads data from a human-readable text file. If you’re
scanning through a file using wxTextInputStream, you should check for end of
file before reading the next item. You should be prepared, however, to receive
an empty item (such as an empty string or zero number) at the end of the file.
This issue is unavoidable because most files end with white space, usually a
newline. Here’s an example of using a wxTextInputStream in conjunction with
wxFileInputStream:

wxFileInputStream input(wxT(“mytext.txt”));
wxTextInputStream text(input);
wxUint8 i1;
float f2;
wxString line;
text >> i1; // read an 8 bit integer.
text >> i1 >> f2; // read an 8 bit integer followed by float.
text >> line; // read a text line

Stream Classes 405

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 405

406 Files and Streams Chapter 14

wxTextOutputStream writes text data to an output stream, using the native
line-ending format by default. The following example writes to the standard
error stream.

#include “wx/wfstream.h”
#include “wx/txtstrm.h”

wxFFileOutputStream output(stderr);
wxTextOutputStream cout(output);

cout << wxT(“This is a text line”) << endl;
cout << 1234;
cout << 1.23456;

wxDataInputStream and wxDataOutputStream are similar but write binary data.
The data is streamed in a portable way so that the same data files can be
read and written, regardless of platform. Here’s an example of reading from
a data file.

#include “wx/wfstream.h”
#include “wx/datstrm.h”

wxFileInputStream input(wxT(“mytext.dat”));
wxDataInputStream store(input);
wxUint8 i1;
float f2;
wxString line;

store >> i1; // read an 8 bit integer
store >> i1 >> f2; // read an 8 bit integer followed by float
store >> line; // read a text line

And to write the data:

#include “wx/wfstream.h”
#include “wx/datstrm.h”

wxFileOutputStream output(wxT(“mytext.dat”));
wxDataOutputStream store(output);

store << 2 << 8 << 1.2;
store << wxT(“This is a text line”) ;

Socket Streams

wxSocketOutputStream and wxSocketInputStream are initialized from a wxSocket
object; see Chapter 18 for more details.

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 406

Filter Streams

wxFilterInputStream and wxFilterOutputStream are base classes for streams
that can be placed on top of other streams. wxZlibInputStream is an example. If
you pass an input stream that has been created from a zlib or glib file, you can
read data from the wxZlibInputStream without worrying about the mechanics
of decompression. Similarly, you can create a wxZlibOutputStream passing an
output stream such as wxFileOutputStream—writing data to the wxZlibOutput
Stream will cause it to be compressed and sent to the wxFileOutputStream.

The following example compresses a string of data (buf) into a memory
stream and then copies the compressed data to a permanent storage area
(data).

#include “wx/mstream.h”
#include “wx/zstream.h”

const char* buf =
“01234567890123456789012345678901234567890123456789”;

// Create a zlib output stream writing to a memory stream
wxMemoryOutputStream memStreamOut;
wxZlibOutputStream zStreamOut(memStreamOut);

// Write the contents of ‘buf’ to memory via the zlib stream
zStreamOut.Write(buf, strlen(buf));

// Get the size of the memory stream buffer
int sz = memStreamOut.GetSize();

// Create storage big enough for the compressed data, and
// copy the data out of the memory stream
unsigned char* data = new unsigned char[sz];
memStreamOut.CopyTo(data, sz);

Zip Streams

wxZipInputStream is a more complex kind of stream, working on an archive, not
just a linear stream of data. In fact, archives are handled by a comprehensive
suite of classes including wxArchiveClassFactory and wxArchiveEntry, but you
can read and write zip files without using these directly. To use
wxZipInputStream, you can create the stream either from a wxInputStream,
which has itself opened the archive, or by explicitly specifying the archive file
name plus the file name within the archive. Both methods are illustrated in
the following example, where string data is read from one or more files in the
archive (first example) or a single specified file (second example).

#include “wx/wfstream.h”
#include “wx/zipstrm.h”

Stream Classes 407

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 407

#include “wx/txtstrm.h”

// Method 1: create the zip input stream in two steps

wxZipEntry* entry;

wxFFileInputStream in(wxT(“test.zip”));
wxZipInputStream zip(in);
wxTextInputStream txt(zip);
wxString data;

while (entry = zip.GetNextEntry())
{

wxString name = entry->GetName(); // access meta-data
txt >> data; // access data
delete entry;

}

// Method 2: specify the archived file in the constructor

wxZipInputStream in(wxT(“test.zip”), wxT(“text.txt”));
wxTextInputStream txt(zip);

wxString data;
txt >> data; // access data

wxZipOutputStream is the class for writing to zip files. PutNextEntry or
PutNextDirEntry is used to create a new entry in the zip file, and then the
entry’s data can be written. For example:

#include “wx/wfstream.h”
#include “wx/zipstrm.h”
#include “wx/txtstrm.h”

wxFFileOutputStream out(wxT(“test.zip”));
wxZipOutputStream zip(out);
wxTextOutputStream txt(zip);

zip.PutNextEntry(wxT(“entry1.txt”));
txt << wxT(“Some text for entry1\n”);

zip.PutNextEntry(wxT(“entry2.txt”));
txt << wxT(“Some text for entry2\n”);

Virtual File Systems

wxWidgets provides a virtual file system capability that enables an applica-
tion to read data from a variety of sources as if it were dealing with ordinary
files. It supports reading from a zip file, from memory, and from HTTP and
FTP locations. Although it can’t be used for storing editable documents
because it’s mainly a read-only mechanism, you could, for example, use it for
accessing resources in a single zip archive. wxHtmlWindow, the wxWidgets

408 Files and Streams Chapter 14

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 408

HTML help controller, and the XRC resource system recognize virtual file sys-
tem locations. Virtual file systems can be more convenient to work with than
the archive classes mentioned in the last section, but the latter have the
advantage of being able to write to archives. Although both systems use
streams, they are otherwise unrelated.

The different virtual file systems are implemented by classes derived
from wxFileSystemHandler, and instances of these classes need to be added via
wxFileSystem::AddHandler (usually in the application’s OnInit function) before
the file systems can be used. Usually all interaction with the file system hap-
pens through a wxFileSystem object, but occasionally a handler provides func-
tions that can be used directly by the application, such as wxMemoryFSHandler’s
AddFile and RemoveFile.

Before getting into the details of how an application can interact with the
file system API in C++, let’s look at a couple of ways that we can use virtual
file systems implicitly through other wxWidgets subsystems. Here’s an exam-
ple of a URL that can be used in an HTML file displayed by wxHtmlWindow:

The part before the hash (#) is the name of the archive, and the part after the
hash is the name of the file system protocol followed by the location of the file
within the zip archive.

Similarly, we can specify a virtual file location in an XRC file:

<object class=”wxBitmapButton”>
<bitmap>file:myapp.bin#zip:images/fuzzy.gif</bitmap>

</object>

In these examples, the code to use the virtual file system is hidden in the
wxHtmlWindow and XRC implementations. To use virtual file systems directly,
you use the wxFileSystem and wxFSFile classes. In the following snippet, a
wxBitmap is loaded from an image in a zip archive. When the application initial-
izes, the wxZipFSHandler is registered with wxFileSystem. An instance of
wxFileSystem, which can be temporary or can last the lifetime of the applica-
tion, is used to open the file logo.png from within the myapp.bin archive. The
wxFSFile object returned is queried for the associated stream, which is used to
read in the image (because wxImage is stream-aware). The image is converted
to a wxBitmap, and the wxFSFile and wxFileSystem objects are deleted.

#include “wx/fs_zip.h”
#include “wx/filesys.h”
#include “wx/wfstream.h”

// This should be done once, in app initialization
wxFileSystem::AddHandler(new wxZipFSHandler);

wxFileSystem* fileSystem = new wxFileSystem;

Stream Classes 409

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 409

wxString archive = wxT(“file:///c:/myapp/myapp.bin”);
wxString filename = wxT(“images/logo.png”);

wxFSFile* file = fileSystem->OpenFile(
archive + wxString(wxT(“#zip:”)) + filename);

if (file)
{

wxInputStream* stream = file->GetStream();

wxImage image(* stream, bitmapType);
wxBitmap bitmap = wxBitmap(image);

delete file;
}
delete fileSystem;

Note that you must pass a URL, not a regular file name, to wxFileSystem::
OpenFile. When specifying an absolute file location on the left side of a
URL, you should use the form file:/<hostname>//<file>, and if there is
no hostname, three slashes should still be used. You can convert from a
file name to a URL using wxFileSystem::FileNameToURL and back again with
wxFileSystem::URLToFileName.

As a further demonstration of using zip archives, LoadTextResource (as
shown in the following example) loads an ASCII text file (such as an HTML
file) into the variable text, given an archive file name and the name of the text
file within the archive.

// Load a text resource from zip file
bool LoadTextResource(wxString& text, const wxString& archive,

const wxString& filename)
{

wxString archiveURL(wxFileSystem::FileNameToURL(archive));
wxFileSystem* fileSystem = new wxFileSystem;

wxFSFile* file = fileSystem->OpenFile(
archiveURL + wxString(wxT(“#zip:”)) + filename);

if (file)
{

wxInputStream* stream = file->GetStream();
size_t sz = stream->GetSize();
char* buf = new char[sz + 1];
stream->Read((void*) buf, sz);
buf[sz] = 0;

text = wxString::FromAscii(buf);

delete[] buf;

delete file;
delete fileSystem;
return true;

}
else

return false;
}

410 Files and Streams Chapter 14

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 410

The wxMemoryFSHandler allows you to store data in the application’s memory
and uses the memory protocol name. Obviously your application has to be care-
ful not to store enormous amounts of data in memory, but it can be very
handy when writing to actual disk files is not appropriate or efficient. For
example, when previewing XRC dialogs, DialogBlocks adds to memory the
bitmaps shown when a user-defined bitmap is not available. These bitmaps
don’t exist anywhere on disk, but they can still be referenced by the XRC as if
they were files:

<object class=”wxBitmapButton”>
<bitmap>memory:default.png</bitmap>

</object>

wxMemoryFSHandler has an overloaded AddFile function that takes a file name
argument and a wxImage, wxBitmap, wxString, or void* data argument. When
you no longer need that data in memory, you can remove it with RemoveFile.
For example:

#include “wx/fs_mem.h”
#include “wx/filesys.h”
#include “wx/wfstream.h”
#include “csquery.xpm”

wxFileSystem::AddHandler(new wxMemoryFSHandler);

wxBitmap bitmap(csquery_xpm);
wxMemoryFSHandler::AddFile(wxT(“csquery.xpm”), bitmap,

wxBITMAP_TYPE_XPM);
...
wxMemoryFSHandler::RemoveFile(wxT(“csquery.xpm”));

The third and final virtual file system handler supported by wxWidgets is
wxInternetFSHandler, which handles the FTP and HTTP protocols.

SUMMARY

This chapter has given an overview of the classes that wxWidgets offers to let
your application work with files and streams in a portable way. We’ve also
touched on the virtual file system facility that makes it easy to get data from
compressed archives, data in memory, and Internet files.

Next, we’ll tackle issues that are not directly related to what your users
see on their screens but are nevertheless crucial: memory management,
debugging, and error checking.

Summary 411

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 411

Smart_Ch14f.qxd 6/10/05 11:22 AM Page 412

C H A P T E R 15

Memory Management, Debugging, and
Error Checking

Tracking down errors is an essential, if unglamorous, part of developing an
application. This chapter describes the facilities that wxWidgets provides to
detect memory problems and also to encourage “defensive programming”—
checking for problems as early as possible—which makes for much more reli-
able and easily debugged software. We also explain when you should create
objects on the heap and when to create them on the stack, and we discuss how
to use the run-time type information facilities, the module mechanism, and
wxWidgets C++ exception support. We finish with some general debugging tips.

MEMORY MANAGEMENT BASICS

As in all C++ programming, you will create objects either on the stack, or on
the heap using new. An object created on the stack is only available until it
goes out of scope, at which time its destructor is called and it no longer exists.
An object created on the heap, on the other hand, will stay around until either
it is explicitly deleted using the delete operator or the program exits.

Creating and Deleting Window Objects

As a general rule, you will create window objects such as wxFrame and wxButton
on the heap using new. Window objects normally have to exist for an indetermi-
nate amount of time—that is, until the user decides the window will be closed.
Note that wxWidgets will destroy child objects automatically when the parent
is destroyed. Thus, you don’t have to destroy a dialog’s controls explicitly: just
delete the dialog with Destroy. Similarly, upon deletion, a frame automatically
deletes any children contained within it. However, if you create a top-level win-
dow (such as a frame) as a child of another top-level window (such as another
frame), the parent frame does not destroy the child frame. An exception to this
is MDI (Multiple Document Interface), where the child frames are not inde-
pendent windows and are therefore destroyed by the parent.

413

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 413

You can create dialogs on the stack, but they must be modal dialogs: call
ShowModal to enter an event loop so that all required interaction can happen
before the dialog object goes out of scope and is deleted.

The mechanics of closing and deleting frames and dialogs can be a source
of confusion. To destroy a frame or modeless dialog, the application should use
Destroy, which delays deletion until the event queue is empty to avoid events
being sent to non-existent windows. However, for a modal dialog, EndModal

should first be called to exit the event loop. Event handlers (for example, for
an OK button) should not normally destroy the dialog because if the modal
dialog is created on the stack, it will be destroyed twice: once by the event han-
dler, and again when the dialog object goes out of scope. When the user closes a
modal dialog, the wxEVT_CLOSE_WINDOW event is triggered, and the corresponding
event handler should call EndModal (but should not destroy the dialog). The
default “close” behavior when clicking on the close button in the title bar is to
emulate a wxID_CANCEL command event, whose handler will normally close the
dialog. The dialog is then deleted when it goes out of scope. This is how stan-
dard dialogs such as wxFileDialog and wxColourDialog work, allowing you to
retrieve values from the dialog object when the event loop returns. You can
design modal dialogs that destroy the dialog from event handlers, but then
you will not be able to create such a dialog on the stack or retrieve values from
the dialog object when the user has dismissed it.

Here are two ways of using a wxMessageDialog.

// 1) Creating the dialog on the stack: no explicit destruction
wxMessageDialog dialog(NULL, _(“Press OK”), _(“App”), wxOK|wxCANCEL);
if (dialog.ShowModal() == wxID_OK)
{

// 2) Creating the dialog on the heap: must delete with Destroy()
wxMessageDialog* dialog = new wxMessageDialog(NULL,

_(“Thank you! “), _(“App”), wxOK);
dialog->ShowModal();
dialog->Destroy();

}

Modeless dialogs and frames will usually need to destroy themselves when
closed, either from a control or from the standard window close button or
menu. They cannot be created on the stack because they would immediately
go out of scope and be destroyed.

If you maintain pointers to windows, be sure to reset them to NULL when
the corresponding windows have been destroyed. Code to reset the pointer can
be written in the window destructor or close handler. For example:

void MyFindReplaceDialog::OnCloseWindow(wxCloseEvent& event)
{

wxGetApp().SetFindReplaceDialog(NULL);
Destroy();

}

414 Memory Management, Debugging, and Error Checking Chapter 15

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 414

Creating and Copying Drawing Objects

Drawing objects, such as wxBrush, wxPen, wxColour, wxBitmap, and wxImage, can be
created on the stack or on the heap. Drawing code will often create such tem-
porary objects on the stack. These objects are reference-counted, which means
that you can use these objects (not pointers to them) with very little overhead:
when you assign a brush object to another brush variable, only a reference to
the internal data is copied, not all the data itself. This behavior can have
slightly unexpected side effects, though, when altering one object also alters
another. To avoid such an association between objects, create the copy using a
suitable constructor and explicitly assign the properties of the source object to
the copy. Here are some examples of reference-counted and “genuine” copying.

// Reference-counted copy
wxBitmap newBitmap = oldBitmap;

// Genuine copy
wxBitmap newBitmap = oldBitmap.GetSubBitmap(

wxRect(0, 0, oldBitmap.GetWidth(), oldBitmap.GetHeight()));

// Reference-counted copy
wxFont newFont = oldFont;

// Genuine copy
wxFont newFont(oldFont.GetPointSize(), oldFont.GetFamily(),

oldFont.GetStyle(), oldFont.GetWeight(),
oldFont.GetUnderlined(), oldFont.GetFaceName());

Initializing Your Application Object

Because your application object may be created before wxWidgets has initial-
ized all its internal objects, such as its color database and default fonts, take
care not to rely on such wxWidgets objects within your application constructor.
Instead, let these data members take a default value in the constructor and
initialize them in OnInit. For example:

MyApp::MyApp()
{

// Do not set at this point
// m_font = *wxNORMAL_FONT;

}

bool MyApp::OnInit()
{

m_font = *wxNORMAL_FONT;
...
return true;

}

Memory Management Basics 415

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 415

Cleaning Up Your Application

You can override wxApp::OnExit and place much of your cleanup code here. This
function is called after all application windows have been destroyed but just
before wxWidgets cleans up its own objects. However, some cleanup may need
to be done in your main window’s close handler, such as killing a process that
might try to write to a window.

DETECTING MEMORY LEAKS AND OTHER ERRORS

Ideally, when your application exits, all objects will be cleaned up either by
your application or by wxWidgets itself, and no allocated memory will be left
for the operating system to clean up automatically. Although it may be tempt-
ing simply not to bother with some cleanup, you really should take care to
clean everything up yourself. Often such memory leaks are symptomatic of a
problem with your code that could lead to large amounts of memory being
wasted during a session. It’s much harder to go back and figure out where
leaks are coming from after you have moved on to another aspect of your
application, so try to have zero tolerance for leaks.

So how do you know whether your application is leaking memory?
Various third-party memory-checking tools are available to do this and more,
and wxWidgets has a simple built-in memory checker. To use this checker for
your debug configuration, you need to set some switches in setup.h (Windows)
or configure (other platforms or GCC on Windows).

On Windows, these are:

#define wxUSE_DEBUG_CONTEXT 1
#define wxUSE_MEMORY_TRACING 1
#define wxUSE_GLOBAL_MEMORY_OPERATORS 1
#define wxUSE_DEBUG_NEW_ALWAYS 1

For configure, pass these switches:

--enable-debug --enable-mem_tracing --enable-debug_cntxt

There are some restrictions to this system: it doesn’t work for MinGW or
Cygwin (at the time of writing), and you cannot use wxUSE_DEBUG_NEW_ALWAYS if
you are using STL in your application or the CodeWarrior compiler.

If wxUSE_DEBUG_NEW_ALWAYS is on, then all instances of the new operator in
wxWidgets and your code will be defined to be new(__TFILE__,__LINE__), which
has been reimplemented to use custom memory allocation and deletion rou-
tines. To use this version of new explicitly, without defining new, use WXDEBUG_NEW
where you would normally write new.

416 Memory Management, Debugging, and Error Checking Chapter 15

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 416

The easiest way to use the memory checking system is to do nothing spe-
cial at all: just run your application in the debugger, quit the application, and
see if any memory leaks are reported. Here’s an example of a report:

There were memory leaks.

——- Memory dump ——-
.\memcheck.cpp(89): wxBrush at 0xBE44B8, size 12
..\..\src\msw\brush.cpp(233): non-object data at 0xBE55A8, size 44
.\memcheck.cpp(90): wxBitmap at 0xBE5088, size 12
..\..\src\msw\bitmap.cpp(524): non-object data at 0xBE6FB8, size 52
.\memcheck.cpp(93): non-object data at 0xBB8410, size 1000
.\memcheck.cpp(95): non-object data at 0xBE6F58, size 4
.\memcheck.cpp(98): non-object data at 0xBE6EF8, size 8

——- Memory statistics ——-
1 objects of class wxBitmap, total size 12
5 objects of class nonobject, total size 1108
1 objects of class wxBrush, total size 12

Number of object items: 2
Number of non-object items: 5
Total allocated size: 1132

This example tells us that a wxBrush and a wxBitmap were allocated but not
freed, along with some other objects whose class is unknown because they do
not have wxWidgets type information. In some IDEs, you can double-click on
the line with the error and see the source line at which the object was allo-
cated. This functionality is a very good first step in tracking down the cause of
the memory leak. For best results, add run-time type information (RTTI) to
any classes that are descendants of wxObject. Add DECLARE_CLASS(class) in your
class declaration and IMPLEMENT_CLASS(class, parentClass) somewhere in your
implementation file.

The memory checking system also tries to catch memory overwrite and
double-deletion bugs. The allocation routines write a special signature for a
“good” block of memory and another signature for deleted memory. If the
application tries to delete a block without the signature, the problem will be
reported, as will a deletion that occurs when the block has already been
deleted. This will make it easier to catch the kind of memory bugs that only
cause problems some time after the real error has occurred.

Using static members of the wxDebugContext class, you can get a listing of
the current objects in the system with PrintClasses or show a count of objects
and non-objects (those without wxWidgets RTTI information) with
PrintStatistics. Using SetCheckpoint, you can tell wxDebugContext to only show
statistics from the checkpoint onwards, ignoring memory allocations done
prior to this point. For more details, see samples/memcheck and the reference for
wxDebugContext.

Detecting Memory Leaks and Other Errors 417

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 417

Instead of using the basic system in wxWidgets, you may want to use a
commercial tool such as BoundsChecker, Purify, or AQtime, or a free alterna-
tive such as StackWalker, ValGrind, Electric Fence, or MMGR from Fluid
Studios. If you are using Visual C++, wxWidgets uses the compiler’s standard
leak detection, which doesn’t report class names but gives you the line num-
bers. For best results, make sure wxUSE_DEBUG_NEW_ALWAYS is set to 1 in setup.h.
Because it redefines new, you might need to disable it if it causes problems
with other libraries.

FACILITIES FOR DEFENSIVE PROGRAMMING

Often a bug will only surface some time after the logic error actually occurs. If
an inconsistent or invalid value isn’t detected early, the program can execute
thousands of lines of code before it crashes or you get mysterious results. You
can spend a lot of time trying to figure out the real cause of the error. However,
if you add regular checks to your code—for example, to detect bad values
passed to functions—your code will end up being much more robust, and you
will save yourself (and your users) a potentially huge amount of trouble. This
technique is called defensive programming, and your classes and functions can
defend themselves both against improper use by other code and against inter-
nal logic errors. Because most of these checks are compiled out in release
builds, there is no overhead.

As you would expect, wxWidgets does a lot of error checking internally,
and you can use the same macros and functions in your own code. There are
three main families of macros: variations of wxASSERT, wxFAIL, and wxCHECK.
wxASSERT macros show an error message if the argument doesn’t evaluate to
true; the checks only occur in debug builds. wxFAIL will always generate an
error message and is equivalent to wxASSERT(false). These checks are also
removed in the release build. wxCHECK checks that the condition is true and
returns a given value if not. Unlike the others, occurrences of wxCHECK remain
(but do not display a message) in release builds. These macros have variations
that let you display a custom error message in the assertion message box.

Here are some examples of using these macros.

// Add two positive numbers under 100
int AddPositive(int a, int b)
{

// Check if a is positive
wxASSERT(a > 0);

// Check if b is positive, with custom error message
wxASSERT_MSG(b > 0, wxT(“The second number must be positive!”));

int c = a + b;

418 Memory Management, Debugging, and Error Checking Chapter 15

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 418

// Return -1 if the result was not positive
wxCHECK_MSG(c > 0, -1, wxT(“Result must be positive!”));

return c;
}

You can also use wxCHECK2 and wxCHECK2_MSG to execute an arbitrary operation if
the check failed instead of just returning a value. wxCHECK_RET can be used in
void functions and returns no value. For less frequently used macros, such as
wxCOMPILE_TIME_ASSERT and wxASSERT_MIN_BITSIZE, please refer to the reference
manual.

Figure 15-1 shows the assertion dialog that appears when an assertion
condition has evaluated to false. The user can stop the program (Yes), ignore
the warning (No), or ignore all further warnings (Cancel). If the program is
running under a debugger, stopping the program will cause a break in the
debugger, and you can navigate the call stack to see exactly where the problem
was and the values of variables at that point.

Error Reporting 419

Figure 15-1 Assertion alert

ERROR REPORTING

Sometimes you need to display messages on the console or in a dialog to help
with debugging, or when an error occurs that would not normally be detected
by application code. wxWidgets provides a range of logging functions for the
different ways in which you might want to use logging. For example, if alloca-
tion fails when trying to create a very large wxBitmap, an error will be reported
in a dialog box using wxLogError (see Figure 15-2). Or if you simply want to
print the values of a function’s arguments on the debugger window, you can
use wxLogDebug. Where the error actually appears (in a dialog, on the debugger
window, or on the standard error stream) depends on the name of the logging
function used and also on the wxLog “target” that is currently active, as
described later.

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 419

420 Memory Management, Debugging, and Error Checking Chapter 15

All logging functions have the same syntax as printf or vprintf—that
is, they take the format string as the first argument and a variable number of
arguments or a variable argument list pointer. For example:

wxString name(wxT(“Calculation”));
int nGoes = 3;

wxLogError(wxT(“%s does not compute! You have %d more goes.”),
name.c_str(), nGoes);

The logging functions are as follows.
wxLogError is the function to use for error messages that must be shown

to the user. The default behavior is to pop up a message box to inform the
user about the error. Why not just use wxMessageBox? Well, messages that
come from wxLogError can be suppressed by creating an object of wxLogNull
and log errors are also queued up and shown in idle time in a single dialog.
So if a series of errors happens, the user won’t have to click on OK for each
and every error.

wxLogFatalError is like wxLogError, but it also terminates the program
with exit code 3 (using the standard abort function). Unlike all the other log-
ging functions, this function can’t be overridden by changing the log
target.

wxLogWarning is like wxLogError, but the information is presented as a
warning, not an error.

wxLogMessage is for all normal, informational messages. They also appear
in a message box by default.

wxLogVerbose is for verbose output. Normally, the messages are sup-
pressed, but they can be activated by calling wxLog::SetVerbose if the user
wants to know more details about the program’s progress.

wxLogStatus is for status messages, which will be displayed in the status
bar of the active or specified wxFrame, if it has one.

Figure 15-2 Log dialog

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 420

wxLogSysError is mostly used by wxWidgets itself. It logs the specified
message text as well as the last system error code (errno or the result of
GetLastError depending on the platform) and the corresponding error mes-
sage. The second form of this function takes the error code explicitly as the
first argument.

wxLogDebug is the function to use for debug output. It only displays the
message in debug mode (when the preprocessor symbol __WXDEBUG__ is defined)
and expands to nothing in release mode. Under Windows, you must either run
the program under a debugger or use a third-party program such as
DebugView from http://www.sysinternals.com to actually see the debug
output.

wxLogTrace only does anything in debug builds, like wxLogDebug. The rea-
son for making it a separate function is that usually there are a lot of trace
messages, so it makes sense to separate them from other debug messages.
Moreover, the second version of this function takes a trace mask as the first
argument, which enables you to further restrict the number of messages gen-
erated. For example, wxWidgets uses the mousecapture mask internally. If you
add this string to the trace masks via wxLog::AddTraceMask, you will see trace
messages when the mouse is captured.

void wxWindowBase::CaptureMouse()
{

wxLogTrace(wxT(“mousecapture”), wxT(“CaptureMouse(%p) “), this);
...
}

void MyApp::OnInit()
{

// Add mousecapture to the list of trace masks
wxLog::AddTraceMask(wxT(“mousecapture”));
...

}

You may be wondering, why not use C standard input/output functions or C++
streams? The short answer is that they’re good generic mechanisms, but they
are not really adapted for wxWidgets, whereas the log classes are. There are
three main advantages.

First, wxLog is portable. It is a common practice to use printf statements
or cout and cerr C++ streams for writing information. Although this works
just fine under Unix, these messages go nowhere under Windows, where the
stdout of graphical applications is not assigned to anything. Thus, you might
view wxLogMessage as a simple substitute for printf.

You can also redirect logging calls to cout by writing:

wxLog *logger=new wxLogStream(&cout);
wxLog::SetActiveTarget(logger);

Error Reporting 421

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 421

422 Memory Management, Debugging, and Error Checking Chapter 15

There is also the possibility to redirect the output sent to cout to a wxTextCtrl
by using the wxStreamToTextRedirector class.

Second, wxLog is more flexible. The output of wxLog functions can be redi-
rected or suppressed entirely based on their importance, which is either
impossible or difficult to do with traditional methods. For example, only error
messages or only error messages and warnings might be logged, filtering out
all informational messages.

Third, wxLog is more complete. Usually, an error message should be pre-
sented to the user when some operation fails. Let’s take the simple but com-
mon case of a file error: suppose that you’re writing your data file on disk and
there is not enough space. The actual error might have been detected inside
wxWidgets code (say, in wxFile::Write), so the calling function doesn’t really
know the exact reason of the failure; it only knows that the data file couldn’t
be written to the disk. However, as wxWidgets uses wxLogError in this situa-
tion, the exact error code and the corresponding error message will be given to
the user.

Now we’ll describe how logging works, in case you need to use more than
the default behavior.

wxWidgets has the notion of a log target: it is just a class derived from
wxLog. It implements the virtual functions of the base class, which are called
when a message is logged. Only one log target is active at any moment—the
one used by logging functions. The normal usage of a log object is to install it
as the active target with a call to wxLog::SetActiveTarget, and it will be used
automatically by all subsequent calls to logging functions.

To create a new log target class, you only need to derive it from wxLog and
implement one (or both) of DoLog and DoLogString. Implementing DoLogString
is enough if you’re happy with the standard wxLog message formatting
(prepending Error: or Warning: and time-stamping) but just want to send the
messages somewhere else. You can override DoLog to do whatever you want,
but you have to distinguish between the different message types yourself. See
src/common/log.cpp for how wxWidgets does it.

There are some predefined classes deriving from wxLog that you can use
without change, and looking at these classes might be helpful to show you
how to create a new log target class.

wxLogStderr logs messages to the file pointer argument (FILE*), using
stderr if no argument was supplied.

wxLogStream has the same functionality as wxLogStderr but uses ostream
and cerr instead of FILE* and stderr.

wxLogGui is the standard log target for wxWidgets applications and is
used by default. It provides the most reasonable handling of all types of mes-
sages for a given platform.

wxLogWindow provides a “log console,” which collects all messages gener-
ated by the application and also passes them to the previously active log tar-
get. The log window frame has a menu that lets the user clear the log, close it
completely, or save all messages to a file.

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 422

wxLogNull may be used to temporarily suppress output of the logging
functions. As an example, trying to open a non-existent file will usually pro-
voke an error message, but if for some reason this is unwanted, just create an
instance of wxLogNull on the stack. While the object is in scope, no errors will
be reported. You can use an extra pair of braces to create the appropriate
scope. For example:

wxFile file;

// wxFile.Open() normally complains if file can’t be opened;
// we don’t want it to
{

wxLogNull logNo;
if (!file.Open(“bar”))
... process error ourselves ...

} // ~wxLogNull called, old log target restored

wxLogMessage(“...”); // ok

Log targets can also be combined: for example, you might want to redirect the
messages somewhere else (perhaps to a file) but also to process them as usual.
For this, you can use wxLogChain and wxLogPassThrough. For example:

// This implicitly sets the active log target
wxLogChain *logChain = new wxLogChain(new wxLogStderr);

// all the log messages are sent to stderr and also processed
// as usual

// don’t delete logChain directly as this would leave a dangling
// pointer as active log target; use SetActiveTarget instead
delete wxLog::SetActiveTarget(new wxLogGui);

wxMessageOutput Versus wxLog

Sometimes, wxLog is not the most appropriate class to use, with its higher-level
functionality such as time-stamping and delayed log messages. The
wxMessageOutput class and its derivatives offer a low-level printf replacement
that you can use in console and GUI applications. Use wxMessageOutput::Printf
where you would normally use printf; for example, to write to standard error:

#include “wx/msgout.h”

wxMessageOutputStderr err;
err.Printf(wxT(“Error in app %s.\n”), appName.c_str());

You can also use wxMessageOutputDebug to write to the debugger’s console or
standard error, depending on platform and whether the program is being run

Error Reporting 423

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 423

in the debugger. Unlike wxLogDebug, these calls are not stripped out in release
mode. GUI applications can use wxMessageOutputMessageBox to immediately
show the message in a dialog, not collating and delaying the messages as wxLog
does. There is also a wxMessageOutputLog class, which passes messages to
wxLogMessage.

As with wxLog, wxMessageOutput has the concept of a current target, set
with wxMessageOutput::Set and retrieved with wxMessageOutput::Get. This tar-
get is set with an appropriate object when wxWidgets initializes: an instance
of wxMessageOutputStderr for console applications, and a
wxMessageOutputMessageBox for GUI applications. wxWidgets makes use of this
object internally, for example in wxCmdLineParser, as follows:

wxMessageOutput* msgOut = wxMessageOutput::Get();
if (msgOut)
{

wxString usage = GetUsageString();

msgOut->Printf(wxT(“%s%s”), usage.c_str(), errorMsg.c_str());
}
else
{

wxFAIL_MSG(_T(“no wxMessageOutput object?”));
}

PROVIDING RUN-TIME TYPE INFORMATION

In common with most frameworks, wxWidgets provides methods to define
more RTTI than C++’s own RTTI. This is useful for making run-time decisions
based on an object’s type and for error reporting as we have seen in the last
section, and it also enables you to create objects dynamically simply by provid-
ing a string containing the name of the class. Only classes that have wxObject
as an ancestor class can have wxWidgets RTTI.

If you don’t need the dynamic creation ability, use the macro
DECLARE_CLASS(class) in the class declaration and IMPLEMENT_CLASS(class, base
Class) in the class implementation file. If you need dynamic creation, use
DECLARE_DYNAMIC_CLASS(class) in the class declaration and IMPLEMENT_DYNAMIC_
CLASS(class, baseClass) in the class implementation file. In the dynamic case,
you will also need to make sure there is a default constructor for the class; oth-
erwise the compiler will complain when it comes across the function that
wxWidgets generates to create an object of this class.

Here’s an example of using RTTI to allow dynamic creation of objects.

class MyRecord: public wxObject
{
DECLARE_DYNAMIC_CLASS(MyRecord)
public:

424 Memory Management, Debugging, and Error Checking Chapter 15

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 424

MyRecord() {}
MyRecord(const wxString& name) { m_name = name; }

void SetName(const wxString& name) { m_name = name; }
const wxString& GetName() const { return m_name; }

private:
wxString m_name;

};

IMPLEMENT_DYNAMIC_CLASS(MyRecord, wxObject)

MyRecord* CreateMyRecord(const wxString& name)
{

MyRecord* rec = wxDynamicCast(wxCreateDynamicObject(wxT(“MyRecord”)),
MyRecord);

if (rec)
rec->SetName(name);

return rec;
}

When code calls CreateMyRecord with the name to be set, wxCreateDynamicObject
creates the object, and wxDynamicCast confirms that it really is an object of type
MyRecord—it will return NULL if not. Although it might not appear useful at first
sight, dynamic object creation is very handy when loading a complex file con-
taining objects of different types. An object’s data can be stored along with the
name of its class, and when the file is read back, a new instance of the class
can be created and then the object can read in its data.

There are other RTTI macros you can use, as follows.
CLASSINFO(class) returns a pointer to the wxClassInfo object associated

with a class. You can use it with wxObject::IsKindOf to test the type of a class:

if (obj->IsKindOf(CLASSINFO(MyRecord)))
{

...
}

Use DECLARE_ABSTRACT_CLASS(class) and IMPLEMENT_ABSTRACT_CLASS(class,

baseClass) with abstract classes.
Use DECLARE_CLASS2(class) and IMPLEMENT_CLASS2(class, baseClass1,

baseClass2) where there are two base classes.
Use DECLARE_APP(class) and IMPLEMENT_APP(class) to make the applica-

tion class known to wxWidgets.
wxConstCast(ptr, class) is a macro that expands into const_cast<class

*>(ptr) if the compiler supports const_cast or into an old, C-style cast other-
wise.

wxDynamicCastThis(class) is equivalent to wxDynamicCast(this, class),

but the latter provokes spurious compilation warnings from some compilers
(because it tests whether this pointer is non-NULL, which is always true), so
this macro should be used to avoid them.

Providing Run-Time Type Information 425

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 425

wxStaticCast(ptr, class) checks that the cast is valid in debug mode (an
assert failure will result if wxDynamicCast(ptr, class) == NULL) and then
returns the result of executing an equivalent of static_cast<class*>(ptr).

wx_const_cast(T, x) is the same as const_cast<T>(x) if the compiler sup-
ports const cast or (T)x for old compilers. Unlike wxConstCast, this casts it to
the type T, not to T*, and also the order of arguments is the same as for the
standard cast.

wx_reinterpret_cast(T, x) is the same as reinterpret_cast<T>(x) if the
compiler supports reinterpret cast or (T)x for old compilers.

wx_static_cast(T, x) is the same as static_cast<T>(x) if the compiler
supports static cast or (T)x for old compilers. Unlike wxStaticCast, no checks
are done, and the meaning of the macro arguments is exactly the same as for
the standard static cast—that is, T is the full type name and a * is not
appended to it.

USING WXMODULE

The module system is a very simple mechanism to allow applications (and
parts of wxWidgets itself) to define initialization and cleanup functions that
are automatically called on wxWidgets startup and exit. It can save an appli-
cation from having to call a lot of initialization and cleanup code in its OnInit
and OnExit functions, depending on the features that it uses.

To define a new kind of module, derive a class from wxModule, override
the OnInit and OnExit functions, and add the DECLARE_DYNAMIC_CLASS and
IMPLEMENT_DYNAMIC_CLASS to the class and implementation (which can be in the
same file). On initialization, wxWidgets will find all classes derived from
wxModule, create an instance of each, and call each OnInit function. On exit,
wxWidgets will call the OnExit function for each module instance.

For example:

// A module to allow DDE initialization/cleanup
class wxDDEModule: public wxModule
{
DECLARE_DYNAMIC_CLASS(wxDDEModule)
public:

wxDDEModule() {}
bool OnInit() { wxDDEInitialize(); return true; };
void OnExit() { wxDDECleanUp(); };

};

IMPLEMENT_DYNAMIC_CLASS(wxDDEModule, wxModule)

426 Memory Management, Debugging, and Error Checking Chapter 15

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 426

LOADING DYNAMIC LIBRARIES

If you need to run functions in dynamic libraries, you can use the
wxDynamicLibrary class. Pass the name of the dynamic library to the construc-
tor or Load, and pass wxDL_VERBATIM if you don’t want wxWidgets to append an
appropriate extension, such as .dll on Windows or .so on Linux. If the library
was loaded successfully, you can load functions by name using GetSymbol.
Here’s an example that loads and initializes the common controls library on
Windows:

#include “wx/dynlib.h”

INITCOMMONCONTROLSEX icex;
icex.dwSize = sizeof(icex);
icex.dwICC = ICC_DATE_CLASSES;

// Load comctl32.dll
wxDynamicLibrary dllComCtl32(wxT(“comctl32.dll”), wxDL_VERBATIM);

// Define the ICCEx_t type
typedef BOOL (WINAPI *ICCEx_t)(INITCOMMONCONTROLSEX *);

// Get the InitCommonControlsEx symbol
ICCEx_t pfnInitCommonControlsEx =

(ICCEx_t) dllComCtrl32.GetSymbol(wxT(“InitCommonControlsEx”));

// Call the function to initialize the common controls library
if (pfnInitCommonControlsEx)
{

(*pfnInitCommonControlsEx)(&icex);
}

You could also write the GetSymbol line more succinctly using the
wxDYNLIB_FUNCTION macro:

wxDYNLIB_FUNCTION(ICCEx_t, InitCommonControlsEx, dllComCtl32);

wxDYNLIB_FUNCTION allows you to specify the type only once, as the first parame-
ter, and creates a variable of this type named after the function but with a pfn
prefix.

If the library was loaded successfully in the constructor or Load, the func-
tion Unload will be called automatically in the destructor to unload the library
from memory. Call Detach if you want to keep a handle to the library after the
wxDynamicLibrary object has been destroyed.

Loading Dynamic Libraries 427

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 427

EXCEPTION HANDLING

wxWidgets was created long before exceptions were introduced in C++ and
has had to work with compilers with varying levels of exception support, so
exceptions are not used throughout the framework. However, it safe to use
exceptions in application code, and the library tries to help you.

There are several choices for using exceptions in wxWidgets programs.
First, you can avoid using them at all. The library doesn’t throw any excep-
tions by itself, so you don’t have to worry about exceptions at all unless your
own code throws them. This is the simplest solution, but it may be not the best
one to deal with all possible errors.

Another strategy is to use exceptions only to signal truly fatal errors. In
this case, you probably don’t expect to recover from them, and the default
behavior—to simply terminate the program—may be appropriate. If it is not,
you can override OnUnhandledException in your wxApp-derived class to perform
any cleanup tasks. Note that any information about the exact exception type is
lost when this function is called, so if you need this information, you should
override OnRun and add a try/catch clause around the call of the base class ver-
sion. This would enable you to catch any exceptions generated during the exe-
cution of the main event loop. To deal with exceptions that may arise during
the program startup and shutdown, you should insert try/catch clauses in
OnInit and OnExit.

Finally, you might also want the application to continue running even
when certain exceptions occur. If all your exceptions can happen only in the
event handlers of a single class (or only in the classes derived from it), you can
centralize your exception handling code in the ProcessEvent method of this
class. If this is impractical, you might also consider overriding the
wxApp::HandleEvent, which allows you to handle all the exceptions thrown by
any event handler.

To enable exception support in wxWidgets, you need to build it with
wxUSE_EXCEPTIONS set to 1. This should be the case by default, but if it isn’t, you
should edit include/wx/msw/setup.h under Windows or run configure with
--enable-exceptions under Unix. If you do not plan to use exceptions, setting
this flag to 0 or using --disable-exceptions results in a leaner and slightly
faster library. Also, if you have Visual C++ and want a user-defined
wxApp::OnFatalException function to be called instead of a GPF occurring, set
wxUSE_ON_FATAL_EXCEPTION to 1 in your setup.h. Conversely, if you would rather
be dropped into the debugger when an error in your program occurs, set this
to 0.

Please look at samples/except for examples of using exceptions with
wxWidgets.

428 Memory Management, Debugging, and Error Checking Chapter 15

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 428

DEBUGGING TIPS

Defensive programming, error reporting, and other coding techniques can only
go so far—you also need a debugger that lets you step through your code
examining variables and tells you exactly where your program is misbehaving
or has crashed. So, you will need to maintain at least two configurations of
your application—a debug version and a release version. The debug version
will contain more error checking, will have compiler optimizations switched
off, and will contain the source file, line, and other debug information that the
debugger needs. The preprocessor symbol __WXDEBUG__ will always be defined
in debug mode, and you can test for this when you need to write debug-only
code. Some functions, such as wxLogDebug, will be removed in release mode any-
way, reducing the need to test for this symbol.

A surprising number of users will try to get away without using a debug-
ger, but the effort expended in getting to know your tools will pay off. On
Windows, Visual C++ comes with a very good debugger; if using GCC on
Windows or Unix, you can use the basic GDB package (from a command line
or editor), and there is a selection of IDEs that use GDB but present a more
friendly GUI to the debugger. For information on these, see Appendix E,
“Third-Party Tools for wxWidgets.”

wxWidgets allows multiple configurations to be used simultaneously. On
Windows, you can pass BUILD=debug or BUILD=release to the wxWidgets library
makefile, or when using configure, you configure and build in two or more sep-
arate directories, passing --enable-debug or --disable-debug. Some IDEs don’t
allow multiple configurations of your application to be maintained simultane-
ously without changing settings and recompiling in debug mode and then
changing the settings back and recompiling in release mode—for obvious rea-
sons, avoid such tools!

Debugging X11 Errors

Rarely, your wxGTK application might crash with X11 errors, and the pro-
gram will immediately exit without giving you a stack trace. This makes it
very hard to find where the error occurred. In this case, you need to set an
error handler, as the following code shows.

#if defined(__WXGTK__)
#include <X11/Xlib.h>

typedef int (*XErrorHandlerFunc)(Display *, XErrorEvent *);

XErrorHandlerFunc gs_pfnXErrorHandler = 0;

int wxXErrorHandler(Display *display, XErrorEvent *error)
{

if (error->error_code)
{

char buf[64];

Debugging Tips 429

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 429

XGetErrorText (display, error->error_code, buf, 63);

printf (“** X11 error in wxWidgets for GTK+: %s\n serial %ld
error_code %d request_code %d minor_code %d\n”,

buf,
error->serial,
error->error_code,
error->request_code,

error->minor_code);
}

// Uncomment to forward to the default error handler
#if 0

if (gs_pfnXErrorHandler)
return gs_pfnXErrorHandler(display, error);

#endif
return 0;

}
#endif
// __WXGTK__

bool MyApp::OnInit(void)
{
#if defined(__WXGTK__)

// install the X error handler
gs_pfnXErrorHandler = XSetErrorHandler(wxXErrorHandler);

#endif
...
return true;

}

Now the application will give a segmentation fault when an X11 error occurs,
and if you have passed -sync to the application when running it, the crash
should occur reasonably close to where the bad value was passed to an X11
function.

Simplify the Problem

If you have a bug that seems intractable, a good strategy is to try to reproduce
the problem in the smallest possible application. You might take one of the
wxWidgets samples and add code that demonstrates the problem. Or you
could take a copy of the application source and strip it down to a bare mini-
mum so that you can identify the code change that reveals or cures the bug. If
you think the problem is in wxWidgets, then adding a small change to one of
the samples will help you or the wxWidgets developers reproduce the problem
and hopefully fix it.

Debugging a Release Build

Occasionally your application may work in debug mode but not in release
mode, and this might be due to slight differences in the run-time library used
by the compiler. If you are using Visual C++, you can create a new configura-
tion that’s identical to a debugging configuration but that defines NDEBUG,

430 Memory Management, Debugging, and Error Checking Chapter 15

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 430

which means that all your application and wxWidgets debug symbols will be
present, but the application will use the release version of the run-time
library. This will enable you at least to eliminate the possibility of differences
due to the run-time library version.

Normally you distribute your application in release mode with all debug
information stripped, but if your customers are experiencing crashes that you
find hard to reproduce, you might want to send them a debugging version of
the application (on Windows, you might need to configure wxWidgets to link
statically to the run-time library to avoid legal issues with the distribution of
the debugging run-time DLL). You can compile your application with symbols
that are used by an application called Dr. Watson that runs on your customer’s
PC and saves information about a crash. See your compiler information and
the web for how to use the files that Dr. Watson writes to track down the cause
of the crash.

If you are using MinGW, you can use a tool called Dr. MinGW that can
catch exceptions such as segmentation faults and print a useful backtrace, if
debugging is enabled in the code (-g has been specified). You can download it
from http://www.mingw.org. If you have patient and cooperative customers, you
can supply this tool for them to install on their computers and ask them to
send you the reports.

On Unix, a debugging executable will produce a core file (depending on
how the user has his or her system set up; see the documentation for the Unix
command ulimit). You can place the core in the same file as your debugging
executable, and the debugger will show where in your source files the crash
occurred. However, core files can be very big, so your customer might not be
very willing to send you the core dump.

Alternatively, your application can write log files that give status infor-
mation at important parts of your application’s execution. See also the docu-
mentation in the wxWidgets reference manual for the wxDebugReport class,
which writes a report suitable for emailing to the application vendor. Similar
functionality can be found in wxCrashPrint at http://wxcode.sf.net (for Linux)
and BlackBox at http://www.codeproject.com/tools/blackbox.asp (for Windows).

SUMMARY

In this chapter, we’ve covered various aspects of memory management and
error checking. You now know when to use new and when to create objects on
the stack, how your application should clean itself up, how to identify memory
leaks, and how to use macros for “defensive programming.” You’ve seen how to
write code that creates objects dynamically, and you should be able to decide
when to use wxLogDebug and when to use wxLogError. You have also seen how to
use C++ exceptions with wxWidgets, and we have presented some tips to help
you debug your application. Next, we’ll show how you can make your applica-
tion work in many languages.

Summary 431

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 431

Smart_Ch15f.qxd 6/10/05 11:23 AM Page 432

C H A P T E R 16

Writing International Applications

If you target multiple languages as well as multiple platforms, you have the
potential to reach a huge audience, which greatly increases your application’s
chances of success. This chapter covers what you need to do to make your
application amenable to internationalization, which is sometimes abbreviated
to “i18n” (an “i” followed by “18” characters followed by “n”).

INTRODUCTION TO INTERNATIONALIZATION

When taking your application to an international market, the first thing that
comes to mind is translation. You will need to provide a set of translations for
all the strings your application presents in each foreign language that it sup-
ports. In wxWidgets, you do this by providing message catalogs and loading
them through the wxLocale class. This technique may differ from how you are
used to implementing translations if you currently use string tables. Instead
of referring to each string by an identifier and switching tables, message cat-
alogs work by translating a string using an appropriate catalog.
(Alternatively, you can use your own system for handling translations if you
prefer, but be aware that messages in the wxWidgets library itself rely
on catalogs.)

Without message catalogs, the untranslated strings in the source code
will be used to display text in menus, buttons, and so on. If your own language
contains non-ASCII characters, such as accents, you will need a separate
“translation” (message catalog) for it because source code should only con-
tain ASCII.

Representing text in a different language can also involve different
character encodings, which means that the same byte value might represent
different characters when displayed on-screen. You need to make sure that
your application can correctly set up the character encodings used by your
GUI elements and in your data files. You need to be aware of the specific encod-
ing used in each case and how to translate between encodings.

433

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 433

Another aspect of internationalization is formatting for numbers, date,
and time. Note that formatting can be different even for the same language.
For example, the number represented in English by 1,234.56 is represented as
1.234,56 in Germany and as 1’234.56 in the German-speaking part of
Switzerland. In the USA, the 10th of November is represented as 11/10, where-
as the same date for a reader in the UK means the 11th of October. We’ll see
shortly how wxWidgets can help here.

Translated strings are longer than their English counterpart, which means
that the window layout must adapt to different sizes. Sizers are best suited to
solve this part and are explained in Chapter 7, “Window Layout Using Sizers.”
Another layout problem is that for Western languages, the flow of reading goes
from left to right, but other languages such as Arabic and Hebrew are read
from right to left (called RTL), which means that the entire layout must
change orientation. There is currently no specific mechanism for implement-
ing RTL layout in wxWidgets.

The last group of elements to be adapted to a different language or cul-
ture consists of images and sounds. For example, if you are writing a phone
directory application, you might have a feature that speaks the numbers,
which will be language-dependent, and you might want to display different
images depending on the country.

PROVIDING TRANSLATIONS

wxWidgets provides facilities for message translation using the wxLocale class
and is itself fully translated into several languages. Please consult the
wxWidgets home page for the most up-to-date translations.

The wxWidgets approach to internationalization closely follows the GNU
gettext package. wxWidgets uses message catalogs, which are binary compat-
ible with gettext catalogs allowing you to use all the gettext tools. No addi-
tional libraries are needed during runtime because wxWidgets is able to read
message catalogs.

During program development, you will need the gettext package for
working with message catalogs (or poEdit; see the next section). There are two
kinds of message catalog: source catalogs, which are text files with extension
.po, and binary catalog which are created from the source files with the msgfmt
program (part of the gettext package) and have the extension .mo. Only the
binary files are needed during program execution. For each language you sup-
port, you need one message catalog.

poEdit

You don’t have to use command-line tools for maintaining your message cat-
alogs. Vaclav Slavik has written poEdit, a graphical front-end to the gettext
package available from http://www.poedit.org. poEdit, shown in Figure 16-1,

434 Writing International Applications Chapter 16

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 434

helps you to maintain message catalogs, generate .mo files, and merge in
changes to strings in your application code as your application changes and
grows.

Providing Translations 435

Figure 16-1 poEdit

Step-by-Step Guide to Using Message Catalogs

These are the steps you need to follow to create and use message catalogs:

1. Wrap literal strings in the program text that should be translated with
wxGetTranslation or equivalently with the _() macro. Strings that will not
be translated should be wrapped in wxT() or the alias _T() to make them
Unicode-compatible.

2. Extract the strings to be translated from the program into a .po file.
Fortunately, you don’t have to do this by hand; you can use the xgettext
program or, more easily, poEdit. If you use xgettext, you can use the -k
option to recognize wxGetTranslation as well as _(). poEdit can also be
configured to recognize wxGetTranslation via the catalog settings dialog.

3. Translate the strings extracted in the previous step to another language
by editing the .po file or using poEdit (one .po file per language). You
must also indicate the character set you are using for the translated
strings.
If you do not use poEdit, you will have to do it by hand, using your
favorite text editor. The header of your .po file will look something this:

SOME DESCRIPTIVE TITLE.
Copyright (C) YEAR Free Software Foundation, Inc.
FIRST AUTHOR <EMAIL@ADDRESS>, YEAR.

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 435

#
msgid “”
msgstr “”
“Project-Id-Version: PACKAGE VERSION\n”
“POT-Creation-Date: 1999-02-19 16:03+0100\n”
“PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n”
“Last-Translator: FULL NAME <EMAIL@ADDRESS>\n”
“Language-Team: LANGUAGE <LL@li.org>\n”
“MIME-Version: 1.0\n”
“Content-Type: text/plain; charset=iso8859-1\n”
“Content-Transfer-Encoding: 8bit\n”

Note the charset property in the second to last line, specifying the char-
acter set used by the catalog. All strings in the catalog are encoded using
this character set. This is very important if non-Unicode encodings are
used because otherwise the GUI elements cannot correctly display all
characters.

4. Compile the .po file into the binary .mo file to be used by the program. You
can do this within poEdit, or you might want to add it as a step in your
distribution script, for example using:

msgfmt -o myapp.mo myapp.po

5. Set the appropriate locale in your program to use the strings for the given
language (see the next section, “Using wxLocale”).

Under Mac OS X, you’ll need to make one modification to the Info.plist file,
which describes the contents of the “application bundle.” This file (an XML text
file encoded in UTF-8) should have a CFBundleDevelopmentRegion entry
describing the language of the developer—such as English—and Mac OS X
will query the bundle for the presence of certain resource directories to find
out which languages are supported. For example, for German, this might be
the directory German.lproj. Because wxWidgets applications do not use these
directories for storing resource information, instead storing the translation in
.mo files, the application needs to be told explicitly which languages are sup-
ported. You do this by adding a CFBundleLocalizations entry to Info.plist. It
might look like this:

<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleLocalizations</key>
<array>

<string>en</string>
<string>de</string>
<string>fr</string>

</array>

436 Writing International Applications Chapter 16

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 436

Using wxLocale

The wxLocale class encapsulates all language-dependent settings and is a gen-
eralization of the C locale concept. Normally you add a wxLocale member vari-
able to your application class, say m_locale, and in your application OnInit
function, you initialize the locale as follows:

if (m_locale.Init(wxLANGUAGE_DEFAULT,
wxLOCALE_LOAD_DEFAULT | wxLOCALE_CONV_ENCODING))

{
m_locale.AddCatalog(wxT(“myapp”));

}

Note that wxLocale::Init will try to find and add the wxstd.mo catalog, con-
taining wxWidgets’ own translations. The parameter wxLANGUAGE_DEFAULT

means use the system language, and you can also force a certain language
using the correct wxLANGUAGE_xxx code.

When you tell the wxLocale class to load a message catalog, the catalog is
converted to the character set used by the user’s operating system. This is the
default behavior of the wxLocale class; you can disable it by not passing
wxLOCALE_CONV_ENCODING to wxLocale::Init as the second parameter.

Where does wxWidgets find its message catalogs? For each directory
<DIR> in its internal list, wxWidgets looks in:

� <DIR>/<LANG>/LC_MESSAGES

� <DIR>/<LANG>

� <DIR>

The rules about which directories are taken into account are different on each
platform:

� On all platforms, the value of the LC_PATH environment variable is
searched.

� On Unix and Mac OS X, the wxWidgets installation directory is searched,
and also /share/locale, /usr/share/locale, /usr/lib/locale, /usr/locale

/share/locale, and the current directory.
� On Windows, the application directory is also searched.

You can add further search directories using the function wxLocale::

AddCatalogLookupPathPrefix. For example:

wxString resDir = GetAppDir() + wxFILE_SEP_PATH + wxT(“resources”);
m_locale.AddCatalogLookupPathPrefix(resDir);

// If resDir is c:\MyApp\resources, AddCatalog will now look for the
// French catalog in these places as well as the standard dirs:
//
// c:\MyApp\resources\fr\LC_MESSAGES\myapp.mo
// c:\MyApp\resources\fr\myapp.mo

Providing Translations 437

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 437

// c:\MyApp\resources\myapp.mo

m_locale.AddCatalog(wxT(“myapp”));

The usual method for distributing message catalogs is to create a subdirecto-
ry for each language, using the standard canonical name, containing
<appname>.mo in each directory. For example, the wxWidgets internat sample
has directories fr and de representing French and German using ISO 639 lan-
guage codes.

CHARACTER ENCODINGS AND UNICODE

There are more characters around on Earth than can fit into the 256 possible
byte values that the classical 8-bit character represents. In order to be able to
display more than 256 different glyphs, another layer of indirection has been
added: the character encoding or character set. (The “new and improved” solu-
tion, Unicode, will be presented later in this section.)

Thus, what is represented by the byte value 161 is determined by the
character set. In the ISO 8859-1 (Latin-1) character set, this is ¡—an inverted
exclamation mark. In ISO 8859-2 (Latin-2), it represents a ¥ (Aogonek).

When you are drawing text on a window, the system must know about the
encoding used. This is called the “font encoding,” although it is just an indica-
tion of a character set. Creating a font without indicating the character set
means “use the default encoding.” This is fine in most situations because the
user is normally using the system in his or her language.

But if you know that something is in a different encoding, such as ISO
8859-2, then you need to create the appropriate font. For example:

wxFont myFont(10, wxFONTFAMILY_DEFAULT, wxNORMAL, wxNORMAL,
false, wxT(“Arial”), wxFONTENCODING_ISO8859_2);

Otherwise, it will not be displayed properly on a western system, such as ISO
8859-1.

Note that there may be situations where an optimal encoding is not avail-
able. In these cases, you can try to use an alternative encoding, and if one is
available, you must convert the text into this encoding. The following snippet
shows this sequence: a string text in the encoding enc should be shown in the
font facename. The use of wxCSConv will be explained shortly.

// We have a string in an encoding ‘enc’ which we want to
// display in a font called ‘facename’.
//
// First we must find out whether there is a font available for
// rendering this encoding

wxString text; // Contains the text in encoding ‘enc’

438 Writing International Applications Chapter 16

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 438

if (!wxFontMapper::Get()->IsEncodingAvailable(enc, facename))
{

// We don’t have an encoding ‘enc’ available in this font.
// What alternative encodings are available?

wxFontEncoding alternative;
if (wxFontMapper::Get()->GetAltForEncoding(enc, &alternative,

facename, false))
{

// We do have a font in an ‘alternative’ encoding,
// so we must convert our string into that alternative.

wxCSConv convFrom(wxFontMapper::GetEncodingName(enc));
wxCSConv convTo(wxFontMapper::GetEncodingName(alternative));
text = wxString(text.wc_str(convFrom), convTo) ;

// Create font with the encoding alternative

wxFont myFont(10, wxFONTFAMILY_DEFAULT, wxNORMAL, wxNORMAL,
false, facename , alternative);

dc.SetFont(myFont);
}
else
{

// Unable to convert; attempt a lossy conversion to
// ISO 8859-1 (7-bit ASCII)

wxFont myFont(10, wxFONTFAMILY_DEFAULT, wxNORMAL, wxNORMAL,
false, facename, wxFONTENCODING_ISO8859_1);

dc.SetFont(myFont);
}

}
else
{

// The font with that encoding exists, no problem.

wxFont myFont(10, wxFONTFAMILY_DEFAULT, wxNORMAL, wxNORMAL,
false, facename, enc);

dc.SetFont(myFont);
}

// Finally, draw the text with the font we’ve selected.

dc.DrawText(text, 100, 100);

Converting Data

The previous code example needs a chain of bytes to be converted from one
encoding to another. There are two ways to achieve this. The first, using
wxEncodingConverter, is deprecated and should not be used in new code. Unless
your compiler cannot handle wchar_t, you should use the character set con-
verters (wxCSConv, base class wxMBConv).

Character Encodings and Unicode 439

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 439

440 Writing International Applications Chapter 16

wxEncodingConverter

This class supports only a limited subset of encodings, but if your compiler
doesn’t recognize wchar_t, it is the only solution you have. For example:

wxEncodingConverter converter(enc, alternative, wxCONVERT_SUBSTITUTE);
text = converter.Convert(text);

wxCONVERT_SUBSTITUTE indicates that it should try some lossy substitutions if it
cannot convert a character strictly. This means that, for example, acute capi-
tals might be replaced by ordinary capitals and en dashes and em dashes
might be replaced by “-”, and so on.

wxCSConv (wxMBConv)

Unicode solves the ambiguity problem mentioned earlier by using 16 or even
32 bits in a wide character (wchar_t) to store all characters in a “global encod-
ing.” This means that you don’t have to deal with encodings unless you need
to read or write data in an 8-bit format, which as we know does not have
enough information and needs an indication of its encoding.

Even when you don’t compile wxWidgets in Unicode mode (where
wchar_t is used internally to store the characters in a string), you can use
these wide characters for conversions, if available. You convert from one
encoding into wide character strings and then back to a different encoding.
This is also used in the wxString class to offer you convenient conversions.
Just bear in mind that in non-Unicode builds, wxString itself uses 8-bit char-
acters and does not know how this string is encoded.

To transfer a wxString into a wide character array, you use the
wxString::wc_str function, which takes a multi-byte converter class as its
parameter. This parameter tells a non-Unicode build which encoding the
string is in, but it is ignored by the Unicode build because the string is
already using wide characters internally.

In a Unicode build, we can then build a string directly from these char-
acters, but in a non-Unicode build, we must indicate which character set this
should be converted to. So in the line below, convTo is ignored in Unicode
builds.

text = wxString(text.wc_str(convFrom), convTo);

The character set encoding offers more possibilities than font encodings, so
you’d have to convert from font encoding to character set encoding using

wxFontMapper::GetEncodingName(fontencoding);

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 440

This means that our previous task would be written as follows using charac-
ter set encoding:

wxCSConv convFrom(wxFontMapper::GetEncodingName(enc));
wxCSConv convTo(wxFontMapper::GetEncodingName(alternative));
text = wxString(text.wc_str(convFrom) , convTo) ;

There are situations where you output 8-bit data directly instead of a wxString,
and this can be done using a wxCharBuffer instance. So the last line would read
as follows:

wxCharBuffer output = convTo.cWC2MB(text.wc_str(convFrom));

And if your input data is not a string but rather 8-bit data as well (a
wxCharBuffer named input below), then you can write:

wxCharBuffer output = convTo.cWC2MB(convFrom.cMB2WC(input));

A few global converter objects are available; for example, wxConvISO8859_1 is an
object, and wxConvCurrent is a pointer to a converter that uses the C library
locale. There are also subclasses of wxMBConv that are optimized for certain
encoding tasks, namely wxMBConvUTF7, wxMBConvUTF8, wxMBConvUTF16LE/BE, and
wxMBConvUTF32LE/BE. The latter two are typedefed to wxMBConvUFT16/32 using the
byte order native to the machine. For more information, see the topic “wxMBConv
Classes Overview” in the wxWidgets reference manual.

Converting Outside of a Temporary Buffer

As just discussed, the conversion classes allow you to easily convert from one
string encoding to another. However, most conversions return either a newly
created wxString or a temporary buffer. There are instances where we might
need to perform a conversion and then hold the result for later processing. This
is done by copying the results of a conversion into separate storage.

Consider the case of sending strings between computers, such as over a
socket. We should agree on a protocol for what type of string encoding to use;
otherwise, platforms with different default encodings would garble received
strings. The sender could convert to UTF-8, and the receiver could then con-
vert from UTF-8 into its default encoding.

The following short example demonstrates how to use a combination of
techniques to convert a string of any encoding into UTF-8, store the result in
a char* for sending over the socket, and then later convert that raw UTF-8
data back into a wxString.

// Convert the string to UTF-8
const wxCharBuffer ConvertToUTF8(wxString anyString)

Character Encodings and Unicode 441

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 441

442 Writing International Applications Chapter 16

{
return wxConvUTF8.cWC2MB(anyString.wc_str(*wxConvCurrent)) ;

}

// Use the raw UTF-8 data passed to build a wxString
wxString ConvertFromUTF8(const char* rawUTF8)
{

return wxString(wxConvUTF8.cMB2WC(rawUTF8), *wxConvCurrent);
}

// Test our wxString<->UTF-8 conversion
void StringConversionTest(wxString anyString)
{

// Convert to UTF-8, keep the char buffer around
const wxCharBuffer bUTF8 = ConvertToUTF8(anyString);

// wxCharBuffer has an implicit conversion operator for char *
const char *cUTF8 = bUTF8 ;

// Rebuild the string
wxString stringCopy = ConvertFromUTF8(cUTF8);

// The two strings should be equal
wxASSERT(anyString == stringCopy);

}

Help Files

You will want to distribute a separate help file for each supported language.
Your help controller initialization will select the appropriate help file name
according to the current locale, perhaps using wxLocale::GetName to form the
file name, or simply using _() to translate to the appropriate file name. For
example:

m_helpController->Initialize(_(“help_english”));

If you are using wxHtmlHelpController, you need to make sure that all the
HTML files contain the META tag, for example:

<meta http-equiv=”Content-Type” content=”text/html; charset=iso8859 //2”>

You also need to make sure that the project file (extension HHP) contains one
additional line in the OPTIONS section:

Charset=iso8859-2

This additional entry tells the HTML help controller what encoding is used in
contents and index tables.

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 442

NUMBERS AND DATES

The current locale is also used for formatting numbers and dates. The printf-
based formatting in wxString takes care of this automatically. Consider this
snippet:

wxString::Format(wxT(“%.1f”) , myDouble);

Here, Format uses the correct decimal separator. And for date formatting:

wxDateTime t = wxDateTime::Now();
wxString str = t.Format();

Format presents the current date and time in the correct language and format.
Have a look at the API documentation to see all the possibilities for passing a
format description to the Format call—just don’t forget that you will probably
have to translate this format string as well for using it in a different language
because the sequence for different parts of the date can differ among lan-
guages.

If you want to add the correct thousands separator or just want to know
the correct character for the decimal point, you can ask the locale object for the
corresponding strings using the GetInfo method:

wxString info = m_locale.GetInfo(wxLOCALE_THOUSANDS_SEP,
wxLOCALE_CAT_NUMBER) ;

OTHER MEDIA

You can also load other data such as images and sounds depending on the
locale. You can use the same mechanism as for text, for example:

wxBitmap bitmap(_(“flag.png”));

This code will cause flag.png to appear on your list of strings to translate, so
you just translate the string flag.png into the appropriate file name for your
platform, for example de/flag.png. Make sure that the translated versions are
also available as true files in your application, or you can load them from a
compressed archive (refer to Chapter 14, “Files and Streams”).

Other Media 443

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 443

A SIMPLE SAMPLE

To illustrate some of the concepts that we’ve covered, you can find a little sam-
ple in examples/chap16 on the CD-ROM. It shows some strings and a flag
graphic for three languages: English, French, and German. You can change the
language from the File menu, which will change the menu strings, the
wxStaticText strings, and the flag graphic to suit the newly selected language.
To demonstrate the different behavior of _() and wxT(), the menu help in the
status line remains in English.

444 Writing International Applications Chapter 16

Figure 16-2 The internationalization samples

The sample’s application class contains a wxLocale pointer and a function
SelectLanguage that will re-create the locale object with the appropriate lan-
guage. This is the application class declaration and implementation:

class MyApp : public wxApp
{
public:

~MyApp() ;

// Initialize the application
virtual bool OnInit();

// Recreates m_locale according to lang
void SelectLanguage(int lang);

private:
wxLocale* m_locale; // ‘our’ locale

};

IMPLEMENT_APP(MyApp)

bool MyApp::OnInit()
{

wxImage::AddHandler(new wxPNGHandler);

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 444

m_locale = NULL;
SelectLanguage(wxLANGUAGE_DEFAULT);

MyFrame *frame = new MyFrame(_(“i18n wxWidgets App”));

frame->Show(true);
return true;

}

void MyApp::SelectLanguage(int lang)
{

delete m_locale;
m_locale = new wxLocale(lang);
m_locale->AddCatalog(wxT(“i18n”));

}

MyApp::~MyApp()
{

delete m_locale;
}

There are two functions of particular interest in the frame class: SetupStrings
and OnChangeLanguage. SetupStrings sets the labels and re-creates the menu
bar, using translations for all the strings apart from the menu help strings, as
follows:

void MyFrame::SetupStrings()
{

m_helloString->SetLabel(_(“Welcome to International Sample”));
m_todayString->SetLabel(wxString::Format(_(“Now is %s”) ,

wxDateTime::Now().Format().c_str()));
m_thousandString->SetLabel(wxString::Format(_(“12345 divided by 10

is written as %.1f”) , 1234.5));
m_flag->SetBitmap(wxBitmap(_(“flag.png”) , wxBITMAP_TYPE_PNG));

// create a menu bar
wxMenu *menuFile = new wxMenu;

// the “About” item should be in the help menu
wxMenu *helpMenu = new wxMenu;
helpMenu->Append(wxID_ABOUT, _(“&About...\tF1”),

wxT(“Show about dialog”));

menuFile->Append(wxID_NEW, _(“Change language...”),
wxT(“Select a new language”));

menuFile->AppendSeparator();
menuFile->Append(wxID_EXIT, _(“E&xit\tAlt-X”),

wxT(“Quit this program”));

wxMenuBar *menuBar = new wxMenuBar();
menuBar->Append(menuFile, _(“&File”));
menuBar->Append(helpMenu, _(“&Help”));

wxMenuBar* formerMenuBar = GetMenuBar();

A Simple Sample 445

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 445

SetMenuBar(menuBar);
delete formerMenuBar;

SetStatusText(_(“Welcome to wxWidgets!”));
}

OnChangeLanguage is called when the user wants to specify a new language, and
it maps the user’s selection into a locale identifier such as wxLANGUAGE_GERMAN.
This identifier is passed to MyApp::SelectLanguage before SetupStrings is called
to change the labels and flag bitmap. Here is the implementation of
OnChangeLanguage:

void MyFrame::OnChangeLanguage(wxCommandEvent& event)
{

wxArrayInt languageCodes;
wxArrayString languageNames;

languageCodes.Add(wxLANGUAGE_GERMAN);
languageNames.Add(_(“German”));

languageCodes.Add(wxLANGUAGE_FRENCH);
languageNames.Add(_(“French”));

languageCodes.Add(wxLANGUAGE_ENGLISH);
languageNames.Add(_(“English”));

int lang = wxGetSingleChoiceIndex(_(“Select language:”),
_(“Language”), languageNames);

if (lang != -1)
{

wxGetApp().SelectLanguage(languageCodes[lang]);
SetupStrings();

}
}

SUMMARY

We’ve discussed the variety of ways in which wxWidgets helps you handle
translations as well as formatting issues related to time and date, currency,
and so on. You should work with someone familiar with the target languages
or locales who will be able to find differences that you might have missed.

For another example of a translated application, see samples/internat in
your wxWidgets distribution. It demonstrates translation of strings in menu
items and dialogs for ten languages.

Next, we’ll take a look at how you can make your applications perform
several tasks at once with multithreading.

446 Writing International Applications Chapter 16

Smart_Ch16f.qxd 6/10/05 11:23 AM Page 446

C H A P T E R 17

Writing Multithreaded Applications

Most of the time, the event-driven nature of GUI programming maintains a
good illusion of handling multiple tasks simultaneously. Redrawing a window
usually takes a tiny fraction of a second, and user input can be handled rap-
idly. However, there are times when a task cannot easily be broken down into
small chunks handled by a single thread, and this is where multithreaded pro-
gramming becomes useful. This chapter shows you how threads can be con-
trolled in wxWidgets, and it ends with some alternatives to using threads.

WHEN TO USE THREADS, AND WHEN NOT TO

A thread is basically a path of execution through a program. Threads are
sometimes called lightweight processes, but the fundamental difference
between threads and processes is that the memory spaces of different
processes are separate, whereas all threads in the same process share the
same address space. Although this makes it much easier to share common
data between several threads, multithreading also makes it easier to shoot
oneself in the proverbial foot by accessing the same data simultaneously, so
careful use of synchronization objects such as mutexes and critical sections is
recommended.

When used properly, multithreading enables the programmer to simplify
the application architecture by decoupling the user interface from the “real
work.” Note that this won’t result in faster applications unless the computer
has multiple processors, but the user interface will be more responsive.

wxWidgets provides both a thread class and the necessary synchroniza-
tion objects (mutexes and critical sections with conditions). The threading API
in wxWidgets resembles the POSIX threading API (pthreads), although sev-
eral functions have different names, and some features inspired by the Win32
thread API are also available.

447

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 447

These classes make writing multithreaded applications easier, and they
also provide some extra error checking compared with the native thread API.
However, using threads is still a non-trivial undertaking, especially for large
projects. Before starting a multithreaded application or adding multithreaded
features to an existing one, it is worth considering alternatives to threads to
implement the same functionality. In some situations, threads are the only
reasonable choice, such as an FTP server application that launches a new
thread for each new client. However, using an extra thread to show a progress
dialog during a long computation would be overkill. In this case, you could do
the calculations in an idle handler and call wxWindow::Update periodically to
update the screen. For more details, see “Alternatives to Multithreading”
toward the end of this chapter.

If you decide to use threads in your application, it is strongly recom-
mended that only the main thread call GUI functions. The wxWidgets thread
sample shows that it is possible for many different threads to call GUI func-
tions at once, but in general, it is a very poor design choice. A design that uses
one GUI thread and several worker threads that communicate with the main
one using events is much more robust and will undoubtedly save you countless
problems. For example, under Win32, a thread can only access GDI objects
such as pens, brushes, and so on, created by itself, not those created by other
threads.

For communication between threads, you can use wxEvtHandler::Add
PendingEvent or its short version, wxPostEvent. These functions have thread-
safe implementations so that they can be used for sending events between
threads.

USING WXTHREAD

If you want to implement functionality using threads, you write a class that
derives from wxThread and implements at least the virtual Entry method, which
is where the work of the thread takes place. Let’s say you wanted to use a sep-
arate thread to count the number of colors in an image. Here’s the declaration
of the thread class:

class MyThread : public wxThread
{
public:

MyThread(wxImage* image, int* count):
m_image(image), m_count(count) {}

virtual void *Entry();
private:

wxImage* m_image;
int* m_count;

};

// An identifier to notify the application when the
// work is done
#define ID_COUNTED_COLORS 100

448 Writing Multithreaded Applications Chapter 17

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 448

The Entry function does the calculation and returns an exit code that will
be returned by Wait (for joinable threads only). Here’s the implementation
for Entry:

void *MyThread::Entry()
{

(* m_count) = m_image->CountColours();

// Use an existing event to notify the application
// when the count is done
wxCommandEvent event(wxEVT_COMMAND_MENU_SELECTED,

ID_COUNTED_COLORS);
wxGetApp().AddPendingEvent(event);

return NULL;
}

For simplicity, we’re using an existing event class to send a notification to the
application when the color count is done.

Creation

Threads are created in two steps. First the object is instantiated, and then the
Create method is called:

MyThread *thread = new MyThread();
if (thread->Create() != wxTHREAD_NO_ERROR)
{

wxLogError(wxT(“Can’t create thread!”));
}

There are two different types of threads: the ones that you start and then for-
get about and the ones from which you are awaiting a result. The former are
called detached threads, and the latter are joinable threads. Thread type is
indicated by passing wxTHREAD_DETACHED (the default) or wxTHREAD_JOINABLE to
the constructor of a wxThread. The result of a joinable thread is returned by the
Wait function. You cannot wait for a detached thread.

You shouldn’t necessarily create all threads as joinable, however, because
joinable threads have a disadvantage; you must wait for the thread using
wxThread::Wait or else the system resources that it uses will never be freed,
and you must delete the corresponding wxThread object yourself (once used, it
cannot be reused). In contrast, detached threads are of the “fire-and-forget”
kind. You only have to start a detached thread, and it will terminate and
destroy itself.

This means, of course, that all detached threads must be created on the
heap because the thread will call delete this upon termination. Joinable threads
may be created on the stack, although usually they will be created on the heap as
well. Don’t create global thread objects because they allocate memory in their
constructor, which will cause problems for the memory checking system.

Using wxThread 449

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 449

Specifying Stack Size

You can indicate the desired stack size for the thread as a parameter for
Create. Passing zero tells wxWidgets to use the platform default.

Specifying Priority

Some operating systems let the application supply a hint about how much exe-
cution time a thread needs. Call wxThread::SetPriority with a number
between 0 and 100, where 0 is the minimum and 100 is the maximum. The
symbols WXTHREAD_MIN_PRIORITY, wxTHREAD_DEFAULT_PRIORITY, and wxTHREAD_MAX_

PRIORITY are predefined, with values 0, 50, and 100, respectively. You should
call SetPriority after calling Create but before calling Run.

Starting the Thread

After calling Create, the thread is not yet running. You need to call wxThread::
Run to start the thread, and wxWidgets will call the thread’s Entry function.

How to Pause a Thread or Wait for an External Condition

If a thread needs to wait for something to happen, you should avoid both
polling and idling in a loop that keeps the processor busy doing nothing (“busy
waiting”).

If you just want to wait a few seconds, then send the thread to sleep
using wxThread::Sleep.

If you are waiting for something else to happen, you should use a call
that blocks execution of the thread until you are notified of a change. For
example, if you are using sockets in a thread, you should use blocking socket
calls, which will simply pause or “hang” until data is available so that no
cycles are wasted. Or if you are waiting for data in a queue and are using a
joinable thread, you should block on the Wait method.

You might be tempted to use the Pause and Resume functions to temporar-
ily put your thread to sleep. However, there are a couple of problems with this
approach. First, because Pause may be emulated on some operating systems
(notably POSIX systems), the thread must periodically call TestDestroy and
terminate as soon as possible if it returns true. Secondly, it is very difficult to
get right. An operating system may suspend you at any moment, which could
easily lead to an application deadlock because you might lock a mutex at that
moment.

So in most cases, it is not really a sound design to use Pause and Resume.
You should try to transform your code to wait for synchronization objects (see
the following section, “Synchronization Objects”).

450 Writing Multithreaded Applications Chapter 17

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 450

Termination

As we have mentioned, detached threads are automatically destroyed after
completion. For a joinable thread, you can simply call wxThread::Wait immedi-
ately, or in a GUI application, you can poll wxThread::IsAlive from an idle han-
dler in the main thread and only call Wait if IsAlive returns false. Calling Wait
permits thread resources to be freed. Of course, a neater alternative is to sim-
ply use a detached thread and post an event when it’s done.

You can use wxThread::Delete to request that a thread be deleted. For this
to work, the thread must periodically call TestDestroy.

SYNCHRONIZATION OBJECTS

In almost any use of threads, data is shared between different threads. When
two threads attempt to access the same data, whether it is an object or a
resource, then the access has to be synchronized to avoid data being accessed
or modified by more than one thread at the same time. There are almost
always so-called invariants in a program—assumptions about related ele-
ments of data, such as having a correct first element pointer in a list and hav-
ing each element point to the next element and a NULL pointer in the last
element. During insertion of a new element, there is a moment when this
invariant is broken. If this list is used from two threads, then you must guard
against this moment so that no other client of the list is using it in this inter-
mediate state.

It is the programmer’s responsibility to make sure that shared data is
not just grabbed by any thread but rather is accessed in a controlled manner.
This section describes the classes you can use to achieve this protection.

wxMutex

The name comes from mutual exclusion and is the easiest synchronization ele-
ment to use. It makes sure that only one thread is accessing a particular piece
of data. To gain access to the data, the application calls wxMutex::Lock, which
blocks (halts execution) until the resource is free. wxMutex::Unlock frees the
resource again. Although you can use wxMutex’s Lock and Unlock functions
directly, by using the wxMutexLocker class, you can be sure that the mutex is
always released correctly when the instance is destroyed, even if an exception
occurred in your code.

In the following example, we assume that the MyApp class contains an
m_mutex member of type wxMutex.

void MyApp::DoSomething()
{

wxMutexLocker lock(m_mutex);
if (lock.IsOk())

Synchronization Objects 451

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 451

{
... do something

}
else
{

... we have not been able to

... acquire the mutex, fatal error
}

}

There are three important rules for using mutexes:

1. A thread cannot generally lock a mutex that is already locked (no mutex
recursion). Although there are systems that allow this, it is not portable
across all operating systems.

2. A thread cannot unlock a mutex that a different thread has locked. If you
need such a construct, you must use semaphores (discussed later).

3. If you are in a thread that is able to do other work if it cannot lock the
mutex, you should call wxMutex::TryLock. It returns immediately and indi-
cates whether it was able to lock the mutex (wxMUTEX_NO_ERROR) or not
(wxMUTEX_DEAD_LOCK or wxMUTEX_BUSY). This is especially important for the
main (GUI) thread, which should never be blocked because your applica-
tion would become unresponsive to user input.

Deadlocks

A deadlock occurs if two threads are waiting for resources that the other
thread has already acquired. So supposing that thread A has already acquired
mutex 1 and thread B has already acquired mutex 2, if thread B is now wait-
ing for mutex 1 and thread A is waiting for mutex 2, the wait would go on for-
ever. Some systems will be able to indicate this by returning the special error
code wxMUTEX_DEAD_LOCK from Lock, Unlock, or TryLock. On other systems, the
application will just hang until the user kills it.

There are two common solutions to this problem:

� Fixed order. A consistent hierarchy is imposed for acquiring multiple
locks on objects. In the previous example, every thread must always
acquire mutex 1 first and then mutex 2 so that deadlock cannot occur.

� Try lock. Acquire the first lock and then call TryLock on any subsequent
mutex. If this fails, release all locks and start again. This is a more cost-
ly approach, but you might use it when a fixed order solution is not flex-
ible enough and would result in complicated code.

452 Writing Multithreaded Applications Chapter 17

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 452

wxCriticalSection

A critical section is used for guarding a certain section of code rather than
data, but in practice, it is very similar to a mutex. It is only different on
those platforms where a mutex is visible outside an application and can be
shared between processes, whereas a critical section is only visible within
the application. This makes a critical section slightly more efficient—at least
on the platforms that have a native implementation. Because of this origin,
the terminology is also slightly different—a mutex may be locked (or
acquired) and unlocked (or released), whereas a critical section is entered
and left by the program.

You should try to use the wxCriticalSectionLocker class whenever possi-
ble instead of directly using wxCriticalSection for the same reasons that
wxMutexLocker is preferable to wxMutex.

wxCondition

A condition variable is used for waiting on some change of state on shared
data. For example, you could have a condition indicating that a queue has data
available. The shared data itself—the queue in this example—is usually pro-
tected by a mutex.

You could try to solve the entire problem with a loop that locks a mutex,
tests the amount of available data, and releases the lock again if there is no
data. However, this is very inefficient because the loop is running all the time,
just waiting for the right moment to grab the mutex. Such situations are more
efficiently solved using conditions because the thread can block until another
thread indicates a change of state.

Multiple threads may be waiting on the same condition, in which case
you have two choices to wake up one or more of the threads. You can call
Signal to wake one waiting thread, or you can call Broadcast to wake up all
of the threads waiting on the same condition. If several predicates are sig-
naled through the same wxCondition, then Broadcast must be used; otherwise a
thread might be awakened and be unable to run because it waits for the
“wrong” predicate to become true.

wxCondition Example

Let’s suppose we have two threads:

� A producing thread, which puts ten elements onto the queue and then
signals “queue full” and waits for “queue empty” before it starts filling the
queue again.

� A consuming thread, which has to wait for “queue full” before removing
items.

Synchronization Objects 453

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 453

454 Writing Multithreaded Applications Chapter 17

We need one mutex, m_mutex, guarding the queue and two condition variables,
m_isFull and m_isEmpty. These are constructed passing the m_mutex variable as
parameter. It is important that you always explicitly test the predicate
because a condition might have been signaled before you were waiting on it.

In pseudo-code, this is the Entry code for the producing thread:

while (notDone)
{

wxMutexLocker lock(m_mutex) ;
while(m_queue.GetCount() > 0)
{

m_isEmpty.Wait() ;
}
for (int i = 0 ; i < 10 ; ++i)
{

m_queue.Append(wxString::Format(wxT(“Element %d”),i)) ;
}
m_isFull.Signal();

}

Here’s the code for the consuming thread:

while (notDone)
{

wxMutexLocker lock(m_mutex) ;
while(m_queue.GetCount() == 0)
{

m_isFull.Wait() ;
}
for (int i = queue.GetCount() ; i > 0 ; —i)
{

m_queue.RemoveAt(i) ;
}
m_isEmpty.Signal();

}

The Wait method unlocks the mutex and then waits for the condition to be
signaled. When it returns, it has locked the mutex again, leading to a clean
synchronization.

It is important to test the predicate not only before entering but also
when Wait returns because something else might have been going on between
the signaling and the awakening of our thread so that the predicate is not
true anymore; there are even systems that produce spurious wakeups.

Note that a call to Signal might happen before the other thread calls
Wait and, just as with pthread conditions, the signal is lost. So if you want to
be sure that you don’t miss a signal, you must keep the mutex associated
with the condition initially locked and lock it again before calling Signal. This
means that this call is going to block until Wait is called by another thread.

The following example shows how a main thread can launch a worker
thread, which starts running and then waits until the main thread signals it
to continue:

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 454

class MySignallingThread : public wxThread
{
public:

MySignallingThread(wxMutex *mutex, wxCondition *condition)
{

m_mutex = mutex;
m_condition = condition;

Create();
}

virtual ExitCode Entry()
{

... do our job ...

// tell the other(s) thread(s) that we’re about to
// terminate: we must lock the mutex first or we might
// signal the condition before the waiting threads start
// waiting on it!
wxMutexLocker lock(m_mutex);
m_condition.Broadcast(); // same as Signal() here –

// one waiter only

return 0;
}

private:
wxCondition *m_condition;
wxMutex *m_mutex;

};

void TestThread()
{

wxMutex mutex;
wxCondition condition(mutex);

// the mutex should be initially locked
mutex.Lock();

// create and run the thread but notice that it won’t be able to
// exit (and signal its exit) before we unlock the mutex below
MySignallingThread *thread =

new MySignallingThread(&mutex, &condition);

thread->Run();

// wait for the thread termination: Wait() atomically unlocks
// the mutex which allows the thread to continue and starts
// waiting
condition.Wait();

// now we can exit
}

Of course, here it would be much better to simply use a joinable thread and
call wxThread::Wait on it, but this example does illustrate the importance of
properly locking the mutex when using wxCondition.

Synchronization Objects 455

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 455

456 Writing Multithreaded Applications Chapter 17

wxSemaphore

Semaphores are a kind of universal combination of mutex and counter. The
most important difference from a mutex is that they can be signaled from any
thread, not just the owning one, so you can think of a semaphore as a counter
without an owner.

A thread calling Wait on a semaphore has to wait for the counter to
become positive, and then the thread decrements the counter and returns. A
thread calling Post on a semaphore increments the counter and returns.

There is one additional feature of a semaphore in wxWidgets—you can
indicate a maximum value at construction time, 0 being the default (repre-
senting “unlimited”). If you have given a non-zero maximum value, and a
thread calls Post at the wrong moment, leading to a counter value higher the
maximum, you will get a wxSEMA_OVERFLOW error. To illustrate this concept, let’s
look at the “universal mutex” described earlier:

� A mutex that can be locked and unlocked from different threads would
be implemented using a semaphore with an initial count of 1. The
mutex.Lock would be implemented using semaphore.Wait and mutex.Unlock
using semaphore.Post.

� The first thread calling Lock (that is, Wait) finds a positive value in the
semaphore, decrements it, and continues immediately.

� The next thread calling Lock sees a zero value and has to wait until some-
one (not necessarily the first thread) calls Unlock (that is, Post).

THE WXWIDGETS THREADS SAMPLE

You can find a working example of many of the features we have described in
samples/thread in your wxWidgets distribution (see Figure 17-1). In this
example, you can start, stop, pause, and resume threads. It demonstrates a
“worker thread” that periodically posts events to the main thread with
wxPostEvent, indicated by a progress dialog that cancels the thread when it
reaches the end of its range.

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 456

ALTERNATIVES TO MULTITHREADING

If you find threads daunting, you may well be able to get away with a simpler
approach, using timers, idle time processing, or both.

Using wxTimer

The wxTimer class lets your application receive periodic notification, either as a
“single shot” or repeatedly. You can use wxTimer as an alternative to threads if
you can break your task up into small chunks that are performed every few
milliseconds, giving enough time for the application to respond to user inter-
face events.

You can choose how your code will be notified. If you prefer to use a vir-
tual function, derive a class from wxTimer and override the Notify function. If
you prefer to receive a wxTimerEvent event, pass a wxEvtHandler pointer to the
timer object (in the constructor or using SetOwner), and use EVT_TIMER(id,
func) to connect the timer to an event handler function.

Optionally, you can pass an identifier that you passed to the construc-
tor or SetOwner to uniquely identify the timer object and then pass that iden-
tifier to EVT_TIMER. This technique is useful if you have several timer objects
to handle.

Start the timer by calling Start, passing a time interval in milliseconds
and wxTIMER_ONE_SHOT if only a single notification is required. Calling Stop
stops the timer, and IsRunning can be used to determine whether the timer is
running.

Alternatives to Multithreading 457

Figure 17-1 wxWidgets Threads Sample

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 457

The following example shows the event handler approach.

#define TIMER_ID 1000

class MyFrame : public wxFrame
{
public:

...
void OnTimer(wxTimerEvent& event);

private:
wxTimer m_timer;

};

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_TIMER(TIMER_ID, MyFrame::OnTimer)

END_EVENT_TABLE()

MyFrame::MyFrame()
: m_timer(this, TIMER_ID)

{
// 1 second interval
m_timer.Start(1000);

}

void MyFrame::OnTimer(wxTimerEvent& event)
{

// Do whatever you want to do every second here
}

Note that your event handler is not guaranteed to be called exactly every n
milliseconds; the actual interval depends on what other processing was hap-
pening before the timer event was processed.

While we’re on the subject of marking time, wxStopWatch is a useful class
for measuring time intervals. The constructor starts the timer; you can pause
and resume it and get the elapsed time in milliseconds. For example:

wxStopWatch sw;

SlowBoringFunction();

// Stop the watch
sw.Pause();

wxLogMessage(“The slow boring function took %ldms to execute”,
sw.Time());

// Resume the watch
sw.Resume();

SlowBoringFunction();

wxLogMessage(“And calling it twice took %ldms in all”, sw.Time());

458 Writing Multithreaded Applications Chapter 17

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 458

Idle Time Processing

Another way your application can be notified periodically is by implementing
idle event handlers. The application object and all windows are sent idle
events when other event processing is finished. If an idle event handler calls
wxIdleEvent::RequestMore, then idle events will be generated again; otherwise,
no more idle events will be sent until after the next batch of user interface
events has been found and processed. You should usually call
wxIdleEvent::Skip so that base class idle handlers can be called.

In this example, a hypothetical function FinishedIdleTask does portions
of a task, and when it’s finished, it returns true.

class MyFrame : public wxFrame
{
public:

...
void OnIdle(wxIdleEvent& event);

// Do a little bit of work, return true if
// task finished
bool FinishedIdleTask();

};

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_IDLE(MyFrame::OnIdle)

END_EVENT_TABLE()

void MyFrame::OnIdle(wxIdleEvent& event)
{

// Do idle processing, ask for more idle
// processing if we haven’t finished the task

if (!FinishedIdleTask())
event.RequestMore();

event.Skip();
}

Although we used a frame in this example, idle event processing is not limit-
ed to top-level windows; any window can intercept idle events. For example,
you might implement an image display custom control that only resizes its
image to fit its window size in idle time to avoid aggressive flicker as the win-
dow is resized. To be sure that the application’s idle events don’t accidentally
interfere with the control’s implementation, you can override the virtual func-
tion OnInternalIdle in your control. Call the base class’s OnInternalIdle from
your overridden function. The image control might use code that looks like
this:

void wxImageCtrl::OnInternalIdle()
{

wxControl::OnInternalIdle();

Alternatives to Multithreading 459

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 459

if (m_needResize)
{

m_needResize = false;
SizeContent();

}
}

void wxImageCtrl::OnSize(wxSizeEvent& event)
{

m_needResize = true;
}

Sometimes you might want to force idle event processing, even when there are
no other pending events to force idle event processing to happen. You can kick-
start idle event processing with the function wxWakeUpIdle. Another method is
to start a wxTimer that performs no work; because it sends timer events, it will
also cause idle event processing to happen every so often. To process all idle
events immediately, call wxApp::ProcessIdle, but note that this might affect
internal idle updating, depending on platform (on GTK+, window painting is
done in idle time).

User interface update handling, covered previously in Chapter 9,
“Creating Custom Dialogs,” is a form of idle event processing that enables con-
trols to update themselves by handling wxUpdateUIEvent.

Yielding

When an application is busy doing a lengthy task and the user interface locks
up, you might get away with calling wxApp::Yield (or its synonym wxYield)
periodically to process pending events. This technique should be used spar-
ingly because it can lead to unwanted side effects, such as reentrancy. For
example, Yield might process user command events, leading to the task being
executed again, even while it’s still in progress. The function wxSafeYield dis-
ables all windows, yields, and then enables the windows again to guard
against user interaction calling reentrancy. If you pass true to wxApp::Yield, it
will only yield if it’s not already in a yield, which is another way to mitigate
reentrancy problems.

If you’re trying to update a specify display periodically, try calling
wxWindow::Update instead. This processes just the pending paint events for
this window.

SUMMARY

Just as giving a cashier two lines to process instead of one won’t make her
process more customers per hour, multithreading won’t make your applica-
tion go faster (at least without special hardware). However, it can seem faster
to the user because the user interface is more responsive, and like a cashier

460 Writing Multithreaded Applications Chapter 17

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 460

waiting for credit-card clearance on one of the lines while processing the
other, multithreading can use available resources more efficiently. It can also
be a good way to solve certain problems more elegantly than would be possible
if using only a single thread. In this chapter, we’ve also touched briefly on
avoiding multithreading by using timers, idle event processing, and yielding.

There is more to multithreaded programming than this chapter can
cover. For further reading, we recommend Programming with POSIX Threads
by David R. Butenhof.

Our next chapter looks at using programming with sockets to pass data
between processes.

Summary 461

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 461

Smart_Ch17f.qxd 6/10/05 11:24 AM Page 462

C H A P T E R 18

Programming with wxSocket

A socket is a conduit for data. A socket doesn’t care what kind of data passes
through it, where the data is going, or where the data is coming from; its goal
is to transport data from point A to point B. Sockets are used every time you
surf the web, check your email, or sign on to an instant messenger. One of the
neatest aspects of sockets is that they can be used to connect any two devices
that support sockets, even if one of them is a computer and the other is a
refrigerator!

The socket API was originally a part of the BSD Unix operating system,
and because that socket API originated from only one source, it has become
the standard. All modern operating systems offer a socket layer, providing the
ability to send data over a network (such as the Internet) using common proto-
cols such as TCP or UDP. Using wxWidgets’ wxSocket classes, you can reliably
communicate any amount of data from one computer to another. This chapter
assumes some basic socket terminology knowledge, but socket operations are
generally straightforward.

Even though the basic socket features and functions are very similar on
Windows, Linux, and Mac OS X, each socket API implementation has its own
nuances, usually necessitating platform-specific tweaks. More importantly,
event-based sockets have very different APIs from one platform to the next,
often making it a significant challenge to use them. wxWidgets provides
socket classes that make it easy to use sockets in advanced applications with-
out having to worry about platform-specific implementations or quirks.

Please note that wxWidgets does not, at the time of this writing, support
sending and receiving datagrams using the UDP protocol. Future releases of
wxWidgets might add UDP capabilities.

463

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 463

SOCKET CLASSES AND FUNCTIONALITY OVERVIEW

At the core of socket operations is wxSocketBase, which provides the basic
socket functionality for sending and receiving data, closing, error reporting,
and so on. Establishing a listening socket or connecting to a server requires
wxSocketServer or wxSocketClient, respectively. wxSocketEvent is used to notify
the application of an event that has occurred on a socket. The abstract class
wxSocketBase and its children such as wxIPV4address enable you to specify
remote hosts and ports. Lastly, stream classes such as wxSocketInputStream and
wxSocketOutputStream can be coupled with other streams to move and trans-
form data over a socket. Streams were discussed in Chapter 14, “Files and
Streams.”

Sockets in wxWidgets can operate in different ways, as discussed later in
the “Socket Flags” section. The traditional threaded socket approach is han-
dled by disabling the socket events and using blocking socket calls. On the
other hand, you can enable socket events and eliminate the need for a sepa-
rate thread; wxWidgets will send an event to your application when process-
ing is required on a socket. By letting the data arrive in the background and
processing data only when it is present, you avoid blocking the GUI, and you
avoid the complexity of putting each socket in its own thread.

This chapter provides examples of both methods as well as a thorough
explanation of the API for wxSocket and related classes. The examples and ref-
erence can be read and used independently, although the examples are
intended to preface the explanation of the APIs.

INTRODUCTION TO SOCKETS AND BASIC SOCKET PROCESSING

As an introduction to socket programming with wxWidgets, let’s jump right in
to an event-based client/server example. The code is fairly readable with just a
basic background in socket programming. For brevity, the GUI elements of the
program are omitted, and we focus only on the socket functions; the complete
application is available on the CD-ROM in examples/chap18. The detailed
socket API reference follows the order of the code in the example.

The program performs a very simple task. The server listens for connec-
tions, and when a connection is made, the server reads ten characters from
the client and then sends those same ten characters back to the client.
Likewise, the client creates a connection, sends ten characters, and then
receives ten characters in return. The string sent by the client is hard-coded
in the example to 0123456789. The server and client programs are illustrated
in Figure 18-1.

464 Programming with wxSocket Chapter 18

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 464

The Client

This is the code for the client program.

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_MENU(CLIENT_CONNECT, MyFrame::OnConnectToServer)
EVT_SOCKET(SOCKET_ID, MyFrame::OnSocketEvent)

END_EVENT_TABLE()

void MyFrame::OnConnectToServer(wxCommandEvent& WXUNUSED(event))
{

wxIPV4address addr;
addr.Hostname(wxT(“localhost”));
addr.Service(3000);

// Create the socket
wxSocketClient* Socket = new wxSocketClient();

// Set up the event handler and subscribe to most events
Socket->SetEventHandler(*this, SOCKET_ID);
Socket->SetNotify(wxSOCKET_CONNECTION_FLAG |

wxSOCKET_INPUT_FLAG |
wxSOCKET_LOST_FLAG);

Socket->Notify(true);

// Wait for the connection event
Socket->Connect(addr, false);

}

void MyFrame::OnSocketEvent(wxSocketEvent& event)
{

// The socket that had the event
wxSocketBase* sock = event.GetSocket();

// Common buffer shared by the events
char buf[10];

switch(event.GetSocketEvent())
{

case wxSOCKET_CONNECTION:
{

Introduction to Sockets and Basic Socket Processing 465

Figure 18-1 Socket server and client programs

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 465

// Fill the arry with the numbers 0 through 9
// as characters
char mychar = ‘0’;
for (int i = 0; i < 10; i++)
{

buf[i] = mychar++;
}

// Send the characters to the server
sock->Write(buf, sizeof(buf));

break;
}
case wxSOCKET_INPUT:
{

sock->Read(buf, sizeof(buf));

break;
}

// The server hangs up after sending the data
case wxSOCKET_LOST:
{

sock->Destroy();

break;
}

}
}

The Server

This is the code for the server program.

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_MENU(SERVER_START, MyFrame::OnServerStart)
EVT_SOCKET(SERVER_ID, MyFrame::OnServerEvent)
EVT_SOCKET(SOCKET_ID, MyFrame::OnSocketEvent)

END_EVENT_TABLE()

void MyFrame::OnServerStart(wxCommandEvent& WXUNUSED(event))
{

// Create the address - defaults to localhost:0 initially
wxIPV4address addr;
addr.Service(3000);

// Create the socket. We maintain a class pointer so we can
// shut it down
m_server = new wxSocketServer(addr);

// We use Ok() here to see if the server is really listening
if (! m_server->Ok())
{

return;
}

466 Programming with wxSocket Chapter 18

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 466

// Set up the event handler and subscribe to connection events
m_server->SetEventHandler(*this, SERVER_ID);
m_server->SetNotify(wxSOCKET_CONNECTION_FLAG);
m_server->Notify(true);

}

void MyFrame::OnServerEvent(wxSocketEvent& WXUNUSED(event))
{

// Accept the new connection and get the socket pointer
wxSocketBase* sock = m_server->Accept(false);

// Tell the new socket how and where to process its events
sock->SetEventHandler(*this, SOCKET_ID);
sock->SetNotify(wxSOCKET_INPUT_FLAG | wxSOCKET_LOST_FLAG);
sock->Notify(true);

}

void MyFrame::OnSocketEvent(wxSocketEvent& event)
{

wxSocketBase *sock = event.GetSocket();

// Process the event
switch(event.GetSocketEvent())
{

case wxSOCKET_INPUT:
{

char buf[10];

// Read the data
sock->Read(buf, sizeof(buf));

// Write it back
sock->Write(buf, sizeof(buf));

// We are done with the socket, destroy it
sock->Destroy();

break;
}
case wxSOCKET_LOST:
{

sock->Destroy();
break;

}
}

}

Connecting to a Server

This section explains how to initiate a client connection to a server using the
wxSockAddress and wxSocketClient classes.

Introduction to Sockets and Basic Socket Processing 467

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 467

Socket Addresses

All socket address classes derive from the abstract base class wxSockAddress,
providing a common parameter type for socket methods regardless of the
address protocol being used. The wxIPV4address class provides all of the meth-
ods necessary for specifying a remote host using the current standard Internet
address scheme, IPv4. A wxIPV6address class is partially implemented and will
certainly be completed when IPv6 is more widely available.

Note: When representing addresses as unsigned longs, network
order is expected, and network order is always returned. Network
order corresponds to big endian (Intel or AMD x86 architecture is little
endian; Apple’s architecture is big endian). Depending on how the unsigned
long addresses are stored or entered, you can probably use the byte-order
macro wxINT32_SWAP_ON_LE, which will swap the byte order only on little endian
platforms. For example:

IPV4addr.Hostname(wxINT32_SWAP_ON_LE(longAddress));

Hostname takes either a wxString for a string address (for example, www.

wxwidgets.org) or an IP address in 4-byte unsigned long format (in big endian,
as noted previously). Without any parameters, Hostname returns the name of
the currently specified host.

Service sets the remote port, using either a wxString description for a
well-known port or an unsigned short for any port. Without any parameters,
Service returns the port number currently chosen.

IPAddress provides a dotted-decimal notation representation in a
wxString of the remote host.

AnyAddress sets the address to any of the addresses of the current
machine. This is the same as setting an address to INADDR_ANY.

Socket Clients

The wxSocketClient class derives from wxSocketBase and inherits all of the com-
mon socket methods. The only methods added to the client class are those nec-
essary to initiate and establish a connection to a remote server.

Connect takes a wxSockAddress parameter telling the socket client the
address and port for the connection. As mentioned earlier, you would use a
class such as wxIPV4address rather than wxSockAddress directly. The second
parameter, a boolean, defaults to true, indicating that the call to Connect
should block until the connection is established. If this is done from the main
GUI thread, the GUI will block while connecting.

WaitOnConnect can be used after a call to Connect if Connect was told not to
block. The first parameter is the number of seconds to wait, and the second
parameter is the number of milliseconds to wait. If the connection succeeds or
definitively fails (for example, if the host does not exist), true is returned. If a

468 Programming with wxSocket Chapter 18

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 468

timeout occurs, false is returned. Passing -1 for the number of seconds speci-
fies the default timeout value, which is 10 minutes unless overridden with a
call to SetTimeout.

Socket Events

All socket events are filtered through one event, EVT_SOCKET.
EVT_SOCKET(identifier, function) sends socket events for the socket iden-

tifier to the specified function. The function should take a wxSocketEvent
parameter.

The wxSocketEvent class is by itself very simple, but by providing both the
event type and the socket for which the event was generated, the need to man-
ually store socket pointers is reduced.

Socket Event Types

Table 18-1 lists the event types that are returned from GetSocketEvent.

Table 18-1 Socket Event Types

wxSOCKET_INPUT Issued whenever there is data available for reading. This
will be the case if the input queue was empty and new
data arrives, or if the application has read some data but
there is still more data available.

wxSOCKET_OUTPUT Issued when a socket is first connected with Connect or
accepted with Accept. After that, new events will be gen-
erated only after an output operation fails and buffer
space becomes available again.

wxSOCKET_CONNECTION Issued when a delayed connection request completes suc-
cessfully (client) or when a new connection arrives at the
incoming queue (server).

wxSOCKET_LOST Issued when a close indication is received for the socket.
This means that the connection broke down or that the
peer closed it. This event will also be issued if a connec-
tion request fails.

wxSocketEvent Major Member Functions

wxSocketEvent is used as a parameter to socket event handlers.
GetSocket returns a wxSocketBase pointer to the socket that generated this

event.
GetSocketEvent returns the event type of this socket event, as per

Table 18-1.

Introduction to Sockets and Basic Socket Processing 469

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 469

470 Programming with wxSocket Chapter 18

Using Socket Events

In order to use socket events, you must provide an event handler and specify
which events you want to receive for processing. The wxSocketBase class gives
you several methods for using events, which you can see being used in the
server example program after the socket listener is created. Note that the
event handling parameters affect only the socket on which they are set, so you
need to specify the events you want to receive for each socket.

SetEventHandler takes a reference to an event handler and an event
identifier. The event identifier should correspond to an entry in the event
table for the event handler class.

SetNotify takes a bit-list of the socket events for which you want to be
notified. For example, wxSOCKET_INPUT_FLAG | wxSOCKET_LOST_FLAG would send
an event when there is data to read on the socket or when the socket is
closed.

Notify takes a boolean indicating whether you want to receive events.
This allows you to enable or disable events as needed without reconfiguring
the events that you want to receive.

Socket Status and Error Notifications

Before discussing sending and receiving data, we describe the auxiliary
methods for status and error notification so that we can refer to them from
the data methods’ descriptions.

Close shuts down the socket, disabling further data transmission. The
peer is explicitly notified that you have closed the socket. Note that events
might have been queued already when you close the socket, so you must be
prepared to continue receiving socket events even after closing the socket.

Destroy is used instead of the delete operator because events might
reach the socket after it has been deleted if delete were used. Destroy closes
the socket and adds the socket to the list of objects to be deleted on idle time,
after all events have been processed.

Error returns true if an error occurred in the last operation.
GetPeer returns a wxSockAddress reference containing information about

the peer side of the connection, such as IP address and port.
IsConnected returns true if the socket is connected and false otherwise.
LastCount returns the number of bytes read or written by the last

I/O call.
LastError returns the last error. Note that a successful operation does

not update the error code, so Error must be used first to determine whether
an error occurred. Table 18-2 lists the error code values.

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 470

Table 18-2 Socket Error Codes

wxSOCKET_INVOP Invalid operation, such as using an invalid address type.
wxSOCKET_IOERR I/O error, such as being unable to initialize a socket.
wxSOCKET_INVADDR Invalid address, which will occur when trying to connect

without specifying an address or when the address is
malformed.

wxSOCKET_INVSOCK A socket was used in an invalid way or wasn’t properly
initialized.

wxSOCKET_NOHOST The specified address does not exist.
wxSOCKET_INVPORT An invalid port was specified.
wxSOCKET_WOULDBLOCK The socket is non-blocking, and the operation would block

(see the discussion of socket modes).
wxSOCKET_TIMEDOUT The socket operation exceeded the timeout.
wxSOCKET_MEMERR Memory could not be allocated for the socket operation.

Ok returns true for a socket client only when the client is connected to server,
and it only returns true for a socket server if the socket could bind to the port
and is listening.

SetTimeout specifies how long to wait, in seconds, before a blocking socket
operation times out. The default value is 10 minutes.

Sending and Receiving Socket Data

wxSocketBase provides a variety of basic and advanced methods for reading
and writing socket data. All of the read and write operations store the results
of the operation and enable you to access the number of bytes read with
LastCount and the last error with LastError.

Reading

Discard deletes all incoming data from the socket buffer.
Peek enables you to copy data from the socket buffer without removing

the data from the buffer. You must provide a buffer for the data and the maxi-
mum number of bytes to peek.

Read pulls data from the socket buffer and copies it to the specified buffer,
up to the maximum size specified.

ReadMsg reads data sent by WriteMsg into the specified buffer, up to the
maximum size specified. If the buffer becomes full, the rest of the data is dis-
carded. ReadMsg always waits for the full message sent with WriteMsg to arrive
unless an error occurs.

Unread copies data from the data buffer back into the socket buffer. You
must also specify how many bytes to put back.

Introduction to Sockets and Basic Socket Processing 471

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 471

472 Programming with wxSocket Chapter 18

Writing

Write sends data over the socket connection; you must specify a pointer to the
data and the number of bytes to send.

WriteMsg is similar to Write, except that WriteMsg adds a header to the
data being sent so that the call to ReadMsg on the other end will know exactly
how much data to read. Note that data sent with WriteMsg should always be
read by a call to ReadMsg.

Creating a Server

The wxSocketServer class adds only a few methods to the wxSocketBase class for
creating a listener and accepting connections. In order to create a server, you
must specify what port to listen on for incoming connections. wxSocketServer
uses the same wxIPV4address class used by wxSocketClient, except without
specifying a remote host. In most cases, you should call Ok after creating a
socket server to verify that the socket is bound and listening.

wxSocketServer Major Member Functions

wxSocketServer accepts an address object specifying the listen port, and
optional socket flags (see the “Socket Flags” section later in this chapter).

Accept returns a new socket connection if one is available, optionally
waiting for the connection to be made or returning NULL immediately if no con-
nections are pending. If the wait flag is specified, the GUI will block.

AcceptWith works just like Accept, but you must pass in an already exist-
ing wxSocketBase object (by reference), and a boolean is returned indicating
whether a connection was accepted.

WaitForAccept takes a seconds parameter and a milliseconds parameter
for how long to wait for a connection, returning true when a connection is
available, or false if the time period elapses without a connection arriving.

Handling a New Connection Event

When the listening socket detects an incoming connection, a connection event
is sent for processing. From the event handler, you can accept the connection
and perform any necessary immediate processing. Assuming that the connec-
tion has some longevity and isn’t immediately closed, you also need to specify
an event handler for the new socket. Remember that a listening socket contin-
ues to listen until closed, and new sockets are created for each new connec-
tion. In the lifetime of a server program, the same listening socket can spawn
thousands of new sockets.

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 472

Socket Event Recap

From the programmer’s standpoint, event-based sockets are a boon for easily
processing socket data, eliminating the need for creating and shutting down
threads. The example program doesn’t use threads, but the GUI will never
block waiting for data. Because read commands are not issued until there is
data to read, calls to read will immediately succeed and return the available
data. If larger amounts of data need to be read, the data can be read in pieces
and added to a buffer. Alternatively, a call can be made to Peek to determine
how much data is available, and if not enough data has arrived, the applica-
tion can simply wait for the next input event to arrive.

Next, we will look at how to use different socket flags to change a socket’s
behavior.

SOCKET FLAGS

The behaviors of a socket when using the socket classes can be quite different
depending on which socket flags are set. The socket flags and their meanings
are described in Table 18-3 and in more detail below.

Table 18-3 Socket Flags

wxSOCKET_NONE Normal functionality (the behavior of the underlying send
and recv functions).

wxSOCKET_NOWAIT Read or write as much data as possible and return immediately.
wxSOCKET_WAITALL Wait for all required data to be read or written unless an error

occurs.
wxSOCKET_BLOCK Block the GUI while reading or writing data.

If no flag is specified (the same as wxSOCKET_NONE), I/O calls will return after
some data has been read or written, even when the transfer might not be
complete. This is the same as issuing exactly one blocking low-level call to recv
or send. Note that blocking here refers to when the function returns, not
whether the GUI blocks during this time.

If wxSOCKET_NOWAIT is specified, I/O calls will return immediately. Read
operations will retrieve only the available data, and write operations will
write as much data as possible, depending on how much space is available in
the output buffer. This is the same as issuing exactly one non-blocking low-
level call to recv or send. Note that non-blocking here refers to when the func-
tion returns, not whether the GUI blocks during this time.

Socket Flags 473

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 473

If wxSOCKET_WAITALL is specified, I/O calls won’t return until all the data
has been read or written (or until an error occurs), blocking if necessary and
issuing several low-level calls if needed. This is the same as having a loop that
makes as many blocking low-level calls to recv or send as needed to transfer all
the data. Again, blocking here refers to when the function returns, not
whether the GUI blocks during this time. Note that ReadMsg and WriteMsg will
implicitly use wxSOCKET_WAITALL and ignore wxSOCKET_NONE and wxSOCKET_NOWAIT.

The wxSOCKET_BLOCK flag controls whether the GUI blocks during I/O oper-
ations. If this flag is specified, the socket will not yield during I/O calls, so the
GUI will remain blocked until the operation completes. If it is not used, then
the application must take extra care to avoid unwanted re-entrance.

To summarize:

� wxSOCKET_NONE will try to read at least some data, no matter how much.
� wxSOCKET_NOWAIT will always return immediately, even if it cannot read or

write any data.
� wxSOCKET_WAITALL will only return when it has read or written all the

data.
� wxSOCKET_BLOCK has nothing to do with the previous flags; it controls

whether the GUI blocks during socket operations.

Blocking and Non-Blocking Sockets in wxWidgets

The term blocking has a dual meaning in wxWidgets. In standard socket pro-
gramming, blocking means that the current thread hangs (blocks) on the recv
function until a timeout occurs or the full amount of data is read. If that
thread happens to be the main thread, then the GUI blocks as well.

Under wxWidgets, however, blocking can refer to two different types of
blocking: socket blocking and GUI blocking. The purpose of the wxSOCKET_BLOCK
flag is to specify whether the GUI will block if the socket call blocks. How is it
possible that the socket call can block but the GUI does not? This is possible
because events can continue to be processed through calls to wxYield while the
socket operation is incomplete. wxYield will process pending events in the
event queue, including GUI events. As long as the socket operation has not
completed, your code is blocked on the socket function, but events are continu-
ously processed.

To the wxWidgets newcomer, this appears to be a panacea for socket
applications. The first time you work with sockets on wxWidgets, it’s easy to
believe that you will never need another thread to process sockets. You might
think that you could simply use socket events and set all sockets to use
wxSOCKET_WAITALL without wxSOCKET_BLOCK. Unfortunately, attempting this can
have a deadly side effect, and it produces a warning message that can be a
source of confusion.

474 Programming with wxSocket Chapter 18

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 474

Consider the case of a server with two active connections, each connec-
tion with wxSOCKET_WAITALL as the active socket flag. Furthermore, imagine
that a large amount of data is being received over a slow connection. Socket 1
has no data in the read buffer, so it calls wxYield. There is still a pending event
on Socket 2, so wxWidgets attempts to process that event. However, that event
cannot complete, and it also calls wxYield. This will cause the infamous
“wxYield called recursively” message to appear. Eventually the stack would fill
up with recursive calls to wxYield as long as all the data has not yet arrived
and the call stack cannot unwind. Many users immediately assume that this
error message indicates a flaw in wxWidgets, when the truth is that it repre-
sents a problem in the application code. Simply stated, applications should be
programmed so that this situation does not occur; the error is present to
reveal a problem in the application code so that it can be fixed.

That aside, there is still another side effect of allowing socket calls to
block without blocking the GUI—your application will consume as much CPU
time as has been allocated to it. The reason for this is that events must be
immediately processed for the application to remain responsive, but the socket
must also be monitored for data so that it can return immediately when data
is available. The only way to do this is in a busy loop, constantly calling a non-
blocking select on the socked followed by a call to wxYield.

The Impossible Socket Combination

Just to reiterate, do not be fooled into thinking that wxWidgets has created
miraculous socket processing. You cannot simultaneously have all of the fol-
lowing, no matter how much it appears at first glance that you can:

� wxSOCKET_WAITALL

� No GUI blocking
� Less than 100% CPU usage
� A single thread

You can specify wxSOCKET_WAITALL without blocking the GUI, but it will cause
100% CPU usage. You can use wxSOCKET_WAITALL and have 0% CPU usage if you
also block the GUI with wxSOCKET_BLOCK. You can use wxSOCKET_WAITALL without
blocking the GUI or using 100% CPU if you use secondary threads. You can
use sockets in a single thread without 100% CPU usage or blocking the GUI,
but you have to use wxSOCKET_NOWAIT. You can have any three of these things
simultaneously, just not all four.

How Flags Affect Socket Behavior

Given that wxSOCKET_NONE, wxSOCKET_NOWAIT, and wxSOCKET_WAITALL are mutually
exclusive, and that wxSOCKET_BLOCK makes no sense combined with wxSOCKET_
NOWAIT (if the function returns immediately, how can the GUI ever block?),
there are five meaningful flag combinations:

Socket Flags 475

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 475

� wxSOCKET_NONE | wxSOCKET_BLOCK: Behaves like standard blocking socket
calls (calls to recv and send).

� wxSOCKET_NOWAIT: Behaves like standard non-blocking socket calls.
� wxSOCKET_WAITALL | wxSOCKET_BLOCK: Behaves like standard blocking

socket calls, except that the underlying send or recv will be called
repeatedly until all data is sent or received.

� wxSOCKET_NONE: Behaves like standard socket calls except that the GUI
will not block because of continuous calls to wxYield while the socket
operation is incomplete (for example, not all data has been read).

� wxSOCKET_WAITALL: Behaves like wxSOCKET_WAITALL | wxSOCKET_BLOCK

except that the GUI will not block.

Only the last two can lead to the recursive wxYield problem, although they are
also the most useful when using socket events in the primary thread (because
they are socket blocking but not GUI blocking). Extreme caution should be
exercised while using these two options. Although they are very powerful, they
are also the source of many problems and frustrations because they are so fre-
quently misunderstood.

Using wxSocket as a Standard Socket

Using sockets with wxSOCKET_NONE | wxSOCKET_BLOCK or wxSOCKET_NOWAIT in
wxWidgets is no different from using C sockets, except that you use wxSocket
methods instead of C functions. The wxSocket class still provides many advan-
tages over using the C API directly, including an object-oriented interface, hid-
ing a lot of the bulky platform-dependent initialization code, providing
consistent behavior from one platform to the next (especially with regards to
error codes, which differ widely from platform to platform), and some higher-
level functions like WriteMsg and ReadMsg. As we’ll see next, using wxSocket also
lets us take advantage of socket streams.

USING SOCKET STREAMS

Using wxWidgets’ streams, it is easy to move and transform large amounts of
data with only a few lines of code. Consider the task of sending a file over a
socket. One approach would be to open the file, read the entire file into mem-
ory, and then send the memory block to the socket. This approach is fine for
small files, but reading a large multi-megabyte file into memory might not be
very speedy on a slower, low-memory computer. Furthermore, what if you were
required to also compress the file as you send it to reduce network traffic?
Reading a large file into memory, compressing it all at once, and then writing
it to a socket simply would not be efficient or practical.

A second approach might be to read the file in small pieces, such as sev-
eral kilobytes, compress the pieces, and then output these pieces over the

476 Programming with wxSocket Chapter 18

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 476

socket. Unfortunately, compressing the individual pieces is not going to be as
efficient as compressing the whole file at once. A refinement might be to
maintain stateful compression streams from one piece to the next (where the
compression of one frame can use compression information from the previous,
most notably avoiding the need for each frame to have its own header), but
you’re already looking at dozens of lines of code and the delicate synchroniza-
tion of reading from the file, compressing, and sending. With wxWidgets, there
is a better way.

Because wxWidgets provides both wxSocketInputStream and wxSocket

OutputStream classes, it is very easy to stream data in and out of sockets
through other streams. Consider that wxWidgets provides streams for files,
strings, text, memory, and Zlib compression, and some very interesting possi-
bilities become apparent for using sockets in unique and powerful ways. If we
revisit the file sending with compression problem with streams on our tool
belt, a new solution is available. To send a file, we can stream data from the
file to the Zlib compression to the socket, and suddenly we have stateful file
compression, resulting in a completely compressed file being sent without
reading more than a few kilobytes at a time. On the receiving end, we can
stream the data from the socket through the Zlib decompression, and finally
into the output file. All this can be done in only a few lines of code.

We will do our file streaming in a thread so that we can block on the
socket operations and not worry about blocking the GUI or running into the
100% CPU usage issue detailed earlier, which is quite possible if we were to
send large multi-megabyte files.

The complete socket stream sources can be found on the accompanying
CD-ROM in examples/chap18.

File Sending Thread

The sending thread demonstrates using streams allocated dynamically on the
heap. FileSendThread derives from wxThread.

FileSendThread::FileSendThread(wxString Filename,
wxSocketBase* Socket)

{
m_Filename = Filename;
m_Socket = Socket;

Create();
Run();

}

void* FileSendThread::Entry()
{

// If we can’t write anything for 10 seconds, assume a timeout
m_Socket->SetTimeout(10);

// Wait for all the data to write, blocking on the socket calls
m_Socket->SetFlags(wxSOCKET_WAITALL | wxSOCKET_BLOCK);

Using Socket Streams 477

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 477

// Read from the specified file
wxFileInputStream* FileInputStream =

new wxFileInputStream(m_Filename);

// An output stream writing to the socket
wxSocketOutputStream* SocketOutputStream =

new wxSocketOutputStream(*m_Socket);

// The results of the compression will be written to the
// socket stream
wxZlibOutputStream* ZlibOutputStream =

new wxZlibOutputStream(*SocketOutputStream);

// Write the results of the zlib decompression to the file stream
ZlibOutputStream->Write(*FileInputStream);

// Write all data
ZlibOutputStream->Sync();

// Destroying will send Zlib compression EOF
delete ZlibOutputStream;

// Clean up
delete SocketOutputStream;
delete FileInputStream;

return NULL;
}

File Receiving Thread

The receiving thread demonstrates using streams allocated on the stack.
FileReceiveThread derives from wxThread.

FileReceiveThread::FileReceiveThread(wxString Filename,
wxSocketBase* Socket)

{
m_Filename = Filename;
m_Socket = Socket;

Create();
Run();

}

void* FileReceiveThread::Entry()
{

// If we don’t receive anything for 10 seconds, assume a timeout
m_Socket->SetTimeout(10);

// Wait for some data to come in, or for an error
// and block on the socket calls
m_Socket->SetFlags(wxSOCKET_WAITALL | wxSOCKET_BLOCK);

// Output to the specified file
wxFileOutputStream FileOutputStream(m_Filename);

478 Programming with wxSocket Chapter 18

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 478

// Stream data in from the socket
wxSocketInputStream SocketInputStream(*m_Socket);

// The zlib decompression will decompress data from the
// socket stream
wxZlibInputStream ZlibInputStream(SocketInputStream);

// Write to the file stream the results of reading from the
// zlib input stream
FileOutputStream.Write(ZlibInputStream);

return NULL;
}

ALTERNATIVES TO wxSocket

Although wxSocket provides a lot of flexibility and is nicely integrated into
wxWidgets, it’s not the only method you can use to communicate with other
processes. If you just want to perform FTP or HTTP operations, you can use
wxFTP or wxHTTP, which use wxSocket. However, these classes are incomplete,
and you may be better off using CURL, a popular library that gives you a very
straightforward API for transferring files using a variety of common Internet
protocols. There is even a wxWidgets wrapper for CURL available, called
wxCURL.

wxWidgets also provides a high-level interprocess communication facility
that uses the classes wxServer, wxClient, and wxConnection and an API based
on Microsoft’s DDE (Dynamic Data Exchange) protocol. In fact, on Windows,
these classes use DDE, and on other platforms, sockets. The main advantage
of using this higher-level API is its ease of use compared with using wxSocket.
Another advantage is that on Windows, your applications can be DDE-aware,
and other applications (not necessarily written with wxWidgets) can access it.
A disadvantage is that on platforms other than Windows, it is not a recognized
protocol to which non-wxWidgets applications can easily conform. However, if
you just need to communicate between two wxWidgets applications, it can fit
the bill. We show a very simple example in the section “Single Instance or
Multiple Instances?” in Chapter 20, “Perfecting Your Application.”

For more information, please refer to the topic “Interprocess Commun-
ication Overview” in the reference manual and the source in samples/ipc in
your wxWidgets distribution. You can also see these classes in action in
the standalone help viewer in utils/helpview/src, again in the wxWidgets
distribution.

Alternatives to wxSocket 479

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 479

SUMMARY

We’ve seen how the wxSocket class provides wxWidgets integration and
numerous enhancements to the underlying C sockets layer. To make socket
programming even easier, wxWidgets also gives you socket stream classes
that can stream data through a variety of classes. As long as you carefully
consider the socket flags discussion, you will get consistent and reliable
socket operations across Windows, Linux, and Mac OS X when using wxSocket
and its related classes.

Next, we’ll look at how your application design and implementation can
be simplified by using the wxWidgets document/view framework.

480 Programming with wxSocket Chapter 18

Smart_Ch18f.qxd 6/10/05 11:24 AM Page 480

C H A P T E R 19

Working with Documents and Views

This chapter discusses how the document/view framework provided by
wxWidgets can dramatically reduce the amount of code you need to write for a
document-based application. It also discusses the related topic of providing
undo and redo in your application, a seemingly miraculous facility that users
now take for granted.

DOCUMENT/VIEW BASICS

The document/view system is found in most application frameworks because it
can greatly simplify the code required to build many kinds of applications.

The idea is that you can model your application primarily in terms of
documents, which store data and provide GUI-independent operations upon it,
and views, which display and manipulate the data. It’s similar to the Model-
View-Controller model (MVC), but here the concept of controller is not sepa-
rate from the view.

wxWidgets can provide many user interface elements and behaviors
based on this architecture. After you have defined your own classes and the
relationships between them, the framework takes care of showing file selec-
tors, opening and closing files, asking the user to save modifications, routing
menu commands to appropriate code, and even some default print and print
preview functionality and support for command undo and redo. The frame-
work is highly modular, enabling the application to override and replace func-
tionality and objects to achieve more than the default behavior.

These are the main steps involved in creating an application based on
the document/view framework, once you’ve decided that this model is appro-
priate for your application. The ordering is to some extent arbitrary: for exam-
ple, you may choose to write your document class before thinking about how a
document will be presented in the application.

481

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 481

1. Decide what style of interface you will use: Microsoft’s MDI (multiple
document child frames surrounded by an overall frame), SDI (a separate,
unconstrained frame for each document), or single-window (one docu-
ment open at a time, as in Windows Write).

2. Use the appropriate parent and child frame classes, based on the previ-
ous decision, such as wxDocParentFrame and wxDocChildFrame. Construct an
instance of the parent frame class in your wxApp::OnInit, and a child
frame class (if not single-window) when you initialize a view. Create
menus using standard menu identifiers such as wxID_OPEN and
wxID_PRINT.

3. Define your own document and view classes, overriding a minimal set of
member functions for input/output, drawing, and initialization. If you
need undo/redo, implement it as early as possible, instead of trying to
retrofit your application with it later.

4. Define any subwindows (such as a scrolled window) that are needed for
the view(s). You may need to route some events to views or documents;
for example, your paint handler needs to be routed to wxView::OnDraw.

5. Construct a single wxDocManager instance at the beginning of your
wxApp::OnInit and then as many wxDocTemplate instances as necessary to
define relationships between documents and views. For a simple applica-
tion, there will be just one wxDocTemplate.

We will illustrate these steps using a little application called Doodle (see
Figure 19-1). As its name suggests, it supports freehand drawing in a window,
with the ability to save and load your doodles. It also supports simple undo
and redo.

482 Working with Documents and Views Chapter 19

Figure 19-1 Doodle in action

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 482

Step 1: Choose an Interface Style

Traditionally, multi-document applications on Windows have used MDI, as
described in the section “wxMDIParentFrame” in Chapter 4, “Window Basics.”
A parent frame manages and encloses a series of document child frames, with
the menu bar reflecting the commands available in either the active child
frame or the parent frame if there are no child frames.

An alternative to MDI is to dispense with the concept of a “main” window
and show each document in a new frame that can be moved around the desk-
top without constraint. This is the usual style on Mac OS, although on Mac
OS, only one menu bar is shown at a time (that of the active window). Another
twist on Mac OS is that unlike on other platforms, the user does not expect the
application to exit when the last window is closed: there is normally an appli-
cation menu bar with a reduced set of commands that shows without a win-
dow being visible. Currently, to achieve this behavior in wxWidgets, you must
create an off-screen frame, whose menu bar will automatically be shown if all
visible windows have been destroyed.

A variation of this technique is to show a main window in addition to
separate document frames. However, it is quite rare for this to be a useful
model. Yet another variation is to only show document windows, but when the
last document is closed, the window remains open to let the user open or cre-
ate documents. This model is employed by recent versions of Microsoft Word
and is similar to the Mac OS model, except that on Mac OS where there are no
documents open, there is no visible frame, only a menu bar.

Perhaps the simplest model is to have one main window, no separate
child frames, and only one document open at a time: an example is Windows
WordPad. This is the style chosen for our Doodle application.

Finally, you can create your own style, perhaps combining different ele-
ments of the others. DialogBlocks is an example of an application that mixes
styles to give the user different ways of working. The most common way of
working with DialogBlocks is to show one view at a time. When you select a
document in the project tree, the current view is hidden, and the new view is
shown. Optionally, you can enable tabs for quick switching between the set of
the documents you’re most interested in. In addition, you can drag the view’s
title bar to the desktop to undock the view and see multiple documents simul-
taneously. Internally, DialogBlocks manages the relationships between docu-
ments, views, and windows differently from the standard wxWidgets
document/view management. Obviously, creating your own document manage-
ment system is time-consuming, so you will probably want to choose one of the
standard methods.

Step 2: Create and Use Frame Classes

For an MDI application, you will use wxDocMDIParentFrame and wxDocMDIChildFrame.
For an application with one main frame and multiple separate document
frames, use wxDocParentFrame and wxDocChildFrame. If you have a main frame
and only one document shown at a time, use wxDocParentFrame.

Document/View Basics 483

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 483

If your application does not have a main frame, just multiple document
frames, use either wxDocParentFrame or wxDocChildFrame. However, if using
wxDocParentFrame, intercept the window close event handler (EVT_CLOSE) and
delete all the views for the associated document because the default behavior
is to delete all views known to the document manager (which will close all doc-
uments).

Here’s our frame class definition. We store a pointer to the doodle canvas
and a pointer to the edit menu that will be associated with the document com-
mand processor so the system can update the Undo and Redo menu items.

// Define a new frame
class DoodleFrame: public wxDocParentFrame
{

DECLARE_CLASS(DoodleFrame)
DECLARE_EVENT_TABLE()

public:
DoodleFrame(wxDocManager *manager, wxFrame *frame, wxWindowID id,

const wxString& title, const wxPoint& pos,
const wxSize& size, long type);

/// Show About box
void OnAbout(wxCommandEvent& event);

/// Get edit menu
wxMenu* GetEditMenu() const { return m_editMenu; }

/// Get canvas
DoodleCanvas* GetCanvas() const { return m_canvas; }

private:
wxMenu * m_editMenu;
DoodleCanvas* m_canvas;

};

The implementation of DoodleFrame is shown next. The constructor creates a
menu bar and a DoodleCanvas object with a pencil cursor. The file menu is
passed to the manager object to be used for displaying recently used files.

IMPLEMENT_CLASS(DoodleFrame, wxDocParentFrame)

BEGIN_EVENT_TABLE(DoodleFrame, wxDocParentFrame)
EVT_MENU(DOCVIEW_ABOUT, DoodleFrame::OnAbout)

END_EVENT_TABLE()

DoodleFrame::DoodleFrame(wxDocManager *manager, wxFrame *parent,
wxWindowID id, const wxString& title,
const wxPoint& pos, const wxSize& size, long type):

wxDocParentFrame(manager, parent, id, title, pos, size, type)
{

m_editMenu = NULL;

m_canvas = new DoodleCanvas(this,
wxDefaultPosition, wxDefaultSize, 0);

484 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 484

m_canvas->SetCursor(wxCursor(wxCURSOR_PENCIL));

// Give it scrollbars
m_canvas->SetScrollbars(20, 20, 50, 50);
m_canvas->SetBackgroundColour(*wxWHITE);
m_canvas->ClearBackground();

// Give it an icon
SetIcon(wxIcon(doodle_xpm));

// Make a menu bar
wxMenu *fileMenu = new wxMenu;
wxMenu *editMenu = (wxMenu *) NULL;

fileMenu->Append(wxID_NEW, wxT(“&New...”));
fileMenu->Append(wxID_OPEN, wxT(“&Open...”));

fileMenu->Append(wxID_CLOSE, wxT(“&Close”));
fileMenu->Append(wxID_SAVE, wxT(“&Save”));
fileMenu->Append(wxID_SAVEAS, wxT(“Save &As...”));
fileMenu->AppendSeparator();
fileMenu->Append(wxID_PRINT, wxT(“&Print...”));
fileMenu->Append(wxID_PRINT_SETUP, wxT(“Print &Setup...”));
fileMenu->Append(wxID_PREVIEW, wxT(“Print Pre&view”));

editMenu = new wxMenu;
editMenu->Append(wxID_UNDO, wxT(“&Undo”));
editMenu->Append(wxID_REDO, wxT(“&Redo”));
editMenu->AppendSeparator();
editMenu->Append(DOCVIEW_CUT, wxT(“&Cut last segment”));

m_editMenu = editMenu;

fileMenu->AppendSeparator();
fileMenu->Append(wxID_EXIT, wxT(“E&xit”));

wxMenu *helpMenu = new wxMenu;
helpMenu->Append(DOCVIEW_ABOUT, wxT(“&About”));

wxMenuBar *menuBar = new wxMenuBar;

menuBar->Append(fileMenu, wxT(“&File”));
menuBar->Append(editMenu, wxT(“&Edit”));
menuBar->Append(helpMenu, wxT(“&Help”));

// Associate the menu bar with the frame
SetMenuBar(menuBar);

// A nice touch: a history of files visited. Use this menu.
manager->FileHistoryUseMenu(fileMenu);

}

void DoodleFrame::OnAbout(wxCommandEvent& WXUNUSED(event))
{

(void)wxMessageBox(wxT(“Doodle Sample\n(c) 2004, Julian Smart”),
wxT(“About Doodle”));

}

Document/View Basics 485

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 485

Step 3: Define Your Document and View Classes

Your document class should have a default constructor, and you should use the
DECLARE_DYNAMIC_CLASS and IMPLEMENT_DYNAMIC_CLASS to enable the framework
to create document objects on demand. (If you don’t supply these, you should
instead override wxDocTemplate::CreateDocument.)

You also need to tell the framework how the object will be saved and
loaded. You can override SaveObject and LoadObject if you will be using
wxWidgets streams, as in our example. Or if you want to implement file han-
dling yourself, override DoSaveDocument and DoOpenDocument, which take a file
name argument instead of a stream. wxWidgets streams are described in
Chapter 14, “Files and Streams.”

Note
The framework does not use temporary files when saving data. This is a
good reason for overriding DoSaveDocument and making a stream out of
a wxTempFile, as described in Chapter 14.

Here’s our DoodleDocument declaration:

/*
* Represents a doodle document
*/

class DoodleDocument: public wxDocument
{

DECLARE_DYNAMIC_CLASS(DoodleDocument)
public:

DoodleDocument() {};
~DoodleDocument();

/// Saves the document
wxOutputStream& SaveObject(wxOutputStream& stream);

/// Loads the document
wxInputStream& LoadObject(wxInputStream& stream);

inline wxList& GetDoodleSegments() { return m_doodleSegments; };

private:
wxList m_doodleSegments;

};

Your document class will also contain the data that’s appropriate to the docu-
ment type. In our case, we have a list of doodle segments, each representing
the lines drawn in a single gesture while the mouse button was down. The seg-
ment class knows how to stream itself, which makes it simpler to implement
the document’s streaming functions. Here are the declarations for segments
and lines.

486 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 486

/*
* Defines a line from one point to the other
*/

class DoodleLine: public wxObject
{
public:

DoodleLine(wxInt32 x1 = 0, wxInt32 y1 = 0,
wxInt32 x2 = 0, wxInt32 y2 = 0)

{ m_x1 = x1; m_y1 = y1; m_x2 = x2; m_y2 = y2; }

wxInt32 m_x1;
wxInt32 m_y1;
wxInt32 m_x2;
wxInt32 m_y2;

};

/*
* Contains a list of lines: represents a mouse-down doodle
*/

class DoodleSegment: public wxObject
{
public:

DoodleSegment(){};
DoodleSegment(DoodleSegment& seg);
~DoodleSegment();

void Draw(wxDC *dc);

/// Saves the segment
wxOutputStream& SaveObject(wxOutputStream& stream);

/// Loads the segment
wxInputStream& LoadObject(wxInputStream& stream);

/// Gets the lines
wxList& GetLines() { return m_lines; }

private:
wxList m_lines;

};

The DoodleSegment class knows how to render an instance of itself to a device
context by virtue of its Draw function. This will help when implementing the
doodle drawing code.

Here’s the implementation of these classes.

/*
* DoodleDocument
*/

IMPLEMENT_DYNAMIC_CLASS(DoodleDocument, wxDocument)

DoodleDocument::~DoodleDocument()

Document/View Basics 487

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 487

488 Working with Documents and Views Chapter 19

{
WX_CLEAR_LIST(wxList, m_doodleSegments);

}

wxOutputStream& DoodleDocument::SaveObject(wxOutputStream& stream)
{

wxDocument::SaveObject(stream);

wxTextOutputStream textStream(stream);

wxInt32 n = m_doodleSegments.GetCount();
textStream << n << wxT(‘\n’);

wxList::compatibility_iterator node = m_doodleSegments.GetFirst();
while (node)
{

DoodleSegment *segment = (DoodleSegment *)node->GetData();
segment->SaveObject(stream);
textStream << wxT(‘\n’);

node = node->GetNext();
}

return stream;
}

wxInputStream& DoodleDocument::LoadObject(wxInputStream& stream)
{

wxDocument::LoadObject(stream);

wxTextInputStream textStream(stream);

wxInt32 n = 0;
textStream >> n;

for (int i = 0; i < n; i++)
{

DoodleSegment *segment = new DoodleSegment;
segment->LoadObject(stream);
m_doodleSegments.Append(segment);

}

return stream;
}

/*
* DoodleSegment
*/

DoodleSegment::DoodleSegment(DoodleSegment& seg)
{

wxList::compatibility_iterator node = seg.GetLines().GetFirst();
while (node)
{

DoodleLine *line = (DoodleLine *)node->GetData();
DoodleLine *newLine = new DoodleLine(line->m_x1, line->m_y1,

line->m_x2, line->m_y2);

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 488

GetLines().Append(newLine);

node = node->GetNext();
}

}

DoodleSegment::~DoodleSegment()
{

WX_CLEAR_LIST(wxList, m_lines);
}

wxOutputStream &DoodleSegment::SaveObject(wxOutputStream& stream)
{

wxTextOutputStream textStream(stream);

wxInt32 n = GetLines().GetCount();
textStream << n << wxT(‘\n’);

wxList::compatibility_iterator node = GetLines().GetFirst();
while (node)
{

DoodleLine *line = (DoodleLine *)node->GetData();
textStream

<< line->m_x1 << wxT(“ “)
<< line->m_y1 << wxT(“ “)
<< line->m_x2 << wxT(“ “)
<< line->m_y2 << wxT(“\n”);

node = node->GetNext();
}

return stream;
}

wxInputStream &DoodleSegment::LoadObject(wxInputStream& stream)
{

wxTextInputStream textStream(stream);

wxInt32 n = 0;
textStream >> n;

for (int i = 0; i < n; i++)
{

DoodleLine *line = new DoodleLine;
textStream

>> line->m_x1
>> line->m_y1
>> line->m_x2
>> line->m_y2;

GetLines().Append(line);
}

return stream;
}

void DoodleSegment::Draw(wxDC *dc)
{

wxList::compatibility_iterator node = GetLines().GetFirst();
while (node)
{

Document/View Basics 489

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 489

490 Working with Documents and Views Chapter 19

DoodleLine *line = (DoodleLine *)node->GetData();
dc->DrawLine(line->m_x1, line->m_y1, line->m_x2, line->m_y2);
node = node->GetNext();

}
}

So far, we haven’t touched on how doodle segments actually get added to the
document, except by loading them from a file. We can model the commands
that will modify the document independently of the code that interprets
mouse or keyboard input, and this is the key to implementing undo and redo.
DoodleCommand is a class deriving from wxCommand: it implements the Do and Undo
virtual functions that will be called by the framework at the appropriate
point. So instead of directly modifying the document, the input event handlers
will create a DoodleCommand with the appropriate information and submit it to
the document’s command processor (an instance of wxCommandProcessor). The
command processor stores the command on an undo/redo stack before calling
Do for the first time. The command processor is automatically created when
the framework initializes the document, which is why you don’t see it being
created explicitly in this example.

Here is DoodleCommand’s declaration:

/*
* A doodle command
*/

class DoodleCommand: public wxCommand
{
public:

DoodleCommand(const wxString& name, int cmd, DoodleDocument *doc,
DoodleSegment *seg);

~DoodleCommand();

/// Overrides
virtual bool Do();
virtual bool Undo();

/// Combine do/undo code since the commands are symmetric
bool DoOrUndo(int cmd);

protected:
DoodleSegment* m_segment;
DoodleDocument* m_doc;
int m_cmd;

};

/*
* Doodle command identifiers
*/

#define DOODLE_CUT 1
#define DOODLE_ADD 2

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 490

We define two commands, DOODLE_ADD and DOODLE_CUT. The user can delete the
last segment or add a segment by drawing. Here, the two commands are both
represented by the same command class, but this doesn’t have to be the case.
Each command object stores a pointer to the document, a segment object, and
the command identifier. The implementation for DoodleCommand is:

/*
* DoodleCommand
*/

DoodleCommand::DoodleCommand(const wxString& name, int command,
DoodleDocument *doc, DoodleSegment *seg):

wxCommand(true, name)
{

m_doc = doc;
m_segment = seg;
m_cmd = command;

}

DoodleCommand::~DoodleCommand()
{

if (m_segment)
delete m_segment;

}

bool DoodleCommand::Do()
{

return DoOrUndo(m_cmd);
}

bool DoodleCommand::Undo()
{

switch (m_cmd)
{
case DOODLE_ADD:

{
return DoOrUndo(DOODLE_CUT);

}
case DOODLE_CUT:

{
return DoOrUndo(DOODLE_ADD);

}
}
return true;

}

bool DoodleCommand::DoOrUndo(int cmd)
{

switch (cmd)
{
case DOODLE_ADD:

{
wxASSERT(m_segment != NULL);

Document/View Basics 491

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 491

if (m_segment)
m_doc->GetDoodleSegments().Append(m_segment);

m_segment = NULL;

m_doc->Modify(true);
m_doc->UpdateAllViews();
break;

}
case DOODLE_CUT:

{
wxASSERT(m_segment == NULL);

// Cut the last segment
if (m_doc->GetDoodleSegments().GetCount() > 0)
{

wxList::compatibility_iterator node = m_doc-
>GetDoodleSegments().GetLast();

m_segment = (DoodleSegment *)node->GetData();
m_doc->GetDoodleSegments().Erase(node);

m_doc->Modify(true);
m_doc->UpdateAllViews();

}
break;

}
}
return true;

}

Because Do and Undo share code in our example, we have factored it out into
the function DoOrUndo. So to get an undo of a DOODLE_ADD, we use the code for
doing DOODLE_CUT. To get the undo of a DOODLE_CUT, we use the code for doing a
DOODLE_ADD.

When a segment is added (or a cut command is undone), DoOrUndo simply
adds the segment to the document’s segment list and clears the pointer to it in
the command object so that it doesn’t get deleted when the command object is
destroyed. A cut (or undo for an add command) removes the last segment from
the document’s list but keeps a pointer to it in case the command needs to be
reversed. DoOrUndo also marks the document as modified (so that closing the
application will cause a save prompt) and tells the document to update all of
its views.

To define your view class, derive from wxView and again use the dynamic
object creation macros. Override at least OnCreate, OnDraw, OnUpdate, and
OnClose.

OnCreate is called by the framework when the view and document objects
have just been created: at this point, you may need to create a frame and asso-
ciate it with the view using SetFrame.

OnDraw takes a pointer to a wxDC object and implements drawing. In fact,
this doesn’t have to be implemented, but if drawing is implemented another
way, the default print/preview behavior will not work.

492 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 492

OnUpdate is called with a pointer to the view that caused the update and
an optional hint object to help the view optimize painting, and it notifies the
view that it should be updated. OnUpdate is typically called when a command
has changed the document contents and all views need to be redrawn appro-
priately. The application can request an update with wxDocument::UpdateAllViews.

OnClose is called when the view is about to be deleted. The default imple-
mentation calls wxDocument::OnClose to close the associated document.

Here is the declaration of our DoodleView class. As well as overriding the
functions mentioned previously, it handles the DOODLE_CUT command via OnCut.
The reason why DOODLE_ADD is not represented in the view’s event table is that
a segment is added with a mouse gesture, and mouse events are handled by
DoodleCanvas, as we’ll see shortly.

/*
* DoodleView mediates between documents and windows
*/

class DoodleView: public wxView
{

DECLARE_DYNAMIC_CLASS(DoodleView)
DECLARE_EVENT_TABLE()

public:
DoodleView() { m_frame = NULL; }
~DoodleView() {};

/// Called when the document is created
virtual bool OnCreate(wxDocument *doc, long flags);

/// Called to draw the document
virtual void OnDraw(wxDC *dc);

/// Called when the view needs to be updated
virtual void OnUpdate(wxView *sender, wxObject *hint = NULL);

/// Called when the view is closed
virtual bool OnClose(bool deleteWindow = true);

/// Processes the cut command
void OnCut(wxCommandEvent& event);

private:
DoodleFrame* m_frame;

};

The following is the implementation of DoodleView.

IMPLEMENT_DYNAMIC_CLASS(DoodleView, wxView)

BEGIN_EVENT_TABLE(DoodleView, wxView)
EVT_MENU(DOODLE_CUT, DoodleView::OnCut)

END_EVENT_TABLE()

Document/View Basics 493

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 493

// What to do when a view is created.
bool DoodleView::OnCreate(wxDocument *doc, long WXUNUSED(flags))
{

// Associate the appropriate frame with this view.
m_frame = GetMainFrame();
SetFrame(m_frame);
m_frame->GetCanvas()->SetView(this);

// Make sure the document manager knows that this is the
// current view.
Activate(true);

// Initialize the edit menu Undo and Redo items
doc->GetCommandProcessor()->SetEditMenu(m_frame->GetEditMenu());
doc->GetCommandProcessor()->Initialize();

return true;
}

// This function is used for default print/preview
// as well as drawing on the screen.
void DoodleView::OnDraw(wxDC *dc)
{

dc->SetFont(*wxNORMAL_FONT);
dc->SetPen(*wxBLACK_PEN);

wxList::compatibility_iterator node = ((DoodleDocument
*)GetDocument())->GetDoodleSegments().GetFirst();

while (node)
{

DoodleSegment *seg = (DoodleSegment *)node->GetData();
seg->Draw(dc);
node = node->GetNext();

}
}

void DoodleView::OnUpdate(wxView *WXUNUSED(sender), wxObject
*WXUNUSED(hint))
{

if (m_frame && m_frame->GetCanvas())
m_frame->GetCanvas()->Refresh();

}

// Clean up windows used for displaying the view.
bool DoodleView::OnClose(bool WXUNUSED(deleteWindow))
{

if (!GetDocument()->Close())
return false;

// Clear the canvas
m_frame->GetCanvas()->ClearBackground();
m_frame->GetCanvas()->SetView(NULL);

if (m_frame)
m_frame->SetTitle(wxTheApp->GetAppName());

SetFrame(NULL);

494 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 494

// Tell the document manager to stop routing events to the view
Activate(false);

return true;
}

void DoodleView::OnCut(wxCommandEvent& WXUNUSED(event))
{

DoodleDocument *doc = (DoodleDocument *)GetDocument();
doc->GetCommandProcessor()->Submit(

new DoodleCommand(wxT(“Cut Last Segment”), DOODLE_CUT, doc,
NULL));
}

Step 4: Define Your Window Classes

You will probably need to create specialized editing windows for manipulating
the data in your views. In the Doodle example, DoodleCanvas is used for dis-
playing the data, and to intercept the relevant events, the wxWidgets event
system requires us to create a derived class. The DoodleCanvas class declara-
tion looks like this:

/*
* DoodleCanvas is the window that displays the doodle document
*/

class DoodleView;
class DoodleCanvas: public wxScrolledWindow
{

DECLARE_EVENT_TABLE()
public:

DoodleCanvas(wxWindow *parent, const wxPoint& pos,
const wxSize& size, const long style);

/// Draws the document contents
virtual void OnDraw(wxDC& dc);

/// Processes mouse events
void OnMouseEvent(wxMouseEvent& event);

/// Set/get view
void SetView(DoodleView* view) { m_view = view; }
DoodleView* GetView() const { return m_view; }

protected:
DoodleView *m_view;

};

Document/View Basics 495

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 495

DoodleCanvas contains a pointer to the view (initialized by DoodleView::OnCreate)
and handles drawing and mouse events. Here’s the implementation of the
class.

/*
* Doodle canvas implementation
*/

BEGIN_EVENT_TABLE(DoodleCanvas, wxScrolledWindow)
EVT_MOUSE_EVENTS(DoodleCanvas::OnMouseEvent)

END_EVENT_TABLE()

// Define a constructor
DoodleCanvas::DoodleCanvas(wxWindow *parent, const wxPoint& pos,

const wxSize& size, const long style):
wxScrolledWindow(parent, wxID_ANY, pos, size, style)

{
m_view = NULL;

}

// Define the repainting behavior
void DoodleCanvas::OnDraw(wxDC& dc)
{

if (m_view)
m_view->OnDraw(& dc);

}

// This implements doodling behavior. Drag the mouse using
// the left button.
void DoodleCanvas::OnMouseEvent(wxMouseEvent& event)
{

// The last position
static int xpos = -1;
static int ypos = -1;
static DoodleSegment *currentSegment = NULL;

if (!m_view)
return;

wxClientDC dc(this);
DoPrepareDC(dc);

dc.SetPen(*wxBLACK_PEN);

// Take into account scrolling
wxPoint pt(event.GetLogicalPosition(dc));

if (currentSegment && event.LeftUp())
{

if (currentSegment->GetLines().GetCount() == 0)
{

delete currentSegment;
currentSegment = NULL;

}
else
{

496 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 496

// We’ve got a valid segment on mouse left up, so store it.
DoodleDocument *doc = (DoodleDocument *) GetView()-

>GetDocument();

doc->GetCommandProcessor()->Submit(
new DoodleCommand(wxT(“Add Segment”), DOODLE_ADD, doc,

currentSegment));

GetView()->GetDocument()->Modify(true);
currentSegment = NULL;

}
}

if (xpos > -1 && ypos > -1 && event.Dragging())
{

if (!currentSegment)
currentSegment = new DoodleSegment;

DoodleLine *newLine = new DoodleLine;
newLine->m_x1 = xpos;
newLine->m_y1 = ypos;
newLine->m_x2 = pt.x;
newLine->m_y2 = pt.y;
currentSegment->GetLines().Append(newLine);

dc.DrawLine(xpos, ypos, pt.x, pt.y);
}
xpos = pt.x;
ypos = pt.y;

}

As you can see, when the mouse handling code detects that user has drawn a
segment, a DOODLE_ADD command is submitted to the document, where it is
stored in case the user wants to undo (and perhaps later redo) the command.
In the process, the segment is added to the document’s segment list.

Step 5: Use wxDocManager and wxDocTemplate

You will need to create an instance of wxDocManager that exists for the lifetime
of the application. wxDocManager has overall responsibility for handling docu-
ments and views.

You will also need at least one wxDocTemplate object. This class is used to
model the relationship between a document class and a view class. The appli-
cation creates a document template object for each document/view pair, and
the list of document templates managed by the wxDocManager instance is used
to create documents and views. Each document template knows what file fil-
ters and default extension are appropriate for a document/view combination
and how to create a document or view.

Document/View Basics 497

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 497

For example, if there were two views of the data in a Doodle document—
a graphical view and a list of segments—then we would create two view
classes (DoodleGraphicView and DoodleListView). We would also need two docu-
ment templates, one for the graphical view and another for the list view. You
would pass the same document class and default file extension to both docu-
ment templates, but each would be passed a different view class. When the
user clicks on the Open menu item, the file selector is displayed with a list of
possible file filters, one for each wxDocTemplate. Selecting the filter selects the
wxDocTemplate, and when a file is selected, that template will be used for creat-
ing a document and view. Similarly, when the user selects New, wxWidgets
will offer a choice of templates if there is more than one. In our Doodle exam-
ple, where there is only one document type and one view type, a single docu-
ment template is constructed, and dialogs will be appropriately simplified.

You can store a pointer to a wxDocManager in your application class, but
there’s usually no need to store a pointer to the template objects because these
are managed by wxDocManager. Here’s the DoodleApp class declaration:

/*
* Declare an application class
*/

class DoodleApp: public wxApp
{
public:

DoodleApp();

/// Called on app initialization
virtual bool OnInit();

/// Called on app exit
virtual int OnExit();

private:
wxDocManager* m_docManager;

};

DECLARE_APP(DoodleApp)

In the DoodleApp implementation, the wxDocManager object is created in OnInit,
along with a document template object associating the DoodleDocument and
DoodleView classes. We pass to the template object the document manager, a
template description, a file filter to use in file dialogs, a default directory to
use in file dialogs (here it’s empty), a default extension for the document (drw),
unique type names for the document and view classes, and finally the class
information for document and view classes. The DoodleApp class implementa-
tion is shown in the following.

IMPLEMENT_APP(DoodleApp)

DoodleApp::DoodleApp()

498 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 498

{
m_docManager = NULL;

}

bool DoodleApp::OnInit()
{

// Create a document manager
m_docManager = new wxDocManager;

// Create a template relating drawing documents to their views
(void) new wxDocTemplate(m_docManager, wxT(“Doodle”), wxT(“*.drw”),

wxT(“”), wxT(“drw”), wxT(“Doodle Doc”), wxT(“Doodle View”),
CLASSINFO(DoodleDocument), CLASSINFO(DoodleView));

// Register the drawing document type on Mac
#ifdef __WXMAC__

wxFileName::MacRegisterDefaultTypeAndCreator(wxT(“drw”) , ‘WXMB’ ,
‘WXMA’) ;
#endif

// If we have only got one window, we only get to edit
// one document at a time.
m_docManager->SetMaxDocsOpen(1);

// Create the main frame window
DoodleFrame* frame = new DoodleFrame(m_docManager, NULL, wxID_ANY,

wxT(“Doodle Sample”), wxPoint(0, 0), wxSize(500, 400),
wxDEFAULT_FRAME_STYLE);

frame->Centre(wxBOTH);
frame->Show(true);

SetTopWindow(frame);
return true;

}

int DoodleApp::OnExit()
{

delete m_docManager;
return 0;

}

Because we only show one document at a time, we need to tell the document
manager this by calling SetMaxDocsOpen with a value of 1. To cater for Mac OS,
we also add the MacRegisterDefaultTypeAndCreator call to tell Mac OS about
this document type. The function takes the file extension, a document type
identifier, and a creator identifier. (It is customary to choose four-letter identi-
fiers for the document type and the application that creates it. You can option-
ally register them on the Apple web site to avoid potential clashes.)

For the complete Doodle application, please see examples/chap19/doodle.

Document/View Basics 499

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 499

OTHER DOCUMENT/VIEW CAPABILITIES

We’ve shown a simple example that demonstrates the essential steps you need
to follow for a complete document-centric application. This section presents
further tips on using the document/view framework.

Standard Identifiers

The document/view system has default behavior for the following standard
identifiers: wxID_OPEN, wxID_CLOSE, wxID_CLOSE_ALL, wxID_REVERT, wxID_NEW,
wxID_SAVE, wxID_SAVEAS, wxID_UNDO, wxID_REDO, wxID_PRINT, and wxID_PREVIEW. Use
these identifiers in your menu bars and toolbars to take full advantage of the
framework. The functions that handle these identifiers are mostly imple-
mented in wxDocManager: for example, OnFileOpen, OnFileClose, and OnUndo.
These handlers then call appropriate functions in the currently active docu-
ment. If you want, you can override these commands in your frame class or in
a class derived from wxDocManager, but this is not usually necessary.

Printing and Previewing

By default, wxID_PRINT and wxID_PREVIEW use the standard wxDocPrintout class
to implement printing and print preview, taking advantage of wxView:: OnDraw
if implemented. However, this has very limited functionality—it only copes
with a single-page document—so you’re likely to want to create your own
wxPrintout class and override the standard handlers for wxID_PRINT and
wxID_PREVIEW. The quickest method is to use the wxHtmlEasyPrinting class, as
described in “HTML Printing” in Chapter 12, “Advanced Window Classes.”

File History

When your application initializes, you can load the file history shown at the
bottom of the File menu from a wxConfig object with wxDocManager::File
HistoryLoad and save it in your application cleanup with wxDocManager::
FileHistorySave. For example, to load the file history, type the following:

// Load the file history
wxConfig config(wxT(“MyApp”), wxT(“MyCompany”));
config.SetPath(wxT(“FileHistory”));
m_docManager->FileHistoryLoad(config);
config.SetPath(wxT(“/”));

If you load the file history before you create your main frame and its menu
bar, you will need to explicitly call wxDocManager::FileHistoryAddFilesToMenu.

If you want, you can use the wxFileHistory class independently of the
other document/view classes, or to implement file history in a different way
(for example, if your application requires a separate file history for each
document frame).

500 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 500

Explicit Document Creation

Sometimes you may want to create a document explicitly in your document—
for example, if you are opening the last document that was viewed. You can
open an existing document like this:

wxDocument* doc = m_docManager->CreateDocument(filename,
wxDOC_SILENT);

Or create a new document like this:

wxDocument* doc = m_docManager->CreateDocument(wxEmptyString,
wxDOC_NEW);

In both cases, a view will be created automatically.

STRATEGIES FOR IMPLEMENTING UNDO/REDO

The way that undo/redo is implemented in your application will be determined
by the nature of the document data and how the user manipulates that data.
In our simple Doodle example, we only operate on one piece of data at a time,
and our operations are very simple. In many applications, however, the user
can apply operations to multiple objects. In this case, it’s useful to introduce a
further level of command granularity, perhaps called CommandState, holding the
information for a particular object in the document. Your command class
should maintain a list of these states and accept a list of them in the command
class constructor. Do and Undo will iterate through the state list and apply the
current command to each state.

One key to implementing undo/redo is noting that the user can only tra-
verse the command history one step at a time. Therefore, your undo/redo
implementation is free to take snapshots of the document state for later
restoration, with the knowledge that the stored state will always be correct no
matter how many times the user has gone backward or forward in the com-
mand history. All your code has to know is how to switch between “done” and
“undone” states.

A common strategy is to store a copy of each document object within the
command state object and also a pointer to the actual object. Do and Undo sim-
ply swap the current and stored states. Let’s say the object is a shape, and the
user changes the color from red to blue. The application creates a new state
identical to the existing red object, but it sets the internal color attribute to
blue. When the command is first executed, Do takes a copy of the current object
state, applies the new command state (including the blue color) to the visible
state, and repaints the object. Undo simply does the same thing. It takes a copy
of the current object state, applies the current state (including red), and
repaints. So code for Do and Undo is actually identical in this case. Not only

Strategies for Implementing Undo/Redo 501

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 501

that, it can be reused for other operations as well as color changes because the
state of the entire object is copied. You can make this process straightforward
by implementing an assignment operator and copy constructor for each class
that represents an object that the user can edit.

Let’s make this idea more concrete. Say we have a document of shapes, and
the user can change the color of all selected shapes. We might have a command
handler called ShapeView::OnChangeColor, as in the following, where a new state
is created for each selected object, before being applied to the document.

// Changes the color of the selected shape(s)
void ShapeView::OnChangeColor(wxCommandEvent& event)
{

wxColour col = GetSelectedColor();

ShapeCommand* cmd = new ShapeCommand(wxT(“Change color”));

ShapeArray arrShape;
for (size_t i = 0; i < GetSelectedShapes().GetCount(); i++)
{

Shape* oldShape = GetSelectedShapes()[i];
Shape* newShape = new Shape(*oldShape);
newShape->SetColor(col);
ShapeState* state = new ShapeState(SHAPE_COLOR, newShape,

oldShape);
cmd->AddState(state);

}
GetDocument()->GetCommandProcessor()->SubmitCommand(cmd);

}

Because the implementation for this kind of state change is the same for both
Do and Undo, we have a single DoAndUndo function in the ShapeState class, where
we do state swapping:

// Incomplete implementation of the state’s DoAndRedo:
// for some commands, do and undo share the same code
void ShapeState::DoAndUndo(bool undo)
{

switch (m_cmd)
{
case SHAPE_COLOR:
case SHAPE_TEXT:
case SHAPE_SIZE:

{
Shape* tmp = new Shape(m_actualShape);
(* m_actualShape) = (* m_storedShape);
(* m_storedShape) = (* tmp);
delete tmp;

// Do redraw here
...
break;

}
}

}

502 Working with Documents and Views Chapter 19

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 502

In this code, we have not shown the ShapeCommand::Do and ShapeCommand::Redo
functions, which iterate through all the states for this command.

SUMMARY

We’ve seen how taking advantage of the document/view model can simplify an
application’s implementation, letting wxWidgets handle much of the house-
keeping such as showing file dialogs and creating document and view objects.
You should now also have an understanding of how to implement undo/redo in
wxWidgets—a facility that should be built in at an early stage because trying
to bolt it on afterwards will involve a considerable amount of rewriting.

In our final chapter, we discuss a number of ways in which you can refine
your application.

Summary 503

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 503

Smart_Ch19f.qxd 6/10/05 11:25 AM Page 504

C H A P T E R 20

Perfecting Your Application

There’s a world of difference between an application that does its job ade-
quately and an application that’s intuitive and enjoyable to use. For internal
use, a basic, no-frills application may be adequate, but if you’re planning on
distributing your brainchild to a wide audience, you’ll want it to be as com-
pelling and easy to use as applications from the biggest software publishers.
You’ll need to conform to some fundamental expectations and standards, such
as the provision of configuration dialogs and online help. In this final chapter,
we’ll cover the following topics to help you polish your application:

� Single instance or multiple instances? How you can prevent “clones”
of your application from proliferating.

� Modifying event handling. How to change the order in which events
are processed.

� Reducing flicker. How to improve the visual quality of your application
by cutting down on annoying flicker.

� Implementing online help. Suggestions for providing a variety of help
for your users.

� Parsing the command line. Give your users more control over your
application with command-line options and switches.

� Storing application resources. Ways to package files needed by your
application.

� Invoking other applications. From simple program execution to cap-
turing another process’s input and output.

� Managing application settings. The use of wxConfig to save and load
settings, and tips for presenting settings.

� Application installation. Suggestions for how users can easily install
your application on the three major platforms.

� Following UI design guidelines. Some observations about conforming
to the design recommendations on each platform.

505

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 505

SINGLE INSTANCE OR MULTIPLE INSTANCES?

Depending on the nature of your application, you might either want to allow
users to keep invoking multiple instances of the application, or reuse the
existing instance when the user tries to relaunch the application or open more
than one document from the system’s file manager. It’s quite common to give
users the option of running the application in single-instance or multiple-
instance mode, depending on their working habits. One problem with allowing
multiple instances is that the order in which the instances write their configu-
ration data (usually when the application exits) is undefined, so user settings
might be lost. It might also confuse novice users who don’t realize they are
launching new instances of the application. The behavior of allowing multiple
applications to be launched is the default on all platforms (except when
launching applications and opening documents via the Finder on Mac OS), so
you will need to write additional code if you want to disable multiple
instances.

On Mac OS (only), opening multiple documents using the same instance
is easy. Override the MacOpenFile function, taking a wxString file name argu-
ment, which will be called when a document associated with this application is
opened from the Finder. If the application is not already running, Mac OS will
run it first before calling MacOpenFile (unlike on other platforms, it does not
pass the file name in the command-line arguments). If you are using docu-
ment/view, you might not need to provide this function because the default
implementation on Mac OS X is as follows:

void wxApp::MacOpenFile(const wxString& fileName)
{

wxDocManager* dm = wxDocManager::GetDocumentManager() ;
if (dm)

dm->CreateDocument(fileName, wxDOC_SILENT) ;
}

However, even on Mac OS, this will not prevent the user from running the
application multiple times if launching the executable directly, as opposed to
opening an associated document. One way in which you can detect and forbid
more than one instance from being run is by using the
wxSingleInstanceChecker class. Create an object of this class that persists for
the lifetime of the instance, and in your OnInit, call IsAnotherRunning. If this
returns true, you can quit immediately, perhaps after alerting the user. For
example:

bool MyApp::OnInit()
{

const wxString name = wxString::Format(wxT(“MyApp-%s”),
wxGetUserId().c_str());

m_checker = new wxSingleInstanceChecker(name);
if (m_checker->IsAnotherRunning())

506 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 506

{
wxLogError(_(“Program already running, aborting.”));
return false;

}

... more initializations ...

return true;
}

int MyApp::OnExit()
{

delete m_checker;

return 0;
}

But what if you want to bring the existing instance to the front or open a file
that was passed to the second instance in the first instance? In general, this
requires the instances to be able to communicate with each other. We can use
wxWidgets’ high-level interprocess communication classes to do this.

In the following example, we’ll set up communication between instances
of the sample application and allow secondary instances to ask the first
instance to either open a file or raise itself to indicate that the user has
requested the application to open. The following declares a connection class for
use by both instances, a server class for the original instance to listen for con-
nections from other instances, and a client class that is used by subsequent
instances for communicating with the original instance.

#include “wx/ipc.h”

// Server class, for listening to connection requests

class stServer: public wxServer
{
public:

wxConnectionBase *OnAcceptConnection(const wxString& topic);
};

// Client class, to be used by subsequent instances in OnInit

class stClient: public wxClient
{
public:

stClient() {};
wxConnectionBase *OnMakeConnection() { return new stConnection; }

};

// Connection class, for use by both communicating instances

class stConnection : public wxConnection
{
public:

stConnection() {}

Single Instance or Multiple Instances? 507

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 507

~stConnection() {}

bool OnExecute(const wxString& topic, wxChar*data, int size,
wxIPCFormat format);

};

OnAcceptConnection is called within the original (server) instance when the
client tries to make the connection. We need to check that there are no modal
dialogs running in this instance because when a modal dialog is open, there
should be no other activity in the application that might require a user’s
attention.

// Accepts a connection from another instance

wxConnectionBase *stServer::OnAcceptConnection(const wxString& topic)
{

if (topic.Lower() == wxT(“myapp”))
{

// Check that there are no modal dialogs active
wxWindowList::Node* node = wxTopLevelWindows.GetFirst();
while (node)
{

wxDialog* dialog = wxDynamicCast(node->GetData(), wxDialog);
if (dialog && dialog->IsModal())
{

return false;
}

node = node->GetNext();
}
return new stConnection();

}
else

return NULL;
}

OnExecute is called when the client application calls Execute on its connection
object. OnExecute can have an empty data argument, in which case the applica-
tion should just raise its main window. Otherwise, the application should
determine whether the file is already open and raise the associated window if
so, or open the document if not.

// Opens a file passed from another instance

bool stConnection::OnExecute(const wxString& WXUNUSED(topic),
wxChar *data,
int WXUNUSED(size),
wxIPCFormat WXUNUSED(format))

{
stMainFrame* frame = wxDynamicCast(wxGetApp().GetTopWindow(),

stMainFrame);
wxString filename(data);
if (filename.IsEmpty())

508 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 508

{
// Just raise the main window
if (frame)

frame->Raise();
}
else
{

// Check if the filename is already open,
// and raise that instead.
wxNode* node = wxGetApp().GetDocManager()-

>GetDocuments().GetFirst();
while (node)
{

MyDocument* doc = wxDynamicCast(node->GetData(),MyDocument);
if (doc && doc->GetFilename() == filename)
{

if (doc->GetFrame())
doc->GetFrame()->Raise();

return true;
}
node = node->GetNext();

}
wxGetApp().GetDocManager()->CreateDocument(

filename, wxDOC_SILENT);
}

return true;
}

In OnInit, the application will check for multiple instances using
wxSingleInstanceChecker as usual. If no other instances are found, the instance
can set itself up as a server, waiting for requests from future instances. If
another instance was found, a connection is made to the other instance, and
the second instance asks the first to open a file or raise its main window before
exiting. Here’s the code to do this:

bool MyApp::OnInit()
{

wxString cmdFilename; // code to initialize this omitted

...

m_singleInstanceChecker = new wxSingleInstanceChecker(wxT(“MyApp”));

// If using a single instance, use IPC to
// communicate with the other instance
if (!m_singleInstanceChecker->IsAnotherRunning())
{

// Create a new server
m_server = new stServer;

if (!m_server->Create(wxT(“myapp”))
{

wxLogDebug(wxT(“Failed to create an IPC service.”));
}

}

Single Instance or Multiple Instances? 509

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 509

else
{

wxLogNull logNull;

// OK, there IS another one running, so try to connect to it
// and send it any filename before exiting.
stClient* client = new stClient;

// ignored under DDE, host name in TCP/IP based classes
wxString hostName = wxT(“localhost”);

// Create the connection
wxConnectionBase* connection =

client->MakeConnection(hostName,
wxT(“myapp”), wxT(“MyApp”));

if (connection)
{

// Ask the other instance to open a file or raise itself
connection->Execute(cmdFilename);
connection->Disconnect();
delete connection;

}
else
{

wxMessageBox(wxT(“Sorry, the existing instance may be
too busy too respond.\nPlease close any open dialogs and

retry.”),
wxT(“My application”), wxICON_INFORMATION|wxOK);

}
delete client;
return false;

}

...

return true;
}

If you want to find out more about the interprocess communication classes
used here, another example is provided by the standalone wxWidgets Help
Viewer, which you can find in utils/helpview/src in your wxWidgets distribu-
tion. This application responds to requests by an application to view a help
file. See also samples/ipc and the wxWidgets class reference for wxServer,
wxClient, and wxConnection.

MODIFYING EVENT HANDLING

Normally, wxWidgets sends an event to the window (or other event handler)
that generated it. If it’s a command event, it might work its way up the win-
dow hierarchy before being processed (see Appendix H, “How wxWidgets
Processes Events,” for details). For example, clicking on a copy toolbar button
will cause the toolbar event table to be searched, then the frame that contains it,

510 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 510

and then the application object. Although this may work fine if you support
only one kind of copy command, there is a problem if you also want the copy
command to apply both to your main editing window (say a drawing applica-
tion) and to any focused text controls in the main window, for example. The
text controls will never get copy commands from the toolbar button (or menu
item) because it is wired to a custom event handler. In this case, it would be
more appropriate to send the command to the focused control first. Then, if the
focused control implements this command (such as wxID_COPY), it will be
processed. If it doesn’t, then the command will rise up the window hierarchy
until it gets to the custom wxID_COPY event handler. The end result will be a
more natural way of working, with commands applying to the data that the
user is currently editing.

We can override the main frame’s ProcessEvent function to catch com-
mand events and redirect them to the focused control (if any), as follows:

bool MainFrame::ProcessEvent(wxEvent& event)
{

static wxEvent* s_lastEvent = NULL;

// Check for infinite recursion
if (& event == s_lastEvent)

return false;

if (event.IsCommandEvent() &&
!event.IsKindOf(CLASSINFO(wxChildFocusEvent)) &&
!event.IsKindOf(CLASSINFO(wxContextMenuEvent)))

{
s_lastEvent = & event;

wxControl *focusWin = wxDynamicCast(FindFocus(), wxControl);
bool success = false;

if (focusWin)
success = focusWin->GetEventHandler()

->ProcessEvent(event);
if (!success)

success = wxFrame::ProcessEvent(event);

s_lastEvent = NULL;
return success;

}
else
{

return wxFrame::ProcessEvent(event);
}

}

Currently, this is most useful when the focused control is a wxTextCtrl
because for this control (on most platforms), wxWidgets supplies standard
UI update and command handlers for common commands, including
wxID_COPY, wxID_CUT, wxID_PASTE, wxID_UNDO, and wxID_REDO. However, you can
always implement these handlers for arbitrary controls in your application

Modifying Event Handling 511

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 511

or subclasses of existing wxWidgets controls such as wxStyledTextCtrl (see
examples/chap20/pipedprocess for a wxStyledTextCtrl implementation enhanced
in this way).

REDUCING FLICKER

Flicker is a perennial annoyance in GUI programming. Often an application
will need some tweaking to reduce it; here are some tips that might help.

On Windows, if your window is using the wxFULL_REPAINT_ON_RESIZE style,
try removing it. This will cause the repaint area to be restricted to only the
parts of the window “damaged” by resizing, so less erasing and redrawing is
done. Otherwise, even if the window was resized a tiny amount, the whole
window will be refreshed, causing flicker. However, this will not work if the
appearance of your window contents depends on the size because the whole
window will require updating.

You may sometimes need to use the wxCLIP_CHILDREN style on Windows to
prevent a window refresh from affecting its children. The style has no effect on
other platforms.

When you are drawing in a scrolled window, you can do quite a lot to
improve refresh speed and reduce flicker. First, optimize the way you find
the appropriate data to draw: you need a way to gather just the informa-
tion that is in the current view (see wxWindow::GetViewStart and wxWindow::
GetClientSize), and in your paint handler, you should also be able to eliminate
the graphics that are not in the update region (wxWindow::GetUpdateRegion).
You need data structures that can get you to the start of the view quickly
before you start drawing. You may be able to calculate that position from
your graphics (rather than search), for example if you have columns with
constant width. A linked list or array should be fairly fast to search. If it’s
time-consuming to calculate the current position, then perhaps you can use a
caching mechanism to store the current list position for the last set of data dis-
played, and then you can simply scan back or forward to find the data at the
start of the current scroll position. You can keep a tally of the window position
for each piece of data so that you don’t have to recalculate the whole thing
from the start to find where the data should be drawn.

When implementing scrolling graphics, you can use wxWindow::

ScrollWindow to physically move the pixels on the window, and this will mean
that only the remaining “dirty” area of the window will need refreshing, which
will further reduce flickering. (wxScrolledWindow already does this for you, by
default.) GetUpdateRegion will reflect the smaller amount of screen that you
need to update.

As mentioned in Chapter 5, “Drawing And, Printing,” you may want to
define your own erase background handler and leave it empty to stop the
framework from clearing the background itself. Then you can draw the whole
graphic (including as much of the background as necessary) on top of the old

512 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 512

one without the flashing caused by clearing the entire background before
drawing the content. Use wxWindow::SetBackgroundStyle with wxBG_STYLE_

CUSTOM to tell wxWidgets not to automatically erase the background. Chapter 5
also discusses use of wxBufferedDC and wxBufferedPaintDC, which you can use in
combination with the other techniques mentioned here.

Another problem is inefficiency and flicker caused by doing many
updates to a window in quick succession. wxWidgets provides wxWindow::
Freeze and wxWindow::Thaw to switch off updates while code is executed
between these function calls. For example, you might want to use this when
adding a lot of lines to a text control one by one or appending many items to a
list box. When Thaw is called, the window will normally be completely
refreshed. Freeze and Thaw are implemented on Windows and Mac OS X for
wxWindow and on GTK+ for wxTextCtrl. You can also implement it for your own
window classes to avoid doing unnecessary processing and updating (our
wxThumbnailCtrl example from Chapter 12, “Advanced Window Classes,” does
this; see examples/chap12/thumbnail).

IMPLEMENTING ONLINE HELP

Although you should make your application as intuitive as possible so that the
user rarely has to resort to the manual, it’s important to supply online help for
all but the simplest application. You could supply it as a PDF file or even an
HTML file to be viewed by the user’s favorite browser, but it will make a much
better impression if you use a special-purpose help system and link to appro-
priate topics from all your dialogs and from your main window.

wxWidgets has the concept of help controller, a class that your applica-
tion uses to load help files and show topics. Several help controller classes are
supported:

� wxWinHelpController, for controlling RTF-based WinHelp files on
Windows (extension hlp). This format is deprecated, and new applications
should use wxCHMHelpController.

� wxCHMHelpController, for controlling MS HTML Help files on Windows
(extension chm).

� wxWinceHelpController, for controlling Windows CE Help files (extension
htm).

� wxHtmlHelpController, for controlling wxWidgets HTML Help files on all
platforms (extension htb).
wxHtmlHelpController is different from the others in that instead of

merely being a wrapper for an external help viewer, it is part of an entire help
system implementation, and the help window resides in the same process as
the application. If you want to use the wxWidgets HTML Help viewer as a sep-
arate process, compile HelpView in utils/src/helpview in your wxWidgets dis-
tribution. The files remhelp.h and remhelp.cpp implement a remote help

Implementing Online Help 513

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 513

controller (wxRemoteHtmlHelpController) that you can link with your applica-
tion to control the HelpView instance.

Note that at the time of writing, there is no special help controller class
for Mac OS X help files. You can use wxWidgets HTML Help files on this plat-
form.

Figure 20-1 and Figure 20-2 show the same topic displayed in MS HTML
Help and wxWidgets HTML Help viewers under Windows. The two provide
similar functionality: HTML content on the right, and on the left, a hierarchy
of topics, an index of topic names, and a keyword search facility. In addition,
wxWidgets HTML Help can load multiple help files.

514 Perfecting Your Application Chapter 20

Figure 20-1 MS HTML Help

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 514

Using a Help Controller

Normally you will create a help controller object that will last the lifetime of
the application instance, probably as a pointer member of your application
class (create the object in OnInit and delete it in OnExit). Make it a pointer so
that you can delete it fully in OnExit because some help controller implemen-
tations rely on a dynamic library loading class that is not available when the
application object is being deleted. Then call Initialize with the name of the
help file. You can omit the file extension, and wxWidgets will supply the rele-
vant one for the current platform. For example:

#include “wx/help.h”
#include “wx/fs_zip.h”

bool MyApp::OnInit()
{

...

// Required for wxWidgets HTML help
wxFileSystem::AddHandler(new wxZipFSHandler);

m_helpController = new wxHelpController;
m_helpController->Initialize(helpFilePath);

...

Implementing Online Help 515

Figure 20-2 wxWidgets HTML Help

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 515

return true;
}

int MyApp::OnExit()
{

delete m_helpController;
...
return 0;

}

Note that here we leave it to wxWidgets to choose the appropriate help
class: wxHelpController is an alias for wxCHMHelpController on Windows and
wxHtmlHelpController on other platforms. You can use wxHtmlHelpController
for all platforms if you want, but it’s better to use a native help viewer when
possible.

When the help controller has been successfully initialized, you can show
the help to the user with functions illustrated in the following:

// Show the contents
m_helpController->DisplayContents();

// Display the topic whose title is “Introduction”
m_helpController->DisplaySection(wxT(“Introduction”));

// Display the given HTML topic within the help file
m_helpController->DisplaySection(wxT(“wx.html”));

// Display the given topic by ID (WinHelp, MS HTML Help only)
m_helpController->DisplaySection(500);

// Search for a keyword
m_helpController->KeywordSearch(wxT(“Getting started”));

Typically, you’ll want to call DisplayContents from the event handler for a
menu item Help Contents in the application’s Help menu. You might have
other important topics listed on the Help menu, and you can display them via
DisplaySection. If you want to use the topic title with DisplaySection, all the
topic titles in the help file must be unique.

You also might want to add a Help button to all non-trivial custom
dialogs in your application to show an explanation of the current dialog and
its controls. However, there is a catch here: showing help from a modal dialog
does not work on all platforms. Where the help viewer is an external applica-
tion (for example, when using wxCHMHelpController on Windows), you can dis-
play help from a modal dialog. But when the help controller shows a modeless
window that is part of the same program, as with wxHtmlHelpController, you
have to be careful because in general, you cannot display a modeless window
(such as a frame) from within a modal dialog. By definition, a modal dialog
won’t enable you to switch to another arbitrary window except for another
modal dialog. If you use wxGTK, there is a workaround that allows this to

516 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 516

work for wxHtmlHelpController, but on Mac OS X, you need to either use an
external help viewer (such as HelpView as mentioned earlier) or show the
help in a modal dialog. The latter method is described in the next section.

Extended wxWidgets HTML Help

The wxWidgets HTML Help system is great, but it does have a couple of limi-
tations. Firstly, it can only display help in its own frame, so it can’t be used for
embedded help, such as in a tab on your main window. Secondly, as a result of
the previous limitation, it doesn’t address the problem of displaying a mode-
less help window from a modal dialog.

To overcome these limitations, there is a variant of wxWidgets HTML
Help that implements the help viewer as a window that can be shown as a child
of any window. You can copy it from examples/chap20/htmlctrlex on the CD-ROM
or download it from ftp://biolpc22.york.ac.uk/pub/contrib/helpctrlex.

If you compile it with your application, you can embed wxHtmlHelp

WindowEx in your application and control it with wxHtmlHelpControllerEx before
using the usual controller functions for displaying help. Here’s an example of
embedding:

#include “helpwinex.h”
#include “helpctrlex.h”

bool MyApp::OnInit()
{

...

m_embeddedHelpController = new wxHtmlHelpControllerEx;
m_embeddedHelpWindow = new wxHtmlHelpWindowEx;
m_embeddedHelpWindow->SetController(m_embeddedHelpController);
m_embeddedHelpController->SetHelpWindow(m_embeddedHelpWindow);
m_embeddedHelpController->UseConfig(config, wxT(“EmbeddedHelp”));

m_embeddedHelpWindow->Create(parentWindow,
wxID_ANY, wxDefaultPosition, wxSize(200, 100),
wxTAB_TRAVERSAL|wxNO_BORDER, wxHF_DEFAULT_STYLE);

m_embeddedHelpController->AddBook(wxT(“book1.htb”));
m_embeddedHelpController->AddBook(wxT(“book2.htb”));

return true;
}

int MyApp::OnExit(void)
{

if (m_embeddedHelpController)
{

m_embeddedHelpController->SetHelpWindow(NULL);
delete m_embeddedHelpController;

}
...
return 0;

}

Implementing Online Help 517

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 517

To solve the modal dialog problem, you can use the wxModalHelp class to show a
topic in a modal dialog. When the user has finished browsing the help, clicking
on the Close button takes control back to the previous dialog. The following
code is all that’s needed to show a topic:

wxModalHelp help(parentWindow, helpFile, topic);

It would be inconvenient to make a distinction between modal help and nor-
mal help throughout your application, so here’s a function that you can use to
make life easier:

// Shows help using normal help controller or
// modal help controller if modalParent is non-NULL
void MyApp::ShowHelp(const wxString& topic, wxWindow* modalParent)
{
#if USE_MODAL_HELP

if (modalParent)
{

wxString helpFile(wxGetApp().GetFullAppPath(wxT(“myapp”)));
wxModalHelp help(modalParent, helpFile, topic);

}
else

#endif
{

if (topic.IsEmpty())
m_helpController->DisplayContents();

else
m_helpController->DisplaySection(topic);

}
}

The symbol USE_MODAL_HELP should be defined for those platforms that use
wxHtmlHelpController. When you want to show help from a modal dialog, pass a
pointer to the dialog to ShowHelp, and if necessary, it will be shown in its own
modal dialog. When help isn’t shown from a modal dialog, just pass NULL as the
second argument of ShowHelp.

Authoring Help

Most help files nowadays are based on HTML. To make it even easier to
author help on multiple platforms, wxWidgets HTML Help uses the same
project, contents, and keyword files as the input to a MS HTML Help file. This
way, you only have to deal with one set of files for all platforms. These are the
files you’ll need to create your help file:

� A set of HTML files, one per topic.
� A contents file (extension hhc) with an XML description of the topic

hierarchy.

518 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 518

� An optional keyword file (extension hhk) that maps words and phrases to
HTML topics.

� A project file (extension hhp) that describes all the other files in the proj-
ect and specifies project options.

You then compile the project file into an MS HTML Help file (extension
chm) or a wxWidgets HTML Help file (extension htb). For the former, use
Microsoft’s HTML Help Workshop, which can be invoked either from the com-
mand line or as a GUI application. For the latter, simply use your favorite zip
utility to make a zip archive, renaming it with an htb extension.

Although you could write your help file by hand, it’s much more conven-
ient to use a tool. You can use a tool intended for MS HTML Help file creation,
but be aware that it may output HTML that wxWidgets HTML Help cannot
recognize. Anthemion Software’s HelpBlocks is the only tool that specifically
targets both MS HTML Help and wxWidgets HTML Help and assists you with
writing HTML and organizing keywords.

To get a feel for a good help file structure, look at the help in other appli-
cations. You might consider including the following topics: Contents, Welcome,
Contacts, Installation, Registration, Release notes, Tutorial, Using menu com-
mands, Using toolbar commands, Using dialogs (with descriptions of all
dialogs as subtopics), Using keyboard shortcuts, Command-line options, and
Troubleshooting.

Remember that topics you show from the application should be designed
to be standalone. Other topics, such as a tutorial, read better in a more linear
fashion.

Other Ways to Provide Help

You might think of other ways to offer the user online help, perhaps using the
HTML classes that wxWidgets provides. For example, Anthemion Software’s
Writer’s Café has a modal welcome dialog with a small number of suggested
options, implemented using a wxHtmlWindow. These include showing a Quick
Tour consisting of a number of HTML screens to quickly give the user an idea
of what the product can do (see Figure 20-3). The advantage of doing it this
way is immediacy. Novice users are guided along a fairly narrow path initially,
and they do not have to find their way around a full help system with ample
opportunities for getting lost and confused.

Implementing Online Help 519

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 519

Another popular method for providing online help is the opening tip. This
is great for educating the user about the product’s functionality in palatable
chunks. As mentioned in Chapter 8, “Using Standard Dialogs,” wxWidgets has
a function wxShowTip that takes a parent window, a wxTipProvider pointer to
tell wxWidgets where to find the tips, and a boolean for the initial value of a
Show Tips at Startup check box. For example:

#include “wx/tipdlg.h”
...
m_tipProvider = wxCreateFileTipProvider(tipFilename, currentTip);
wxShowTip(parent, m_tipProvider, showAtStart);

Context-Sensitive Help and Tooltips

If possible, an application should provide context-sensitive help and the option
of tooltips for controls. A tooltip is a little descriptive window that pops up over
a control as the mouse pointer hovers over it. Context-sensitive help is similar,

520 Perfecting Your Application Chapter 20

Figure 20-3 Quick Tour dialog in Writer’s Café

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 520

but the descriptive window is invoked by the user clicking on a button or
menu item to initiate the help and then clicking on the window of interest.
These topics are discussed in more detail in Chapter 9, “Creating Custom
Dialogs,” in the context of help for dialogs, but you can equally set context-
sensitive help for arbitrary windows. For example, applications often have a
What’s This? item on the Help menu and toolbar, which enables the user to
click on a window or control in the main window for further details. You don’t
have to restrict yourself to the way help is displayed by default: you can derive
your own class from wxHelpProvider and implement ShowHelp yourself.

Some help controllers are able to display the context-sensitive help in a
more “native” way than the default behavior. If you are using
wxCHMHelpController, let wxWidgets use this help controller’s context-sensitive
help implementation, in the following way:

#include “wx/cshelp.h”

m_helpController = new wxCHMHelpController;
wxHelpProvider::Set(

new wxHelpControllerHelpProvider(m_helpController));

The wxHelpControllerHelpProvider instance will use the help controller’s
DisplayTextPopup function to display context-sensitive help.

Note that context-sensitive help is not in the Mac OS X style guide, and
so should be omitted on this platform.

Menu Help

When you append items to a menu, you have the option of specifying a help
string. If the menu is part of a menu bar, and the menu bar’s frame has a sta-
tus bar, an item’s help string will be displayed in the status bar when the
mouse is over that item. You can set the status pane in which the help will be
displayed using wxFrame::SetStatusBarPane (a value of -1 will disable it). The
behavior is implemented in wxFrame using a default wxMenuEvent handler for
EVT_MENU_HIGHLIGHT_ALL, so you can reimplement it to do something different,
such as showing the help in a different window.

PARSING THE COMMAND LINE

Passing commands to the application to be read on initialization is often use-
ful, and if the application is document-oriented, you should allow files to be
loaded in this way. You also might want to let the application be run from the
operating system command line, for example to automate tasks from a make-
file, in which case command-line options can be used to tell the application
that it should be run without a user interface. Although most configuration of

Parsing the Command Line 521

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 521

an application will be done via the user interface, command-line configuration
options can be appropriate in some cases, such as turning on a debug mode.

wxWidgets provides the wxCmdLineParser class to make this programming
task quite easy, avoiding the need to process wxApp::argc and wxApp::argv
directly. The class looks for switches (such as -verbose), options (such as
-debug:1), and parameters (such as “myfile.txt”). It can recognize both short
and long forms of switches and options, and each item can have a help string,
which will be used by Usage when writing help text to the current log target.

Here’s an example, showing how to parse switches, options, and
parameters:

#include “wx/cmdline.h”

static const wxCmdLineEntryDesc g_cmdLineDesc[] =
{

{ wxCMD_LINE_SWITCH, wxT(“h”), wxT(“help”), wxT(“displays help on
the command line parameters”) },

{ wxCMD_LINE_SWITCH, wxT(“v”), wxT(“version”), wxT(“print version”) },
{ wxCMD_LINE_OPTION, wxT(“d”), wxT(“debug”), wxT(“specify a debug

level”) },

{ wxCMD_LINE_PARAM, NULL, NULL, wxT(“input file”),
wxCMD_LINE_VAL_STRING, wxCMD_LINE_PARAM_OPTIONAL },

{ wxCMD_LINE_NONE }
};

bool MyApp::OnInit()
{

// Parse command line
wxString cmdFilename;
wxCmdLineParser cmdParser(g_cmdLineDesc, argc, argv);
int res;
{

wxLogNull log;
// Pass false to suppress auto Usage() message
res = cmdParser.Parse(false);

}

// Check if the user asked for command-line help
if (res == -1 || res > 0 || cmdParser.Found(wxT(“h”)))
{

cmdParser.Usage();
return false;

}

// Check if the user asked for the version
if (cmdParser.Found(wxT(“v”)))
{

#ifndef __WXMSW__
wxLog::SetActiveTarget(new wxLogStderr);

#endif
wxString msg;
wxString date(wxString::FromAscii(__DATE__));
msg.Printf(wxT(“Anthemion DialogBlocks, (c) Julian Smart, 2005

Version %.2f, %s”), wbVERSION_NUMBER, (const wxChar*) date);

522 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 522

wxLogMessage(msg);
return false;

}

// Check for debug level
long debugLevel = 0;
if (cmdParser.Found(wxT(“d”), & debugLevel))
{
}

// Check for a project filename
if (cmdParser.GetParamCount() > 0)
{

cmdFilename = cmdParser.GetParam(0);

// Under Windows when invoking via a document
// in Explorer, we are passed the short form.
// So normalize and make the long form.
wxFileName fName(cmdFilename);
fName.Normalize(wxPATH_NORM_LONG|wxPATH_NORM_DOTS|

wxPATH_NORM_TILDE|wxPATH_NORM_ABSOLUTE);
cmdFilename = fName.GetFullPath();

}

...

return true;
}

The use of wxFileName for normalizing the file name is necessary because
Windows sometimes passes the short form when the application is invoked
from the command line.

As we noted earlier in the chapter, Mac OS X doesn’t use the command
line when running an application by opening an associated document; instead,
wxApp::MacOpenFile is called after the application has initialized. However, the
command-line method is used by other operating systems. If you intend to
write a document-based application for Mac OS X and other operating sys-
tems, you should allow for both methods.

STORING APPLICATION RESOURCES

A simple application might consist of no more than an executable, but more
realistically, you’ll have a help file, maybe HTML files and images, and appli-
cation-specific data files. Where do these things go?

Reducing the Number of Data Files

You can do several things to create a more tidy installation. Firstly, you can
include XPM images in your C++ files (with #include) instead of loading them

Storing Applications Resources 523

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 523

from disk. Secondly, if you are using XRC files, you can compile them into C++
using the wxrc utility in utils/wxrc in your wxWidgets distribution:

wxrc resources.xrc --verbose --cpp-code --output resources.cpp

You can then call the InitXmlResource function defined in the generated C++
file to load the resources.

Thirdly, you can archive your data files into a standard zip file and
extract them using streams and virtual file systems, as explained in for data
files. Include “wx/fileloc.h” and then call the class’s static functions, includ-
ing GetConfigDir, GetInstallDir, GetDataDir, GetLocalDataDir, and GetUserConfig
Data. Refer to the wxWidgets manual for details of these functions’ return val-
ues on each platform.

524 Perfecting Your Application Chapter 20

On Mac OS X, you'll need to create an application bundle: a file hierarchy
with standard locations for the executable, data files, and so on. See later in
the chapter for information on creating a bundle.

Finding the Application Path

A common request from wxWidgets developers is a function to find the path of
the currently executing application to enable the application to load data that
is in the same directory. There is no such function in wxWidgets, partly because
it’s difficult to achieve this reliably on all platforms, and partly to encourage
the installation of data into standard locations (particularly on Linux).
However, it can be convenient to put all the application’s files in the same
folder, so in examples/chap20/findapppath, you can find code for a function
wxFindAppPath:

// Find the absolute path the application has been run from.

wxString wxFindAppPath(const wxString& argv0, const wxString& cwd,
const wxString& appVariableName = wxEmptyString,
const wxString& appName = wxEmptyString);

argv0 is the value of wxApp::argv[0], which on some platforms gives the full
pathname for the application.

cwd is the current working directory (obtained with wxGetCwd), which is a
hint that can be used on some platforms.

appVariableName is the name of an environment variable, such as
MYAPPDIR, that may have been set externally to indicate the application's location.

appName is the prefix used in a bundle to allow the function to check the
bundle contents for application location. For example, in the case of
DialogBlocks, the argument is DialogBlocks, and on Mac OS X, the function
will try to return <currentdir>/DialogBlocks.app/Content/MacOS for the exe-
cutable location.

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 524

Here’s an example of using wxFindAppPath:

bool MyApp::OnInit()
{

wxString currentDir = wxGetCwd();
m_appDir = wxFindAppPath(argv[0], currentDir, wxT(“MYAPPDIR”),

wxT(“MyApp”));
...
return true;

}

On Windows and Mac OS X, this reliably locates the executable path. On
Unix, it works only if you run the application with the current directory set to
the application directory, or if you set MYAPPDIR before running the application.
To make it more reliable, the installer can itself create a wrapper script that
sets MYAPPDIR and then runs the application. The user can be offered a choice of
where to install the wrapper script, or it can be installed into a standard loca-
tion, such as /usr/local/bin.

INVOKING OTHER APPLICATIONS

Sometimes you may want to run other applications from your own application,
whether it’s an external browser or another of your own applications.
wxExecute is a versatile function that can be used to run a program with or
without command-line arguments, synchronously or asychronously, optionally
collecting output from the launched process, or even redirecting input to and
output from the process to enable the current application to interact with it.

Running an Application

Here are some simple examples of using wxExecute:

// Executes asychronously by default (returns immediately)
wxExecute(wxT(“c:\\windows\\notepad.exe”));

// Does not return until the user has quit Notepad
wxExecute(wxT(“c:\\windows\\notepad.exe c:\\temp\\temp.txt”),

wxEXEC_SYNC);

Note that you can optionally enclose parameters and the executable in quota-
tion marks, which is useful if there are spaces in the names.

Launching Documents

If you want to run an application to open an associated document, you can use
the wxMimeTypesManager class on Windows and Linux. You can find out the file

Invoking Other Applications 525

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 525

type associated with the extension and then use it to get the required com-
mand to pass to wxExecute. For example, to view an HTML file:

wxString url = wxT(“c:\\home\\index.html”);
bool ok = false;
wxFileType *ft = wxTheMimeTypesManager->

GetFileTypeFromExtension(wxT(“html”));
if (ft)
{

wxString cmd;
ok = ft->GetOpenCommand(&cmd,

wxFileType::MessageParameters(url, wxEmptyString));
delete ft;

if (ok)
{

ok = (wxExecute(cmd, wxEXEC_ASYNC) != 0);
}

}

Unfortunately, this doesn’t work under Mac OS X because OS X uses a com-
pletely different way of associating document types with applications. For
arbitrary documents, it’s better to ask the Finder to open a document, and for
HTML files, it’s better to use the special Mac OS X function, ICLaunchURL.
wxExecute is not always the best solution under Windows either, where
ShellExecute may be a more effective function to use for HTML files. Even on
Unix, there may be specific fallback scripts you want to use if an associated
application is not found, such as htmlview.

To work around these problems, we include the files launch.h and
launch.cpp in examples/chap20/launch. This implements the functions
wxLaunchFile, wxViewHTMLFile, wxViewPDFFile, and wxPlaySoundFile that work on
Windows, Linux, and Mac OS X.

wxLaunchFile is a general-purpose document launcher. Pass a document
file name or an executable file name with or without arguments and an
optional error message string that can be presented to the user if the opera-
tion fails. If an HTML file is passed, wxLaunchFile will call wxViewHTMLFile. On
Mac OS X, it will use the finder to launch a document, and on other platforms,
wxMimeTypesManager will be used. Note that on Mac OS X, applications will
sometimes be launched such that their window is behind the current applica-
tion’s window. A workaround is to use the osascript command-line tool to
bring the window to the front. If the application you have just launched is
AcmeApp, you can call

wxExecute(wxT(“osascript -e \”tell application \\\”AcmeApp\\\”\” -e
\”activate\” -e \”end tell\””));

For Linux, wxViewHTMLFile, wxViewPDFFile, and wxPlaySoundFile include fall-
backs for when an associated application is not found. You may want to adjust
the fallbacks to your own requirements. wxPlaySoundFile is intended for

526 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 526

playing large audio files in a separate application; for small sound effects in
your application, use wxSound instead.

Redirecting Process Input and Output

There may be times when you want to “capture” another process and allow
your application (and/or its user) to control it. This can be preferable to rewrit-
ing an entire complex program just to have the functionality integrated in
your application. wxExecute can help you integrate another console-based
process by letting you redirect its input and output.

To do this, you pass an instance of a class derived from wxProcess to
wxExecute. The instance’s OnTerminate function will be called when the process
terminates, and the process object can be used to extract output from or send
input to the process.

You can see various examples of wxExecute usage in samples/exec in your
wxWidgets distribution. We also provide an example of embedding the GDB
debugger in examples/chap20/pipedprocess. We don’t provide the toolbar
bitmaps or compilable application, but otherwise it’s complete and will work
on Windows, Linux, and Mac OS X if GDB is available.

debugger.h and debugger.cpp implement a piped process and a window
containing a toolbar and a text control, used for displaying debugger output
and getting input from the user to send to the debugger.

textctrlex.h and textctrlex.cpp implement a control derived from
wxStyledTextCtrl but with some wxTextCtrl compatibility functions and stan-
dard event handlers for copy, cut, paste, undo, and redo.

processapp.h and processapp.cpp implement an application class that can
handle input from several processes in idle time.

The debugger is started with

DebuggerProcess *process = new DebuggerProcess (this);
m_pid = wxExecute(cmd, wxEXEC_ASYNC, process);

It can be killed with

wxKill(m_pid, wxSIGKILL, NULL, wxKILL_CHILDREN);

To send a command to the debugger, an internal variable is set to let the input
to the process to be picked up in idle time:

// Send a command to the debugger
bool DebuggerWindow::SendDebugCommand(const wxString& cmd,

bool needEcho)
{

if (m_process && m_process->GetOutputStream())
{

wxString c = cmd;

Invoking Other Applications 527

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 527

c += wxT(“\n”);

if (needEcho)
AddLine(cmd);

// This simple sets m_input to be processed
// by HasInput in OnIdle time
m_process->SendInput(c);
return true;

}
return false;

}

HasInput is called periodically by the application object from its idle handler
and is responsible for sending input to the process and reading output from
the standard error and standard output streams:

bool DebuggerProcess::HasInput()
{

bool hasInput = false;
static wxChar buffer[4096];

if (!m_input.IsEmpty())
{

wxTextOutputStream os(*GetOutputStream());
os.WriteString(m_input);
m_input.Empty();

hasInput = true;
}

if (IsErrorAvailable())
{

buffer[GetErrorStream()->Read(buffer, WXSIZEOF(buffer) -
1).LastRead()] = _T(‘\0’);

wxString msg(buffer);

m_debugWindow->ReadDebuggerOutput(msg, true);

hasInput = true;
}

if (IsInputAvailable())
{

buffer[GetInputStream()->Read(buffer, WXSIZEOF(buffer) -
1).LastRead()] = _T(‘\0’);

wxString msg(buffer);

m_debugWindow->ReadDebuggerOutput(buffer, false);

hasInput = true;
}

return hasInput;
}

528 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 528

Note a crucial difference from the code in the wxWidgets exec sample, which
assumes that it can read a line at a time. This will cause a hang if a carriage
return is not output by the process. The previous code uses a buffer to keep
reading as much input as possible, which is safer.

The ProcessApp class can be used as a base class for your own application
class, or you can copy the functions into your class. It maintains a list of
processes, registered with the application instance with RegisterProcess and
UnregisterProcess, and handles process input in idle time, as follows:

// Handle any pending input, in idle time
bool ProcessApp::HandleProcessInput()
{

if (!HasProcesses())
return false;

bool hasInput = false;

wxNode* node = m_processes.GetFirst();
while (node)
{

PipedProcess* process = wxDynamicCast(node->GetData(),
PipedProcess);

if (process && process->HasInput())
hasInput = true;

node = node->GetNext();
}
return hasInput;

}

void ProcessApp::OnIdle(wxIdleEvent& event)
{

if (HandleProcessInput())
event.RequestMore();

event.Skip();
}

MANAGING APPLICATION SETTINGS

Most applications have options to let the user to change the program’s behav-
ior, such as toggling tooltips on and off, changing text fonts, or suppressing a
splash screen. The developer must make choices about how these settings will
be stored and displayed. For storage, the usual solution is to use the wxConfig
family of classes, which is especially intended to store typed application set-
tings. The choice of user interface is much more varied, and we’ll explore some
possibilities shortly.

Managing Application Settings 529

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 529

Storing Settings

The configuration classes that wxWidgets provides are derived from
wxConfigBase, which is where you’ll find the documentation in the reference
manual. On each platform, wxConfig is an alias for an appropriate class: on
Windows it’s wxRegConfig (using the Windows Registry), and on all other plat-
forms it’s wxFileConfig (using text files). wxIniConfig is available, using
Windows 3.1-style .ini files, but this is rarely needed. wxFileConfig is avail-
able on all platforms.

wxConfig provides the overloaded functions Read and Write to read and
store items of type wxString, long, double, and bool. Each item is referenced by
a name comprising a list of slash-separated paths—for example,
“/General/UseTooltips”. By using wxConfig::SetPath, you can set the current
position in the hierarchy, and subsequent references will be relative to that
position if they do not have a leading slash. You can use paths to group your
settings.

wxConfig constructors take an application name and vendor name, which
are used to determine the location of the settings. For example:

#include “wx/config.h”

wxConfig config(wxT(“MyApp”), wxT(“Acme”));

wxRegConfig constructs a location from the vendor name and application name,
and in the previous example, the settings will be stored under
HKEY_CURRENT_USER/Software/Acme/MyApp in the Registry. Using wxFileConfig on
Unix, the settings are stored by default in a file called ~/.MyApp. On Mac OS X,
they are stored in ˜/Library/Preferences/MyApp Preferences. This location can
be changed by passing a third parameter to the wxConfig constructor.

Here are some examples of wxConfig usage:

// Read some values
wxString str;
if (config.Read(wxT(“General/DataPath”), & str))
{

...
}
bool useToolTips = false;
config.Read(wxT(“General/ToolTips”), & useToolTips));
long usageCount = 0;
config.Read(wxT(“General/Usage”), & usageCount));

// Write some values
config.Write(wxT(“General/DataPath”), str))
config.Write(wxT(“General/ToolTips”), useToolTips));
config.Write(wxT(“General/Usage”), usageCount));

530 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 530

You can also iterate through groups and entries, query whether a group or
entry exists, and delete an entry or group, among other operations.

wxConfig can be used as a temporary way of reading and writing data
that you store elsewhere in your application, or you can create an instance of
wxConfig that is not deleted until the application exits. wxWidgets has the con-
cept of a default wxConfig object, which you can set with wxConfig::Set. If pres-
ent, the default wxConfig object may be used internally—for example, by the
wxFontMapper class and the generic wxFileDialog implementation.

Editing Settings

If you only have a few settings to edit, an ordinary dialog may be sufficient.
For a more complex application, you will need to use a number of dialogs or
panels, and the most common method is to use a wxNotebook on a modal dialog,
with OK, Cancel, and Help buttons underneath the notebook. The handler for
the Help button will query the notebook for the current page in order
to determine the appropriate help topic to display. wxWidgets provides
wxPropertySheetDialog for this purpose, as illustrated in samples/dialogs in
your wxWidgets distribution. On Pocket PC, the notebook in this dialog is dis-
played as a standard property sheet with tabs along the bottom.

You might want to use wxListbook or wxChoicebook instead of wxNotebook,
which are alternative methods of controlling pages. In particular, wxListbook
has an identical API to wxNotebook but makes use of a wxListCtrl, so you can
use icons and labels instead of tabs. This makes sense if you have a lot of
pages, particularly because on Mac OS X, notebook tabs don’t scroll as they do
on other platforms, and therefore the number of tabs is limited by the width of
the settings dialog. You can download a third-party class called
awxOutbarDialog, which implements an Outlook-like settings dialog using
icons to switch pages.

You can also create your own paged settings dialog using a wxTreeCtrl,
for example, so that your pages can be grouped in a hierarchy. To implement
this, keep a list of panels, each associated with a path name, and when the
user clicks on a tree item, hide the current panel and show the new panel.
Another solution is to use Jorgen Bodde’s wxTreeMultiCtrl, which manages a
hierarchy of controls—a more direct method than separating out the tree con-
trol from the settings controls.

You might also consider using a property list: a scrolling list of items
with a label on the left and editable value on the right. An advantage of this
concise approach is that it’s very easy to add or remove settings because the
layout is not dependent on the number of settings. A disadvantage is that it’s
harder to edit larger multi-line text or a list of items, although you can
arrange for specialized editors to be shown when you double-click the item.
You can write your own implementation, perhaps using wxGrid, or you could
look at third-party implementations such as Jaakko Salli’s wxPropertyGrid.

Managing Application Settings 531

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 531

Some applications mix a paged settings dialog approach with property lists,
for example the Configuration panel in the DialogBlocks Settings dialog.

It is recommended that you don’t use scrolling panels or dialogs if you are
running out of space, because this can be confusing and awkward to navigate.

Consider storing all your application settings in a separate class and
implementing a copy constructor, equality operator, and assignment operator.
This way, you can easily make a temporary copy of your global settings object,
pass it to the Settings dialog, and only copy the modified settings back to the
global object if the dialog was dismissed using the OK button.

If you’re not storing the settings separately, you need a way for the user
to modify these settings directly. See examples/chap20/valconfig for a class
wxConfigValidator that you can use with commonly used controls. The valida-
tor takes the setting path, the setting type, and a pointer to the wxConfig
object. The type can be wxVAL_BOOL, wxVAL_STRING, or wxVAL_LONG. For example:

void MyDialog::SetValidators(wxConfig* config)
{

FindWindow(ID_LOAD_LAST_DOCUMENT)->SetValidator(
wxConfigValidator(wxT(“LoadLastDoc”), wxVAL_BOOL, config));

FindWindow(ID_LAST_DOCUMENT)->SetValidator(
wxConfigValidator(wxT(“LastDoc”), wxVAL_STRING, config));

FindWindow(ID_MAX_DOCUMENTS)->SetValidator(
wxConfigValidator(wxT(“MaxDocs”), wxVAL_LONG, config));

}

You can find more on validators in Chapter 9. The third-party classes men-
tioned in this section are listed in Appendix E, “Third-Party Tools for
wxWidgets.”

APPLICATION INSTALLATION

A trouble-free installation goes a long way to reassure the user about your
product before the application is even running. We’ll deal with installation on
Windows, Linux, and Mac OS X in turn. Information about where to get the
third-party tools mentioned in this section is provided in Appendix E.

Installation on Windows

On Windows, an installer is pretty much necessary, both because users expect
it and because of the way file associations and shortcuts need to be set up.

Because it’s such a specialized area, wxWidgets doesn’t attempt to pro-
vide an installation utility for your applications. Several installer creators are
available, such as NSIS and InstallShield; a favorite with many developers is
Inno Setup, a very capable, free installer that can be driven via a simple script

532 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 532

or tailored using Pascal. Several third-party applications are listed on the
Inno Setup web site for graphically creating a script that can be used to create
an installer.

If you release your application frequently, you will probably want to auto-
mate the installer creation via a release script. In examples/chap20/install, we
have provided example scripts for you to adapt for your own needs. Because
they are Unix shell scripts, you will need MinGW’s MSYS package, which is
also supplied on the CD-ROM. Given a directory of files, makeinno.sh creates a
portion of the Inno Setup script listing the subdirectories and files. It requires
you to supply the hand-tailored top and bottom parts of the script specifying
other details. You can invoke makeinno.sh with a command like this:

sh makeinno.sh c:/temp/imagedir innotop.txt innobott.txt myapps.iss

This will create the Inno Setup script myapp.iss from the files in
c:/temp/imagedir.

You can adapt the release script makesetup.sh for building your own
application’s Windows installer. makesetup.sh copies required files into an
“image” directory, which is used to build the installer script before invoking
Inno Setup, creating the setup.exe file. This script uses variables specified in
the file setup.var. You can add your own release functions, from building the
application to copying files to your FTP site using the Curl utility.

When you distribute an application, don’t forget to include a Windows XP
“manifest” file with your application. The manifest is an XML file that tells
Windows XP to apply theming to your application. You can include the mani-
fest simply by including the wxWidgets standard resource file in your own .rc
file:

aardvarkpro ICON aardvarkpro.ico
#include “wx/msw/wx.rc”

This includes a standard manifest file. If you want to include your own
instead, define the wxUSE_NO_MANIFEST symbol before including wx.rc, and spec-
ify your own, as follows:

aardvarkpro ICON aardvarkpro.ico

#define wxUSE_NO_MANIFEST 1
#include “wx/msw/wx.rc”

1 24 “aardvark.manifest”

You may also simply include the manifest file alongside the application. For
more information on the manifest syntax, see the file docs/msw/winxp.txt in
your wxWidgets distribution.

Application Installation 533

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 533

Installation on Linux

On Linux, you can use a graphical installer, a custom shell script, or a distribution-
specific package such as RPM for Red Hat-based distributions, or Debian
packages for Debian distributions. You can also simply supply the distribution
as a tarred, compressed archive (.tar.gz or .tar.bz2) with instructions on
unarchiving into a suitable directory.

Tools for creating GUI installations for Linux include Loki Setup (free),
Zero G’s InstallAnywhere, and InstallShield.

A wxWidgets for GTK+ application is desktop-agnostic: there are no
dependencies on either GNOME or KDE, so it can run under either desktop
environment. Most KDE distributions also contain GTK+ libraries. However,
because they use a different theming engine, GTK+ applications can look a lit-
tle out of place on a KDE desktop, so consider recommending to your users
that they install a Qt theming engine for GNOME such as GTK-Qt (but test it
first with your application).

You may want to provide a desktop icon so the user can launch the appli-
cation easily. To add an icon to the KDE desktop, you need to copy a suitable
APP.desktop file to PREFIX/share/applications, where APP is the name of your
application and PREFIX is typically /usr, /usr/local, or the value of the KDEDIR
environment variable. Here’s a sample desktop file for an application called
Acme, assuming Acme was installed into /opt/Acme:

[Desktop Entry]
BinaryPattern=Acme;
MimeType=
Name=Acme
Exec=/opt/Acme/acme
Icon=/opt/Acme/acme32x32.png
Type=Application
Terminal=0

To add an icon to the GNOME desktop, the file follows a similar syntax but
should be copied to ~/.gnome-desktop (for a single user). For more informa-
tion on desktop configuration specification for KDE and GNOME, see
http://www.freedesktop.org/wiki/Standards_2fdesktop_2dentry_2dspec.

Information about RPM, including a free online book, can be found at
http://www.rpm.org, and instructions for creating Debian packages are at
http://www.debian.org. Packaging your applications using these methods
allows the system to resolve dependencies and makes it easier for the user to
view and manage installed applications. For a tool that can help create RPM,
.deb, and other package formats, you could try EPM.

A sample shell script installer for Linux, called installacme, is included
in examples/chap20/install. It takes the user through installing the applica-
tion and also creates a shell script called acme, which sets a location variable
before running the actual executable. The advantage of this approach is that

534 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 534

the application can be run without either adding a directory to the user’s PATH
variable or installing the actual application into an existing bin directory. In
this scheme, all data files and the executable are kept in the same location,
which makes it easy to uninstall the application. You may want to adapt the
script to copy data files to standard Linux locations instead.

Also in examples/chap20/install is maketarball.sh, a release script that
creates a distribution tarball, itself containing the installacme script and a
further tarball of data files. You can alter maketarball.sh to suit your own
needs.

Shared Library Issues on Linux
Because there is no standard GUI on Linux, added to the fact that there are
many Linux distributions and versions of those distributions, you may find
that on some systems, your application complains about missing libraries.
There’s a strong temptation to statically link everything with your applica-
tion, but this can lead to problems, too. Although you shouldn’t link GTK+
statically to your application, you can statically link wxWidgets by specifying
--disable-shared when you configure wxWidgets. You can also consider
bundling wxWidgets and/or GTK+ shared libraries with your application.

Compile on a Linux distribution that’s not too old (very old versions of
libraries won’t be distributed with newer distributions) and not too new (the
required libraries will be too new to appear on older distributions). Also con-
sider prepending -lsupc++ to your linker flags so that the application statically
links with some basic C++ library support without requiring the full shared
library to be available, removing another potential complication. (However, be
aware there are licensing issues to consider when statically linking GPL’ed
code with your application.)

Ultimately, you may need to distribute different versions of your applica-
tions for different distributions. If you don’t want to reboot every time you
switch Linux versions, consider using a tool such as the excellent VMware
that can run multiple virtual machines simultaneously.

Installation on Mac OS X

On Mac OS X, all you really need to do is make sure your bundle directory
structure is correct and then make it into a suitable disk image, which we’ll
cover shortly. A Mac OS X application can be installed simply by dragging the
folder to an appropriate location on the disk, with no “setup” application
required.

We’ll describe bundles briefly in the following, and you can find more
information about them on the Apple web site at http://developer.apple.com/
documentation/MacOSX/Conceptual/SystemOverview/Bundles/chapter_4_section_3.html.

A bundle consists of a standard hierarchy and an Info.plist file that
describes key files and properties.

Application Installation 535

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 535

A minimal bundle hierarchy looks something like this:

DialogBlocks.app/ ; top-level directory
Contents/

Info.plist ; the property list file
MacOS/

DialogBlocks ; the executable
Resources/

dialogblocks-app.icns ; the app icon
dialogblocks-doc.icns ; the document icon(s)

Here’s an example Info.plist file, for DialogBlocks:

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist SYSTEM
“file://localhost/System/Library/DTDs/PropertyList.dtd”>
<plist version=”0.9”>
<dict>

<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleIdentifier</key>
<string>uk.co.anthemion.dialogblocks</string>
<key>CFBundleDevelopmentRegion</key>
<string>English</string>
<key>CFBundleDocumentTypes</key>
<array>

<dict>
<key>CFBundleTypeExtensions</key>
<array>

<string>pjd</string>
</array>
<key>CFBundleTypeIconFile</key>
<string>dialogblocks-doc.icns</string>
<key>CFBundleTypeName</key>
<string>pjdfile</string>
<key>CFBundleTypeRole</key>
<string>Editor</string>

</dict>
</array>
<key>CFBundleExecutable</key>
<string>DialogBlocks</string>
<key>CFBundleIconFile</key>
<string>dialogblocks-app.icns</string>
<key>CFBundleName</key>
<string>DialogBlocks</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleSignature</key>
<string>PJDA</string>
<key>CFBundleVersion</key>
<string>1.50</string>
<key>CFBundleShortVersionString</key>
<string>1.50</string>
<key>CFBundleGetInfoString</key>
<string>DialogBlocks version 1.50, (c) 2004 Anthemion Software

Ltd.</string>
<key>CFBundleLongVersionString</key>

536 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 536

<string>DialogBlocks version 1.50, (c) 2004 Anthemion Software
Ltd.</string>

<key>NSHumanReadableCopyright</key>
<string>Copyright 2004 Anthemion Software Ltd.</string>
<key>LSRequiresCarbon</key>

<true/>
<key>CSResourcesFileMapped</key>
<true/>

</dict>
</plist>

The icons for the application and its document types are specified with the
CFBundleIconFile and CFBundleTypeIconFile properties. As mentioned in
Chapter 10, “Programming with Images,” if you are working mainly on
Windows or Linux, you might like to create a number of different icons in
16×6, 32×32, 48×48, and 128×128 resolutions. Save them as transparent
PNGs, copy them to the Mac, and then open each file with the Finder and copy
and paste them into the appropriate locations in Apple’s icon editor before sav-
ing as an icns file.

The maketarball.sh release script mentioned in the previous section for
Linux can also create a Mac OS X disk image, such as AcmeApp-1.50.dmg. It
copies a pre-existing AcmeApp.app bundle hierarchy to the release directory,
copies the Mac OS X binary and data files into the bundle, and then creates an
Internet-enabled disk image with the following code:

echo Making a disk image...
hdiutil create AcmeApp-$VERSION.dmg -volname AcmeApp-$VERSION -type

UDIF -megabytes 50 -fs HFS+

echo Mounting the disk image...
MYDEV=`hdiutil attach AcmeApp-$VERSION.dmg | tail -n 1 | awk ‘{print

$1’}`
echo Device is $MYDEV

echo Copying AcmeApp to the disk image...
ditto --rsrc AcmeApp-$VERSION /Volumes/AcmeApp-$VERSION/AcmeApp-

$VERSION

echo Unmounting the disk image...
hdiutil detach $MYDEV

echo Compressing the disk image...
hdiutil convert AcmeApp-$VERSION.dmg -format UDZO -o AcmeApp-$VERSION-

compressed.dmg

echo Internet enabling the disk image...
hdiutil internet-enable AcmeApp-$VERSION-compressed.dmg

echo Renaming compressed image...
rm -f AcmeApp-$VERSION.dmg
mv AcmeApp-$VERSION-compressed.dmg AcmeApp-$VERSION.dmg

Application Installation 537

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 537

The disk image file can then be copied to your FTP site or CD-ROM. When the
Mac OS X user clicks on the file from within a web browser, the file will be
downloaded, uninstalled, and mounted as a virtual disk without further user
intervention. It then remains for the user to drag the application folder to an
appropriate disk location to complete the installation.

FOLLOWING UI DESIGN GUIDELINES

It’s worth researching the style guidelines for each platform. Much of the time,
wxWidgets handles the differences, but there are some aspects that cannot be
automated. For example, button layout differs between platforms. Apple is
particularly strict about standard button ordering and spacing on Mac OS X.
Here are just a few of the points to be aware of, both platform-specific rules
and general observations. Also play with existing programs on different plat-
forms for inspiration and to help you come up with an application design that
is adaptable to your target platforms.

Standard Buttons

On Windows and Linux, groups of standard buttons can be centered or right
justified, often in the order OK, Cancel, Help. On Mac OS X, however, the Help
button (shown automatically as a question mark when using wxID_HELP) should
be left justified, and the other standard buttons should be right justified with
the default command as the right-most button: for example, ?, space, Cancel,
OK.

Use the standard wxWidgets control identifiers whenever possible (such
as wxID_OK, wxID_CLOSE, wxID_APPLY) because some ports (notably wxGTK) can
map them to special buttons with appropriate graphics.

Refer to the section on “Platform-Adaptive Layouts” in Chapter 7,
“Window Layout Using Sizers,” for information about the wxStdDialogButton
Sizer class, which can be used to position standard buttons appropriately on
each platform.

Menus

A menu bar should have no “empty” menus. Careful attention should be paid
to label capitalization—each significant word normally has a capital first letter—
and providing mnemonics (such as &File) and shortcuts (such as Ctrl+O).
Common commands should be supported where appropriate (such as Copy,
Paste, Undo, and so on), and there should be neither a small number of very
long menus, nor a very large number of smaller menus (nine or ten menus is
probably the maximum reasonable number). Instead of supplying lots of sepa-
rate menu items for different configuration operations, consider merging them
into one command that invokes a tabbed dialog.

538 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 538

As with standard buttons, use standard identifiers where possible: in
particular, use wxID_HELP, wxID_PREFERENCES, and wxID_HELP so that Mac OS X
can move them to the application menu. You will need to design your menus so
that removal of these items doesn’t cause problems such as an empty Help
menu or two consecutive separators.

Icons

Icons in your toolbar, frames, and other elements give a very strong impres-
sion of the quality of your application. Neglecting these can really let your
application down. This is particularly true on Mac OS X, where there is a high
standard of aesthetics. Consider having icons specially created, or a much
cheaper alternative is to purchase packs of stock icons, perhaps getting the
remaining non-standard icons designed for you in the same style. The invest-
ment will normally be well worth it, and your application will gain a stronger
sense of identity. You can also find some icons on the web—for example, the
L-GPL’ed Ximian collection at http://www.novell.com/coolsolutions/feature/
1637.html.

Fonts and Colors

Don’t be tempted to use a lot of different fonts and colors for your dialogs. As
well as looking garish, using non-default fonts and colors makes it hard for
wxWidgets to adapt to the current settings and themes to give a “native” look
and feel. However, you can still allow the user to customize fonts for specific
windows that present a lot of textual information, such as a report window.
Refer to the platform guidelines on use of color. wxWidgets will do some adap-
tation here, but you may need to make further adaptations on custom
windows that you implement.

Application Termination Behavior

On most platforms, document-based applications that aren’t using MDI or a
similar UI will show one frame per document. When the last frame closes, the
application terminates. However, on Mac OS X, as we’ve mentioned in
Chapter 19, “Working with Documents and Views,” when there are no docu-
ments shown, the application should not terminate, and there should still be
a menu bar from which the user can create or open documents or close the
application. This can be implemented for wxWidgets applications by using an
off-screen, hidden main frame, achieved with a small amount of code specific
to this platform.

On embedded operating systems such as Pocket PC, applications stay in
memory when their main window is closed, and the user does not usually have
the opportunity to quit them. You will need to make a choice between conform-
ing to the guidelines and permitting the user to quit the application to make

Following UI Design Guidelines 539

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 539

room for others. On Pocket PC, wxWidgets sets the standard accelerator for
quitting an application, Ctrl+Q, which sends a wxID_EXIT command event.

Further Reading

Listed below are useful guideline documents for the main platforms supported
by wxWidgets, and books giving general advice on UI design.

� Apple Human Interface Guidelines: http://developer.apple.com/documentation/
UserExperience/Conceptual/OSXHIGuidelines/index.html

� Key differences between Mac OS X and Windows UIs: http://developer.
apple.com/ue/switch/windows.html

� Microsoft Official Guidelines for UI Developers: http://msdn.microsoft.com/
library/default.asp?url=/library/en us/dnwue/html/welcome.asp

� GNOME Human Interface Guidelines: http://developer.gnome.org/

projects/gup/hig

� GUI Bloopers: Don’ts and Do’s for Software Developers and Web
Designers, by Jeff Johnson (Academic Press). ISBN 1-55860-582-7

� User Interface Design for Programmers, by Joel Spolsky (Apress). ISBN
1-893115-94-1

� Software for Use: A Practical Guide to the Models and Methods of Usage-
Centered Design, by Larry L. Constantine and Lucy A.D. Lockwood (ACM
Press). ISBN 0-201-92478-1

SUMMARY

This chapter covered a variety of topics for applying finishing touches to your
application, and presented code to plug a few gaps left by wxWidgets. We’ve
finished off with some tips and further reading to improve your awareness of
UI design issues.

We hope that having read this book, you will agree with us that by adopt-
ing wxWidgets, you get a very powerful set of tools bringing you highly com-
pelling benefits, including these:

� Your applications will have a native look and feel.
� The rich variety of classes, including simple and advanced controls, light-

weight HTML functionality, wizards, online help, multithreading, inter-
process communication, streams, virtual file systems, and so on, makes
programming in wxWidgets highly productive and enjoyable.

� You save money by using the same code on all platforms.

540 Perfecting Your Application Chapter 20

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 540

� You can easily port your applications to platforms you might not have
considered before, such as Pocket PC and Mac OS X, gaining market
share in the process.

� By using rapid application development tools such as DialogBlocks, and
the powerful sizer mechanism, you can quickly create complex, attrac-
tive, resizable and (above all) portable dialogs and other windows.

� wxWidgets’ open source nature lets you modify the library and under-
stand its workings.

� You get the advantages of the large wxWidgets community for quickly
resolving problems and answering questions, plus the many third-party
contributions (see Appendix E for a list of controls and tools).

We do hope that you’ve enjoyed reading the book and browsing the sam-
ples and tools on the CD-ROM and are now eager to apply what you’ve learned
to your own cross-platform applications! Good luck, and we look forward to
seeing you soon on the wxWidgets mailing lists and forum.

Summary 541

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 541

Smart_Ch20f.qxd 6/10/05 11:25 AM Page 542

A P P E N D I X A

Installing wxWidgets

The process of installing wxWidgets has been made as simple as possible by
using tools and techniques native to each platform. This appendix introduces
the different methods for installing wxWidgets on various platforms with
different compilers and discusses some of the main configuration options
available. Only the most popular compilers and environments are covered in
this appendix; Digital Mars C++, OpenWatcom C++, and Cygwin are all sup-
ported by wxWidgets but are not described here. However, you can find
instructions for these compilers in the wxWidgets documentation under
docs/msw.

If you want, you can download and unpack wxWidgets and then go
straight to Appendix C, “Creating Applications with DialogBlocks,” and use
DialogBlocks to compile both wxWidgets and your application.

CHOOSING YOUR DEVELOPMENT TOOLS

Before we discuss wxWidgets installation, let’s briefly look at choices in com-
piler tools to use with wxWidgets. Note that although cross-compilation is pos-
sible (compiling on one platform to run on another), you will generally need to
compile, debug, and test on each platform that you support. However, you
probably have a favorite platform you prefer to develop on, just compiling and
testing on the others. If you only have one machine for Windows and Linux
development, consider using a tool such as the excellent VMware virtual
machine software to run several operating systems simultaneously.

Tools on Windows

Microsoft’s Visual Studio (see the section “Windows—Microsoft Visual Studio”)
has a very good IDE, which makes debugging productive, and the compiler is
good at optimizing executables for space and speed. It’s also reasonably fast to
run (though slower than Borland C++). This compiler is highly recommended

543

Smart_AppAf.qxd 6/10/05 11:07 AM Page 543

for wxWidgets work, and it is the tool of choice for most wxWidgets developers
on Windows.

Borland C++ (BC++) is a fast compiler, but the linker has trouble with
wxWidgets executable sizes, and the compiler is not actively supported by
Borland. In addition, there is no good free debugger for BC++. You can down-
load Borland C++ from http://www.borland.com/products/downloads/download_
cbuilder.html.

GCC is available in two forms on Windows: MinGW and Cygwin. MinGW
makes use of the Windows run-time libraries and so is a better choice for
“native” Windows applications. MinGW has an accompanying Unix-like shell,
MSYS, which you will need if you want to use the configure method of compil-
ing. MinGW can also compile wxWidgets and applications from the Windows
command prompt using its own make tool and makefile.gcc makefiles. MinGW
can be used on its own or with an IDE such as Dev-C++ or DialogBlocks.
Download it from http://www.mingw.org or install it from the CD-ROM.
Unfortunately, GCC is a slow compiler that creates huge libraries and exe-
cutables, and its GDB debugger (or IDE equivalents) cannot compare with the
convenience of VC++’s debugger.

Digital Mars C++ also works with wxWidgets and is quite fast; the IDE
and debugger need to be purchased. Download Digital Mars C++ from
http://www.digitalmars.com or copy it from the CD-ROM.

OpenWatcom C++ does not implement all C++ standards, but it works
with wxWidgets and can be downloaded from http://www.openwatcom.org or
copied from the CD-ROM.

CodeWarrior will also work with wxWidgets and provide a consistent
environment for those using CodeWarrior on MacOS.

See also Appendix E, “Third-Party Tools for wxWidgets,” for other IDEs
and tools.

All the compilers mentioned here can be “driven” by DialogBlocks (on the
accompanying CD-ROM), so you can design your dialogs and other user inter-
face elements in addition to building and running your application. See
Appendix C for more on DialogBlocks.

Tools on Linux and Mac OS X

On Linux, GCC is usually installed by default. However, you can use it in a
number of different ways. You can use command-line tools (configure, make,
and GDB for debugging), or you can use an IDE such as KDevelop, as
described in this chapter (though you’ll still compile the wxWidgets libraries
from the command line). You also can use the command line to compile and
then use GDB within Emacs to step through your application, or you can use
the graphical debugger DDD.

On Mac OS X, you can download the GCC-based development tools from
Apple’s web site after registering as an Apple Developer Connection (ADC)
member. You can use configure and make in exactly the same way as on Linux,
but you can also use Apple’s Xcode IDE to compile applications, again

544 Installing wxWidgets Appendix A

Smart_AppAf.qxd 6/10/05 11:07 AM Page 544

described later in this chapter. If you prefer, you can use CodeWarrior; how-
ever, you may find it harder to automate wxWidgets and application builds
with CodeWarrior.

On both Linux and Mac OS X, you can also use DialogBlocks (on the CD-
ROM), enabling you to create dialogs and other user interface elements easily
in addition to generating makefiles and building your application with GCC.
See Appendix C for more on DialogBlocks.

You may want to start off compiling wxWidgets and its samples with the
command-line tools and then graduate to an IDE for new applications when
you understand the basics.

DOWNLOADING AND UNPACKING WXWIDGETS

The latest version of wxWidgets can be downloaded from the wxWidgets web
site, or you can use the version included on the CD-ROM. After you have
downloaded the library source or copied it from the CD-ROM, you will need to
extract the files to a location of your choice. Windows users also have the
option of a self-extracting installer.

After you have unpacked wxWidgets, you may want to familiarize your-
self with the organization of the files. The structure is similar to other open
source projects, with separate directories for include files (include), source files
(src), compiled library objects (lib), documentation (docs), sample programs
(samples), and build information (build). Within some directories, there are fur-
ther classifications of files based on which operating system(s) they are for:

� common: Used by all platforms, such as strings, streams, and database
connectivity.

� expat: An XML parser library.
� generic: Widgets and dialogs implemented by wxWidgets for use where

native versions are not available.
� gtk: For GTK+.
� html: For the HTML controls designed for wxWidgets.
� iodbc: The iODBClibrary for platforms without native ODBC support.
� jpeg: The JPEG library for platforms without native JPEG support.
� mac: For the Mac, further subdivided into classic (OS 9), carbon (OS 9 and

OS X), and corefoundation (OS X).
� msw: For Microsoft Windows.
� png: The PNG image library for platforms without native PNG support.
� regex: A regular expression processor for platforms without native regu-

lar expression processing (or when Unicode is enabled).
� tiff: The TIFF image library for platforms without native TIFF support.
� unix: Used by all Unix-based platforms, including Linux and Mac OS X.

Downloading and Unpacking wxWidgets 545

Smart_AppAf.qxd 6/10/05 11:07 AM Page 545

� xrc: wxWidgets’ XML resource library.
� xml: A C++ wrapper around the XML parser Expat.
� zlib: The zlib compression library for platforms without native zlib sup-

port.

CONFIGURATION/BUILD OPTIONS

wxWidgets can be built using almost countless permutations of configuration
options. However, four main options are available on all platforms:

� Release versus Debug: Debug builds include debug information and
extra checking code, whereas release builds omit debug information and
enable some level of optimization. It is strongly recommended that you
develop your application using a debug version of the library to benefit
from the debug assertions that can help locate bugs and other problems.

� Unicode versus non-Unicode: As discussed in Chapter 16, “Writing
International Applications,” Unicode facilitates the display of non-ASCII
characters such as Cyrillic, Greek, Korean, Japanese, and so on.
wxWidgets natively supports Unicode; there is no penalty for using
Unicode in terms of available features (with the exception of wxODBC on
Unix), nor is any additional coding required. Windows 95, 98, and ME do
not have built-in Unicode support, but wxWidgets can be configured to
use the add-on MSLU library for these operating systems.

� Static versus Shared: A static version of the library is linked with the
application at compile time, whereas a shared version is linked at run-
time. Using a static library results in a larger application but also
relieves the end user of the need for installing shared libraries on his or
her computer. On Linux and Mac OS X, static libraries end in .a, and on
Windows, they end in .lib. On Linux and Mac OS X, shared libraries end
in .so, and on Windows, they end in .dll. Note that there are certain
memory and performance implications of static and shared libraries that
are not specific to wxWidgets; they are beyond the scope of this book.

� Multi-lib versus Monolithic: The entire wxWidgets library is made up
of modules that separate the GUI functionality from the non-GUI func-
tionality as well as separate advanced features that are not frequently
needed. This separation enables you to use wxWidgets modules selec-
tively depending on your specific needs. Alternatively, you can build
wxWidgets into one “monolithic” library that contains all of the
wxWidgets modules in one library file.

You can build and simultaneously use more than one version and/or configura-
tion of wxWidgets. The way you access the different builds depends on your
platform, but all library files are created using a standard naming convention:

546 Installing wxWidgets Appendix A

Smart_AppAf.qxd 6/10/05 11:07 AM Page 546

wx<library><version><u><d> where u and d indicate Unicode and debug, respec-
tively. For example, the file wxbase26ud.lib is the Unicode debug base library
for wxWidgets 2.6, and wxmsw26u_core contains the core GUI elements for a
Unicode release build on Windows.

After building wxWidgets, you can confirm that the library is built cor-
rectly by compiling and running one of the samples. The samples are located
in the samples folder of the main wxWidgets directory, with each sample in its
own subfolder. You might try samples/minimal first because it’s the simplest.
For each compiler, directions for building one of the samples are included in
docs/<platform>/install.txt. There are also more complete applications in the
demos directory, and though they are not discussed here, they are built almost
identically to the samples in most cases.

It is important to note that you can build wxWidgets with makefiles on
any platform but still use an IDE to develop your projects. For example, you
can use the Microsoft Visual C++ command-line compiler to build wxWidgets
but still use Microsoft Visual Studio to create your applications.

WINDOWS—MICROSOFT VISUAL STUDIO

Many IDEs and compilers are available for Windows. The dominant IDE on
Windows is Microsoft Visual Studio; wxWidgets requires at least Visual Studio
5. Microsoft has released Visual Studio 2005 Express for home enthusiasts
and students, and it features all of the common Visual Studio tools, omitting
only the high-powered tools typically used in large projects or a corporate
environment. Although it is a free beta download at the time of writing, it will
cost around $50 once it is officially released. See http://lab.msdn.microsoft.
com/vs2005/.

You must have the Windows Platform SDK installed in order to build
wxWidgets, which is a free download from http://www.microsoft.com/msdowload/
platformsdk/sdkupdate.

When using the Platform SDK and the free compiler, install both the
Core and Internet modules, and build wxWidgets with the run-time library
linked statically (pass RUNTIME_LIBS=static to make or set Runtime Linking to
Static in your DialogBlocks configurations). If using a project file, you will
need to modify this setting manually, both in the wxWidgets and application
project files. You may also need to remove the library odbc32.lib from the
linker settings because the Platform SDK does not contain this library.

The SDK is already included with any of the professional versions of
Visual Studio.

Regardless of which version of Visual Studio you are using, the process
for building wxWidgets is the same. From your wxWidgets installation, open
the wx.dsw workspace from the build\msw directory. If you are using a version
later than 6.0, you may be prompted that the sub-projects must be converted
to the current Visual C++ project format. Allow Visual Studio to proceed with

Windows—Microsoft Visual Studio 547

Smart_AppAf.qxd 6/10/05 11:07 AM Page 547

the conversion; if you need the files in their original format, you can always
extract the originals again. After all the projects in the workspace have been
opened, you can browse the sources and classes.

If you are using Visual C++ version 7 or 8 (.NET or 2005), build
wxWidgets by selecting Build Solution from the Build menu. Different solu-
tions are used to build different library configurations, selectable from the
Configuration Manager from the Build menu. Simply select which configura-
tion you want to use, such as Debug, Unicode Release, or DLL Unicode Debug.

If you are using Visual Studio 5 or 6, build wxWidgets by selecting Batch
Build from the Build menu and checking the desired library configurations.
The wxWidgets project is set up to allow building release and debug versions
of both Unicode and non-Unicode libraries, both static and shared (DLL).
Ensure that you are building all of the sub-projects for the configurations that
you want to use.

Most developers only need to build the release and debug libraries, or if
you have a need for Unicode, the Unicode release and Unicode debug libraries.
As a rule, using the static (non-DLL) libraries makes it easy to distribute a
single-file application rather than needing to also distribute (or otherwise
require) the correct wxWidgets DLL. Using the DLL builds can also result in
quirks relating to application startup, so they should be used only when
needed and only if you have a thorough understanding of how DLLs are uti-
lized by both wxWidgets and Windows.

The compiled library files are placed into the lib directory under your
wxWidgets directory. Two directories are created: vc_dll and vc_lib, for the
shared and static builds, respectively.

If the process of building via project files seems fiddly (the number of con-
figurations in the project file can be confusing!), consider using the command-
line alternative as described in the section “Windows—Microsoft Visual C++
Command Line,” or build wxWidgets via DialogBlocks.

Compiling a wxWidgets Sample Program

Workspace and project files are included for every wxWidgets sample. Use
Visual Studio to open a workspace for one of the samples (in the samples direc-
tory within your wxWidgets installation), and then select a configuration
matching any of the wxWidgets library builds that you compiled. For example,
if you have built the Unicode debug library, compile the sample using the
Unicode debug build. The samples are created to look within the wxWidgets
tree for the include and library files in their default locations. As long as the
library built successfully and the structure of the source tree hasn’t been
altered, the samples will build successfully as well.

548 Installing wxWidgets Appendix A

Smart_AppAf.qxd 6/10/05 11:07 AM Page 548

Windows—Microsoft Visual C++ Command Line 549

Note
If you built wxWidgets and a sample from the command line, as described
in the next section, trying to run and debug the sample in Visual Studio
may result in a question about rebuilding libraries. Answer No to this
question to continue running the sample.

WINDOWS—MICROSOFT VISUAL C++ COMMAND LINE

Microsoft’s C++ compiler is part of any Visual C++ installation (or can be
downloaded free from Microsoft) and can be used from the command line. The
Microsoft compiler makefile is in the build\msw directory. From there, invoke
the Microsoft compiler using a command such as the following ones, which
demonstrate how to toggle all of the major configuration options:

nmake -f makefile.vc UNICODE=0 SHARED=0 BUILD=release MONOLITHIC=0
nmake -f makefile.vc UNICODE=0 SHARED=0 BUILD=debug MONOLITHIC=0

The compiled library files are placed into the lib directory under your
wxWidgets directory. Two directories are created: vc_dll and vc_lib, for the
shared and static builds, respectively.

If you need ODBC or OpenGL functionality, set wxUSE_ODBC or
wxUSE_GLCANVAS to 1 in include\wx\msw\setup.h before compiling, and also pass
USE_ODBC=1 or USE_OPENGL=1 on the nmake command line.

To remove the object files and libraries, append the target clean to the
same command line. However, be aware that this won’t clean up the copy of
setup.h that is placed under the vc_lib and vc_dll directories, so if you make
any edits to include\wx\msw\setup.h, delete the vc_lib or vc_dll directories
yourself before recompiling.

Compiling a wxWidgets Sample Program

If you change into one of the sample program directories, you will see a make-
file for Microsoft’s compiler called makefile.vc. The sample programs are built
using the same command and switches as the library itself, and they are
designed to look within the wxWidgets tree for the include and library files in
their default locations. Be sure that you specify flags for a configuration of the
library that has been built, or the sample will fail to link. That is, if you have
only built a Unicode static release version of wxWidgets, use the same build
options for the sample. For example:

cd samples\widgets
nmake -f makefile.vc UNICODE=1 SHARED=0 BUILD=release MONOLITHIC=0
vc_mswd\widgets.exe

Smart_AppAf.qxd 6/10/05 11:07 AM Page 549

550 Installing wxWidgets Appendix A

As with the library makefile, you can clean a sample by appending the clean
target, for example:

nmake -f makefile.vc UNICODE=0 SHARED=0 BUILD=debug clean

WINDOWS—BORLAND C++

Borland’s command-line C++ compiler (BC++) is a free download, but it is
also part of Borland’s professional C++Builder IDE. Building wxWidgets
with BC++ is done from the command line, using flags to the compiler to
specify the library build configuration. The BC++ makefile is in the build\msw
directory. From there, invoke the BC++ compiler using a command such as
the following, which demonstrates how to toggle all of the major build
options:

make -f makefile.bcc UNICODE=0 SHARED=0 BUILD=release MONOLITHIC=0

The compiled library files are placed into the lib directory under your
wxWidgets directory. Two directories are created: bcc_dll and bcc_lib, for the
shared and static builds, respectively.

To remove the object files and libraries, append the target clean to the
same command line. However, be aware that this won’t clean up the copy of
setup.h that is placed under the bcc_lib and bcc_dll directories, so if you
make any edits to include\wx\msw\setup.h, delete the bcc_lib or bcc_dll direc-
tories yourself before recompiling.

Compiling a wxWidgets Sample Program

If you change into one of the sample program directories, you will see a
makefile for BC++ called makefile.bcc. The sample programs are built using
the same command and switches as the library itself and are designed to look
within the wxWidgets tree for the include and library files in their default
locations. Be sure that you specify flags for a configuration of the library that
has been built, or the sample will fail to link. That is, if you have only built a
Unicode static release version of wxWidgets, use the same build options for
the sample. For example:

cd samples\widgets
make -f makefile.bcc UNICODE=1 SHARED=0 BUILD=release MONOLITHIC=0
bcc_mswd\widgets.exe

Smart_AppAf.qxd 6/10/05 11:07 AM Page 550

As with the library makefile, you can clean a sample by appending the clean
target, for example:

make -f makefile.bcc UNICODE=0 SHARED=0 BUILD=debug clean

WINDOWS—MINGW WITH MSYS

MinGW is a GNU toolset that includes Windows headers and import libraries
for building Windows applications. MSYS provides an environment closely
resembling a Linux or Unix shell in which to use MinGW. The process for
using MinGW is very similar to the process described later for GCC.

It is recommended that you create a subdirectory within the wxWidgets
directory for each configuration that you want to build. Most developers create
directories using the same naming conventions as wxWidgets; if you want to
compile the library in Unicode debug mode, you might create a directory
named buildud or build26ud depending on how many different configurations
you want to have.

After you have created your build directory, change into the build direc-
tory. The configure script, now located one directory up, takes many different
parameters, the most important ones being those that control the main build
options. For example, you could run

../configure --enable-unicode --disable-debug --disable-shared --disable-
monolithic

The configure script will analyze the build environment and then generate the
makefiles for use with MinGW. When configure has finished, it will display a
summary of the library build configuration.

Configured wxWidgets 2.6.0 for `i686-pc-mingw32’

Which GUI toolkit should wxWidgets use? msw
Should wxWidgets be compiled into single library? no
Should wxWidgets be compiled in debug mode? no
Should wxWidgets be linked as a shared library? no
Should wxWidgets be compiled in Unicode mode? yes
What level of wxWidgets compatibility should be enabled?

wxWidgets 2.2 no
wxWidgets 2.4 yes

Which libraries should wxWidgets use?
jpeg builtin
png builtin
regex builtin
tiff builtin

Windows—MinGW with MSYS 551

Smart_AppAf.qxd 6/10/05 11:07 AM Page 551

552 Installing wxWidgets Appendix A

zlib builtin
odbc no
expat builtin
libmspack no
sdl no

Many other individual features can be enabled or disabled using the configure
script, a list of which can be found in the wxWidgets documentation or by
passing --help to the configure script. After configure has generated the
makefiles, build the library by running make in the same directory as the one
in which you ran configure. The compiled library files are placed in the lib
subdirectory of the directory used for the build, not the lib directory at the
root of the wxWidgets tree. You may optionally use make install as root after
the build has completed, to copy the library and the necessary headers into
/usr/local so that all users may have access to compile, build, and run
wxWidgets programs.

Compiling a wxWidgets Sample Program

The configure script creates a samples directory in your build directory, with
further subdirectories for each sample. If you change into one of the sample
program directories, you will see a makefile, which has been generated for
your build directory and build configuration. Run make to build the sample.
For example:

cd /c/wx/build26ud/samples/minimal
make
./minimal

WINDOWS—MINGW WITHOUT MSYS

MinGW can also be used from Microsoft’s command line (cmd.exe or
command.com). You can control your build style by using flags to the compiler.
The MinGW makefile is in the build\msw directory. From there, invoke MinGW
using a command such as the following, which demonstrates how to toggle all
of the major build options:

mingw32-make -f makefile.gcc UNICODE=1 SHARED=0 BUILD=release \
MONOLITHIC=0

(The backslash is only there to denote that the command should be typed all
on one line.)

The compiled library files are placed into the lib directory under your
wxWidgets directory. Two directories are created: gcc_dll and gcc_lib, for the
shared and static builds, respectively.

Smart_AppAf.qxd 6/10/05 11:07 AM Page 552

To remove the object files and libraries, append the target clean to the
same command line. However, be aware that this won’t clean up the copy of
setup.h that is placed under the gcc_lib and gcc_dll directories, so if you make
any edits to include\wx\msw\setup.h, delete the gcc_lib or gcc_dll directories
yourself before recompiling.

Note
If you are using MinGW without MSYS but have MSYS installed, the
MSYS directories should not be in your path; otherwise, the wrong
version of make could be used. If the wrong version of make is used, you
will get cryptic error messages for processes that are otherwise correct.
This conflict occurs because MinGW and MSYS share common file names
for non-identical files that are not interchangeable.

Compiling a wxWidgets Sample Program

If you change into one of these sample program directories, you will see a
makefile for MinGW called makefile.gcc. The sample programs are built using
the same command and switches as the library itself and are designed to look
within the wxWidgets tree for the include and library files in their default
locations. Be sure that you specify flags for a configuration of the library that
has been built, or the sample will fail to link. That is, if you have only built a
Unicode static release version of wxWidgets, use the same build options for
the sample. For example:

cd c:\wx\samples\minimal
mingw32-make -f makefile.gcc UNICODE=1 SHARED=0 BUILD=release \

MONOLITHIC=0
minimal.exe

(The backslash is only there to denote that the command should be typed all
on one line.)

To clean the sample, append clean to the make command.

LINUX, UNIX, AND MAC OS X—GCC

GCC is the de facto standard compiler on Linux and many Unix platforms,
including Darwin, the BSD foundation for Mac OS X. Building wxWidgets
with GCC simply requires following the typical configure and make routine
common on Unix and Unix-like environments.

It is recommended that you create a subdirectory within the wxWidgets
directory for each different configuration that you want to build. Most develop-
ers create directories using the same naming conventions as wxWidgets; if you
want to compile the library in Unicode debug mode, you might create a directory

Linux, Unix, and Mac OS X—GCC 553

Smart_AppAf.qxd 6/10/05 11:07 AM Page 553

named buildud, build26ud, or even buildGTK26ud depending on how many dif-
ferent configurations you want to have.

After you have created your build directory, change into the build direc-
tory. The configure script, now located one directory up, takes many different
parameters, the most important ones being those that control the main build
options. For example, you could run

../configure --enable-unicode --disable-debug --disable-shared \
--disable-monolithic

(The backslash is only there to denote that the command should be typed all
on one line.)

The configure script will analyze the build environment and then gener-
ate the makefiles for use with GCC. When configure has finished, it will dis-
play a summary of the library build configuration. The previous configure
options would produce the following summary on Linux:

Configured wxWidgets 2.6.0 for `i686-pc-linux-gnu’

Which GUI toolkit should wxWidgets use? GTK+ 2
Should wxWidgets be compiled into single library? no
Should wxWidgets be compiled in debug mode? no
Should wxWidgets be linked as a shared library? no
Should wxWidgets be compiled in Unicode mode? yes
What level of wxWidgets compatibility should be enabled?

wxWidgets 2.2 no
wxWidgets 2.4 yes

Which libraries should wxWidgets use?
jpeg sys
png sys
regex builtin
tiff sys
zlib sys
odbc no
expat sys
libmspack no
sdl no

Many other individual features can be enabled or disabled using the configure
script, a list of which can be found in the wxWidgets documentation or by
passing --help to the configure script. Most significantly, you can also choose
to override the default GUI toolkit (GTK+ 2) with GTK+, Motif, or X11.

After configure has generated the makefiles, build the library by running
make in the same directory as you ran configure. The compiled library files are
placed in the lib subdirectory of the directory used for the build, not the lib
directory at the root of the wxWidgets tree. You may optionally use make
install as root after the make has completed to copy the library and the nec-
essary headers into /usr/local so that all users may have access to compile,
build, and run wxWidgets programs.

554 Installing wxWidgets Appendix A

Smart_AppAf.qxd 6/10/05 11:07 AM Page 554

Compiling a wxWidgets Sample Program

The configure script creates a samples directory in your build directory, with
further subdirectories for each sample. If you change into one of the sample
program directories, you will see a makefile, which has been generated for
your build directory and build configuration. Run make to build the sample. For
example:

cd ~/wx/buildGTK26ud/samples/minimal
make
./minimal

MODIFYING SETUP.H FOR FURTHER CUSTOMIZATIONS

If you want to further customize your wxWidgets library by enabling or dis-
abling certain features, all of the configuration options are centralized into a
file called setup.h. A separate setup.h file is automatically created from the
default setup.h file for each library build and is placed in the lib directory
of that build. The exact subdirectory depends on the compiler. For compil-
ers using configure and make, setup.h is in lib/wx/include/<configname>/wx
from the build directory. For other compilers, setup.h is in lib/<compiler>_lib/
<configname>/wx.

setup.h mostly contains a long list of wxUSE_... defines. For example,
#define wxUSE_THREADS 1 indicates to build the library with support for threads
using the wxThread class. If you change the 1 to a 0, wxThread will no longer be
compiled into the library, and you will be unable to build programs that use
wxThread. By enabling only the features that you need, you can build your own
smaller, customized library. Most features are enabled by default, but some
specialized features, such as ODBC, must be enabled if you want to use them.
The setup.h file is heavily commented, pointing out possible side effects of
enabling or disabling certain key features. Note that a change to setup.h
requires recompiling the entire library because setup.h is at the very top of the
wxWidgets include chain. On Windows, you may also need to pass extra
options to the command line, such as USE_OPENGL=1 or USE_ODBC=1.

On Windows, there is a common setup.h in include/wx/msw that is copied,
the first time the library is built, to the library configuration’s build directory.
Changing the setup.h in include/wx/msw will result in changes for all configu-
rations, whereas changing the setup.h in the lib/XX_lib directory will only
change that one configuration. This does not apply if you are using configure
and make under MinGW/MSYS, which creates the setup.h file as part of the
configure process.

Modifying Setup.H for Further Customizations 555

Smart_AppAf.qxd 6/10/05 11:07 AM Page 555

REBUILDING AFTER UPDATING WXWIDGETS FILES

Changes to Source or Header Files

There may be times that you change the wxWidgets sources, perhaps to apply
some code that fixes a bug or adds a new feature that you need. If you change
only source files, you can simply rebuild the library using the same commands
used to build it originally. However, if you are rebuilding after changing
header files, you may need to do some additional cleaning in order for
wxWidgets to build correctly due to precompiled headers that may not be
automatically updated to reflect the latest changes to the header files.

� Microsoft Visual Studio: After changing header files, you will want to
rebuild the library rather than just build it, forcing any precompiled
headers to be discarded and re-created.

� GCC or MinGW using configure: Remove the .deps directory before
rebuilding. This one is easy to miss because the ls command does not list
the directory by default.

If you continue to receive errors that indicate that an old header file is being
used (for example, the compiler can’t find a function that was just added and
that did not exist the first time you built wxWidgets), you may need to com-
pletely remove the build directory and rebuild the library. The build directo-
ries should not contain anything besides object files and compiled library files,
so you won’t lose any data related to your projects.

Changes to setup.h on Windows

Whenever you change the common setup.h (in include/wx/msw), it is very
important that it be properly copied to its installed location in the lib subdi-
rectory. If the setup.h being used to build your applications is out of sync with
the setup.h used to compile the library, you will almost certainly receive link
errors due to missing symbols. Although not hard to do, it is an easy step to
overlook. If you are using configure and make under MSYS or MinGW, you can
re-run configure. Otherwise, you will need to delete all of the setup.h files for
each library build configuration in the lib subdirectory. Because the whole
library needs to be rebuilt anyway, it is just as easy to delete the entire XX_lib
or XX_dll directory.

556 Installing wxWidgets Appendix A

Smart_AppAf.qxd 6/10/05 11:07 AM Page 556

USING CONTRIB LIBRARIES

Included with wxWidgets is a variety of contributed libraries, found in the
contrib subdirectory of your wxWidgets distribution. These are libraries that
are distributed with wxWidgets but are not part of the core toolkit. Although
they are not officially supported and may not be actively maintained by the
core wxWidgets developers, they can still be very useful. It’s easy to build the
contrib libraries and use them in your projects.

You can build one or all of the contrib libraries using the same process
as building the samples, discussed briefly with each compiler earlier. For
Windows compilers, the libraries are compiled from within the contrib/
build/<name> subdirectories. Compiled libraries are automatically placed
alongside the main wxWidgets library files, eliminating the need to add any
additional directories to the link path. You do, however, need to add
contrib/include to your include path.

For descriptions of the more important contrib libraries, such as
wxStyledTextCtrl, see Appendix D, “Other Features in wxWidgets.”

Using Contrib Libraries 557

Smart_AppAf.qxd 6/10/05 11:07 AM Page 557

Smart_AppAf.qxd 6/10/05 11:07 AM Page 558

A P P E N D I X B

Building Your Own wxWidgets
Applications

This appendix shows you how to use Visual Studio for Windows, KDevelop for
Linux, and Xcode for Mac OS X to create your own projects in an IDE. There is
also a basic discussion of makefiles that applies to any compiler on any plat-
form, a description of the Bakefile makefile-generation system, information on
using the wx-config command, and a list of wxWidgets preprocessor symbols
you will find useful when writing your applications.

If you’re new to wxWidgets, we recommend that you initially skip this
chapter and use DialogBlocks to get started with compiling your own applica-
tion, as detailed in Appendix C, “Creating Applications with DialogBlocks.”

If your favorite compiler or IDE is not detailed here, or if you just want
the quick overview, there are essentially three major sets of files required to
build a project using wxWidgets:

1. Include files. The wxWidgets headers must be available to the compiler
when compiling your project; otherwise, none of the wxWidgets classes
are declared.

2. Library files. The wxWidgets compiled library must be available to link
with your compiled program.

3. System files. Whatever system libraries are needed to link for the plat-
form must be linked in with your program.

Important: You must have compiled and built at least one configuration of
the wxWidgets library, as covered in Appendix A, “Installing wxWidgets,” prior
to proceeding with creating your own wxWidgets projects.

WINDOWS—MICROSOFT VISUAL STUDIO

Before covering the step-by-step directions for creating wxWidgets projects
with Visual Studio, it should be noted that there are alternatives for generat-
ing Visual Studio project files using third-party tools. Although not covered

559

Smart_AppBf.qxd 6/10/05 11:08 AM Page 559

here, utilities like DialogBlocks, wxHatch, wxWinWizard, and wxVisualSetup
can be used to generate project files that can be loaded and used in Visual
Studio. If you want detailed control over your project or need to make specific
modifications, however, it may be necessary to have an understanding of the
individual settings.

Microsoft Visual Studio enables you to quickly and easily build
wxWidgets projects by adding just a few wxWidgets directories and files into
your project settings. Although the exact location for each setting is slightly
different in each version of Visual Studio, the options are named roughly the
same; please look at nearby options or consider alternate wordings if the set-
ting isn’t listed exactly as specified here.

1. Create a new Win32 Project or Solution. Choose the most minimal
options available.

2. Open the Project Settings/Properties dialog.
3. Find the Preprocessor Definitions under the C/C++ Settings. You will

want to be sure that all of the following are defined: WIN32, __WXMSW__,
_WINDOWS. If you are using a debug version of wxWidgets to build your
project, you will also need to define _DEBUG, __WXDEBUG__. Note that some
versions of Visual Studio will not show the C/C++ options until a C or
C++ source file has been added to the project.

4. Find the Additional Include Directories under the C/C++ settings and
enter both the core include directory (such as c:\wxWidgets\include) and
the include directory for the library configuration that you are using
(such as c:\wxWidgets\lib\vc_lib\mswu). This configuration-specific
include directory must be included for the compiler to find the setup.h
that specifies what features are enabled for that build.

5. Find the Additional Libraries Directories under the Link Settings and
enter the directory where the compiled wxWidgets library files are
located (such as c:\wxWidgets\lib\vc_lib).

6. Find the Additional Dependencies or Object Modules setting to specify
additional libraries to link with your application. The wxWidgets library
names will vary depending on your build configuration but will follow
the library naming conventions outlined in the installation appendix. For
example, for the debug build, you would need to link at least
wxmsw26d_core.lib and wxbase26d.lib. Depending on which wxWidgets
features you are using, you may need to link with more of the libraries:
wxbase26d_net.lib, wxbase26d_odbc.lib, wxexpatd.lib, wxjpegd.lib,
wxmsw26d_adv.lib, wxmsw26d_grid.lib, wxmsw26_gl.lib, wxmsw26d_html.lib,
wxmsw26d_xrc.lib, wxmsw26d_xml, wxpngd.lib, wxregexd.lib, wxtiffd.lib, and
wxzlibd.lib. Again, remember the build configuration postfixes for the
build you are using. You can always look at the compiled library files for
a complete list of libraries.

560 Buidling Your Own wxWidgets Applications Appendix B

Smart_AppBf.qxd 6/10/05 11:08 AM Page 560

7. The Win32 libraries that you need to link, depending on your build con-
figuration and what features you have enabled, could include some or all
of the following: kernel32.lib, user32.lib, gdi32.lib, winspool.lib,
comdlg32.lib, advapi32.lib, shell32.lib, ole32.lib, oleaut32.lib, uuid.lib,
odbc32.lib, odbccp32.lib, winmm.lib, comctl32.lib, rpcrt4.lib, and
wsock32.lib. Visual Studio usually adds some or all of these libraries
when the project is created. Not all libraries are always needed; for
example, if you do not use sockets, you would not need to link
wsock32.lib.

8. Find the Run-time Library selection from the C/C++ Code Generation
settings and select either Multithread DLL or Multithread Debug DLL.
You will not be able to link your program using the single-thread
libraries or the non-DLL libraries. If you see a handful of linking errors
about Windows symbols already being defined, you probably did not
select a DLL run-time library.

9. You can now add your source files to the project, if you have not already
done so, and build your wxWidgets application.

Troubleshooting

If you receive any compile or link errors when building, double-check that you
carefully followed all of the steps in the previous section to specify the include
directories, the library directories, the wxWidgets and Win32 libraries, and the
correct run-time library. You can also compare the project settings in any of
the samples to the settings in your own project, looking for any discrepancies.
Some developers start with a sample application’s project file so that most of
the settings are already defined correctly.

Some common error messages and solutions include the following:

� Cannot open include file: ‘wx/wx.h’: No such file or directory—This
happens in two situations. One, the library itself hasn’t been compiled
yet; see Appendix A. Two, the library’s include directory cannot be found
(for example, c:\wxWidgets\lib\vc_lib\mswd); check that it is listed in the
additional include directories.

� Cannot open include file: ‘wx/setup.h’: No such file or directory—
The library’s include directory cannot be found (such as c:\wxWidgets\
lib\vc_lib\mswd); check that it is listed in the additional include directories.

� Cannot open file wxmswXXXX—Either the libraries haven’t been compiled
or the wxWidgets libraries cannot be found because the directories have
not been added to the additional library paths. Ensure that the library
directory containing your compiled wxWidgets library has been added to
the additional libraries.

Windows—Microsoft Visual Studio 561

Smart_AppBf.qxd 6/10/05 11:08 AM Page 561

� Unresolved symbols to wxWidgets classes—Some or all of the nec-
essary wxWidgets library modules could not be found. Examine the sym-
bols listed to determine the missing libraries, check the previous list of
libraries, and add any missing library modules.

� Unresolved symbols to Windows functions—The linker could not
find the Windows symbols needed to link your application. Ensure that
the Windows libraries are included in the list of modules to be linked.

Using Multiple Configurations

Visual Studio creates two project configurations, debug and release, when you
create a new project. Most wxWidgets developers test their applications using
a debug build of wxWidgets to benefit from the debug information and the
run-time assertions that may indicate certain problems. You will need to re-
enter most of the settings for each different project configuration that you use
keeping in mind which wxWidgets build the project configuration will be
using. To save some time, you can copy one configuration rather than manu-
ally re-creating all of the settings each time.

The sample applications have over a dozen project configurations if you
want to see how the settings may differ for each configuration.

LINUX—KDEVELOP

KDevelop, a subproject of the KDE desktop environment, is arguably the most
robust, mature, and stable IDE for developing applications on Linux. Not only
does KDevelop provide a powerful editor, but it also generates and updates
your makefiles for you, saving you a considerable amount of work. You only
need to add a few settings to KDevelop’s project settings for it to compile your
wxWidgets application.

1. Create a New Project (from the Project menu).
2. Expand C++ and choose Simple Hello World Program or some other min-

imal project setting. Some newer versions of KDevelop have a wxWidgets
project option, but it is not as reliable or as flexible as setting up the proj-
ect yourself. Finish creating the project in a place of your choosing.

3. Delete any source files created by KDevelop, most likely a simple source
file with a main and little else.

4. Open the Project Options from the Project menu and select Configure
Options from the pane of options on the left. You should see several tabs,
including General, C, and C++.

5. Click on the C++ tab. Paste the results of using wx-config --cxxflags

from the command line (see the later section “Using wx-config”), clearing
any options that may already be present. These flags are the necessary
header includes and defines to build your wxWidgets application.

562 Buidling Your Own wxWidgets Applications Appendix B

Smart_AppBf.qxd 6/10/05 11:08 AM Page 562

6. Click on the General tab. Paste the results of using wx-config --libs from
the command line. These are the necessary libraries for linking
wxWidgets as well as linking the necessary X11, GTK+, and other sys-
tem libraries.

7. After clicking OK to close the project options dialog, KDevelop will
prompt you to re-run configure for this build configuration. Although this
is a necessary step later, do not run configure yet.

8. You can now add your wxWidgets source files to the project. You will need
to add at least one source file to the project before proceeding to the next
step. You can add sources by using the Automake Manager tab. If you
haven’t written any code yet, begin your application and then come back
to these steps, even if you only write a skeletal program that has a wxApp
class and little else.

9. Run automake by selecting Run Automake & Friends from the Build
menu.

10. Run configure by selecting Run Configure from the Build menu.
11. You can now build your wxWidgets application. As your application

grows, simply add the new files using the Automake Manager, and
KDevelop will automatically update the makefiles.

KDevelop allows you to create multiple build configurations. By default, con-
figurations named “debug” and “optimized” are created. If you want to be able
to create both debug and release versions of your application, you can place
the wx-config flags specifying the different library configurations into sepa-
rate KDevelop configurations, giving you the flexibility of choosing to build a
debug or a release simply by switching your configuration from within
KDevelop.

MAC OS X—XCODE

Apple makes it easy for developers to create Mac OS X applications by provid-
ing Xcode, a free IDE and front-end for GCC. Xcode is a rich IDE, and this
short guide is not intended to replace books or other resources on all of Xcode’s
features and options. Fortunately, it takes only a few steps to create an Xcode
project and add the necessary build flags for wxWidgets.

1. Create a New Project (File menu).
2. From the New Project Assistant, select Empty Project for the project type.
3. Select the location for your project files.
4. From the Project menu, select New Target and choose Carbon/Application.

This will tell Xcode that you are creating an application. You will be
asked to provide a name for the target. The Target Info window will then
appear, allowing you to change the configuration for the new target.

Mac OS X—Xcode 563

Smart_AppBf.qxd 6/10/05 11:08 AM Page 563

5. From the Settings drop-down menu, choose Language under GNU
C/C++ Compiler, and find the Other C++ Flags option. This is where you
will paste the results of using wx-config --cxxflags from the command
line (see the later section “Using wx-config”). These flags are the neces-
sary header includes and defines to build your wxWidgets application.

6. From the settings drop-down menu, choose Linking under General, and
find the Other Linker Flags option. This is where you will paste the
results of using wx-config --libs from the command line. The libs are the
necessary libraries for linking wxWidgets as well as linking the neces-
sary Mac OS X system files.

7. You can now add your wxWidgets source files to the project by selecting
Add to Project from the Project menu. Because you have provided Xcode
with the necessary flags from wx-config, your wxWidgets programs will
compile and link right from within Xcode.

Your Xcode project will also contain a file matching your project’s name, end-
ing in .plist. This is an XML file that contains information about your appli-
cation and is included in your application bundle. On Mac OS X, every
application is actually an application bundle, a complete directory with a hier-
archy of files that are part of the application. This allows Mac OS X programs
to be easily copied and moved as a single icon from Finder while still giving
developers a chance to include any needed auxiliary files. For example, interface
translations can be a part of the application bundle, so the application can be
shown in the user’s native language without downloading any additional files.

Xcode allows you to specify multiple targets and multiple build styles for
each target. For example, Xcode automatically creates deployment and devel-
opment build styles for each target. If you want to be able to create both debug
and release versions of your application, you could place the wx-config flags
specifying the different library configurations into the build styles rather than
the target, giving you the flexibility of choosing to build a debug or a release
simply by switching your build style.

ANY PLATFORM—MAKEFILES

Makefiles are available when building with almost any compiler and are
largely standardized. Makefile syntax is beyond the scope of this book, but to
get started quickly with makefiles, you can create a DialogBlocks project, add
suitable configurations and some source files, and select Generate Makefile
from the Build menu. Invoke the resulting makefile from the command line
with CONFIG=<config> where <config> is one of the configurations listed when
you invoke the makefile with the help target.

564 Buidling Your Own wxWidgets Applications Appendix B

Smart_AppBf.qxd 6/10/05 11:08 AM Page 564

Cross-Platform Builds Using Bakefile 565

If you built wxWidgets with configure, your application makefile is likely
to contain references to wx-config to supply the correct flags (see the later sec-
tion “Using wx-config”). For example:

CC = gcc

minimal: minimal.o
$(CC) -o minimal minimal.o `wx-config —libs`

minimal.o: minimal.cpp mondrian.xpm
$(CC) `wx-config —cxxflags` -c minimal.cpp -o minimal.o

clean:
rm -f *.o minimal

Modifying makefiles by hand can quickly become tedious as your project
grows. The next section describes how to use Bakefile to generate makefiles
for all platforms.

CROSS-PLATFORM BUILDS USING BAKEFILE

Maintaining a large number of different project files and formats can quickly
become overwhelming. To simplify the maintenance of these formats, Vaclav
Slavik created Bakefile, an XML-based makefile wrapper that generates all
the native project files for wxWidgets. So now, even though wxWidgets sup-
ports all these formats, wxWidgets developers need only update one file—the
bakefile—and Bakefile handles the rest. Fortunately, Bakefile isn’t specific to
wxWidgets in any way—you can use Bakefile for your own projects.

Note that this tutorial assumes that you are familiar with how to build
software using one of the supported makefile systems, that you have some basic
familiarity with how makefiles work, and that you are capable of setting envi-
ronment variables on your platform. Also note that the terms “Unix” and “Unix-
based” refer to all operating systems that share a Unix heritage, including
FreeBSD, Linux, Mac OS X, and various other operating systems.

Getting Started

First, you’ll need to install Bakefile. You can always find the latest version for
download at Bakefile’s web site: http://bakefile.sf.net.

It is also available on the CD-ROM included with this book. A binary
installer is provided for Windows users, whereas users of Unix-based
operating systems will need to unpack the tarball and run

configure && make && make install

Smart_AppBf.qxd 6/10/05 11:08 AM Page 565

566 Buidling Your Own wxWidgets Applications Appendix B

Packages for some distributions are also available; check the web site for
details.

Setting Up Your wxWidgets Build Environment

Before you can build wxWidgets software using Bakefile or any other build
system, you need to make sure that wxWidgets is built and that wxWidgets
projects can find the wxWidgets includes and library files. wxWidgets build
instructions can be found by going to the docs subfolder, then looking for the
subfolder that corresponds to your platform (such as msw, gtk, mac) and read-
ing install.txt there. After you’ve done that, the following sections provide
some extra steps you should take to make sure your Bakefile projects work
with wxWidgets.

On Windows

After you’ve built wxWidgets, you should create an environment variable
named WXWIN and set it to the home folder of your wxWidgets source tree. (If
you use the command line to build, you can also set or override WXWIN at build
time by passing it in as an option to your makefile.)

On Unix and Mac OS X

In a standard install, you need not do anything as long as wx-config is on
your PATH. wx-config is all you need; see “Using wx-config” later in this
appendix.

A Sample wxWidgets Project Bakefile

Now that everything is set up, it’s time to take Bakefile for a test run. It is
recommended that you use the wxWidgets sample bakefile to get started. It
can be found in the build/bakefiles/wxpresets/sample directory in the
wxWidgets source tree. Here is the minimal.bkl bakefile used in the sample:

<?xml version=”1.0” ?>
<!— $Id: minimal.bkl,v 1.1 2005/01/27 22:47:37 VS Exp $ —>

<makefile>

<include file=”presets/wx.bkl”/>

<exe id=”minimal” template=”wx”>
<app-type>gui</app-type>
<debug-info>on</debug-info>
<runtime-libs>dynamic</runtime-libs>

<sources>minimal.cpp</sources>

Smart_AppBf.qxd 6/10/05 11:08 AM Page 566

<wx-lib>core</wx-lib>
<wx-lib>base</wx-lib>

</exe>

</makefile>

It’s a complete sample ready to be baked, so go into the directory mentioned
previously and run the following command.

On Windows:

bakefile -f msvc -I.. minimal.bkl

On UNIX:

bakefile -f gnu -I.. minimal.bkl

It should generate a makefile (makefile.vc or GNUmakefile, respectively), which
you can use to build the software. You can then build the software using the
command nmake -f makefile.vc or make -f GNUmakefile respectively. Now let’s
take a look at some of the basic Bakefile concepts that you’ll need to know to
move on from here.

Project Types

As mentioned earlier, Bakefile builds makefiles for many different develop-
ment environments. The -f option accepts a list of formats that you would like
to build, separated by commas. Valid values are shown in Table B-1.

Table B-1 Bakefile Project Types

autoconf GNU autoconf Makefile.in files
borland Borland C/C++ makefiles
cbuilderx C++ Builder X project files
dmars Digital Mars makefiles
dmars_smake Digital Mars makefiles for SMAKE
gnu GNU toolchain makefiles (Unix)
mingw MinGW makefiles (mingw32-make)
msevc4prj MS Embedded Visual C++ 4 project files
msvc MS Visual C++ nmake makefiles
msvc6prj MS Visual C++ 6.0 project files
watcom OpenWatcom makefiles

Cross-Platform Builds Using Bakefile 567

Smart_AppBf.qxd 6/10/05 11:08 AM Page 567

autoconf Project Type

You may notice that in the sample folder, there is also a file called
configure.in. That file is the input for autoconf, which creates the configure
scripts that you often see when you build software from source on Unix-based
platforms. People use configure scripts because they make your Unix make-
files more portable by automatically detecting the right libraries and com-
mands to use on the user’s operating system. This is necessary because there
are many Unix-based operating systems and they are all slightly different.

Bakefile does not generate a configure or configure.in script, so if you
want to use these scripts with your Unix-based software, you will need to
learn how to use autoconf. Unfortunately, this topic deserves its own a book
and is beyond the scope of this tutorial, but a free book on the subject can be
found online at: http://sources.redhat.com/autobook/.

Note that you do not need to use automake when you are using Bakefile,
just autoconf, as Bakefile essentially does the same thing as automake.

Targets

Every project needs to have a target or targets, specifying what is to be built.
With Bakefile, you specify the target by creating a tag named with the target
type. The possible names for targets are shown in Table B-2.

Table B-2 Bakefile Targets

exe Create an executable file.
dll Create a shared library.
lib Create a static library.
module Create a library that is loaded at runtime (a plugin).

Note that the previous sample is an “exe” target. After you create the target,
all the build settings, including flags and linker options, should be placed
inside the target tag as they are in the minimal.bkl sample.

Adding Sources and Includes

Obviously, you need to be able to add source and include files to your project.
You add sources using the <sources> tag (as shown previously), and you add
include directories using the <include> tag. You can add multiple <sources>
and <include> tags to add multiple source files, or you can add multiple
sources and includes into one tag by separating them with a space, like this:

<sources>minimal.cpp minimal2.cpp minimal3.cpp</sources>

568 Buidling Your Own wxWidgets Applications Appendix B

Smart_AppBf.qxd 6/10/05 11:08 AM Page 568

If your sources are in a subfolder of your Bakefile, you use the slash character
to denote directories, even on Windows. (For example, src/minimal.cpp.) For
more options and flags, please consult the Bakefile documentation in the doc
subfolder of Bakefile or on the Bakefile web site.

Build Options

What if you want to offer a debug and a release build? Or separate Unicode
and ANSI builds? You can do this in Bakefile by creating options. To create an
option, use the <option> tag. A typical option has three important parts: a
name, a default value, and a comma-separated list of values. For example,
here is how to create a DEBUG option that builds debug by default:

<option name=”DEBUG”>
<default-value>1</default-value>
<values>0 1</values>

</option>

You can then test the value of this option and conditionally set build settings,
flags, and so on. For more information on both options and conditional state-
ments, please refer to the Bakefile documentation.

Bakefile Presets/Templates and Includes

Most projects will reuse certain settings, or options, in their makefiles, such as
DEBUG or static/dynamic library options. Also it is common to have to use set-
tings from another project; for example, any project that uses wxWidgets will
need to build using the same flags and options used to build wxWidgets.
Bakefile makes these things easier by letting users create Bakefile templates,
where you can store common settings.

Bakefile ships with a couple of templates, found in the presets subfolder
of your Bakefile installation. The simple.bkl template adds a DEBUG option to
makefiles so that you can build in release or debug mode. To add this template
to your project, simply add the tag <include file=”presets/simple.bkl”/> to
the top of your bakefile. Then, when creating your target, add the
template=”simple” attribute to it. Now, when you have built the makefile, your
users can write commands like

nmake -f makefile.vc DEBUG=1

or

make -f GNUmakefile DEBUG=1

in order to build the software in debug mode.

Cross-Platform Builds Using Bakefile 569

Smart_AppBf.qxd 6/10/05 11:08 AM Page 569

To simplify the building of wxWidgets-based projects, wxWidgets con-
tains a set of bakefiles that automatically configure your build system to be
compatible with wxWidgets. As you’ll notice in the previous sample, the sam-
ple project uses the wx template. After you’ve included the template, your soft-
ware will now build with wxWidgets support.

Because the wxWidgets presets don’t exist in the Bakefile presets sub-
folder, Bakefile needs to know where to find these presets. The -I command
adds the wxpresets folder to Bakefile’s search path.

If you regularly include Bakefile presets in places other than the
Bakefile presets folder, then you can set the BAKEFILE_PATHS environment vari-
able so that Bakefile can find these Bakefiles and include them in your proj-
ect. This way you no longer need to specify the -I flag each time you build.

Lastly, it’s important to note that the Win32 wx project bakefiles come
with some common build options that users can use when building the soft-
ware. These options are shown in Table B-3.

Table B-3 Bakefile Build Options

Option Values Description
WX_SHARED 0 (default), 1 Specify static or dynamic wxWidgets libs.
WX_UNICODE 0 (default), 1 Use ANSI or Unicode wxWidgets libs.
WX_DEBUG 0, 1 (default) Use release or debug wxWidgets libs.
WX_VERSION 25 and higher Specify version of wxWidgets libs.

(default is 26)

Note that these options are not needed under Unix because wx-config can be
used to specify these options.

bakefile_gen — Automated Bakefile Scripts

If you have a large project, you can imagine that the calls to Bakefile would
get more and more complex and unwieldy. For this reason, a script called
bakefile_gen was created, which reads in a .bkgen file that provides all the
commands needed to build all the makefiles your project supports. A discus-
sion of how to use bakefile_gen is beyond the scope of this tutorial, but it
deserves a mention because it can be invaluable to large projects.
Documentation on bakefile_gen can be found in the Bakefile distribution.

Conclusion

This concludes our basic tutorial of the cross-platform Bakefile build system
management tool. From here, please be sure to take a good look at the
Bakefile documentation to see what else it is capable of. Please post questions
to the Bakefile mailing list, or if you have questions specific to the wxWidgets

570 Buidling Your Own wxWidgets Applications Appendix B

Smart_AppBf.qxd 6/10/05 11:08 AM Page 570

template Bakefile, send an email to the wxWidgets mailing list. See the
Bakefile and wxWidgets web sites for information on how to subscribe to
these lists.

Enjoy using Bakefile!

USING WX-CONFIG

When you build wxWidgets using configure and make, wxWidgets creates a
special script called wx-config, which produces the necessary compiler flags for
compiling and linking wxWidgets programs, and manages returning the cor-
rect flags when you have multiple versions of the wxWidgets libraries
installed in the same location (such as /usr/local). You can use wx-config from
makefiles or run it by hand to see what flags you need to insert into your IDE
settings. If you’re using Visual Studio, BC++, or MinGW without MSYS, you
won’t use wx-config.

If you look in your wxWidgets build directory, you will see wx-config
there, and also in /usr/local/bin if you ran make install.

The flags that produce the necessary compile and link settings are
--cxxflags and --libs, respectively. For example, on Mac OS X, the output of
each could be

$ wx-config --cxxflags
-I/usr/local/lib/wx/include/mac-unicode-release-static-2.6
-I/usr/local/include/wx-2.6 -D__WXMAC__ -D_FILE_OFFSET_BITS=64
-D_LARGE_FILES -DWX_PRECOMP -DNO_GCC_PRAGMA

$ wx-config --libs
-L/usr/local/lib -framework QuickTime -framework IOKit -framework Carbon
-framework Cocoa -framework System /usr/local/lib/libwx_macu_xrc-2.6.a
/usr/local/lib/libwx_macu_html-2.6.a /usr/local/lib/libwx_macu_adv-2.6.a
/usr/local/lib/libwx_macu_core-2.6.a
/usr/local/lib/libwx_base_carbonu_xml-2.6.a
/usr/local/lib/libwx_base_carbonu_net-2.6.a
/usr/local/lib/libwx_base_carbonu-2.6.a -framework WebKit -lexpat -lz
-lpthread -liconv -lwxregexu-2.6 -lwxtiff-2.6 -lwxjpeg-2.6-lwxpng-2.6

Without passing these flags to the compiler and linker when building your
own applications, you are likely to receive hundreds of errors because the com-
piler won’t know anything about the wxWidgets classes that your program
is using.

Using wx-config from the Build Directory

If you did not install the wxWidgets files into /usr/local, you will need to use
wx-config “in-place,” meaning that it will produce absolute paths to that
build’s files right from the build directory. This should be done by passing the -
--inplace flag to wx-config with whatever flags you are requesting. Even if you
did run make install, nothing prevents you from using the in-place flag with a

Using wx-config 571

Smart_AppBf.qxd 6/10/05 11:08 AM Page 571

particular build of wxWidgets. When running in-place, you do not need to pass
any build configuration parameters because an in-place wx-config knows only
about one build, the build from which you are running wx-config in-place.

Using wx-config from /usr/local and Choosing Your Configuration

When you have built and installed multiple configurations of wxWidgets, you
can specify to wx-config which configuration’s build flags you would like
returned. For example, if you are creating both debug and release builds of
your project, you should be sure to get the correct flags for each configuration
from wx-config, for example:

wx-config --debug=no

or

wx-config --debug=yes

Many options are available to choose specific build configurations. The most
commonly used flags are

wx-config [--inplace] [--unicode[=yes|no]] [--debug[=yes|no]] [--
version[=VERSION]] [--release] [--static]

You can also retrieve a list of available configurations using wx-config –list.
A full list of flags is available by using wx-config --help.

WXWIDGETS SYMBOLS AND HEADERS

Although wxWidgets defines a lot of symbols, there is only a handful that you
are likely to need to use in your projects. Sometimes, it may be necessary to
execute certain code only on certain platforms or under certain conditions,
such as the following:

#ifdef __WXMAC__
// Do something Mac-only
#endif

For your convenience, Table B-4 lists the common symbols and when they are
defined. Additional symbols may be defined by the ports not covered in this
book (such OS/2, Palm, and Cocoa).

572 Buidling Your Own wxWidgets Applications Appendix B

Smart_AppBf.qxd 6/10/05 11:08 AM Page 572

Table B-4 Platform and Toolkit Symbols

Platform and Toolkit Symbols
__WXMSW__ Microsoft Windows
__WXWINCE__ Microsoft Windows CE
__WXMAC__ Mac OS X
__WXGTK__ Using the GTK library, version 1 or 2
__WXGTK20__ Using the GTK library, version 2
__UNIX__ Unix-based platform (for example, Linux, Mac OS X, HP-UX)
__DARWIN__ Open-source BSD variant used by Mac OS X
__LINUX__ Any Linux-based platform
Library / Build Options
wxUSE_UNICODE Enable string Unicode support.
__WXDEBUG__ Library compiled with debugging support.
WX_PRECOMP Use pre-compiled headers.

The use of defined symbols ties in very closely to wxWidgets’ directory struc-
ture, as discussed in Appendix A. Consider for a moment that you can include
a single file, regardless of the target platform, and yet wxWidgets always uses
the correct platform information. Nearly all of the header files in include/wx
have a block like the following (taken from combobox.h):

#if defined(__WXUNIVERSAL__)
#include “wx/univ/combobox.h”

#elif defined(__WXMSW__)
#include “wx/msw/combobox.h”

#elif defined(__WXMOTIF__)
#include “wx/motif/combobox.h”

#elif defined(__WXGTK__)
#include “wx/gtk/combobox.h”

#elif defined(__WXMAC__)
#include “wx/mac/combobox.h”

#elif defined(__WXCOCOA__)
#include “wx/cocoa/combobox.h”

#elif defined(__WXPM__)
#include “wx/os2/combobox.h”

#endif

By using the symbols defined for various platforms or toolkits, one common
header file can include the correct platform-specific header without you need-
ing to perform these tedious checks yourself. Simply include the correct
header in include/wx, and wxWidgets does the rest. For example, you would
only need to use one line to add the necessary headers to support combo boxes:

#include “wx/combobox.h”

wxWidgets Symbols and Headers 573

Smart_AppBf.qxd 6/10/05 11:08 AM Page 573

However, it would still be very tedious to add the headers for all of the
wxWidgets classes that you use in each source file. wxWidgets provides
include/wx/wx.h, which itself includes many of the commonly used class head-
ers. There is also include/wx/wxprec.h, which you need to include when using
precompiled headers on supported platforms. For example:

// For compilers that support precompilation, includes “wx.h”.
#include <wx/wxprec.h>

#ifndef WX_PRECOMP
// Include your minimal set of headers here, or wx.h
#include <wx/wx.h>
#endif

... now your other include files ...

If your code must work across different versions of wxWidgets, it’s useful to
know about the macro wxCHECK_VERSION(major, minor, release). It succeeds if
the version that the source is being compiled against is at least the version
specified. For example:

#if wxCHECK_VERSION(2,5,5)
// Anything for wxWidgets 2.5.5 and above

#else
// Anything for wxWidgets 2.5.4 and below

#endif

574 Buidling Your Own wxWidgets Applications Appendix B

Smart_AppBf.qxd 6/10/05 11:08 AM Page 574

A P P E N D I X C

Creating Applications with DialogBlocks

As we noted in Chapter 9, “Creating Custom Dialogs,” when creating your own
dialogs, you really need a resource editor to take the pain out of tasks such as
laying out the controls and maintaining event tables. DialogBlocks from
Anthemion Software is one such tool, and you’ll find a special version of
DialogBlocks on the accompanying CD-ROM to accelerate your wxWidgets
learning and development on Windows, Linux, or Mac OS X. This appendix
describes the tool and how you can use it to create, compile, and run your own
applications. If you use DialogBlocks, you can avoid manually performing
most of the procedures detailed in the previous two appendices because the
tool can compile both wxWidgets and your own application.

WHAT IS DIALOGBLOCKS?

DialogBlocks is a Rapid Application Development (RAD) tool that can gener-
ate XRC or C++ code for your dialogs and frames. It can also generate a skele-
ton application and makefile and even compile your code using a range of
popular compilers. DialogBlocks can invoke the GDB debugger for simple
debugging with the GCC compiler, but it’s recommended that you use a more
sophisticated debugger for intensive use.

When DialogBlocks generates code, it inserts special comments, and it is
free to replace code between these comments. You can edit the file outside
these blocks, either using the DialogBlocks source editor or in an external edi-
tor or IDE. When you switch back to DialogBlocks from another application,
DialogBlocks will prompt you to reload changed files as appropriate.

Unlike other dialog editor tools you may be used to, DialogBlocks
doesn’t support drag and drop for placing elements. Instead, you place ele-
ments inside sizers, which know how to lay out their children. So to lay out
three buttons in a row, for example, you create a horizontal box sizer and
insert three buttons. You build up a hierarchy of sizers and controls, and
this provides the portability, adaptation to translations, and resizing ability

575

Smart_AppCf.qxd 6/10/05 11:08 AM Page 575

described in Chapter 7, “Window Layout Using Sizers.” If it feels a little odd at
first, persevere—after a short while, it will “click,” and then you’ll find it a very
powerful and easy way to build complex and attractive dialogs.

DialogBlocks Personal Edition has the following restrictions: wizards are
limited to four pages, only one “custom control definition” can be created, there
is the occasional nag screen, Windows RC file import is disabled, and the tool
is for personal rather than commercial use. The full version of DialogBlocks
can be purchased from http://www.anthemion.co.uk/dialogblocks.

INSTALLING DIALOGBLOCKS

Windows

Just run the setup program in the DialogBlocks directory on the CD-ROM (or
via the CD-ROM’s HTML interface) and follow the prompts. Run DialogBlocks
from its menu group or the desktop icon. To uninstall, use the Uninstall
DialogBlocks icon in the DialogBlocks program group, or you can uninstall via
the Control Panel.

Linux

Unarchive the tarred, gzipped file to a suitable location in your file system. A
directory of the form DialogBlocks-x.xx (where x.xx is the version number) will
be created.

Add the location to your PATH variable and run the dialogblocks com-
mand. You will need to set the environment variable DIALOGBLOCKSDIR so that
DialogBlocks can find its data files.

For example:

% cd ~
% tar xvfz DialogBlocks-1.90.tar.gz
% export DIALOGBLOCKSDIR=`pwd`/DialogBlocks-1.90
% export PATH=$PATH:$DIALOGBLOCKSDIR
% dialogblocks

576 Creating Applications with DialogBlocks Appendix C

Smart_AppCf.qxd 6/10/05 11:08 AM Page 576

If you don’t want to change your PATH, you could place a script in a location
already on your path, such as /usr/local/bin. For example:

#!/bin/sh
Invokes DialogBlocks
export DIALOGBLOCKSDIR=/home/mydir/DialogBlocks-1.90
$DIALOGBLOCKSDIR/dialogblocks $*

To uninstall, delete the DialogBlocks folder.

Mac OS X

Clicking on the dmg file will mount the virtual disk containing the
DialogBlocks folder. To install, simply drag this folder to a suitable location on
your hard disk. To uninstall, drag the folder to the trash can.

Upgrading DialogBlocks

You can get bug fixes for DialogBlocks Personal Edition simply by uninstalling
DialogBlocks and reinstalling the latest download from the DialogBlocks web
site. The registration information is not removed when uninstalling, so a
newer version will still run in Personal Edition mode. You need to install from
the CD-ROM and run DialogBlocks once to make sure the registration infor-
mation is available for subsequent upgrades.

THE DIALOGBLOCKS INTERFACE

When you run DialogBlocks, you see a project tree on the left, various content
windows on the right including the dialog editor itself, and at the bottom, an
optional output window to show the results of compiling an application.
Figure C-1 shows a typical session. The dialog editor is available when you
have clicked on a dialog element in the project tree, and it shows a visual rep-
resentation of the dialog on the left with the selected element’s properties on
the right.

The DialogBlocks Interface 577

Smart_AppCf.qxd 6/10/05 11:08 AM Page 577

New controls and sizers can be selected from drop-down menus attached
to the dialog editor’s toolbar buttons (above the property editor). The toolbar
also gives shortcuts to various sizer properties such as alignment, stretch fac-
tor, and spacing.

There are also tabs to view the C++ and XRC code generated for the cur-
rent element, and further tabs let you define variables and event handlers for
the selected element.

You can view the wxWidgets reference by clicking on the Reference tab
(pressing F1 goes to the appropriate topic for the selected element). The
Support page lists useful links for the wxWidgets developer, which on
Windows can be browsed from within DialogBlocks.

THE DIALOGBLOCKS SAMPLE PROJECT

If you open the sample “Acme” project, you can get a feel for how DialogBlocks
works by navigating through the project. There are several top-level elements,
including dialogs, a frame, and an application object. The latter generates the
wxApp-derived class that is necessary for a wxWidgets application to compile

578 Creating Applications with DialogBlocks Appendix C

Figure C-1 The DialogBlocks main window

Smart_AppCf.qxd 6/10/05 11:08 AM Page 578

and run. It’s not essential to have this element in DialogBlocks if you are writ-
ing your application class by hand and are just using DialogBlocks to create
visual elements.

If you click on a dialog element, the dialog editor will be shown, and you
can click on either the dialog editor or the project tree to select controls and
sizers within the dialog. A selected element is shown with a red outline, and
its parent with a blue outline, to allow you to see the context of the element.
Try double-clicking on a control: normally you will be shown an editor for the
default property, for example a button label. Other properties can be edited via
the property editor: scroll down and single-click on the value of the property
you’re interested in, or double-click to invoke a specialized editor such as a
multiline text editor or color selector.

COMPILING THE SAMPLE

You can compile your project from within DialogBlocks for a range of popular
compilers including Visual C++, Borland C++, GCC, MinGW, and Digital Mars
C++. DialogBlocks lets you to add as many configurations as you want, each
based on a particular compiler. You will typically have debug and release con-
figurations for each compiler you use. You could have separate configurations
for different versions of wxWidgets, too.

Compiling the Sample 579

Figure C-2 DialogBlocks configurations dialog

Smart_AppCf.qxd 6/10/05 11:08 AM Page 579

The Acme sample has several configurations, one of which you can select
via the second drop-down list on the toolbar. You can add more by clicking on
the Configuration panel on the settings dialog (Figure C-2) and clicking
on Add. Or, to quickly add standard Debug and Release configurations, click
on Standard, and choose a compiler (Figure C-3). Configuration properties can
be edited in the scrolling property panel: changing a high-level property (such
as Build Mode) can change the default value for a low-level property (such as
Preprocessor Flags).

580 Creating Applications with DialogBlocks Appendix C

Figure C-3 DialogBlocks Standard Configurations Dialog

Before compiling, you’ll need to set up some paths: click on the Paths
panel on the settings dialog (Figure C-4) and browse for the top-level path
for the appropriate compiler variable, such as MINGWDIR or MSVCDIR. (This is
not necessary on Linux or Mac OS X.) Also specify the wxWidgets source
tree for WXWIN.

Smart_AppCf.qxd 6/10/05 11:08 AM Page 580

Compiling the Sample 581

When you’ve selected the appropriate configuration in the main
DialogBlocks toolbar, you can choose Build wxWidgets on the Build menu to
first make libraries that are consistent with the project configuration. This
will take some time. On Windows, the build will be done in build\msw in the
wxWidgets tree, and on Linux and Mac OS X, it will be done in a build direc-
tory under the wxWidgets tree. (If you need to stop a GCC build of wxWidgets,
you can restart it manually by changing directory to the build directory—for
example, GCCDebugGTK2—and typing make.)

Then click on the Build Project menu item (or F8) to build the Acme
project. If all went well, you can click on Run Project (or F9) to run the
application.

When run, the Acme project shows one of its dialogs by virtue of the
Main Window property of the AcmeApp element. You can try changing this
property to ID_FRAME and rebuilding to show the frame as the main window
instead.

Figure C-4 DialogBlocks paths dialog

Smart_AppCf.qxd 6/10/05 11:08 AM Page 581

582 Creating Applications with DialogBlocks Appendix C

CREATING A NEW PROJECT

The New Project Wizard (invoked from the New Project menu item or tool-
bar button) leads you through a series of pages. In the first page, enter the
full path of the new DialogBlocks file, and optionally your name and a copy-
right string to be inserted into generated files. The second page gives you
the opportunity to decide to generate C++ code that uses XRC files instead of
creating all elements in C++ code (you can change this option later). The
third page lets you tailor the name of application class that DialogBlocks will
generate (if any). Clear the check box if you don’t want DialogBlocks to gen-
erate the application class. Finally, you will be asked if you want to create
some default debug and release configurations for a selected compiler.

After you’ve created the project, you can add dialogs and other elements
as required.

CREATING A DIALOG

Create a new dialog either using the drop-down menu on the New Top-Level
Element toolbar button or from the Element menu. Fill in the title, class
name, and C++ file names for this dialog. A dialog starts out with a default
vertical box sizer, but you can delete this and replace it with a different sizer.

Select the top-level sizer and add a wxButton by clicking on the left-most
button in the dialog editor toolbar (just above the property editor). Now add a
single-line wxTextCtrl. It appears beneath the button because the containing
sizer is a vertical box sizer. Now try adding a horizontal box sizer, then sev-
eral buttons. The horizontal box sizer will stretch to fit the new buttons,
expanding the dialog (Figure C-5).

Figure C-5 A simple dialog with two sizers

The first button you created is now centered in the horizontal axis
because this is the default. You can experiment with different alignments
using the yellow toolbar buttons.

Now select the wxTextCtrl you created earlier and add a wxListBox. It’s
created just after the text control with a default size; you can make it stretch
to fit the available horizontal space by clicking on the Expand Horizontally
button. Try previewing the dialog with F5 and resizing it. You’ll notice that
there’s a lot of empty space if you make the dialog big (Figure C-6).

Smart_AppCf.qxd 6/10/05 11:08 AM Page 582

Close the preview, click on the list box, and click on the double-headed
arrow (“the stretch factor”). Now resizing the dialog makes the list box grow to
take up available space (Figure C-7).

Creating a Dialog 583

Figure C-6 Wasted space when resizing

Figure C-7 Stretching a control to fit available space

By default, DialogBlocks creates a dialog with the Fit to Content prop-
erty on so that the dialog will wrap around the content. If you want the dialog
to show at a predetermined size initially and have the content stretch appro-
priately, switch this property off and provide suitable Width and Height prop-
erty values for the dialog.

Smart_AppCf.qxd 6/10/05 11:08 AM Page 583

CREATING A FRAME

A frame starts off empty, and you can add a menu bar, a toolbar, a status bar,
and either a single control or subwindow to fill the client area or a single top-
level sizer under which you can add further controls and/or subwindows. You
can’t add multiple windows directly under the frame, but you can use a sizer
or a parent window to contain further windows.

CREATING AN APPLICATION OBJECT

If you didn’t ask the New Project Wizard to create an application object, you
can still add one from the toolbar or menu bar. This will create the class and
OnInit function, which you can edit as required. Select a window identifier in
the Main Window property to have DialogBlocks generate the code to create
the main window object.

DEBUGGING YOUR APPLICATION

If you are using GCC on any platform, you can use the Debug Project com-
mand on the Build menu to show GDB in a window, with a toolbar to acceler-
ate common debugging commands. A manual for GDB is supplied with
DialogBlocks under the Reference tab. Or you can use GDB standalone via
Emacs or via a graphical front-end such as Insight, DDD, or KDbg (KDE
only).

On Windows, you can use the debugger that comes with your compiler.
In particular, to use the Visual Studio debugger, create a configuration for
VC++ Project, select this configuration in the DialogBlocks toolbar, generate
the project file, and open it in Visual Studio.

FURTHER INFORMATION

This introduction has only scratched the surface of what you can do with
DialogBlocks. Please refer to the online help for further information, in partic-
ular the “How To...” section. See also the DialogBlocks web site and mailing
list at http://www.anthemion.co.uk/dialogblocks.

584 Creating Applications with DialogBlocks Appendix C

Smart_AppCf.qxd 6/10/05 11:08 AM Page 584

A P P E N D I X D

Other Features in wxWidgets

wxWidgets is a large system, and we couldn’t cover all its features in depth.
Here we present a sampler of other aspects that may be useful to you; details
on most of them can be found in the wxWidgets reference manual. See also
Appendix E, “Third-Party Tools for wxWidgets,” for third-party classes.

FURTHER WINDOW CLASSES

wxGenericDirCtrl shows a hierarchy of directories, and optionally files; it can
be used to build browsers.

wxCalendarCtrl (see Figure D-1) is an attractive way for the user to enter
date information. This control can be customized in various ways, including
highlighting special dates and starting the week with either Monday or
Sunday. wxCalendarCtrl is in the core wxWidgets library, and the sample is in
samples/calendar.

585

Figure D-1 wxCalendarCtrl

Smart_AppDf.qxd 6/10/05 11:09 AM Page 585

wxDatePickerCtrl is a more compact control than wxCalendarCtrl that
allows the user to select a date. On Windows, it uses a native Win32 control,
and on other platforms, a generic wxWidgets version is used.

wxTipWindow is a kind of wxPopupWindow that can be used for showing
tooltips, and it is used by wxSimpleHelpProvider to show popup help. The tooltip
text is provided in the constructor itself.

wxStyledTextCtrl is a wrapper around Scintilla, a highly capable code edi-
tor with highlighting, wrapping, and many other features. With minimal code,
your application can support editing text files for a large number of different
file formats and programming languages. The Scintilla project can be found at
www.scintilla.org, and wxStyledTextCtrl can be found in the contrib hierarchy
of your wxWidgets distribution. Check out the demo in contrib/samples/stc
(see Figure D-2); documentation is available at http://www.yellowbrain.com/stc.

586 Other Features in wxWidgets Appendix D

Figure D-2 wxStyledTextCtrl example

wxStaticPicture shows an arbitrary, possibly scaled image, working
around a restriction in wxStaticBitmap image size on Windows. See contrib/
src/gizmos.

wxLEDNumberCtrl (see Figure D-3) is a simulation of an LED display for
showing a numeric string. See contrib/src/gizmos.

Smart_AppDf.qxd 6/10/05 11:09 AM Page 586

wxEditableListBox shows a list of strings with controls to add, delete, and
move items.

Further Window Classes 587

Figure D-3 LED control

Figure D-4 Folding panel

wxFoldPanelBar (see Figure D-4) is an alternative to tabs as a way of
showing multiple panels of controls economically. The titles of “folded” panels
stack up along the bottom when not in use, and unlike with a tabbed inter-
face, you can choose any combination of panels to be shown simultaneously.
See contrib/src/foldbar.

wxGIFAnimationCtrl can be used for simple, small animations (see Figure
D-5). It uses a generic set of classes for flipbook-style animation, and these
classes can be extended to use sources of animation data other than GIF.
Note that wxHtmlWindow can also display animated GIFs, using its own
method. See contrib/src/animate.

Smart_AppDf.qxd 6/10/05 11:09 AM Page 587

wxSplashScreen shows a window with a thin border, displaying a bitmap
describing your application. Show it in application initialization and then
either explicitly destroy it or let it time-out.

OGL (Object Graphics Library) provides a way to display diagrams con-
sisting of shapes connected by lines, with optional arrows and labels. Figure
D-6 shows the wxPython OGL demo displaying a variety of shape types. See
contrib/src/ogl.

588 Other Features in wxWidgets Appendix D

Figure D-5 GIF animation control

Figure D-6 wxPython running the OGL demo

Smart_AppDf.qxd 6/10/05 11:09 AM Page 588

FL (Frame Layout) manages the layout for windows that can be moved
around a frame and “undocked.” This will soon be superceded by an improved
solution. See contrib/src/fl.

ODBC CLASSES

ODBC is a cross-platform standard for accessing databases, so it’s natural for
wxWidgets to provide support for it. Using wxODBC, you can access a wide
variety of databases including DB2, DBase, Firebird, INFORMIX, Interbase,
MS SQL Server, MS Access, MySQL, Oracle, Pervasive SQL, PostgreSQL,
Sybase, XBase, Sequiter, and VIRTUOSO. The main wxODBC classes are wxDb
and wxDbTable. For more information, see “Database Classes Overview” in the
wxWidgets reference manual. See also samples/db and demos/dbbrowse (see
Figure D-7). You may also be interested in reusing the generic tab and page
controls that are part of this demo.

For other wxWidgets database access wrappers, see wxOTL and
wxSQLite in Appendix E.

ODBC Classes 589

Figure D-7 wxWidgets dbbrowse ODBC demo

Smart_AppDf.qxd 6/10/05 11:09 AM Page 589

MIME TYPES MANAGER

The wxMimeTypesManager class enables an application to retrieve information
about all known MIME types from a system-specific location, including the file
extension for each MIME type. An application uses a global instance of it,
called wxTheMimeTypesManager.

NETWORK FUNCTIONALITY

wxWidgets provides more than just the wxSocket class for working with net-
works. These are some of the network-related wxSocket classes that you can
find more about from the manual.

wxURI can be used to extract information from a URI (Uniform Resource
Identifier). A URL is a subset of a URI, so the wxURL class (for parsing and
streaming from URLs) is derived from wxURI.

wxIPV4address is used to represent a standard Internet address.
wxFTP and wxHTTP can be used for performing FTP and HTTP operations.

However, for a fuller implementation, consider using the CURL library
instead (see Appendix E for wxCURL and wxCurlDAV).

wxDialUpManager encapsulates functions dealing with verifying the con-
nection status of the computer (connected to the Internet via a direct connec-
tion, connected through a modem, or not connected at all) and to establish this
connection if required. The application can also request notification about
changes in the connection status. This class is currently only supported on
Windows.

The wxEmail class in contrib/src/net can be used to send mail via SMAPI
on Windows or the sendmail program on Linux.

MULTIMEDIA CLASSES

You can use the wxSound class on all platforms to load and play short sound
files. On Windows, wxSound uses wave files (.wav). On Linux, the Open Sound
System is used where available, and so it supports the formats handled by
OSS. On Mac OS X, wxSound uses Apple’s QuickTime to play wave and other
formats.

From wxWidgets 2.5.4, the wxMediaCtrl class is available on Windows,
Mac OS X, and Linux. wxMediaCtrl can play sound and video files, and it uses
DirectShow on Windows, QuickTime on Mac OS X, and GStreamer on Linux.

590 Other Features in wxWidgets Appendix D

Smart_AppDf.qxd 6/10/05 11:09 AM Page 590

OLE Automation 591

EMBEDDED WEB BROWSERS

Although wxHtmlWindow is a fantastic lightweight HTML viewer, sometimes you
need full web facilities in your application. Eventually wxWidgets will provide
a single class to embed an appropriate browser on each platform, but for now
there are different classes to achieve this.

On Mac OS X, wxWidgets comes with wxWebKitCtrl, which you need to
enable by passing --enable-webkit to configure when building wxWidgets.

On Linux, you can download wxMozilla (see Appendix E). Be warned that
your application distribution will swell by many megabytes if embedding
Mozilla.

On Windows, you can download wxIE (see Appendix E) to embed Internet
Explorer in your application. You can also consider using wxMozilla on
Windows.

ACCESSIBILITY

Because wxWidgets uses native widgets wherever possible, applications built
with it are already quite accessible and tend to be friendly towards screen-
reading applications. However, there is a wxAccessible class that can be used
to make an application more accessible on Windows by deriving from the class,
providing implementations of virtual classes, and associating an instance of it
with the appropriate window instance. The class should be enabled with
wxUSE_ACCESSIBILITY to 1 in setup.h. Currently, only Microsoft Active
Accessibility is supported.

OLE AUTOMATION

The wxAutomationObject class represents an OLE automation object containing
a single data member, an IDispatch pointer. It contains a number of functions
that make it easy to perform automation operations and set and get proper-
ties. The class makes heavy use of the wxVariant class and is only available
under Windows.

The usage of these classes is quite close to OLE automation usage in
Visual Basic. The API is high-level, and the application can specify multiple
properties in a single string. The following example gets the current Excel
instance, and if it exists, makes the active cell bold:

wxAutomationObject excelObject;
if (excelObject.GetInstance(“Excel.Application”))

excelObject.PutProperty(“ActiveCell.Font.Bold”, true);

Smart_AppDf.qxd 6/10/05 11:09 AM Page 591

RENDERER CLASSES

The wxRendererNative class and derivatives abstract high-level drawing opera-
tions for widgets or parts of widgets, such as buttons, splitter bars, and so on.
This allows windows that are drawn “generically” using wxWidgets to use
native or at least consistent components. For more information, please see the
documentation for wxRendererNative.

EVENT LOOPS

The event loop is modeled with the wxEventLoop class. Start the loop by calling
Run, test whether the loop is running with IsRunning, and exit the loop with
Exit. This class is used for the main loop of the application, and you can also
use it for subordinate event loops, as used when showing a modal dialog.

592 Other Features in wxWidgets Appendix D

Smart_AppDf.qxd 6/10/05 11:09 AM Page 592

A P P E N D I X E

Third-Party Tools for wxWidgets

This appendix lists a selection of libraries and tools you can use with
wxWidgets. More can be found on the wxWidgets web site, particularly in the
Resources and Contributions sections, and also on http://wxcode.sf.net.

LANGUAGE BINDINGS

C++ is not the only language you can use for wxWidgets programming: the fol-
lowing projects integrate wxWidgets with other languages. Some are more
fully developed than others, and not all work on all major platforms.
wxPython is the most mature and popular of all bindings, and it works on
Windows, Linux, and Mac.

wxPython combines wxWidgets and the Python language to create a pow-
erful and popular tool for rapid GUI programming. Figure E-1 shows
wxPython running its demo program—even if you won’t be using the Python
language, it’s worth installing it and trying out the demo because it covers a
lot of wxWidgets functionality. wxPython is on the accompanying CD-ROM
and is also available from http://www.wxpython.org.

wxPerl adds wxWidgets GUI programming to the Perl language. It’s
available from http://wxperl.sourceforge.net.

wxBasic is a combination of wxWidgets and a variant of the BASIC lan-
guage. It’s available from http://wxbasic.sourceforge.net.

wxLua binds the lightweight Lua language to wxWidgets and is easy to
integrate into applications as a GUI-enabled extension language. It’s available
from http://www.luascript.thersgb.net.

wxJavaScript integrates wxWidgets with JavaScript. It’s available from
http://wxjs.sourceforge.net.

593

Smart_AppEf.qxd 6/10/05 11:09 AM Page 593

wx4j is a binding of Java to wxWidgets. It’s available from
http://www.wx4j.org.

wxRuby combines wxWidgets and the Ruby language. It’s available from
http://wxruby.rubyforge.org.

wxEiffel combines wxWidgets and the Eiffel language. It’s available from
http://elj.sourceforge.net.

wx.NET is a C# binding for .NET and Mono. It’s available from
http://wxnet.sourceforge.net.

wxHaskell is a Haskell binding for wxWidgets. It’s available from
http://wxhaskell.sourceforge.net.

wxEuphoria is a Euphoria binding for wxWidgets. It’s available from
http://wxeuphoria.sourceforge.net.

TOOLS

These are tools that are either specifically designed to help you with your
wxWidgets application development or are generally useful for application
development.

wxDesigner is a commercial dialog editor and RAD tool and can write
C++, Python, Perl, and C# code directly. Its interface lets anyone somewhat
familiar with wxWidgets to create aesthetically pleasant cross-platform

594 Third-Party Tools for wxWidgets Appendix E

Figure E-1 The wxPython demo

Smart_AppEf.qxd 6/10/05 11:09 AM Page 594

dialogs in a matter of minutes. Features such as supporting copy/cut/paste,
infinite undo/redo, and previewing make testing easy and safe. It’s available
for Windows, Linux, and Mac OS X from http://www.roebling.de.

DialogBlocks is a sizer-based resource editor that creates professional-
looking dialogs, wizards, and frames for deployment on any supported
wxWidgets platform. DialogBlocks also generates makefiles and project files
for a range of compilers. It’s available for Windows, Linux, and Mac OS X from
http://www.anthemion.co.uk/dialogblocks.

poEdit is a gettext catalog (.po file) editor. Unlike other catalogs editors,
poEdit shows data in very compact way. Entries are arranged in a list so that
you can easily navigate large catalogs and immediately get an idea about how
much of the catalog is already translated, what needs translating, and which
parts are only translated in a “fuzzy” way. It’s available for Windows, Linux,
and Mac OS X from http://poedit.sourceforge.net.

Bakefile generates makefiles for multiple platforms. Originally
designed for the wxWidgets project, it can also be applied to your own appli-
cations and libraries. It’s available for Windows, Linux, and Mac OS X from
http://bakefile.sourceforge.net.

HelpBlocks is an authoring tool for MS HTML Help and wxWidgets
HTML Help files, available on Windows, Linux, and Mac (beta) from
http://www.helpblocks.com.

wxVisualSetup integrates wxWidgets help with Microsoft Visual Studio
and includes a wxWidgets project wizard, Intellisense support, dynamic help,
and tips and tricks. It’s available from http://www.litwindow.com/

wxVisualSetup.
wxGlade is a GUI designer built with wxPython, generating Python,

C++, and XRC code. It’s available from http://wxglade.sourceforge.net.
wxDev-CPP is a wxWidgets form designer plugin for the Dev-C++ IDE.

It’s available from http://wxdsgn.sourceforge.net.
wxHatch is a free RAD tool for wxWidgets. It’s available from

http://biolpc22.york.ac.uk/wx/wxhatch.
XRCed is a wxWidgets and wxPython development tool written in

wxPython. It’s available from http://xrced.sourceforge.net.
wxWinWiz is a Visual C++ wizard for creating wxWidgets projects. It’s

available from http://www.koansoftware.com/en/prd_svil_wxdownload.htm.
wxCRP is a tool to generate snippets of code from templates. It’s avail-

able from http://www.xs4all.nl/~jorgb/wxcrp.
Chinook Developer Studio is a multi-platform C/C++ integrated devel-

opment environment. It’s available for Windows and Linux from
http://www.degarrah.com.

MinGW Developer Studio is an IDE written in, and for, developing pro-
grams with wxWidgets and MinGW. It’s available for Windows and Linux from
http://www.parinyasoft.com.

CodeBlocks is an IDE written with wxWidgets, available for Windows
and Linux from http://www.codeblocks.org.

Tools 595

Smart_AppEf.qxd 6/10/05 11:09 AM Page 595

KDevelop is a capable, free IDE for Linux. It’s available from
http://www.kdevelop.org.

Curl is a command-line utility for transferring files by FTP and other
protocols; it’s useful for uploading your finished application. It’s available from
http://curl.haxx.se.

VMware is machine virtualization software that lets you run multiple
operating systems simultaneously. Several wxWidgets developers
use it, and they find it an indispensable resource. It’s available from
http://www.vmware.com.

Inno Setup is an excellent and widely used Windows installer creator. It’s
available from http://www.jrsoftware.org/isinfo.php.

NSIS (Nullsoft Scriptable Install System) is a free, highly customizable
Windows installer creator. It’s available from http://nsis.sourceforge.net.

Loki Setup is an installer utility for Linux. It’s available from
http://www.lokigames.com/development/setup.php3.

InstallAnywhere by Zero G is a multi-platform installer creator. It’s avail-
able from http://www.zerog.com/products_ia.shtml.

InstallShield has a range of installers for most operating systems:
http://www.installshield.com.

EPM is a tool that can help create RPM, .deb, and other package forms.
It’s available from http://www.easysw.com/epm.

Doxygen is a popular tool that helps automate your code documentation.
It’s available from http://www.doxygen.org.

GTK-Qt is a theming engine that can make wxGTK applications look
more at home under KDE. It’s available from http://www.kde-apps.org/

content/show.php?content=20042.

ADD-ON LIBRARIES

This section presents a selection of add-on libraries for wxWidgets available at
the time of writing. These tend to be distributed as source code, which you
must compile, and there is currently no standard way of doing this. With some,
you can simply add the source files to your own make or project file; others
come with their own make or project file or even use a configure script, creating
libraries for you to link against. Please see the individual packages for build
instructions. A package manager and standards for third-party code are being
developed to make this easier in the future.

wxMozilla is a project to develop a wxWindows component for embedding
the Mozilla browser into any wxWidgets application. It’s available from
http://wxmozilla.sourceforge.net.

wxIndustrialControls provides a set of widgets for showing digital and
analog values. Includes Angular Meter, Linear Meter, Angular Regulator,
Linear Regulator, Bitmap Switcher, Bitmap Check Box, LCD Display, and

596 Third-Party Tools for wxWidgets Appendix E

Smart_AppEf.qxd 6/10/05 11:09 AM Page 596

LCD Clock. It’s available from http://www.koansoftware.com/en/prd_svil_

wxindctrl.htm.
wxCURL is a simplified and integrated interface between LibCURL and

wxWidgets. wxCURL provides several classes for simplified interfaces to
HTTP, WebDAV, FTP, and Telnet-based resources. It’s available from
http://sourceforge.net/projects/wxcurl.

wxCurlDAV is a C++ class designed for people using wxWidgets to sim-
ply and easily add WebDAV functionality to their application. It’s available
from http://homepage.mac.com/codonnell/wxcurldav.

ToasterBox is a cross-platform library to make the creation of MSN style
“Toaster” popups easier (message windows that slide up and down). It’s avail-
able from http://toasterbox.sourceforge.net.

wxVTK enables the 3D graphics library VTK to render to and interact
with wxWidgets. It’s available from http://wxvtk.sourceforge.net.

wxDockIt is a docking library by Mark McCormack. It’s available from
http://sourceforge.net/projects/wxextended.

wxIFM (Interface Management System) is a docking library based on a
plug-in architecture. It’s available from http://www.snakesoft.net/wxifm.

wxMathPlot is a framework for mathematical graph plotting in
wxWidgets. It’s available from http://wxmathplot.sourceforge.net.

wxTreeMultiCtrl enables you to add any wxWindow-derived class to a tree
shaped structure similar to a wxTreeCtrl. It is well suited for a scrollable prop-
erty sheet. It’s available from http://www.solidsteel.nl/jorg/components/

treemultictrl/wxTreeMultiCtrl.php.
wxVirtualDirTreeCtrl is a very handy component for quickly creating

project browsers, repository views, and smart directory selectors based upon
event handlers, which can be overridden to make it look even more flexible. It
is based upon a wxTreeCtrl component and designed in such a way that the
native functionality of this class can still be used. It’s available from
http://www.solidsteel.nl/jorg/components/virtualdirtreectrl/wxVirtualDir

TreeCtrl.php.
wxPropertyGrid is a specialized two-column grid for editing properties

such as strings, numbers, flagsets, string arrays, and colors. It’s available from
http://www.geocities.com/jmsalli/propertygrid/index.html.

wxSMTP is a an email framework including an SMTP class. See also
contrib/src/net in the wxWidgets distribution for simple email-sending
functionality. wxSMTP is available from http://www.frank-buss.de/

wxwindows/wino.html.
wxResizeableControl provides a user interface for child windows placed

within other windows. The user can drag them around and resize them using
eight marks drawn on the edges and corners of the control. This class sends
notification events to its parent when the window is created, resized, moved,
or deleted. It’s available from http://de.geocities.com/markusgreither/

resizec.htm.

Add-on Libraries 597

Smart_AppEf.qxd 6/10/05 11:09 AM Page 597

wxOTL is an alternative database connectivity library for wxWidgets
based on the Oracle, ODBC, and DB2-CLI Template Library from S. Kuchin.
It’s available from http://home.tiscali.be/t.bogaert/wxOTL.

wxReportWriter allows you to create table-based reports for all kinds of
data. It’s available from http://www.daily.de/RepWrt.

wxHyperlinkCtrl is a hyperlink control providing the ability to intercept
mouse click events to perform your own custom event handling and the ability
to open a link in a new or current browser window. It’s available from
http://www.spaceblue.com/codedetail.php?CodeID=7.

wxSQLite is a wrapper for the SQLite database engine. It’s available
from http://wxsqlite.sourceforge.net.

wxIE allows you to embed Internet Explorer in your wxWidgets for
Windows applications. Incorporates the wxActiveX class for embedding ActiveX
controls in a wxWindow. It’s available from http://sourceforge.net/projects/
wxactivex.

wxCTB is a serial communications package for Windows and Linux. It’s
available from http://www.iftools.com/download.en.html. A fully featured ter-
minal program called wxTerm that makes use of wxCTB can also be down-
loaded from this site.

AWX is a library of add-on classes. It includes awxOutlookDialog (a set-
tings dialog using icons to switch pages), awxButton (an enhanced bitmap
button), awxToolbar (a wxToolBar-like class with enhanced deactivated button
support), and awxLed (an LED simulator with red, yellow, and green states). It’s
available from http://www.iftools.com/awx.en.html.

wxSpellChecker is a generic spell-check framework that can use
different engines. It’s available from http://www-personal.umich.edu/~jblough/
wxspellchecker.

wxArt2D is a library for advanced 2D graphical programming, with SVG
and CVG support. It’s available from http://wxart2d.sourceforge.net.

wxImprola is a GUI framework for the Improla image processing library.
It’s available from http://improla.sourceforge.net.

Extended wxHTML Help lets you invoke modal wxHTML Help dialogs
from other modal dialogs, and it also allows you to embed wxHTML Help
within your application. It’s available from ftp://biolpc22.york.ac.uk/pub/
contrib/helpctrlex.

wxStEdit is a library and sample program for wxStyledTextCtrl that
is a wrapper around the Scintilla text editor widget. It is meant to be used
as a component of a larger program, and although it tries to manage as
much as possible, it’s fairly extensible as well. It’s available from
http://www.lehigh.edu/~jrl1/wxwindows/wxStEdit.

wxLCDWindow displays numbers like a liquid crystal display. It’s avail-
able from ftp://biolpc22.york.ac.uk/pub/contrib/lcdwindow.

mmwx is a class library containing the following classes: mmMultiButton,
mmNavigator, mmMonthCtrl, mmDropMonth, mmDropMenu, mmDropWindow, mmHyperText,
mmHyperBitmap, mmTextStretch, and mmLogonDialog. It’s available from
http://mindmatters.no/mmwx.

598 Third-Party Tools for wxWidgets Appendix E

Smart_AppEf.qxd 6/10/05 11:09 AM Page 598

Add-on Libraries 599

LitWindow Library is a system for specifying dialog behavior using
constraint rules. It’s available from http://www.litwindow.com/Library/.

Keybinder is a generic system to let your users bind one or more shortcut
keys to commands, and includes a user interface for editing shortcuts. It’s
available from http://wxcode.sourceforge.net.

wxBetterDialog is a collection of dialogs, including an enhanced color
selection dialog. It’s available from http://wxcode.sourceforge.net.

wxBZipStream contains Bzip compression and decompression stream
classes. It’s available from http://wxcode.sourceforge.net.

wxCrashReport formats and prints a report in case the application
crashes on Linux. Also included is support for BlackBox.dll, which does the
same on Windows. It’s available from http://wxcode.sourceforge.net.

wxHTTPServer is a HTTP 1.0-compliant web server class that uses
wxWidgets for events and sockets. It’s available from http://wxcode.source-
forge.net.

wxHyperLink contains a static text element that links to an URL.
Clicking on the URL activates the standard browser and opens the URL. It’s
available from http://wxcode.sourceforge.net.

wxListCtrlEx is a subclass of wxListCtrl with advanced features such
as column sorting (which can sort both text and numbers) and a simpli-
fied virtual data interface. It also can correctly resize your columns
(maintaining their original proportions) when you resize it. It’s available from
http://wxcode.sourceforge.net.

wxRarInputStream implements RAR file extraction. It’s available from
http://wxcode.sourceforge.net.

wxSheet is a rewrite of the wxGrid widget, with more control for intercept-
ing events and extending functionality. It’s available from http://wxcode.
sourceforge.net.

wxStreamMerger is a class for obtaining the difference between two
streams. It’s available from http://wxcode.sourceforge.net.

Smart_AppEf.qxd 6/10/05 11:09 AM Page 599

Smart_AppEf.qxd 6/10/05 11:09 AM Page 600

A P P E N D I X F

wxWidgets Application Showcase

There are hundreds, if not thousands, of applications using wxWidgets. All of
the applications in this selection are mature, usable programs that are
actively developed and supported. See also the “Tools” section in Appendix E,
which also contains good examples of wxWidgets applications. In addition,
there are some small but complete applications in the demos directory of the
wxWidgets distribution, including a card game, a poetry viewer, a cellular
automaton toy, and a fractal mountain generator.

AOL Communicator is a convenient way for AOL members to manage
their email, address book, and much more. Communicator integrates email
(including multiple email addresses), spam filtering, AIM instant messaging,
and news in one interface. It’s available for Windows and Mac OS X from
http://communicator.aol.com.

Audacity is a free audio editor that can record and play sounds,
import and export WAV, AIFF, Ogg Vorbis, and MP3 files, and more. It also
has a built-in amplitude envelope editor, a customizable spectrogram
mode, and a frequency analysis window for audio analysis applications.
It’s available for Windows, Linux, and Mac OS X (see Figure F-1) from
http://audacity.sourceforge.net.

AVG Antivirus is a comprehensive antivirus program. The unique combi-
nation of detection methods (heuristic analysis, generic detection, scanning,
and integrity checking) ensures maximum protection on multiple levels. There
are versions for workstations, networks, email servers, and file servers. It’s
available for Windows and Linux from http://www.grisoft.com.

BitWise IM is an instant messenger with text, file transfer/sharing,
whiteboard, and voice capability. All data sent between clients is automati-
cally encrypted for privacy. The cross-platform interoperability of all features
is unmatched by any other instant messenger. A free Personal and a paid
Professional version are available for Windows, Linux, and Mac OS X (see
Figure F-2) from http://www.bitwiseim.com.

601

Smart_AppFf.qxd 6/10/05 11:10 AM Page 601

602 wxWidgets Application Showcase Appendix F

Figure F-1 Audacity running on MacOS X

Figure F-2 BitWise on Mac OS X

Smart_AppFf.qxd 6/10/05 11:10 AM Page 602

Chess Commander is a chess game featuring legal move display, realistic
voices, an orchestral soundtrack, and board annotation. Play chess against the
computer as well as against email and network opponents with one interface.
It’s available for Windows (see Figure F-3) from http://www.chesscommander.com.

Cn3D is an application for viewing 3D structures from the National
Center for Biotechnology Information’s Entrez retrieval service. Cn3D
runs on Windows (see Figure F-4), Mac, and Unix. Cn3D simultaneously
displays structure, sequence, and alignment. It’s available from
http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml.

Cn3D 603

Figure F-3 Chess Commander

Smart_AppFf.qxd 6/10/05 11:10 AM Page 603

Documancer is a programmer’s documentation reader for Unix and
Windows that has very fast full-text searching. It is written in wxPython
using Mozilla as the rendering engine. It’s available for Windows and Linux
from http://documancer.sourceforge.net.

EarthVision is software for 3D model building and visualization that
makes accurate well positioning, reservoir characterization, and environmen-
tal analysis easy. EarthVision’s multitude of visualization tools, including
integrated seismic display and interactive well design, improve and simplify
quality control, well planning, and communication to management, investors,
partners, and the diverse members of the asset team. It’s available for
Windows and Linux from http://www.dgi.com/earthvision.

Forte Agent is the top-rated UseNet newsreader on the Internet and is
also a POP email client. Agent provides basic newsreader functionality,
along with threaded discussions, off-line newsgroup datastore, automatic
multi-part binary combining, yEnc encoding and decoding, kill and watch
lists, cross-post management, and more. It’s available for Windows from
http://www.forteinc.com/agent/index.php.

KICAD is an open source (GPL) application for designing electronic
schematic diagrams and printed circuit board artwork. Figure F-5 shows 2D
and 3D views of different KICAD designs. It’s available for Windows and
Linux from http://www.lis.inpg.fr/realise_au_lis/kicad.

604 wxWidgets Application Showcase Appendix F

Figure F-4 Cn3D

Smart_AppFf.qxd 6/10/05 11:10 AM Page 604

Kirix Strata is a dynamic database application for Windows (see Figure
F-6) and Linux. With Strata, users can integrate data from diverse systems,
create instant calculations across millions of records, and manipulate data
interactively in a flexible graphical environment. Kirix Strata won the
LinuxWorld 2005 Product Excellence Award for Best Desktop/Productivity/
Business Application. It’s available from http://www.kirix.com.

Mahogany Mail is an open source mail and news client, focusing on
IMAP4 support. Everything within Mahogany is configurable, and Mahogany
also includes Python scripting, built-in filters, multiple identities, calendars, a
powerful address book, Palm synchronization, fax capability, and much more.
It’s available for Windows, Linux (see Figure F-7), and Mac OS X from
http://mahogany.sourceforge.net.

Mojoworld is a 3D world generator, with a procedural fractal engine that
creates pixel-level detail at any resolution, distance, or field of view. It’s avail-
able for Windows and Mac OS X from http://www.pandromeda.com.

pgAdmin III is a powerful administration and development platform for
the PostgreSQL database, free for any use. The graphical interface supports
all PostgreSQL features and makes administration easy. pgAdmin also
includes a query builder, an SQL editor, a server-side code editor, and much
more. It’s available for Windows and Linux from http://www.pgadmin.org.

pgAdmin III 605

Figure F-5 KICAD

Smart_AppFf.qxd 6/10/05 11:10 AM Page 605

606 wxWidgets Application Showcase Appendix F

Figure F-6 KIRIX Strata

Figure F-7 Mahogany on Linux

Smart_AppFf.qxd 6/10/05 11:10 AM Page 606

Writer’s Café 607

SILO is a production-quality commercial 3D modeling application,
employing advanced polygonal modeling tools and integrated subdivision
surfaces. Silo is being used for video games, architectural design, film
animation, and more. It’s available for Windows and Mac OS X from
http://nevercenter.com.

Tortoise CVS is a CVS version control interface that integrates with
Windows Explorer. It enables direct check out, update, commit, and diffs by
right-clicking on files and folders within Explorer. It shows a file’s state on top
of the normal icons within Explorer. It even works from within the File Open
dialog. It’s available for Windows from http://www.tortoisecvs.org.

Transcribe! is an assistant for people who sometimes want to work out a
piece of music from a recording in order to write it out or play it themselves, or
both. Transcribe! is not an editor. It reads, plays, and records audio files but
does not modify them. It’s available for Windows, Linux, and Mac OS X (see
Figure F-8) from http://www.seventhstring.com/xscribe/overview.html.

VLC (VideoLAN client) is a highly portable multimedia player for various
audio and video formats (such as MPEG-1, MPEG-2, MPEG-4, DivX, MP3, and
OGG) as well as DVDs, VCDs, and various streaming protocols. It can also be
used as a server to stream in unicast or multicast in IPv4 or IPv6 on a high-
bandwidth network. It’s available for Windows, Linux, and Mac OS X from
http://www.videolan.org/vlc.

Writer’s Café is a software toolkit for all fiction writers, whether expe-
rienced or just starting out. The heart of Writer’s Café is StoryLines, a pow-
erful but simple-to-use story development tool that dramatically
accelerates the creation and structuring of your novel or screenplay. It’s
available for Windows (see Figure F-9), Linux, and Mac OS X (beta) from
http://www.writerscafe.co.uk.

Figure F-8 Transcribe! running on Mac OS X

Smart_AppFf.qxd 6/10/05 11:10 AM Page 607

xCHM is a viewer for chm files (Microsoft Compiled HTML Help
Files). It can show the contents tree if one is available; print the displayed
page; change fonts, faces, and size; work with bookmarks; do the usual
history stunts (forward, back, home); and search for text in the whole
book. wxHtmlWindow is used to render the HTML. It’s available for Linux
(see Figure F-10) and Mac OS X from http://xchm.sourceforge.net.

608 wxWidgets Application Showcase Appendix F

Figure F-9 Writer’s Café

Smart_AppFf.qxd 6/10/05 11:10 AM Page 608

xCHM 609

Figure F-10 xCHM running on Linux

Smart_AppFf.qxd 6/10/05 11:10 AM Page 609

Smart_AppFf.qxd 6/10/05 11:10 AM Page 610

A P P E N D I X G

Using the CD-ROM

BROWSING THE CD-ROM

The CD-ROM can be read under Windows, Mac OS X, and Linux (and other
UNIX systems). The HTML contents should open automatically when you
insert the CD-ROM under Windows and Linux. Otherwise, please open the file
BrowseMe.htm with your preferred web browser.

THE CD-ROM CONTENTS

Here’s what’s on the disk:

� Code examples. Paste snippets into your own application, or compile
the examples with your preferred compiler. In addition to the examples
covered in this book, we include a bonus sample, “Riffle.” This little image
browser comes complete with source, installation scripts, and binaries for
four platforms.

� wxWidgets 2.6. wxWidgets supports Windows (for desktop and Pocket
PC), Unix/Linux, Mac OS X, and other platforms not covered by this book.
Refer to Appendix A, “Installing wxWidgets,” for installation details for
the three major platforms.

� DialogBlocks Personal Edition. A version of the commercial
DialogBlocks dialog editor/RAD tool for personal use. DialogBlocks runs
on Windows, Linux, and Mac OS X with powerful sizer-based layout tools
and the ability to compile your source using popular compilers. See
Appendix C, “Creating Applications with DialogBlocks,” to find out how
to install and use DialogBlocks.

611

Smart_AppGf.qxd 6/10/05 11:10 AM Page 611

� Compilers. For Windows, we supply MinGW, Digital Mars C++, and
OpenWatcom C++. (For Linux, GCC can be installed from your distribu-
tion, and for Mac OS X, the Apple Developer Tools are available from the
Apple web site.)

� poEdit. poEdit is an essential tool to help you create message catalogs
for your internationalized application.

� wxPython. wxPython is a powerful blend of wxWidgets and the Python
language.

For updates, please see http://www.wxwidgets.org/book.

612 Using the CD-ROM Appendix G

Smart_AppGf.qxd 6/10/05 11:10 AM Page 612

A P P E N D I X H

How wxWidgets Processes Events

This appendix takes a closer look at how wxWidgets processes events, going
into details omitted from the simplified view we’ve seen so far.

When an event is received from the windowing system, wxWidgets calls
wxEvtHandler::ProcessEvent on the first event handler object belonging to the
window generating the event.

Figure H-1 summarizes the order of event table searching by
ProcessEvent. Here’s how it works:

1. If the object is disabled (via a call to wxEvtHandler::SetEvtHandlerEnabled),
the function skips to Step 6.

2. If the object is a wxWindow, ProcessEvent is recursively called on the win-
dow’s wxValidator. If this returns true, the function exits.

3. SearchEventTable is called for this event handler. If this fails, the base
class table is tried, the next base class table is tried, and so on, until no
more tables exist or an appropriate function is found, in which case the
function exits.

4. The search is applied down the entire chain of event handlers. (Usually
the chain has a length of one.) If this succeeds, the function exits.

5. If the object is a wxWindow and the event is set to propagate (only
wxCommandEvent objects are normally set to propagate), ProcessEvent is
recursively applied to the parent window’s event handler. If this returns
true, the function exits.

6. Finally, ProcessEvent is called on the wxApp object.

613

Smart_AppHf.qxd 6/10/05 11:11 AM Page 613

614 How wxWidgets Processes Events Appendix H

Start

No

Yes

Yes
No

No

Validator
processed?

Yes

No more handlers

More handlers

No

Handler
processed?

Yes

Yes

No

Yes
Processed by

wxApp?

Window
enabled?

Has parent
window?

Can
propagate

event?

Figure H-1 Event processing flow

Smart_AppHf.qxd 6/10/05 11:11 AM Page 614

Pay close attention to Step 5. People often overlook or get confused by
this powerful feature of the wxWidgets event processing system. To put it a
different way, events set to propagate (most likely derived either directly or
indirectly from wxCommandEvent) will travel up the containment hierarchy from
child to parent until the maximal propagation level is reached or an event
handler is found that doesn’t call Skip.

When propagating command events upwards to the parent window,
event propagation stops when it reaches the parent dialog, if any. This means
that you don’t risk getting unexpected events from dialog controls (which
might be left unprocessed by the dialog itself because it doesn’t care about
them) when a modal dialog is popped up. The events do propagate beyond
frames, however. The rationale for this choice is that a typical application has
only a few frames, and their parent-child relationships are well understood by
the programmer, whereas in a complex program, it may be very difficult, if not
impossible, to track down all the dialogs that may be popped up (remember
that some are created automatically by wxWidgets). If you need to specify a
different behavior for some reason, you can use SetExtraStyle(wxWS_EX_

BLOCK_EVENTS) explicitly to prevent events from being propagated beyond the
given window, or you can unset this flag for dialogs, which have it set by
default.

Fundamental window events (size, motion, paint, mouse, keyboard, and
so on) are sent only to the window. Events that have a higher level of meaning
or that are generated by the window itself—for example, button clicks, menu
selection, tree expansion, and so on—are command events and are sent up to
the parent to see if it is interested in the event.

Note that you might want your application to override ProcessEvent to
redirect processing of events. This is done in the document-view framework,
for example, to enable event handlers to be defined in the document or view. To
test for command events (which will probably be the only events you want to
redirect), you can use wxEvent::IsCommandEvent for efficiency instead of using
the slower run-time type system.

Appendix H 615

Smart_AppHf.qxd 6/10/05 11:11 AM Page 615

Smart_AppHf.qxd 6/10/05 11:11 AM Page 616

In the wxWidgets reference, the documentation for specific event macros is
organized by their event classes (such as wxCommandEvent), which are them-
selves referenced by the control class documentation (such as wxButton). You
can refer to these sections for details, but it's useful to summarize the most
commonly used event classes and macros, as shown in Table I-1.

Table I-1 Commonly Used Event Macros

Class: wxActivateEvent
EVT_ACTIVATE(func) Sent when a user activates or deactivates a

top-level window.
EVT_ACTIVATE_APP(func) Sent when a user activates or deactivates the

window of a different application.
Class: wxCommandEvent

EVT_COMMAND(id, event, func) The same as EVT_CUSTOM, but expects a
member function with a wxCommandEvent
argument.

EVT_COMMAND_RANGE The same as EVT_CUSTOM_RANGE, but expects
(id1, id2, event, func) a member function with a wxCommandEvent

argument.
EVT_BUTTON(id, func) Processes a wxEVT_COMMAND_BUTTON_CLICKED

event, generated when the user left-clicks on a
wxButton.

EVT_CHECKBOX(id, func) Processes a wxEVT_COMMAND_CHECBOX_CLICKED
event, generated when the user checks or
unchecks a wxCheckBox control.

EVT_CHECKLISTBOX(id, func) Processes a wxEVT_COMMAND_CHECKLISTBOX_
TOGGLED event, generated by a wxCheckListBox
control when the user checks or unchecks an
item.

A P P E N D I X I

Event Classes and Macros

617

(continues)

Smart_AppIf.qxd 6/10/05 11:12 AM Page 617

Table I-1 Commonly Used Event Macros (Continued)

EVT_CHOICE(id, func) Processes a wxEVT_COMMAND_CHOICE_SELECTED
event, generated by a wxChoice control when
the user selects an item in the list.

EVT_COMBOBOX(id, func) Processes a wxEVT_COMMAND_COMBOBOX_
SELECTED event, generated by a wxComboBox
control when the user selects an item in the
list.

EVT_LISTBOX(id, func) Processes a wxEVT_COMMAND_LISTBOX_SELECTED
event, generated by a wxListBox control when
the user selects an item in the list.

EVT_LISTBOX_DCLICK(id, func) Processes a wxEVT_COMMAND_LISTBOX_
DOUBLECLICKED event, generated by a
wxListBox control when the user double-clicks
on an item in the list.

EVT_TEXT(id, func) Processes a wxEVT_COMMAND_TEXT_UPDATED
event, generated by a wxTextCtrl,
wxComboBox, or wxSpinCtrl control when the
text is edited.

EVT_TEXT_ENTER(id, func) Processes a wxEVT_COMMAND_TEXT_ENTER event,
generated by a wxTextCtrl control when the
user presses the Enter key. Note that you
must use wxTE_PROCESS_ENTER style when cre-
ating the control if you want it to generate
such events.

EVT_TEXT_MAXLEN(id, func) Processes a wxEVT_COMMAND_TEXT_MAXLEN
event, generated by a wxTextCtrl control
when the user tries to enter more characters
into it than the limit previously set with
SetMaxLength. Windows and GTK+ only.

EVT_TOGGLEBUTTON(id, func) Processes a wxEVT_COMMAND_TOGGLEBUTTON_
CLICKED event, generated when the user clicks
the button.

EVT_MENU(id, func) Processes a wxEVT_COMMAND_MENU_SELECTED
event, generated by a menu item.

EVT_MENU_RANGE(id1, id2, func) Processes a wxEVT_COMMAND_MENU_RANGE event,
generated by a range of menu items.

EVT_SLIDER(id, func) Processes a wxEVT_COMMAND_SLIDER_UPDATED
event, generated by a wxSlider control when
the user moves the slider.

EVT_RADIOBOX(id, func) Processes a wxEVT_COMMAND_RADIOBOX_
SELECTED event, generated by a wxRadioBox
control when the user clicks on a radio button.

618 Event Classes and Macros Appendix I

Smart_AppIf.qxd 6/10/05 11:12 AM Page 618

EVT_RADIOBUTTON(id, func) Processes a wxEVT_COMMAND_RADIOBUTTON_
SELECTED event, generated by a wxRadioButton
control when a user clicks on it.

EVT_SCROLLBAR(id, func) Processes a wxEVT_COMMAND_SCROLLBAR_
UPDATED event, generated by a wxScrollBar
control when any scroll event occurs. For more
specific scrollbar event macros, see the docu-
mentation for wxScrollEvent.

EVT_TOOL(id, func) Processes a wxEVT_COMMAND_TOOL_CLICKED
event (a synonym for wxEVT_COMMAND_MENU_
SELECTED), generated when the user clicks on a
toolbar tool. Pass the identifier of the tool.

EVT_TOOL_RANGE(id1, id2, func) Processes a wxEVT_COMMAND_TOOL_CLICKED
event for a range of identifiers. Pass the iden-
tifier of the tools.

EVT_TOOL_RCLICKED(id, func) Processes a wxEVT_COMMAND_TOOL_RCLICKED
event, generated when the user right-clicks on
a control. Pass the identifier of the tool.

EVT_TOOL_RCLICKED_RANGE Processes a wxEVT_COMMAND_TOOL_RCLICKED
(id1, id2, func) event for a range of identifiers. Pass the iden-

tifiers of the tools.
EVT_TOOL_ENTER(id, func) Processes a wxEVT_COMMAND_TOOL_ENTER

event, generated when the mouse pointer
moves into or out of a tool. Pass the identifier
of the toolbar itself. The value of wxCommand
Event::GetSelection is the tool identifier,
or -1 if the pointer has moved off a tool.

Class: wxCloseEvent
EVT_CLOSE(func) Processes a wxEVT_CLOSE_WINDOW event, gener-

ated when the user closes a window via the
window manager. This event applies to
wxFrame and wxDialog classes. The event can
be vetoed if CanVeto returns true.

EVT_QUERY_END_SESSION(func) Processes a wxEVT_QUERY_END_SESSION event,
generated when the session is about to end but
can be vetoed by the user. This event applies to
wxApp only. Windows only.

EVT_END_SESSION(func) Processes a wxEVT_END_SESSION event, gener-
ated when the session is about to end. This
event applies to wxApp only. Windows only.

Appendix I 619

(continues)

Smart_AppIf.qxd 6/10/05 11:12 AM Page 619

Table I-1 Commonly Used Event Macros (Continued)

Class: wxContextMenuEvent
EVT_CONTEXT_MENU(id, func) Processes the event generated when the user

has requested a popup menu to appear by
pressing a special keyboard key (under
Windows) or by right-clicking the mouse.

EVT_COMMAND_CONTEXT_MENU The same as EVT_CONTEXT_MENU, but takes a
(id, func) window identifier.

Class: wxEraseEvent
EVT_ERASE_BACKGROUND(func) Processes a wxEVT_ERASE_BACKGROUND event,

generated when a window's background
needs to be repainted.

Class: wxEvent
EVT_CUSTOM(event, id, func) Allows you to add a custom event table entry

by specifying the event identifier (such as
wxEVT_SIZE), the window identifier, and a
member function to call.

EVT_CUSTOM_RANGE The same as EVT_CUSTOM, but responds to a
(event, id1, id2, func) range of window identifiers.

Class: wxFocusEvent
EVT_SET_FOCUS(func) Processes a wxEVT_SET_FOCUS event, when a

window gains the keyboard focus.
EVT_KILL_FOCUS(func) Processes a wxEVT_KILL_FOCUS event, when a

window loses the keyboard focus.
Class: wxIdleEvent

EVT_IDLE(func) Handles a wxEVT_IDLE event, passed to Win-
dows and the application object in idle time
(when all other events have been processed).

Class: wxInitDialogEvent
EVT_INIT_DIALOG(func) Handles a wxEVT_INIT_DIALOG event, sent

when a dialog is initialized.
Class: wxKeyEvent

EVT_CHAR(func) Handles a wxEVT_CHAR event, generated when
the user presses a key. Provides a translated
keycode value

EVT_KEY_DOWN(func) Handles a wxEVT_KEY_DOWN event, generated
when the user presses a key. Provides an
untranslated keycode value.

EVT_KEY_UP(func) Handles a wxEVT_KEY_UP event, generated
when a key has been released. Provides an
untranslated keycode value.

620 Event Classes and Macros Appendix I

Smart_AppIf.qxd 6/10/05 11:12 AM Page 620

Class: wxMenuEvent
EVT_MENU_OPEN(func) Handles a wxEVT_MENU_OPEN event, sent when

a menu is about to be opened. On Windows,
this is only sent once for each navigation of the
menu bar.

EVT_MENU_CLOSE(func) Handles a wxEVT_MENU_CLOSE event, sent when
a menu has just been closed.

EVT_MENU_HIGHLIGHT(id, func) Handles a wxEVT_MENU_HIGHLIGHT event, sent
when the menu item with the specified id has
been highlighted. This is used to show help
prompts in a frame’s status bar.

EVT_MENU_HIGHLIGHT_ALL(func) Handles a wxEVT_MENU_HIGHLIGHT event for
any menu identifier.

Class: wxMouseEvent
EVT_LEFT_DOWN(func) Handles a wxEVT_LEFT_DOWN event, generated

when the left mouse button changes to the
“down” state.

EVT_LEFT_UP(func) Handles a wxEVT_LEFT_UP event, generated
when the left mouse button changes to the
“up” state.

EVT_LEFT_DCLICK(func) Handles a wxEVT_LEFT_DCLICK event, gener-
ated when the left mouse button is double-
clicked.

EVT_MIDDLE_DOWN(func) Handles a wxEVT_MIDDLE_DOWN event, gener-
ated when the middle mouse button changes
to the “down” state.

EVT_MIDDLE_UP(func) Handles a wxEVT_MIDDLE_DCLICK event, gener-
ated when the middle mouse button is double-
clicked.

EVT_MIDDLE_DCLICK(func) Handles a wxEVT_MIDDLE_DCLICK event, gener-
ated when the middle mouse button is double-
clicked.

EVT_RIGHT_DOWN(func) Handles a wxEVT_RIGHT_DOWN event, generated
when the right mouse button changes to the
“down” states.

EVT_RIGHT_UP(func) Handles a wxEVT_RIGHT_UP event, generated
when the right mouse button changes to the
“up” states.

EVT_RIGHT_DCLICK(func) Handles a wxEVT_RIGHT_DCLICK event, gener-
ated when the right mouse button is double-
clicked.

Appendix I 621

(continues)

Smart_AppIf.qxd 6/10/05 11:12 AM Page 621

Table I-1 Commonly Used Event Macros (Continued)

EVT_MOTION(func) Handles a wxEVT_MOTION event, generated
when the mouse moves.

EVT_ENTER_WINDOW(func) Handles a wxEVT_ENTER_WINDOW event, gener-
ated when the mouse enters the window.

EVT_LEAVE_WINDOW(func) Handles a wxEVT_LEAVE_WINDOW event, gener-
ated when the mouse leaves the window.

EVT_MOUSEWHEEL(func) Handles a wxEVT_MOUSEWHEEL event, generated
when the mouse wheel moves.

EVT_MOUSE_EVENTS(func) Handles all mouse events.
Class: wxMoveEvent

EVT_MOVE(func) Handles a wxEVT_MOVE event, generated when
a window is moved.

Class: wxNotebookEvent
EVT_NOTEBOOK_PAGE_CHANGED The page selection has changed.
(id, func)

EVT_NOTEBOOK_PAGE_CHANGING The selection is about to change. You can veto
(id, func) the selection change with Veto.

Class: wxPaintEvent
EVT_PAINT(func) Handles a wxEVT_PAINT event, generated when

an area of a window needs to be repainted.
Class: wxScrollEvent 1

EVT_SCROLL(func) Handles all scroll events.
EVT_SCROLL_TOP(func) Handles wxEVT_SCROLL_TOP scroll-to-top

events (minimum position).
EVT_SCROLL_BOTTOM(func) Handles wxEVT_SCROLL_TOP scroll-to-bottom

events (maximum position).
EVT_SCROLL_LINEUP(func) Handles wxEVT_SCROLL_LINEUP line up events.
EVT_SCROLL_LINEDOWN(func) Handles wxEVT_SCROLL_LINEDOWN line down

events.
EVT_SCROLL_PAGEUP(func) Handles wxEVT_SCROLL_PAGEUP page up

events.
EVT_SCROLL_PAGEDOWN(func) Handles wxEVT_SCROLL_PAGEDOWN page down

events.
EVT_SCROLL_THUMBTRACK(func) Handles wxEVT_SCROLL_THUMBTRACK thumb

track events (frequent events sent as the user
drags the thumbtrack).

EVT_SCROLL_THUMBRELEASE(func) Handles wxEVT_SCROLL_THUMBRELEASE thumb
release events.

EVT_SCROLL_ENDSCROLL(func) Handles wxEVT_SCROLL_ENDSCROLL end of
scrolling events (Windows only).

EVT_COMMAND_SCROLL(id, func) Handles all scroll events.

622 Event Classes and Macros Appendix I

1. These macros are used to handle scroll events from wxScrollBar, wxSlider, and wxSpinButton. See
wxScrollWinEvent for wxScrolledWindow events.

Smart_AppIf.qxd 6/10/05 11:12 AM Page 622

EVT_COMMAND_SCROLL_TOP Handles wxEVT_SCROLL_TOP scroll-to-top
(id, func) events (minimum position).
EVT_COMMAND_SCROLL_BOTTOM Handles wxEVT_SCROLL_TOP scroll-to-
(id, func) bottom events (maximum position).
EVT_COMMAND_SCROLL_LINEUP Handles wxEVT_SCROLL_LINEUP line up events.
(id, func)

EVT_COMMAND_SCROLL_LINEDOWN Handles wxEVT_SCROLL_LINEDOWN line down
(id, func) events.
EVT_COMMAND_SCROLL_PAGEUP Handles wxEVT_SCROLL_PAGEUP page up
(id, func) events.
EVT_COMMAND_SCROLL_PAGEDOWN Handles wxEVT_SCROLL_PAGEDOWN page down
(id, func) events.
EVT_COMMAND_SCROLL_THUMBTRACK Handles wxEVT_SCROLL_THUMBTRACK thumb
(id, func) track events (frequent events sent as the user

drags the thumbtrack).
EVT_COMMAND_SCROLL_THUMBRELEASE Handles wxEVT_SCROLL_THUMBRELEASE thumb
(id, func) release events.
EVT_COMMAND_SCROLL_ENDSCROLL Handles wxEVT_SCROLL_ENDSCROLL end of
(id, func) scrolling events (Windows only).

Class: wxScrollWinEvent 2

EVT_SCROLLWIN(func) Handles all scroll events.
EVT_SCROLLWIN_TOP(func) Handles wxEVT_SCROLLWIN_TOP scroll-to-top

events.
EVT_SCROLLWIN_BOTTOM(func) Handles wxEVT_SCROLLWIN_TOP scroll-to-

bottom events.
EVT_SCROLLWIN_LINEUP(func) Handles wxEVT_SCROLLWIN_LINEUP line up

events.
EVT_SCROLLWIN_LINEDOWN(func) Handles wxEVT_SCROLLWIN_LINEDOWN line

down events.
EVT_SCROLLWIN_PAGEUP(func) Handles wxEVT_SCROLLWIN_PAGEUP page up

events.
EVT_SCROLLWIN_PAGEDOWN(func) Handles wxEVT_SCROLLWIN_PAGEDOWN page

down events.
EVT_SCROLLWIN_THUMBTRACK(func) Handles wxEVT_SCROLLWIN_THUMBTRACK

thumbtrack events (frequent events sent as
the user drags the thumbtrack).

EVT_SCROLLWIN_THUMBRELEASE (func) Handles wxEVT_SCROLLWIN_THUMBRELEASE thumb
release events.

Appendix I 623

2. These macros are used to handle scroll events from scrolling windows. See also wxScrollEvent
earlier.

(continues)

Smart_AppIf.qxd 6/10/05 11:12 AM Page 623

Table I-1 Commonly Used Event Macros (Continued)

Class: wxSizeEvent
EVT_SIZE(func) Handles a wxEVT_SIZE event, generated

when the window is resized.
Class: wxSpinEvent

EVT_SPIN(id, func) Handles a wxEVT_SCROLL_THUMBTRACK event,
generated for a wxSpinButton or wxSpinCtrl
whenever the up or down arrows are clicked.

EVT_SPIN_UP(id, func) Handles a wxEVT_SCROLL_LINEUP event, gen-
erated for a wxSpinButton or wxSpinCtrl
when the up arrow is clicked.

EVT_SPIN_DOWN(id, func) Handles a wxEVT_SCROLL_LINEDOWN event,
generated for a wxSpinButton or wxSpinCtrl
when the down arrow is clicked.

EVT_SPINCTRL(id, func) Handles all events generated for a
wxSpinCtrl.

Class: wxSplitterEvent
EVT_SPLITTER_SASH_POS_ Processes a wxEVT_COMMAND_SPLITTER_SASH_
CHANGING(id, func) POS_CHANGING event, generated when the

sash position is in the process of being
changed.

EVT_SPLITTER_SASH_POS_CHANGED Processes a wxEVT_COMMAND_SPLITTER_SASH_
(id, func) POS_CHANGED event, generated when the sash

position is changed. May be used to modify
the sash position before it is set, or to prevent
the change from taking place.

EVT_SPLITTER_UNSPLIT(id, func) Processes a wxEVT_COMMAND_SPLITTER_
UNSPLIT event, generated when the splitter is
unsplit.

EVT_SPLITTER_DCLICK(id, func) Processes a wxEVT_COMMAND_SPLITTER_
DOUBLECLICKED event, generated when the
sash is double-clicked.

Class: wxSysColourChangeEvent
EVT_SYS_COLOUR_CHANGED Processes a wxEVT_SYS_COLOUR_CHANGED
event, (func) generated when the user changed a color in

the control panel (Windows only).
Class: wxUpdateUIEvent

EVT_UPDATE_UI(id, func) The EVT_UPDATE_UI macro is used to handle
user interface update pseudo-events, which
are generated to give the application the
chance to update the visual state of menus,
toolbars, and controls (see Chapter 9,
“Creating Custom Dialogs”). Processes a
wxEVT_UPDATE_UI event.

EVT_UPDATE_UI_RANGE Processes a wxEVT_UPDATE_UI event for a
(id1, id2, func) range of identifiers.

624 Event Classes and Macros Appendix I

Smart_AppIf.qxd 6/10/05 11:12 AM Page 624

Class: wxWindowCreateEvent
EVT_WINDOW_CREATE(func) Processes a wxEVT_CREATE propagating event,

generated when the underlying window has
just been created.

Class: wxWindowDestroyEvent
EVT_WINDOW_DESTROY(func) Processes a wxEVT_DELETE propagating event,

generated when the window is about to be
destroyed.

EVT_MIDDLE_DCLICK(func) Handles a wxEVT_MIDDLE_DCLICK event, gener-
ated when the middle mouse button is double-
clicked.

EVT_RIGHT_DOWN(func) Handles a wxEVT_RIGHT_DOWN event, generated
when the right mouse button changes to the
“down” states.

EVT_RIGHT_UP(func) Handles a wxEVT_RIGHT_UP event, generated
when the right mouse button changes to the
“up” states.

Appendix I 625

Smart_AppIf.qxd 6/10/05 11:12 AM Page 625

Smart_AppIf.qxd 6/10/05 11:12 AM Page 626

A P P E N D I X J

Code Listings

CUSTOM DIALOG CLASS IMPLEMENTATION

These are the header and implementation files for the PersonalRecordDialog
class described in Chapter 9, “Creating Custom Dialogs.” It can be found in
examples/chap09 on the CD-ROM.

Listing J-1 Header File for PersonalRecordDialog

//
// Name: personalrecord.h
// Purpose: Dialog to get name, age, sex, and voting preference
// Author: Julian Smart
// Created: 02/28/04 06:52:49
// Copyright: (c) 2004, Julian Smart
// Licence: wxWindows license
//

#ifndef _PERSONALRECORD_H_
#define _PERSONALRECORD_H_

#ifdef __GNUG__
#pragma interface “personalrecord.cpp”
#endif

/*!
* Includes
*/

#include “wx/spinctrl.h”
#include “wx/statline.h”

/*!
* Control identifiers
*/

627

(continues)

Smart_AppJf.qxd 6/10/05 11:12 AM Page 627

Listing J-1 (Continued)

enum {
ID_PERSONAL_RECORD = 10000,
ID_NAME = 10001,
ID_AGE = 10002,
ID_SEX = 10003,
ID_VOTE = 10006,
ID_RESET = 10004

};

/*!
* PersonalRecordDialog class declaration
*/

class PersonalRecordDialog: public wxDialog
{

DECLARE_CLASS(PersonalRecordDialog)
DECLARE_EVENT_TABLE()

public:

//// Constructors

PersonalRecordDialog();

PersonalRecordDialog(wxWindow* parent,
wxWindowID id = ID_PERSONAL_RECORD,
const wxString& caption = wxT(“Personal Record”),
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxCAPTION|wxRESIZE_BORDER|wxSYSTEM_MENU);

/// Member initialization
void Init();

/// Creation
bool Create(wxWindow* parent,
wxWindowID id = ID_PERSONAL_RECORD,
const wxString& caption = wxT(“Personal Record”),
const wxPoint& pos = wxDefaultPosition,
const wxSize& size = wxDefaultSize,
long style = wxCAPTION|wxRESIZE_BORDER|wxSYSTEM_MENU);

/// Creates the controls and sizers
void CreateControls();

/// Sets the validators for the dialog controls
void SetDialogValidators();

/// Sets the help text for the dialog controls
void SetDialogHelp();

/// Name accessors
void SetName(const wxString& name) { m_name = name; }
wxString GetName() const { return m_name; }

/// Age accessors
void SetAge(int age) { m_age = age; }
int GetAge() const { return m_age; }

628 Code Listings Appendix J

Smart_AppJf.qxd 6/10/05 11:12 AM Page 628

/// Sex accessors (male = false, female = true)
void SetSex(bool sex) { sex ? m_sex = 1 : m_sex = 0; }
bool GetSex() const { return m_sex == 1; }

/// Does the person vote?
void SetVote(bool vote) { m_vote = vote; }
bool GetVote() const { return m_vote; }

//// PersonalRecordDialog event handler declarations

/// wxEVT_UPDATE_UI event handler for ID_VOTE
void OnVoteUpdate(wxUpdateUIEvent& event);

/// wxEVT_COMMAND_BUTTON_CLICKED event handler for ID_RESET
void OnResetClick(wxCommandEvent& event);

/// wxEVT_COMMAND_BUTTON_CLICKED event handler for wxID_HELP
void OnHelpClick(wxCommandEvent& event);

//// PersonalRecordDialog member variables

/// Data members
wxString m_name;
int m_age;
int m_sex;
bool m_vote;

};

#endif

// _PERSONALRECORD_H_

Listing J-2 Implementation File for PersonalRecordDialog

//
// Name: personalrecord.cpp
// Purpose: Dialog to get name, age, sex, and voting preference
// Author: Julian Smart
// Created: 02/28/04 06:52:49
// Copyright: (c) 2004, Julian Smart
// Licence: wxWindows license
//

#ifdef __GNUG__
#pragma implementation “personalrecord.h”
#endif

// For compilers that support precompilation, includes “wx/wx.h”.
#include “wx/wxprec.h”

#ifdef __BORLANDC__
#pragma hdrstop
#endif

#include “wx/valtext.h”
#include “wx/valgen.h”

Custom Dialog Class Implementation 629

(continues)

Smart_AppJf.qxd 6/10/05 11:12 AM Page 629

Listing J-2 (Continued)

#include “personalrecord.h”

/*!
* PersonalRecordDialog type definition
*/

IMPLEMENT_CLASS(PersonalRecordDialog, wxDialog)

/*!
* PersonalRecordDialog event table definition
*/

BEGIN_EVENT_TABLE(PersonalRecordDialog, wxDialog)
EVT_UPDATE_UI(ID_VOTE, PersonalRecordDialog::OnVoteUpdate)
EVT_BUTTON(ID_RESET, PersonalRecordDialog::OnResetClick)
EVT_BUTTON(wxID_HELP, PersonalRecordDialog::OnHelpClick)

END_EVENT_TABLE()

/*!
* PersonalRecordDialog constructors
*/

PersonalRecordDialog::PersonalRecordDialog()
{

Init();
}

PersonalRecordDialog::PersonalRecordDialog(wxWindow* parent,
wxWindowID id, const wxString& caption,
const wxPoint& pos, const wxSize& size, long style)

{
Init();

Create(parent, id, caption, pos, size, style);
}

/// Initialization
void PersonalRecordDialog::Init()
{

m_name = wxEmptyString;
m_age = 25;
m_sex = false;
m_vote = false;

}

/*!
* PersonalRecord creator
*/

bool PersonalRecordDialog::Create(wxWindow* parent,
wxWindowID id, const wxString& caption,
const wxPoint& pos, const wxSize& size, long style)

{
// We have to set extra styles before creating the
// dialog

SetExtraStyle(wxWS_EX_BLOCK_EVENTS|wxDIALOG_EX_CONTEXTHELP);

630 Code Listings Appendix J

Smart_AppJf.qxd 6/10/05 11:12 AM Page 630

if (!wxDialog::Create(parent, id, caption, pos, size, style))
return false;

CreateControls();
SetDialogHelp();
SetDialogValidators();

// This fits the dialog to the minimum size dictated by
// the sizers

GetSizer()->Fit(this);

// This ensures that the dialog cannot be sized smaller
// than the minimum size

GetSizer()->SetSizeHints(this);

// Centre the dialog on the parent or (if none) screen

Centre();

return true;
}

/*!
* Control creation for PersonalRecordDialog
*/

void PersonalRecordDialog::CreateControls()
{

// A top-level sizer

wxBoxSizer* topSizer = new wxBoxSizer(wxVERTICAL);
this->SetSizer(topSizer);

// A second box sizer to give more space around the controls

wxBoxSizer* boxSizer = new wxBoxSizer(wxVERTICAL);
topSizer->Add(boxSizer, 0, wxALIGN_CENTER_HORIZONTAL|wxALL, 5);

// A friendly message

wxStaticText* descr = new wxStaticText(this, wxID_STATIC,
wxT(“Please enter your name, age and sex, and specify whether you

wish to\nvote in a general election.”), wxDefaultPosition, wxDefaultSize,
0);

boxSizer->Add(descr, 0, wxALIGN_LEFT|wxALL, 5);

// Spacer

boxSizer->Add(5, 5, 0, wxALIGN_CENTER_HORIZONTAL|wxALL, 5);

// Label for the name text control

wxStaticText* nameLabel = new wxStaticText (this, wxID_STATIC,
wxT(“&Name:”), wxDefaultPosition, wxDefaultSize, 0);

boxSizer->Add(nameLabel, 0, wxALIGN_LEFT|wxALL, 5);

// A text control for the user’s name

Custom Dialog Class Implementation 631

(continues)

Smart_AppJf.qxd 6/10/05 11:12 AM Page 631

Listing J-2 (Continued)

wxTextCtrl* nameCtrl = new wxTextCtrl (this, ID_NAME, wxT(“Emma”),
wxDefaultPosition, wxDefaultSize, 0);

boxSizer->Add(nameCtrl, 0, wxGROW|wxALL, 5);

// A horizontal box sizer to contain age, sex and vote

wxBoxSizer* ageSexVoteBox = new wxBoxSizer(wxHORIZONTAL);
boxSizer->Add(ageSexVoteBox, 0, wxGROW|wxALL, 5);

// Label for the age control

wxStaticText* ageLabel = new wxStaticText (this, wxID_STATIC,
wxT(“&Age:”), wxDefaultPosition, wxDefaultSize, 0);

ageSexVoteBox->Add(ageLabel, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// A spin control for the user’s age

wxSpinCtrl* ageSpin = new wxSpinCtrl (this, ID_AGE,
wxEmptyString, wxDefaultPosition, wxSize(60, -1),
wxSP_ARROW_KEYS, 0, 120, 25);

ageSexVoteBox->Add(ageSpin, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// Label for the sex control

wxStaticText* sexLabel = new wxStaticText (this, wxID_STATIC,
wxT(“&Sex:”), wxDefaultPosition, wxDefaultSize, 0);

ageSexVoteBox->Add(sexLabel, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// Create the sex choice control

wxString sexStrings[] = {
wxT(“Male”),
wxT(“Female”)

};

wxChoice* sexChoice = new wxChoice (this, ID_SEX,
wxDefaultPosition, wxSize(80, -1), WXSIZEOF(sexStrings),

sexStrings, 0);
sexChoice->SetStringSelection(wxT(“Female”));
ageSexVoteBox->Add(sexChoice, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// Add a spacer that stretches to push the Vote control
// to the right

ageSexVoteBox->Add(5, 5, 1, wxALIGN_CENTER_VERTICAL|wxALL, 5);

wxCheckBox* voteCheckBox = new wxCheckBox(this, ID_VOTE,
wxT(“&Vote”), wxDefaultPosition, wxDefaultSize, 0);

voteCheckBox ->SetValue(true);
ageSexVoteBox->Add(voteCheckBox, 0,

wxALIGN_CENTER_VERTICAL|wxALL, 5);

// A dividing line before the OK and Cancel buttons

wxStaticLine* line = new wxStaticLine (this, wxID_STATIC,
wxDefaultPosition, wxDefaultSize, wxLI_HORIZONTAL);

boxSizer->Add(line, 0, wxGROW|wxALL, 5);

632 Code Listings Appendix J

Smart_AppJf.qxd 6/10/05 11:12 AM Page 632

Custom Dialog Class Implementation 633

// A horizontal box sizer to contain Reset, OK, Cancel and Help

wxBoxSizer* okCancelBox = new wxBoxSizer(wxHORIZONTAL);
boxSizer->Add(okCancelBox, 0, wxALIGN_CENTER_HORIZONTAL|wxALL, 5);

// The Reset button

wxButton* reset = new wxButton(this, ID_RESET, wxT(“&Reset”),
wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(reset, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// The OK button

wxButton* ok = new wxButton (this, wxID_OK, wxT(“&OK”),
wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(ok, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// The Cancel button

wxButton* cancel = new wxButton (this, wxID_CANCEL,
wxT(“&Cancel”), wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(cancel, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);

// The Help button

wxButton* help = new wxButton(this, wxID_HELP, wxT(“&Help”),
wxDefaultPosition, wxDefaultSize, 0);

okCancelBox->Add(help, 0, wxALIGN_CENTER_VERTICAL|wxALL, 5);
}

// Set the validators for the dialog controls
void PersonalRecordDialog::SetDialogValidators()
{

FindWindow(ID_NAME)->SetValidator(
wxTextValidator(wxFILTER_ALPHA, & m_name));

FindWindow(ID_AGE)->SetValidator(
wxGenericValidator(& m_age));

FindWindow(ID_SEX)->SetValidator(
wxGenericValidator(& m_sex));

FindWindow(ID_VOTE)->SetValidator(
wxGenericValidator(& m_vote));

}

// Sets the help text for the dialog controls
void PersonalRecordDialog::SetDialogHelp()
{

wxString nameHelp = wxT(“Enter your full name.”);
wxString ageHelp = wxT(“Specify your age.”);
wxString sexHelp = wxT(“Specify your gender, male or female.”);
wxString voteHelp = wxT(“Check this if you wish to vote.”);

FindWindow(ID_NAME)->SetHelpText(nameHelp);
FindWindow(ID_NAME)->SetToolTip(nameHelp);

FindWindow(ID_AGE)->SetHelpText(ageHelp);
FindWindow(ID_AGE)->SetToolTip(ageHelp);

FindWindow(ID_SEX)->SetHelpText(sexHelp);
FindWindow(ID_SEX)->SetToolTip(sexHelp);

(continues)

Smart_AppJf.qxd 6/10/05 11:12 AM Page 633

634 Code Listings Appendix J

Listing J-2 (Continued)

FindWindow(ID_VOTE)->SetHelpText(voteHelp);
FindWindow(ID_VOTE)->SetToolTip(voteHelp);

}

/*!
* wxEVT_UPDATE_UI event handler for ID_CHECKBOX
*/

void PersonalRecordDialog::OnVoteUpdate(wxUpdateUIEvent& event)
{

wxSpinCtrl* ageCtrl = (wxSpinCtrl*) FindWindow(ID_AGE);
if (ageCtrl->GetValue() < 18)
{

event.Enable(false)
event.Check(false);

}
else

event.Enable(true);
}

/*!
* wxEVT_COMMAND_BUTTON_CLICKED event handler for ID_RESET
*/

void PersonalRecordDialog::OnResetClick(wxCommandEvent& event)
{

Init();
TransferDataToWindow();

}

/*!
* wxEVT_COMMAND_BUTTON_CLICKED event handler for wxID_HELP
*/

void PersonalRecordDialog::OnHelpClick(wxCommandEvent& event)
{

// Normally we would wish to display proper online help.
// For this example, we’re just using a message box.
/*
wxGetApp().GetHelpController().DisplaySection(wxT(“Personal record

dialog”));
*/

wxString helpText =
wxT(“Please enter your full name, age and gender.\n”)
wxT(“Also indicate your willingness to vote in general

elections.\n\n”)
wxT(“No non-alphabetical characters are allowed in the name

field.\n”)
wxT(“Try to be honest about your age.”);

wxMessageBox(helpText,
wxT(“Personal Record Dialog Help”),
wxOK|wxICON_INFORMATION, this);

}

Smart_AppJf.qxd 6/10/05 11:12 AM Page 634

WXWIZARD SAMPLE CODE

This code is the full listing for the wxWizard example as described in Chapter
12, “Advanced Window Classes.” It can be found in examples/chap12 on the
CD-ROM.

Listing J-3 Wizard Sample Code

//
// Name: wizard.cpp
// Purpose: wxWidgets sample demonstrating wxWizard control
// Author: Vadim Zeitlin
// Licence: wxWindows licence
//

// headers

#include “wx/wx.h”
#include “wx/wizard.h”

#include “wiztest.xpm”
#include “wiztest2.xpm”

// constants

// ids for menu items
enum
{

Wizard_Quit = 100,
Wizard_Run,
Wizard_About = 1000

};

// private classes

class MyApp : public wxApp
{
public:

// override base class virtuals
virtual bool OnInit();

};

class MyFrame : public wxFrame
{
public:

// ctor(s)
MyFrame(const wxString& title);

// event handlers
void OnQuit(wxCommandEvent& event);
void OnAbout(wxCommandEvent& event);
void OnRunWizard(wxCommandEvent& event);
void OnWizardCancel(wxWizardEvent& event);
void OnWizardFinished(wxWizardEvent& event);

private:
DECLARE_EVENT_TABLE()

};

wxWizard Sample Code 635

(continues)

Smart_AppJf.qxd 6/10/05 11:12 AM Page 635

636 Code Listings Appendix J

Listing J-3 (Continued)

// some pages for our wizard
// this shows how to simply control the validity of the user input
// by just overriding TransferDataFromWindow() - of course, in a
// real program, the check wouldn’t be so trivial and the data
// will be probably saved somewhere too
//
// it also shows how to use a different bitmap for one of the pages
class wxValidationPage : public wxWizardPageSimple
{
public:

wxValidationPage(wxWizard *parent) : wxWizardPageSimple(parent)
{

m_bitmap = wxBitmap(wiztest2_xpm);

m_checkbox = new wxCheckBox(this, wxID_ANY,
wxT(“&Check me”));

wxBoxSizer *mainSizer = new wxBoxSizer(wxVERTICAL);
mainSizer->Add(

new wxStaticText(this, wxID_ANY,
wxT(“You need to check the checkbox\n”)
wxT(“below before going to the next page\n”)),

0,
wxALL,
5

);

mainSizer->Add(
m_checkbox,
0, // No stretching
wxALL,
5 // Border

);
SetSizer(mainSizer);
mainSizer->Fit(this);

}

virtual bool TransferDataFromWindow()
{

if (!m_checkbox->GetValue())
{

wxMessageBox(wxT(“Check the checkbox first!”),
wxT(“No way”),
wxICON_WARNING | wxOK, this);

return false;
}
return true;

}

private:
wxCheckBox *m_checkbox;

};

// This is a more complicated example of validity checking:
// using events we may allow the user to return to the previous
// page, but not to proceed. It also demonstrates how to
// intercept a Cancel button press.
class wxRadioboxPage : public wxWizardPageSimple

Smart_AppJf.qxd 6/10/05 11:12 AM Page 636

{
public:

// directions in which we allow the user to proceed from this page
enum
{

Forward, Backward, Both, Neither
};

wxRadioboxPage(wxWizard *parent) : wxWizardPageSimple(parent)
{

// should correspond to the enum above
static wxString choices[] = { wxT(“forward”), wxT(“backward”),

wxT(“both”), wxT(“neither”) };

m_radio = new wxRadioBox(this, wxID_ANY, wxT(“Allow to proceed:”),
wxDefaultPosition, wxDefaultSize,
WXSIZEOF(choices), choices,
1, wxRA_SPECIFY_COLS);

m_radio->SetSelection(Both);

wxBoxSizer *mainSizer = new wxBoxSizer(wxVERTICAL);
mainSizer->Add(

m_radio,
0, // No stretching
wxALL,
5 // Border

);
SetSizer(mainSizer);
mainSizer->Fit(this);

}

// wizard event handlers
void OnWizardCancel(wxWizardEvent& event)
{

if (wxMessageBox(wxT(“Do you really want to cancel?”),
wxT(“Question”),

wxICON_QUESTION | wxYES_NO, this) != wxYES)
{

// not confirmed
event.Veto();

}
}

void OnWizardPageChanging(wxWizardEvent& event)
{

int sel = m_radio->GetSelection();

if (sel == Both)
return;

if (event.GetDirection() && sel == Forward)
return;

if (!event.GetDirection() && sel == Backward)
return;

wxMessageBox(wxT(“You can’t go there”), wxT(“Not allowed”),
wxICON_WARNING | wxOK, this);

wxWizard Sample Code 637

(continues)

Smart_AppJf.qxd 6/10/05 11:12 AM Page 637

Listing J-3 (Continued)

event.Veto();
}

private:
wxRadioBox *m_radio;

DECLARE_EVENT_TABLE()
};

// this shows how to dynamically (i.e. during run-time) arrange
// the page order
class wxCheckboxPage : public wxWizardPage
{
public:

wxCheckboxPage(wxWizard *parent,
wxWizardPage *prev,
wxWizardPage *next)

: wxWizardPage(parent)
{

m_prev = prev;
m_next = next;

wxBoxSizer *mainSizer = new wxBoxSizer(wxVERTICAL);

mainSizer->Add(
new wxStaticText(this, wxID_ANY, wxT(“Try checking the box

below and\n”)
wxT(“then going back and clearing it”)),

0, // No vertical stretching
wxALL,
5 // Border width

);

m_checkbox = new wxCheckBox(this, wxID_ANY,
wxT(“&Skip the next page”));

mainSizer->Add(
m_checkbox,
0, // No vertical stretching
wxALL,
5 // Border width

);

SetSizer(mainSizer);
mainSizer->Fit(this);

}

// implement wxWizardPage functions
virtual wxWizardPage *GetPrev() const { return m_prev; }
virtual wxWizardPage *GetNext() const
{

return m_checkbox->GetValue() ? m_next->GetNext() : m_next;
}

private:
wxWizardPage *m_prev,

*m_next;

wxCheckBox *m_checkbox;

638 Code Listings Appendix J

Smart_AppJf.qxd 6/10/05 11:12 AM Page 638

};

// implementation

// event tables and such

BEGIN_EVENT_TABLE(MyFrame, wxFrame)
EVT_MENU(Wizard_Quit, MyFrame::OnQuit)
EVT_MENU(Wizard_About, MyFrame::OnAbout)
EVT_MENU(Wizard_Run, MyFrame::OnRunWizard)

EVT_WIZARD_CANCEL(wxID_ANY, MyFrame::OnWizardCancel)
EVT_WIZARD_FINISHED(wxID_ANY, MyFrame::OnWizardFinished)

END_EVENT_TABLE()

BEGIN_EVENT_TABLE(wxRadioboxPage, wxWizardPageSimple)
EVT_WIZARD_PAGE_CHANGING(wxID_ANY,

wxRadioboxPage::OnWizardPageChanging)
EVT_WIZARD_CANCEL(wxID_ANY, wxRadioboxPage::OnWizardCancel)

END_EVENT_TABLE()

IMPLEMENT_APP(MyApp)

// the application class

bool MyApp::OnInit()
{

MyFrame *frame = new MyFrame(wxT(“wxWizard Sample”));

frame->Show(true);

// we’re done
return true;

}

// MyFrame

MyFrame::MyFrame(const wxString& title)
: wxFrame((wxFrame *)NULL, wxID_ANY, title,

wxDefaultPosition, wxSize(250, 150)) // small frame
{

wxMenu *fileMenu = new wxMenu;
fileMenu->Append(Wizard_Run, wxT(“&Run wizard...\tCtrl-R”));
fileMenu->AppendSeparator();
fileMenu->Append(Wizard_Quit, wxT(“E&xit\tAlt-X”), wxT(“Quit this

program”));

wxMenu *helpMenu = new wxMenu;
helpMenu->Append(Wizard_About, wxT(“&About...\tF1”), wxT(“Show about

dialog”));

// now append the freshly created menu to the menu bar...
wxMenuBar *menuBar = new wxMenuBar();
menuBar->Append(fileMenu, wxT(“&File”));
menuBar->Append(helpMenu, wxT(“&Help”));

// ... and attach this menu bar to the frame
SetMenuBar(menuBar);

wxWizard Sample Code 639

(continues)

Smart_AppJf.qxd 6/10/05 11:12 AM Page 639

Listing J-3 (Continued)

// also create status bar which we use in OnWizardCancel
CreateStatusBar();

}

void MyFrame::OnQuit(wxCommandEvent& WXUNUSED(event))
{

// true is to force the frame to close
Close(true);

}

void MyFrame::OnAbout(wxCommandEvent& WXUNUSED(event))
{

wxMessageBox(wxT(“Demo of wxWizard class\n”)
wxT(“(c) 1999, 2000 Vadim Zeitlin”),
wxT(“About wxWizard sample”), wxOK | wxICON_INFORMA-

TION, this);
}

void MyFrame::OnRunWizard(wxCommandEvent& WXUNUSED(event))
{

wxWizard *wizard = new wxWizard(this, wxID_ANY,
wxT(“Absolutely Useless Wizard”),
wxBitmap(wiztest_xpm),
wxDefaultPosition,
wxDEFAULT_DIALOG_STYLE | wxRESIZE_BORDER);

// a wizard page may be either an object of predefined class
wxWizardPageSimple *page1 = new wxWizardPageSimple(wizard);
wxStaticText *text = new wxStaticText(page1, wxID_ANY,

wxT(“This wizard doesn’t help you\nto do anything at all.\n”)
wxT(“\n”)
wxT(“The next pages will present you\nwith more useless con-

trols.”),
wxPoint(5,5)

);

// ... or a derived class
wxRadioboxPage *page3 = new wxRadioboxPage(wizard);
wxValidationPage *page4 = new wxValidationPage(wizard);

// set the page order using a convenience function – could
// also use SetNext/Prev directly as below
wxWizardPageSimple::Chain(page3, page4);

// this page is not a wxWizardPageSimple, so we use SetNext/Prev
// to insert it into the chain of pages
wxCheckboxPage *page2 = new wxCheckboxPage(wizard, page1, page3);
page1->SetNext(page2);
page3->SetPrev(page2);

// allow the wizard to size itself around the pages
wizard->GetPageAreaSizer()->Add(page1);

if (wizard->RunWizard(page1))
{

640 Code Listings Appendix J

Smart_AppJf.qxd 6/10/05 11:12 AM Page 640

wxMessageBox(wxT(“The wizard successfully completed”),
wxT(“That’s all”), wxICON_INFORMATION | wxOK);

}

wizard->Destroy();
}

void MyFrame::OnWizardFinished(wxWizardEvent& WXUNUSED(event))
{

wxLogStatus(this, wxT(“The wizard finished successfully.”));
}

void MyFrame::OnWizardCancel(wxWizardEvent& WXUNUSED(event))
{

wxLogStatus(this, wxT(“The wizard was cancelled.”));

}

wxWizard Sample Code 641

Smart_AppJf.qxd 6/10/05 11:12 AM Page 641

Smart_AppJf.qxd 6/10/05 11:12 AM Page 642

A P P E N D I X K

Porting from MFC

There are thousands of applications and millions of lines of code written in
MFC, and it’s increasingly common for organizations and individuals to
migrate from MFC to wxWidgets to take advantage of other platforms and
markets. Porting is easier than you might think because the wxWidgets API
has many concepts and constructs that are similar to those in MFC. This
appendix gives you an idea of what’s involved, provides comparisons for par-
ticular features, and suggests some porting strategies.

GENERAL OBSERVATIONS

The processes of programming with MFC and programming with wxWidgets
are fairly similar. In each, you write application, window, and other classes;
create dialogs using suitable tools; define how user interaction relates to code;
and compile and link the code with the GUI library. You can continue to use
(say) Visual Studio to edit, compile, and debug your wxWidgets applications,
using external tools such as DialogBlocks to create your dialogs. Or, you can
use an open source IDE such as Dev-C++ or Eclipse; you can even switch to
Linux or Mac as your main platform.

On Windows, you can combine MFC and wxWidgets code into a single
executable: see samples/mfc in wxWidgets. So if you really need to, you may be
able to delay porting parts of your code as long as you only need it on
Windows. However, the complexity and space overhead of combining two
frameworks means that a clean break from MFC is a better strategy.

FEATURE COMPARISON

We continue with a selection of topics to show how MFC constructs can be
ported to wxWidgets.

643

Smart_AppKf.qxd 6/10/05 11:13 AM Page 643

Application Initialization

Like MFC, a wxWidgets application is driven by an application class: wxApp
instead of CWinApp. The CWinApp::InitInstance override is replaced by
wxApp::OnInit, which returns a boolean value to indicate that the event loop
should be started. Application cleanup is done in wxApp::OnExit instead of
CWinApp::ExitInstance.

wxWidgets applications require the IMPLEMENT_APP declaration to be
placed in the application class implementation file, for example:

IMPLEMENT_APP(MyApp)

MFC applications access the command line with the m_lpCmdLine string mem-
ber of CWinApp (or GetCommandLine), whereas in wxWidgets, you access the argc
and argv members of wxApp, which are in the same format as the parameters of
the traditional C main function. To help convert your existing command-line
parsing code, use the wxCmdLineParser class explained in Chapter 20,
“Perfecting Your Application.”

Message Maps

Where MFC has message maps, wxWidgets uses event tables. (wxWidgets can
also route events dynamically, using a different syntax.) The principle of event
tables should be immediately familiar to MFC programmers. Although mes-
sage handler functions can have an arbitrary number of parameters,
wxWidgets event handlers always take a single event argument, through
which information can be passed in and out of the event handler. As with
MFC, event tables can be placed in a window or in the application class, and in
document and view classes when using the document/view framework. Let’s
compare an MFC message map with a wxWidgets event table. Here’s the
application class and message map in MFC (note that the class declaration
and message map would normally be in separate files):

//
// MFC message map
//

class CDemoApp: public CWinApp
{
public:

CDemoApp();

// Overrides
virtual BOOL InitInstance();

// Implementation

afx_msg void OnAppAbout();
afx_msg void OnFileSave();

644 Porting from MFC Appendix K

Smart_AppKf.qxd 6/10/05 11:13 AM Page 644

afx_msg void OnStretchMode();
afx_msg void OnUpdateStretchMode(CCmdUI* pCmdUI);

// Attributes
private:

int m_stretchMode;
MyFrame *m_mainFrame;

DECLARE_MESSAGE_MAP()
};

BEGIN_MESSAGE_MAP(CDemoApp, CWinApp)
ON_COMMAND(ID_APP_ABOUT, CDemoApp::OnAppAbout)
ON_COMMAND(ID_FILE_SAVE, CDemoApp::OnFileSave)
ON_COMMAND(ID_STRETCH_MODE, CDemoApp::OnUpdateStretchMode)
ON_UPDATE_COMMAND_UI(ID_STRETCH_MODE, OnUpdateStretchMode)

END_MESSAGE_MAP()

void CDemoApp::OnAppAbout()
{

m_mainFrame->MessageBox(_T(“Demo App (c) 2005”), _T(“About Demo
App”));
}

void CDemoApp::OnFileSave()
{

CFileDialog fileDialog(false, _T(“txt”), NULL, NULL,
OFN_OVERWRITEPROMPT,

_T(“Text files (*.txt)|*.txt”), m_mainFrame);

if (fileDialog.DoModal() == IDOK)
{

CString fullPath = fileDialog.GetPathName();
...

}
}

void CDemoApp::OnStretchMode()
{

m_stretchMode = !m_stretchMode;
}

void CDemoApp::OnUpdateStretchMode(CCmdUI* pCmdUI)
{

pCmdUI->SetCheck(m_stretchMode);
pCmdUI->Enable(true);

}

In wxWidgets, the equivalent class declaration and event table are as follows:

//
// wxWidgets event table
//

class CDemoApp: public wxApp
{
public:

Feature Comparison 645

Smart_AppKf.qxd 6/10/05 11:13 AM Page 645

wxApp();

// Overrides
virtual bool OnInit();

// Implementation

void OnAppAbout(wxCommandEvent& event);
void OnFileSave(wxCommandEvent& event);
void OnStretchMode(wxCommandEvent& event);
void OnUpdateStretchMode(wxUpdateUIEvent& event);

// Attributes
private:

int m_stretchMode;
MyFrame *m_mainFrame;

DECLARE_EVENT_TABLE()
};

BEGIN_EVENT_TABLE(CDemoApp, wxApp)
EVT_MENU(ID_APP_ABOUT, CDemoApp::OnAppAbout)
EVT_MENU(CDemoApp::OnFileSave)
EVT_MENU(CDemoApp::OnUpdateStretchMode)
EVT_UPDATE_UI(ID_STRETCH_MODE, CDemoApp::OnUpdateStretchMode)

END_EVENT_TABLE()

void CDemoApp::OnAppAbout(wxCommandEvent& event)
{

wxMessageBox(wxT(“Demo App (c) 2005”), wxT(“About Demo App”));
}

void CDemoApp::OnFileSave(wxCommandEvent& event)
{

wxFileDialog fileDialog(m_mainFrame, wxT(“Choose a file”),
wxEmptyString, wxEmptyString, wxT(“Text files (*.txt)|*.txt”)),
wxSAVE|wxOVERWRITE_PROMPT);

if (fileDialog.DoModal() == IDOK)
{

wxString fullPath = fileDialog.GetPath();
...

}
}

void CDemoApp::OnStretchMode(wxCommandEvent& event)
{

m_stretchMode = !m_stretchMode;
}

void CDemoApp::OnUpdateStretchMode(wxUpdateUIEvent& event)
{

event.Check(m_stretchMode);
event.Enable(true);

}

646 Porting from MFC Appendix K

Smart_AppKf.qxd 6/10/05 11:13 AM Page 646

As you can see, wxWidgets has an equivalent of MFC’s user-interface updat-
ing, discussed in Chapter 9, “Creating Custom Dialogs.”

Converting Dialogs and Other Resources

Resource Files

wxWidgets uses Windows RC files to include only a small number of essential
resources, not for an application’s dialogs and menus. Instead, wxWidgets has
the XRC resource system, whose files can be written by a variety of commer-
cial and open source dialog designers (refer to Appendix C, “Creating
Applications with DialogBlocks,” and Appendix E, “Third-Party Tools for
wxWidgets”). You can also choose to have a designer tool generate C++ code to
create the dialogs and menus.

With Windows resource files, most of an application’s resources are
bound with the executable (by linking the binary RES file). If you use
wxWidgets’ XRC files, you can load resources dynamically, or you can use the
wxrc utility to convert your XRC files into a zip file, or C++ code that can be
compiled into the application. However, bitmap files are not included in this
process. You can consider converting small bitmaps to XPM files, which are
supported on all platforms, or putting them in a zip archive with any other
application files (refer to Chapter 20).

A wxWidgets application’s RC file typically looks like this:

aaaaaa ICON “myapp.ico”

#include “wx/msw/wx.rc”

The only purpose of the “aaaaaa” icon is to ensure that Windows shows the
correct application icon in the Explorer, desktop, or Start menu. The name
reflects the fact that the alphabetically first icon is used. The icon in your
Windows resources is not generally used for setting a frame icon in wxWidgets
application code. Instead, an icon is provided by loading XPM images into a
wxIconBundle object and associating it with the window. You may want to edit
icons in a bitmap editor capable of saving PNG files with transparency infor-
mation and convert these files to XPM using an application such as
Anthemion Software’s ImageBlocks. For creating the application icon
(myapp.ico), you can paste images into an icon editor, such as PC Magazine’s
IconEdit32.

Re-Creating the Dialogs

Faced with the task of converting many MFC dialogs, there is bad news, and
there is good news. The bad news is that there is no way to fully automate the
conversion. The good news is that there are tools to help make the task much

Feature Comparison 647

Smart_AppKf.qxd 6/10/05 11:13 AM Page 647

easier, and the similarities between the wxWidgets API and the MFC API
make conversions straightforward.

With a dialog editor (or RAD tool), you can rapidly re-create and surpass
your MFC dialogs: your dialogs will be resizable, they will adapt to changes in
label lengths due to translation, and they will adapt to controls of different
sizes on different platforms. In addition, DialogBlocks has a resource import
function that can do a first-pass conversion of RC-based dialogs into
wxWidgets dialogs. Because these still use absolute positioning, it’s recom-
mended that you use the resulting dialogs only for reference and that you copy
and paste the controls to a sizer-based dialog.

One possible strategy for converting your dialogs is to first re-create the
dialogs visually, getting the UI appearance and resize behavior working and
adding event handler “stubs.” Then refer back to the MFC code and see how
the existing message handlers can be adapted to the event handlers. The code
will need to be changed, but in many cases, not by much.

Another strategy is to first rework your MFC code so that the user inter-
face is separated from the functionality as far as possible. Write new classes
encapsulating the desired functionality that are independent from toolkit-
specific classes and invoke the new functions from the UI code, which should
now be much simpler. Test that it works under MFC and then reuse the new
classes inside your wxWidgets code. This method can work especially well if
you have a period of transition where the MFC application must be main-
tained in parallel with the new wxWidgets port. Some #ifdef-ing will proba-
bly be required to deal with differences in data structure classes between the
two toolkits.

Dialog Data Exchange and Validation

MFC employs a function DoDataExchange, a class CDataExchange, and DDX (dia-
log data exchange) functions such as DDX_Check to connect a data variable and
the control. DDV (dialog data validation) functions are used to do validation.
wxWidgets provides the virtual functions TransferDataToWindow and
TransferDataFromWindow, but you don’t normally need to implement these
directly. You can use the more elegant concept embodied by the wxValidator
class. To associate a variable with a control, you associate a validator with the
control, for example:

FindWindow(ID_TEXT)->SetValidator(wxTextValidator(& m_strText));

Now when the TransferDataToWindow function is called (automatically from the
default window initialization event handler), all controls call a function in the
validator to transfer the data to the control. Similarly, when
TransferDataFromWindow is called (from the default wxID_OK event handler, for
example), another validator function is called to transfer the data back from
the control. A similar process happens for validation (checking for valid val-
ues), which is initiated by wxWindow::Validate.

648 Porting from MFC Appendix K

Smart_AppKf.qxd 6/10/05 11:13 AM Page 648

Feature Comparison 649

So, use validators instead of DoDataExchange. Most of the time, the two
built-in validators, wxTextValidator and wxGenericValidator, will suffice, but for
special validation and transfer needs, you can write your own wxValidator-
derived class or implement it within overridden TransferDataToWindow and
TransferDataFromWindow functions.

Documents and Views

Broadly, the MFC and wxWidgets document/view mechanisms are very simi-
lar. These are some of the key differences:

� Document manager: In wxWidgets, you need to create a wxDocManager
object in your application initialization before you can start creating tem-
plate objects. There is no equivalent in MFC.

� Serialization: In MFC, documents may be loaded and saved by imple-
menting the Serialize function. In wxWidgets, you can implement
LoadObject and SaveObject, which take wxInputStream and wxOutputStream
arguments. Just as with MFC, you can override OnOpenDocument and
OnSaveDocument with file name arguments if you want to avoid using
streams.

� Views: In MFC, CView and its derivatives are window classes. In
wxWidgets, wxView derives from wxEvtHandler, and you provide a window
object separately. The view class manages the window object.

� Command processing: Each wxDocument can contain a
wxCommandProcessor object, which together with the wxCommand class helps
an application implement undo/redo. MFC has no equivalent. This facili-
ty is optional.

Please refer to Chapter 19, “Working with Documents and Views,” for more
information.

Printing

In MFC, printing is tied to the CView class, and the application overrides
functions in this class such as OnPrint, OnPreparePrinting, OnPrepareDC,
OnBeginPrinting, and OnEndPrinting. In wxWidgets, printing is separated out
from the document/view framework, and you derive from the wxPrintout class.
Objects of this class are passed to the wxPrinter class to initiate printing or
wxPrintPreview to initiate previewing. Override wxPrintout functions such
as GetPageInfo, HasPage, OnBeginDocument, OnPreparePrinting, OnPrintPage

and so on.
wxHtmlPrintout is a useful predefined printout class, controlled by the

wxHtmlEasyPrinting class. This family of classes makes it straightforward to
print simple HTML documents without requiring specific printing code to be
added to an application.

Smart_AppKf.qxd 6/10/05 11:13 AM Page 649

650 Porting from MFC Appendix K

String Handling and Translation

Replacing CString with wxString will work for most code, but if you find that
too much conversion to wxString syntax is required, you could derive a class
CString from wxString and emulate some of the missing functions.

Literal strings and characters that are enclosed in the _T macro don’t
have to be changed, but you have the option of using the synonym wxT.

A translated MFC application will normally have a different string
table for each language. wxWidgets doesn’t have string tables and instead
uses message catalogs. A message catalog provides a mapping between the
strings in the application and the strings in the target language. You can
either implement your own system to store and load string tables, or you can
convert your code to use message catalogs. If the latter, you could put quota-
tion marks around the identifiers and use them as indexes into the message
catalogs, or you could put the strings back into the application, such that no
message catalog is required for the native language. Here are examples of
two ways to use message catalogs:

// Original MFC code to access IDS_WELCOME=”Welcome!”
CString str;
str.LoadString(IDS_WELCOME);

// wxWidgets solution (1)
// “IDS_WELCOME” is replaced by a value in the message catalog
wxString str(_(“IDS_WELCOME”));

// wxWidgets solution (2)
// “Welcome!” is replaced by a value in the message catalog
wxString str(_(“Welcome!”));

Database Access

If you currently use Data Access Objects (DAO), you might consider using the
Windows-only wxDao library from Koan Software, which can be downloaded
from http://www.koansoftware.com/it/prd_svil_wxdownload.htm.

You can also use ODBC directly or by using wxWidgets’ wxODBC
classes.

Configurable Control Bars

wxWidgets doesn’t natively support toolbars and menu bars that can be repo-
sitioned and undocked, but you can use the third-party wxDockIt library
(refer to Appendix E, “Third-Party Tools for wxWidgets”) or the unsupported
Frame Layout library in contrib/src/fl in your wxWidgets distribution.
Other solutions are under development, so please see the Contributions page
of the wxWidgets web site for the latest information.

Smart_AppKf.qxd 6/10/05 11:13 AM Page 650

EQUIVALENT FUNCTIONALITY

The following tables compare MFC and wxWidgets constructs, grouped by
macros and classes.

Equivalent Macros in MFC and wxWidgets

Table K-1 lists some important MFC macros and their wxWidgets equivalents.

Table K-1 MFC and wxWidgets Macros

MFC Version wxWidgets Version
BEGIN_MESSAGE_MAP BEGIN_EVENT_TABLE

END_MESSAGE_MAP END_EVENT_TABLE

DECLARE_DYNAMIC DECLARE_CLASS

DECLARE_DYNCREATE DECLARE_DYMAMIC_CLASS

IMPLEMENT_DYNAMIC IMPLEMENT_CLASS

IMPLEMENT_DYNCREATE IMPLEMENT_DYNAMIC_CLASS

IsKindOf(RUNTIME_CLASS(CWindow)) IsKindOf(CLASSINFO(wxWindow))

Equivalent Classes in wxWidgets

Table K-2 lists the main MFC classes and their wxWidgets equivalents. MFC
classes not present in the table have no direct equivalent.

Table K-2 MFC and wxWidgets Classes

Miscellaneous Classes
MFC Version wxWidgets Version
CWinApp wxApp

CObject wxObject

CCmdTarget wxEvtHandler

CCommandLineInfo wxCmdLineParser

CMenu wxMenu, wMenuBar, wxMenuItem
CWaitCursor wxBusyCursor

CDataExchange wxValidator

Window Classes
MFC Version wxWidgets Version
CFrameWnd wxFrame

CMDIFrameWnd wxMDIParentFrame

CMDIChildWnd wxMDIChildFrame

CSplitterWnd wxSplitterWindow

Equivalent Functionality 651

(continues)

Smart_AppKf.qxd 6/10/05 11:13 AM Page 651

Table K-2 MFC and wxWidgets Classes (Continued)

Window Classes
MFC Version wxWidgets Version
CToolBar wxToolBar

CStatusBar wxStatusBar

CReBar None, but see contrib/src/fl and wxDockIt
(Appendix E)

CPropertyPage wxPanel

CPropertySheet wxNotebook, wxPropertySheetDialog

Dialog Classes
MFC Version wxWidgets Version
CDialog wxDialog

CColorDialog wxColourDialog

CFileDialog wxFileDialog

CFindReplaceDialog wxFindReplaceDialog

CFontDialog wxFontDialog

CPageSetupDialog wxPageSetupDialog

CPrintDialog wxPrintDialog

Control Classes
MFC Version wxWidgets Version
CAnimateCtrl wxMediaCtrl, wxAnimationCtrl
CButton wxButton

CBitmapButton wxBitmapButton

CComboBox wxComboBox, wxChoice
CDateTimeCtrl wxDatePickerCtrl

CEdit wxTextCtrl

CHotKeyCtrl None, but see Keybinder (Appendix E)
CListBox, CDragListBox wxListBox

CCheckListBox wxCheckListBox

CListCtrl wxListCtrl, wxListView
CMonthCalCtrl wxCalendarCtrl

CProgressCtrl wxGauge

CReBarCtrl None, but see contrib/src/fl and wxDockIt
(Appendix E)

CRichEditCtrl wxTextCtrl has limited rich edit functionality
CScrollBar wxScrollBar

CSliderCtrl wxSlider

CSpinButtonCtrl wxSpinButton, wxSpinCtrl
CStatic wxStaticText, wxStaticLine, wxStaticBox,

wxStaticBitmap

652 Porting from MFC Appendix K

Smart_AppKf.qxd 6/10/05 11:13 AM Page 652

CStatusBarCtrl wxStatusBar

CTabCtrl wxTabCtrl (some platforms only; use wxNotebook
instead)

CToolBarCtrl wxToolBar

CToolTipCtrl wxToolTip

CTreeCtrl wxTreeCtrl

Graphics Classes
MFC Version wxWidgets Version
CBitmap wxBitmap, wxImage, wxIcon, wxCursor

CBrush wxBrush

CPen wxPen

CFont wxFont

CImageList wxImageList, wxIconBundle
CPalette wxPalette

CRgn wxRegion

CClientDC wxClientDC

CMetaFileDC wxMetaFileDC (Windows and Mac OS X only)
CPaintDC wxPaintDC

CWindowDC wxWindowDC

CDC wxMemoryDC

Data Structure Classes
MFC Version wxWidgets Version
CArray, CObArray, wxArray
CPtrArray

CStringArray wxArrayString

CDWordArray, CByteArray, wxArrayInt
CUIntArray

CList, CPtrList, CObList wxList

CStringList wxArrayString, wxStringList
CMap… classes wxHashMap

CString wxString

CPoint wxPoint

CRect wxRect

CSize wxSize

CTime wxDateTime

CTimeSpan wxTimeSpan, wxDateSpan
COleVariant wxVariant

Equivalent Functionality 653

(continues)

Smart_AppKf.qxd 6/10/05 11:13 AM Page 653

Table K-2 MFC and wxWidgets Classes (Continued)

Internet Classes
MFC Version wxWidgets Version
CSocket wxSocket

CFtpConnection wxFTP

CHttpConnection wxHTTP

Document/View Classes
MFC Version wxWidgets Version
CDocument wxDocument

CView wxView

CDocTemplate, wxDocTemplate
CSingleDocTemplate,
CMultiDocTemplate

Drag and Drop
MFC Version wxWidgets Version
COleDataSource wxDataObject

COleDropSource wxDropSource

COleDropTarget wxDropTarget

File Classes
MFC Version wxWidgets Version
CFile wxFile, wxFFile, wxTextFile
CMemFile wxMemoryInputStream, wxMemoryOutputStream
CSocketFile wxSocketInputStream, wxSocketOutputStream
CRecentFileList wxFileHistory

Multithreading Classes
MFC Version wxWidgets Version
CWinThread wxThread

CCriticalSection wxCriticalSection

CMutex wxMutex

CSemaphore wxSemaphore

The following classes have no equivalent in wxWidgets: CDialogBar, all classes
prefixed COle, all C...View classes, all C...Exception classes, CHeaderCtrl, and
CIPAddressCtrl.

654 Porting from MFC Appendix K

Smart_AppKf.qxd 6/10/05 11:13 AM Page 654

FURTHER INFORMATION

A useful article on this subject is Porting MFC Applications to Linux, by Markus
Neifer, found at http://www-106.ibm.com/developerworks/library/l-mfc/?n-l-4182.

This includes full source code for a wxWidgets document/view sample
application, together with the original MFC application.

Further Information 655

Smart_AppKf.qxd 6/10/05 11:13 AM Page 655

Smart_AppKf.qxd 6/10/05 11:13 AM Page 656

G L O S S A R Y

accelerator A key combination, such as Control-S, that allows selection of menu
items, buttons, and other controls using the keyboard.
accessibility An accessible application is one that can be used by people with
impaired vision or other disabilities.
ANSI An acronym for American National Standards Institute, an organization
that defined a standard character set. wxWidgets distinguishes between compilation
in ANSI and Unicode mode. In ANSI mode, character encodings must be used to
switch between languages, but this is not necessary with Unicode. In this context,
ANSI and ASCII are interchangeable, as the differences are slight.
alpha channel Extra information in a bitmap that can be used to draw the
bitmap with translucency. Each pixel in the bitmap has an 8-bit alpha value indicat-
ing the pixel’s intensity.
API Application Programming Interface, the published set of classes and func-
tions that a library offers to an application.
assertion A test supplied in debug mode that causes an error message to be
shown if the test fails.
bakefile A makefile generation system used within wxWidgets that can also be
used for other libraries and applications.
bit-list An integer containing flags that are combined with the binary OR operator
(“|”)—for example, wxSUNKEN_BORDER|wxTAB_TRAVERSAL. The presence of a flag can be
tested by using the binary AND operator (“&”).
block Describes the suspension of a function’s execution while waiting for some-
thing, such as for a modal dialog to be dismissed or data to become available on a
socket.
bundle A Mac OS X application is packaged in a bundle, which has a specific
directory structure and is described by an XML file.
Carbon The Apple API supplied for compatibility with both Mac OS 9 and Mac
OS X, used by the wxMac port to implement GUI functionality.

657

Smart_Glossaryf.qxd 6/10/05 11:26 AM Page 657

client area The area in which an application can draw or place child windows.
For example, the client area of a frame with a menu bar is the portion below the
menu bar.
client data Arbitrary user data that can be associated with a window or its
items. In some cases, it is deleted automatically by the window, and in others cases,
it is the application’s responsibility.
Cocoa Mac OS X’s native API for GUI functionality, used by the wxCocoa port.
control A window that displays a value that can usually be changed by the user.
It is also known as a “widget”. There is no absolute distinction between a control and
a window, but you might use “control” to distinguish between a control on a dialog,
such as a button or list box, and a window that manages other windows, such as a
splitter window.
character encoding A specification that maps raw values to actual characters.
Because ASCII cannot encompass all languages, there are many encodings for differ-
ent languages. Using Unicode eliminates the need for separate encodings because it
allows multiple bytes per character.
cross-platform programming Programming for more than one platform.
default The value or behavior that is assumed to be present if no other specifica-
tion has been made.
device context An object on which an application can draw. For example, a
wxClientDC object can be used to draw on a window.
dialog A window that is shown to convey information or present choices.
double-buffering A flicker-reduction technique whereby graphics are drawn off-
screen on a bitmap before being transferred to a window.
dynamic event handler A handler that has been installed during the running of
the program, rather than by “static” event table entries that are built into the pro-
gram at compile time.
cache A data structure used to speed up an operation by storing results from pre-
vious operations.
embedded system Refers to a small or industrial device, in contrast with a desk-
top system—for example, a mobile phone, PDA, or wireless terminal. wxWidgets sup-
ports embedded systems via wxWinCE, wxGTK, wxMGL, and wxX11.
event In wxWidgets, an action taken by the user (such as a button press), the
operating system (such as a color change event), or the framework (such as a dialog
initialization event).
event loop Code that waits for events and dispatches them to suitable event han-
dlers that can handle them. There is a “main” event loop, and showing a modal dia-
log causes a further event loop to be entered until the dialog is dismissed.
event table A mapping that tells wxWidgets how to route events to handler func-
tions by specifying an event type and identifier that should match.
focus The window that has the focus can accept keyboard input.

658 Glossary

Smart_Glossaryf.qxd 6/10/05 11:26 AM Page 658

frame A “top-level” window used to contain other windows, menu bars, toolbars,
and so on.
framework A set of classes for handling a set of related problems, providing
default functionality that can be replaced. wxWidgets is a GUI framework.
generic Used to describe classes that are implemented by wxWidgets itself,
where there is no “native” equivalent.
GTK+ The widget set used by applications that are designed for the GNOME
desktop environment, which is popular on Linux.
GUI Graphical User Interface, a term applied to programs and operating systems
that support a windowing environment and pointing device.
IDE Integrated Development Environment, a tool that handles many aspects of
the development process, such as editing, compiling, and debugging.
identifier An integer used for identifying windows and other objects and map-
ping commands to event handler functions. wxWidgets provides standard identifiers
such as wxID_OK.
idle event An event sent to each window of an application after normal events
have all been processed to allow low-priority tasks to be performed.
image Any bitmap (pixel-based) graphic; image classes in wxWidgets include
wxImage, wxBitmap, wxCursor, and wxIcon.
internationalization The process of converting an application to display and
handle information in more than one language. Also known informally as “i18n” (“i”
followed by 18 characters, followed by “n”).
locale The representation of a geopolitical location that has potentially distinct
properties for date and currency formats, character sets, and so on. This is represent-
ed in wxWidgets by wxLocale.
makefile A file that defines how a set of source files is used to create an exe-
cutable, processed by a program called “make.” Some development tools (such as
DialogBlocks) generate and invoke makefiles.
manifest Under Windows, refers to an XML file that must accompany an exe-
cutable (or be compiled into its resources) for the application to take advantage of
XP themes.
mask A monochrome (1-bit) bitmap that specifies the visible parts of another
bitmap. A bitmap may have a mask, an alpha channel, or neither.
MDI Multiple Document Interface, from the Windows user interface style where
the main window fully contains any document windows.
MFC Microsoft Foundation Classes, a framework for building Windows applications.
MGL A low-level 2D graphics API by SciTech Software Inc. for Linux, DOS, and
embedded systems, supported by the wxMGL port.
mnemonic An assigned character in a user interface element such as a button
that gives a keyboard equivalent to mouse input.

Glossary 659

Smart_Glossaryf.qxd 6/10/05 11:26 AM Page 659

modifier key A key, such as Control or Shift, that generally needs another key to
be pressed to generate input.
modal A modal dialog “blocks” program flow when shown, disabling other win-
dows, and therefore puts the application in a particular mode. A modeless dialog
does not usually interrupt program flow or disable other windows.
monolithic wxWidgets can be compiled as one large library (“monolithic”) or as a
collection of separate libraries (“multilib”).
Motif A widget set layered on top of X11 and supported by wxWidgets.
multi-platform application An application that can be compiled to run on sev-
eral platforms without significant changes to the source code.
multilib Used to distinguish between a build of wxWidgets that splits it into sev-
eral libraries, compared with a “monolithic” build, where there is only one
wxWidgets library file.
native A widget is said to be “native” if it uses an implementation supplied by the
vendor of the underlying toolkit or operating system. Examples include wxButton on
Windows, GTK+, and Mac OS X.
OpenGL A popular 3D graphics language available on most platforms, supported
in wxWidgets through the wxGLCanvas class.
platform Denotes a particular combination of hardware, operating system, win-
dowing environment, and underlying widget set. For example, GTK+ on i386 Linux,
Motif on i386 Linux, Windows, and Mac OS X represent distinct platforms. Depend-
ing on context, platform may also refer only to a distinct operating system or a family
of operating systems, such as “the Microsoft Windows Mobile platform.”
port An implementation of the wxWidgets API for a particular operating system
and widget set. For example, the Windows port is wxMSW, and the GTK+ port is
wxGTK.
PNG Portable Network Graphics, a popular file format for images, invented to
replace the GIF format.
propagating event An event that can be handled by an ancestor of the object
that generated the event; for example, if a button is on a panel in a frame, the but-
ton click event may be handled by the button itself, the panel, or the frame contain-
ing the panel.
quantization The process of reducing the number of unique colors in an image
without severely degrading it.
RAD Rapid Application Development, used to describe tools such as DialogBlocks
and wxDesigner that boost productivity.
reentrant Code that is executed recursively (entered multiple times), possibly
with harmful consequences.
resource An overloaded term that means different things in different contexts. A
wxWidgets resource is generally an element in an XRC resource file. A bitmap resource
may refer to binary data added to a Windows application’s executable by the Windows
resource compiler, or it may refer simply to extra files required by an application.

660 Glossary

Smart_Glossaryf.qxd 6/10/05 11:26 AM Page 660

resource handler A class whose instance is plugged into the wxWidgets resource
system in order to interpret values specified in an XRC file and apply them to a new
resource.
RGB The Red, Green, and Blue values that form a color specification.
RTTI Run-time type information, whereby a class is annotated so that applica-
tions can query aspects of the class, such as its name and base class.
static control A control that is for display only and that does not support user
input.
sizer A container for laying out windows or further sizers in a hierarchy.
stock Refers to an object or identifier that is provided by wxWidgets or by the
underlying toolkit, for convenience or to promote standardization. Stock cursors,
stock colors, and stock buttons are examples of this usage.
stream An instance of a class that handles sequential input or output for a par-
ticular data source. It is a higher-level construct than the file, being applicable to
arbitrary data sources, and wxWidgets defines its own set of stream classes.
theme Some desktop environments let the user select a different look and feel,
varying the way windows are drawn, colors used, and so on. wxWidgets will use the
current theme for its widgets where possible.
transparency Usually refers to the 1-bit “mask” that can be associated with
bitmaps to determine which parts of the image should be visible, in contrast with an
alpha channel, which enables “translucency” (the blending of an image with the
graphic underneath).
transient window A window that shows for a short time and normally has very
little decoration. Examples are menus and tooltips.
UI update event A user interface event generated by wxWidgets in idle time to
give the application a chance to update the state of a window.
Unicode A specification that eliminates the need for separate encodings by allow-
ing multiple byes per character.
universal widget set A term used to describe the widget set (wxUniversal) that
wxWidgets uses where there are no “native” widgets. Used in wxX11 and wxMGL.
validator An object that can be associated with a window that checks whether
the user has entered valid data. It can also transfer data to and from the window, for
example at dialog initialization and when a dialog is dismissed, respectively.
virtual file system A set of classes that enables data sources other than ordinary
files to be used. This facility in wxWidgets allows data to be streamed from files
within compressed archives, for example.
widget A window with specific display and input functionality, such as a wxButton.
widget set A widget set consists of the widgets (or “controls”) that wxWidgets
uses to implement its API. Examples are Win32, GTK+, Motif, and wxUniversal (a
set of widgets implemented using wxWidgets itself).
Win32 The API for writing GUI applications on Windows, supported by the
wxMSW port.

Glossary 661

Smart_Glossaryf.qxd 6/10/05 11:26 AM Page 661

window decorations The buttons, border, caption bar, and other elements of a
top-level window, normally drawn by the window manager.
window manager The part of the desktop environment that provides decoration
for and behavior of top-level application windows. Under X11, the desktop environ-
ment such as GNOME or KDE provides window management. Under Windows and
Mac OS X, there is no choice of window manager: this function is performed by the
operating system.
Windows The family of operating systems from Microsoft. The use of “Windows”
in this book usually denotes the desktop variants, including Windows 2000 and
Windows XP.
Windows CE The family of embedded operating systems from Microsoft, also
known as Windows Mobile. It includes the variations Pocket PC, Smartphone,
Portable Media Center, and Windows CE .NET.
wxBase A build of the wxWidgets library with no GUI functionality that can be
used to build command-line applications.
X11 The windowing system, and its communication protocol, used on most Unix
systems.
XPM X11 Pixmap, a file format for small images that can be included in C++
source files.

662 Glossary

Smart_Glossaryf.qxd 6/10/05 11:26 AM Page 662

I N D E X

Symbols
3D graphics, wxGLCanvas, 168-169

A
accelerators, 180-181
accessibility, 591
accessing screens with

wxScreenDC, 139
accessors, wxDateTime, 388
Acme, 534
adapting dialogs for small devices,

254-255
ADC (Apple Developer Connec-

tion), 544
add-on libraries, 596-599
AddFile, 411
adding

help, creating custom dialogs, 251-253
icons

to GNOME desktop, 534
to KDE desktop, 534

source and includes, Bakefile, 568-569
addition, 390
AddRoot, 321
aesthetics, designing dialogs, 257
alignment, sizers, 191
alternatives

to dialogs, 257
to wxNotebook, 76
to wxSocket, 479
to wxSplitterWindow, 85

Anthemion Software, DialogBlocks.
See DialogBlocks

AOL Communicator, 601

Apple Developer Connection
(ADC), 544

application class, 16-17
application objects

creating with DialogBlocks, 584
initializing, 415

application paths, finding, 524-525
application resources, storing

finding application paths, 524-525
reducing data files, 523
standard locations, 524

application settings
editing, 531-532
storing, 529-530

application termination behavior,
UI design guidelines, 539

applications
associating with icons, 274-275
cleaning up, 416
creating

with Bakefile. See Bakefile
with KDevelop, 562-563
with Makefiles, 564
with Microsoft Visual Studio. See

Microsoft Visual Studio
with Xcode, 563

debugging with DialogBlocks, 584
Doodle. See Doodle
installing. See installing
running wxExecute, 525

arbitrary areas, filling, 159
architecture of wxWidgets, 8

internal organization, 12-13
wxCocoa, 10
wxGTK, 8
wxMac, 10

663

Smart_index.qxd 6/10/05 2:38 PM Page 663

wxMGL, 12
wxMotif, 10
wxMSW, 8
wxOS2, 12
wxPalmOS, 12
wxWinCE, 10
wxX11, 9

arcs
circular arcs, 154
drawing, 153

areas, filling arbitrary areas, 159
arithmetic, 389-391
arrays, 381

array types, 379-380
macros, 379
sample code, 381-383

art, customizing, 288-290
assertion alert, 419
associating icons with applications,

274-275
AttachUnknownControl, 264
Audacity, 601
audio files, playing, 526
authoring help, 518-519
autoconf, Bakefile project types, 568
AVG Antivirus, 601
AWX, 598

B
backgrounds, erasing window back-

grounds, 134-135
Bakefile, 595

adding source and includes, 568-569
bakefile_gen, 570
build options, 569-570
creating wxWidgets applications,

565-566
includes, 569-570
presets, 569-570
project types, 567

autoconf, 568
sample wxWidgets project, 566-567
targets, 568
templates, 569-570

bakefile_gen, 570
base window classes, 45-46

wxControl, 54
wxControlWithItems, 54

member functions, 54-55
wxWindow, 47

wxWindow member functions,
50-53

wxWindow styles, 47-49
BASIC, 593
BC++, 544, 550

compiling sample programs, 550
behavior of sockets with socket

flags, 475-476
binary resource files, 259-260
bindings, 593-594
bitmap buttons, wxButton, 89-90
bitmap resources, packaging, 272
bitmaps, drawing, 157-159, 271

drawing on with wxMemoryDC, 138
BitWise, 601
Blit, 138, 148, 157-158
blocking, 473

sockets, 474
Bodde, Jorgen, 531
borders, sizers, 191
Borland C++, 544, 550

compiling sample programs, 550
Broadcast, 453
bugs, defensive programming,

418-419
build directory, wx-config, 571
build options

Bakefile, 569-570
wxWidgets, 546-547

button labels, wxButton, 87-88
buttons

bitmap buttons, 89-90
mouse input, 173-174
UI design guidelines, 538

Bzip, 599

664 Index

Smart_index.qxd 6/10/05 2:38 PM Page 664

C
C pointer conversions, wxString,

375-376
C string functions, 376-377
CalcScrolledPosition, 79
CalcUnscrolledPosition, 79
CanHandle, 262
CaptureMouse, 50
carets, 41
CFBundleDevelopmentRegion, 436
CFBundleIconFile, 536
CFBundleLocalizations, 436
CFBundleTypeIconFile, 536
changing. See modifying
character encodings, 433, 438-439

converting data, 439
help files, 442
outside of a temporary buffer,

441-442
wxCSConv, 440-441
wxEncodingConverter, 440

character sets, font encoding, 438
characters, wxString, 375
Chess Commander, 603
Chinook Developer Studio, 595
choice and selection dialogs, 218

wxColourDialog, 218-221
wxFontDialog, 221-224
wxMultiChoiceDialog, 225-226
wxSingleChoiceDialog, 224-225

choice control, 90-91
choosing

configurations, 572
development tools, 543
interface styles, document/view

systems, 483
circular arcs, 154
classes

application class, 16-17
comparing MFC versus wxWidgets,

651-652, 654
deriving new classes, 243
document classes, document/view

systems, 486-495

file classes
wxDir, 400-401
wxFFile, 397-398
wxFile, 397-398
wxFileName, 401-402
wxTempFile, 400
wxTextFile, 399

frame classes, 17-18
creating and using for

document/view systems,
483-485

document/view systems, 483-485
GUI

writing your own controls, 317
wxGrid. See wxGrid
wxHtmlWindow. See

wxHtmlWindow
wxListCtrl. See wxListCtrl
wxTaskBarIcon. See

wxTaskBarIcon
wxTreeCtrl. See wxTreeCtrl
wxWizard. See wxWizard

image classes, 265
multimedia classes, 590
network-related classes, 590
ODBC classes, 589
renderer classes, 592
socket classes, 464
stream classes

file streams, 403-405
filter streams, 407
memory streams, 405
reading and writing data types,

405-406
socket streams. See socket streams
string streams, 405
zip streams, 407-408

view classes, document/view systems,
486-495

window classes
base classes. See base window

classes
container windows, 45
control bars, 46

Index 665

Smart_index.qxd 6/10/05 2:38 PM Page 665

document/view systems, 495-497
FL (Frame Layout), 589
menus, 46
non-static controls, 45
OGL, 588
static controls, 46
top-level windows, 45
wxCalendarCtrl, 585
wxDatePickerCtrl, 586
wxEditableListBox, 587
wxFoldPanelBar, 587
wxGenericDirCtrl, 585
wxGIFAnimationCtrl, 587
wxLEDNumberCtrl, 586
wxSplashScreen, 588
wxStaticPicture, 586
wxStyledTextCtrl, 586
wxTipWindow, 586

wxGrid, 347-348
wxMimeTypesManager, 590

cleaning up applications, 416. See
also memory management

Clear, 148
client areas, windows, 40
clients

connecting servers to, socket clients,
468-469

sockets, 465-466
clipboard, 293-294

data objects, 291-292
data source duties, 292

data target, data source duties, 292
paste, 303

close, 50
closing dialogs and frames, 414
Cn3D, 603
Cobalt, Palm OOS 6, 12
code listings

Code to Create an HTML About Box,
339-340

Deriving from wxTaskBarIcon,
354-355

Header File for
PersonalRecordDialog, 627-629

HTML for the About Box Sample,
340-341

Implementation File for
PersonalRecordDialog, 629-634

showing taskbar icons, 356-357
Simple Use of wxGrid, 346-347
Wizard Sample Code, 635-641

CodeBlocks, 595
coding controls and layouts, 244-246
color, windows, 42
color reduction, programming with

wxImage, 284-285
colors, UI design guidelines, 539
combinations of sockets, 475
command lines, parsing, 521-523
communication, instances, 507
communities, wxWidgets, 6-7
comparing

dates, 389
MFC and wxWidgets, 643

classes, 651-652, 654
configurable control bars, 650
database access, 650
documents and views, 649
initializing applications, 644
macros, 651
message maps, 644-646
printing, 649
string handling and

translation, 650
compilers, 543. See also develop-

ment tools
compiling

cross-compilation, 543
DialogBlocks sample project, 579-581
sample programs

Borland C++, 550
GCC, 555
Microsoft Visual Studio, 548
Microsoft Visual C++, 549
MinGW, 553
MinGW with MSYS, 552

configurations
choosing, 572
Microsoft Visual Studio, 562

666 Index

Smart_index.qxd 6/10/05 2:38 PM Page 666

configuring
MinGW with MSYS, 551
wxWidgets, 546-547

Connect, wxSocketClient, 468
connecting sockets to servers, 467

socket addresses, 468
socket clients, 468-469

connection events,
wxSocketServer, 472

constructors, wxDateTime, 388
container windows, 45, 72

wxNotebook, 72-74
alternatives to, 76
events, 75
member functions, 75-76
notebook theme management, 74
styles, 74

wxPanel, 72
wxScrolledWindow, 76-78

events, 78
member functions, 79-80
styles, 78

wxSplitterWindow, 81-82
alternatives to, 85
events, 83
member functions, 84
sizing issues, 84-85
styles, 83

context-sensitive help, 251, 520-521
contributed libraries, 557
control appearance, writing your

own controls, 367-369, 371
control bars, 122

MFC versus wxWidgets, 650
windows, 46
wxMenuBar, 122-123

events, 123
member functions, 123-124

wxStatusBar, 128-129
member functions, 129-130
styles, 129

wxToolBar, 124-125
bitmap colors under Windows, 125
events, 126
member functions, 127-128
styles, 126

controls
coding, 244-246
non-static controls. See non-static

controls
static controls. See static controls
writing your own controls, 359-360

addingDoGetBestSize, 362
control appearance, 367-369, 371
custom control declaration, 360-362
defining default event handlers,

364-365
defining event classes, 363
displaying information on the

control, 363
handling input, 363-364
implementing resource

handlers, 367
implementing validators, 365-367

converting
dialogs, resource files, 647
numbers, wxString, 377

coordinate systems, windows, 41
copying drawing objects, 415
Create method, 449
CreateButtonSizer, 203
CreateControls, 244
CreateMyRecord, 425
CreatePopupMenu, 358
CreateStatusBar, 60
cross-compilation, 543
Csomor, Stefan, 6
CURL, 479, 596
cursors

windows, 41
wxGrid member functions, 352

custom control declaration, writing
your own controls, 360-362

custom drop targets, creating,
299-300

Index 667

Smart_index.qxd 6/10/05 2:38 PM Page 667

custom events, defining, 34-37
customizing art, 288-290
CVS, 7
Cygwin, 544

D
DAO (Data Access Objects), 650
data, designing dialogs, 256
Data Access Objects (DAO), 650
data files, reducing number of,

523-524
data formats, standard data

formats, 292
data objects, 291-292
data source, responsibilities of, 292
data storage, designing, 243-244
data structures, helper data

structures
wxLongLong, 392
wxObject, 391
wxPoint, 392
wxRealPoint, 392
wxRect, 392-393
wxRegion, 393-394
wxSize, 394
wxVariant, 394-395

data target, responsibilities of, 292
data transfer, creating custom

dialogs, 247-249
data types, reading and writing,

405-406
database access, MFC versus

wxWidgets, 650
date arithmetic, 389-391
dates, 387

formatting for internationaliz-
ation, 443

wxDateTime, 388
accessors, 388
constructors and modifiers, 388
date arithmetic, 389-391
date comparisons, 389
formatting dates, 389
getting current time, 389

deadlocks, synchronizing
objects, 452

debug builds versus release
builds, 546

Debug Project command, 584
debuggers, sending commands

to, 527
debugging

applications, DialogBlocks, 584
error reporting, 419-423

wxMessageOutput versus
wxLog, 423-424

release builds, 430-431
tips for, 429

release builds, 430-431
simplifying problems, 430
X11 errors, 429-430

declarations, custom control
declarations, 360-362

DECLARE_EVENT_TABLE, 31
defensive programming, 418-419
deleting

dialogs, 414
frames, 414
window objects, 413-414
windows, 43-44

deriving
from wxDataObject, 301
new classes, 243

designing
data storage, 243-244
dialogs

aesthetics, 257
data and UI separation, 256
keyboard navigation, 255
layouts, 256-257

Destroy, 50, 413
detecting

errors, 416-418
memory leaks, 416-418

development tools
choosing, 543
on Linux and Mac OS X, 544-545
on Windows, 543-544

668 Index

Smart_index.qxd 6/10/05 2:38 PM Page 668

device contexts, 131-133
drawing functions, 148-150
drawing on windows

with wxClientDC, 133-134
with wxPaintDC, 135-138

erasing window backgrounds, 134-135
wxBufferedPaintDC, 136-138
wxMemoryDC, drawing on

bitmaps, 138
wxMetafileDC, 138
wxPaintDC, drawing on windows,

135-138
wxPostScriptDC, 139-140
wxPrinterDC, 139-140
wxScreenDC, accessing screens, 139

device units, 132
devices, adapting dialogs for small

devices, 254-255
DeviceToLogicalX, 150
DeviceToLogicalXRel, 150
DeviceToLogicalY, 150
DeviceToLogicalYRel, 150
dialog data exchange, MFC, 648-649
dialog units, 201-202
DialogBlocks, 545, 575-576, 595

creating
application objects, 584
dialogs, 582-583
frames, 584

creating new projects, 582
debugging applications, 584
installing

on Linux, 576-577
on Mac OS X, 577
on Windows, 576

interfaces, 577-578
sample project, 578-579

compiling, 579-581
upgrading, 577

DialogBlocks Personal Edition, 576
dialogs

adapting for small devices, 254-255
alternatives to, 257

choice and selection dialogs
wxColourDialog, 218-221
wxFontDialog, 221-224
wxMultiChoiceDialog, 225-226
wxSingleChoiceDialog, 224-225

closing and deleting, 414
converting with resource files, 647
creating with DialogBlocks, 582-583
creating custom dialogs, 241

adding help, 251-253
coding controls and layouts,

244-246
data transfer and validation,

247-249
deriving new classes, 243
designing data storage, 243-244
handling events, 249
handling UI updates, 250-251
invoking the dialog, 253

designing
aesthetics, 257
data and UI separation, 256
keyboard navigation, 255
layouts, 256-257

entry dialogs
wxFindReplaceDialog, 228-232
wxNumberEntryDialog, 227
wxPasswordEntryDialog, 227
wxTextEntryDialog, 227-228

file and directory dialogs
wxDirDialog, 216-218
wxFileDialog, 212-216

informative dialogs
wxBusyInfo, 210
wxMessageDialog, 205-207
wxProgressDialog, 208-209
wxShowTip, 210-212

invoking, 253
modeless dialogs, 414
printing dialogs

wxPageSetupDialog, 232-235
wxPrintDialog, 235-239

recreating with MFC, 647-648

Index 669

Smart_index.qxd 6/10/05 2:38 PM Page 669

Digital Mars C++, 544
directories, 548

build directory, wx-config, 571
disabling windows, 460
DisplayContents, 516
displaying information on controls,

writing your own controls, 363
DisplaySection, 516
distributing message catalogs, 438
DLL, Microsoft Visual Studio, 548
DnDShape, 302, 309
DnDShapeDataObject, 302, 310
DnDWindow, 296
DoCreateResource, 262
Documancer, 604
document classes, defining for

document/view systems,
486-495

document creation, document/view
systems, 501

document manager, 649
document/view systems, 481

creating applications, 481-482
choosing interface styles, 483
creating and using frame classes,

483-485
defining document and view classes,

486-495
defining window classes, 495-497
explicit document creation, 501
file history, 500
printing and previewing, 500
standard identifiers, 500
wxDocManager, 497-499
wxDocTemplate, 497-499

documents
launching, 525-526
MFC versus wxWidgets, 649

DoDataExchange, 648
DoDragDrop, flags, 295
DoDragDrop function, 292
DoGetBestSize, 362
DoLog, 422
DoLogString, 422

Doodle, 482
choosing interface styles, 483
creating and using frame classes,

483-485
defining document and view classes,

486-495
DoodleApp, 498
DoodleCanvas, 493, 495

implementing, 496
DoodleCommand, 490
DoodleFrame, 484
DoodleSegment, 487
DoodleView, implementing, 493
DOODLE_ADD, 492, 497
DOODLE_CUT, 492
DoPrepareDC, 78
downloading wxWidgets, 545-546
Doxygen, 596
Dr. MinGW, 431
drag and drop, 311

data objects, 291-292
wxDragImage, 313-316
wxListCtrl, 312
wxTreeCtrl, 311-312
wxWidgets sample, 302-311

drag sources, implementing, 294-297
dragging, 298

drag sources, 295
DrawArc, 153
DrawBitmap, 157-158
DrawCircle, 148
DrawEllipse, 148
DrawEllipticArc, 148
DrawIcon, 158
drawing

bitmaps, 157-159, 271
lines, 152-155
on bitmaps with wxMemoryDC, 138
on windows

with wxClientDC, 133-134
with wxPaintDC, 135-138

shapes, 152-155
splines, 156
text, 150-152
with bitmaps, 271

670 Index

Smart_index.qxd 6/10/05 2:38 PM Page 670

drawing functions, device contexts,
148-150

drawing objects, creating and
copying, 415

drawing tools, 140
wxBrush, 143-144

styles, 144
wxColour, 141
wxFont, 145-146
wxPalette, 147-148
wxPen, 142-143

DrawLines, 148, 154
DrawPoint, 148
DrawPolyPolygon, 155
DrawRotatedText, 149, 151
DrawSpline, 149, 156
DrawText, 150-152
drop targets

creating custom drop targets, 299-300
implementing, 297-298
standard drop targets, 298-299

dynamic event handlers, 30-31
dynamic layouts, 204
dynamic libraries, loading, 427

E
EarthVision, 604
editing application settings, 531-532
Eiffel, 594
Emacs, 544
embedded resource files, 259-260
embedded web browsers, 591
embedding windows in HTML

pages, 342-344
Enable, 50
encoding fonts, 145
encodings, 438-439

converting data, 439
help files, 442
outside of a temporary buffer,

441-442
wxCSConv, 440-441
wxEncodingConverter, 440

EndDoc, 150
Endmodal, 414
EndPage, 150
Entry, wxThread, 449
entry dialogs, 227

wxFindReplaceDialog, 228-232
wxNumberEntryDialog, 227
wxPasswordEntryDialog, 227
wxTextEntryDialog, 227-228

EPM, 534, 596
erasing window backgrounds,

134-135
error notifications, socket status,

470-471
error reporting, 419-423

wxMessageOutput versus wxLog,
423-424

errors
detecting, 416-418
X11 errors, 429-430

Euphoria, 594
event classes

defining custom events, 34-37
writing your own controls, 363

event handlers, 18-19, 26-28
defining default event handler,

writing your own controls,
364-365

dynamic event handlers, 30-31
example character event handler, 178
pluggable event handlers, 29-30

event handling
creating custom dialogs, 249
modifying, 510-511

event loops, 592
event tables, 18, 26-28

creating, 26
event.Skip(), 178
event-based sockets, 463
event-driven programming, 25
events

connection events,
wxSocketServer, 472

Index 671

Smart_index.qxd 6/10/05 2:38 PM Page 671

processing, 613, 615
skipping, 29
socket events. See socket events
wxButton, 87, 90
wxCheckBox, 95
wxCheckListBox, 97
wxChoice, 91
wxComboBox, 93
wxDialog, 70
wxFrame, 59
wxGrid, 349
wxListBox, 97
wxListCtrl, 324
wxMenu, 118-120
wxMenuBar, 123
wxNotebook, 75
wxRadioBox, 100
wxRadioButton, 101
wxScrollBar, 102
wxScrolledWindow, 78
wxSlider, 107
wxSpinButton, 104
wxSpinCtrl, 105
wxSplitterWindow, 83
wxTaskBarIcon, 358
wxTextCtrl, 110
wxToggleButton, 112
wxToolBar, 126
wxTreeCtrl, 320
wxWindow, 49
wxWizard, 331

EVT_BUTTON, 27, 171
EVT_SIZE, 27
EVT_COMMAND_SCROLL, 102
EVT_SOCKET, 469
exceptions, 428
Execute, 508
extended HTML Help, 517-518
Extended wxHTML Help, 598
external conditions, waiting for

threads, 450
extra styles

wxDialog, 70
wxWindow, 48

F
face names, fonts, 145
file and directory dialogs

wxDirDialog, 216-218
wxFileDialog, 212-216

file classes
wxDir, 400-401
wxFFile, 397-398
wxFile, 397-398
wxFileName, 401-402
wxTempFile, 400
wxTextFile, 399

file functions, 402-403
file history, document/view sys-

tems, 500
file receiving threads, socket

streams, 478-479
file sending threads, socket streams,

477-478
file streams, 403-405
file systems, virtual file systems,

408-411
files

include files, 559
Info.plist file, 436
library files, 559
resource files

binary resource files, 259-260
converting dialogs, 647
embedded resource files, 259-260
foreign controls, 263-264
loading resources, 258-259
translating resources, 261
writing resource handlers, 262-263
XRC format, 261-262

system files, 559
updating wxWidgets files, 556
writing, 398

filling arbitrary areas, 159
filter streams, 407
FindFocus, 50
finding application paths, 524-525
FindWindow, 50
FinishedIdleTask, 459

672 Index

Smart_index.qxd 6/10/05 2:38 PM Page 672

Fit, 51
FL (Frame Layout), 589
flag.png, 443
flags

DoDragDrop, 295
mask flags, wxListItem, 325
socket flags. See socket flags

flicker, reducing, 512-513
FloodFill, 149, 159
font encoding, 438
font families, 145
fonts

encoding, 145
face names, 145
font families, identifiers, 145
point size, 145
styles, 145
UI design guidelines, 539
underlines, 145
weight, 145
windows, 42

foreign controls, resource files,
263-264

formatting dates, 389
Forte Agent, 604
forums, 6
frame classes, 17-18

document/view systems, 483-485
frame constructors, 19-20
Frame Layout (FL), 589
frames

closing and deleting, 414
creating with DialogBlocks, 584
modeless frames, 414

Freeze, 513
functions

AddFile, 411
AddRoot, 321
Blit, 138, 148, 157-158
Broadcast, 453
C string functions, 376-377
Clear, 148
CreatePopupMenu, 358
Destroy, 413

device context drawing functions,
148-150

DeviceToLogicalX, 150
DeviceToLogicalXRel, 150
DeviceToLogicalY, 150
DeviceToLogicalYRel, 150
DisplayContents, 516
DisplaySection, 516
DoDataExchange, 648
DoDragDrop, 292
DoGetBestSize, 362
DrawArc, 153
DrawBitmap, 157-158
DrawCircle, 148
DrawEllipse, 148
DrawEllipticArc, 148
DrawLines, 148, 154
DrawPoint, 148
DrawPolyPolygon, 155
DrawRotatedText, 149, 151
DrawSpline, 149, 156
DrawText, 150-152
EndDoc, 150
EndPage, 150
Entry, wxThread, 449
Execute, 508
FinishedIdleTask, 459
FloodFill, 149
GetAdjustedBestSize, 362
GetAllFiles, 400
GetBrush, 149
GetClassDefaultAttributes, 368
GetCurrentPage, 332
GetDC, 164
GetDeviceOrigin, 150
GetFirst, 400
GetLogicalFunction, 149
GetMapMode, 150
GetNext, 400
GetNextToken, 378
GetPageAreaSizer, 332
GetPageInfo, 163
GetPageSize, 332
GetPageSizeMM, 164

Index 673

Smart_index.qxd 6/10/05 2:38 PM Page 673

GetPageSizePixels, 164
GetPartialTextExtents, 149
GetPixel, 149
GetPPIPrinter, 164
GetPPIScreen, 164
GetSize, 149
GetSizeMM, 149
GetTextBackground, 149
GetTextExtent, 149, 152
GetTextForeground, 149
GetUserScale, 150
HasInput, 528
HasPage, 164
Initialize, 162
IsPreview, 164
LoadTextResource, 410
Lock, 452
logging functions, 420-422
logical functions, 159-160
LogicalToDeviceX, 150
LogicalToDeviceXRel, 150
LogicalToDeviceY, 150
LogicalToDeviceYRel, 150
MacOpenFile, 506
member functions

wxButton, 87
wxCheckBox, 95
wxCheckListBox, 98
wxChoice, 91
wxComboBox, 93
wxControlWithItems, 54-55
wxDialog, 71
wxFrame, 60-61
wxGauge, 113
wxGrid, 350-353
wxHtmlWindow, 341-342
wxListBox, 98
wxListCtrl, 327-328
wxMDIChildFrame, 65
wxMDIParentFrame, 65
wxMenu, 120-122
wxMenuBar, 123-124
wxNotebook, 75-76
wxPanel, 72

wxRadioButton, 101
wxScrollBar, 103
wxScrolledWindow, 79-80
wxSlider, 107
wxSocketEvent, 469
wxSocketServer, 472
wxSpinButton, 104
wxSpinCtrl, 106
wxSplitterWindow, 84
wxStaticBitmap, 115
wxStaticBox, 116
wxStaticLine, 116
wxStaticText, 114
wxStatusBar, 129-130
wxTextCtrl, 110-111
wxToggleButton, 112
wxToolBar, 127-128
wxTreeCtrl, 321-322
wxWindow, 50-53
wxWizard, 332

menu functions, wxTaskBarIcon, 358
MyFrame, 338
new, 413
Notify, 457
Ok, 149
OnBeginDocument, 164
OnBeginPrinting, 164
OnChangeLanguage, 445-446
OnEndPrinting, 164
OnExecute, 508
OnGetItemAttr, 330
OnGetItemImage, 330
OnGetItemLabel, 330
OnInit, 409
OnInternalIdle, 460
OnPreparePrinting, 163
OnPrintPage, 164
OnRun, 428
OnSysRead, 403
OnSysWrite, 403
OnTerminate, 527
Pause, 450
Print, 161
printf, 376

674 Index

Smart_index.qxd 6/10/05 2:38 PM Page 674

ProcessEvent, event handling, 511
Resume, 450
RunWizard, 332
SelectLanguage, 444
Serialize, 649
SetAxisOrientation, 150
SetData, 292
SetDeviceOrigin, 150
SetItemData, 327
SetLogicalFunction, 149
SetMapMode, 150
SetPageSize, 332
SetTextBackground, 149
SetTextForeground, 149
SetupStrings, 445
SetUserScale, 150
ShellExecute, 526
Signal, 453-454
SortItems, 328
StartDoc, 150
StartPage, 150
TestDestroy, 450
TransferDataFromWindow, 648
TransferDataToWindow, 648
Traverse, 400
TryLock, 452
Unlock, 452
Validate, 366
Wait, 449
wxAND, 160
wxAND_INVERT, 160
wxAND_REVERSE, 160
of wxBitmap, 267
wxCLEAR, 160
wxCOPY, 160
wxCursor, 275
wxEQUIV, 160
wxFontSelectorCtrl, 363
wxIcons, 273
wxImage, 279-280
wxINVERT, 160
wxNAND, 160
wxNOR, 160
wxNO_OP, 160

wxOR, 160
wxOR_INVERT, 160
wxOR_REVERSE, 160
wxSET, 160
wxSRC_INVERT, 160
wxXOR, 160

G
GCC, 544, 553-554

compiling sample programs, 555
GDB, Emacs, 544
GetAdjustedBestSize, 362
GetAllFiles, 400
GetAlpha, 282
GetBrush, 149
GetClassDefaultAttributes, 368
GetCurrentPage, 332
GetDataHere, 308
GetDC, 164
GetDeviceOrigin, 150
GetFirst, 400
GetInternalRepresentation, 341
GetKeyCode, 176
GetLinesPerAction, 174
GetLogicalFunction, 149
GetMapMode, 150
GetNext, 400
GetNextToken, 378
GetPageAreaSizer, 332
GetPageInfo, 163
GetPageSize, 332
GetPageSizeMM, 164
GetPageSizePixels, 164
GetPartialTextExtents, 149
GetPixel, 147, 149
GetPPIPrinter, 164
GetPPIScreen, 164
GetPreferredFormat, 307
GetRGB, 147
GetScreenType, 254
GetSize, 132, 149
GetSizeMM, 132, 149
GetTextBackground, 149

Index 675

Smart_index.qxd 6/10/05 2:38 PM Page 675

GetTextExtent, 149, 152
GetTextForeground, 149
GetUserScale, 150
GetWheelDelta, 174
GetWheelRotation, 174
Gloger, Wolfram, 5
GNOME, adding icons to desk-

top, 534
graphics, scrolling graphics, 512
grids, 77, 317, 345-346, 348

classes, 347-348
code listings, 346-347
events, 349
member functions, 350-353

functions for creation, deletion, and
data retrieval, 350

functions for presentation, 351
functions for selection and

cursors, 352
functions for setting and getting

wxGrid metrics, 351-352
miscellaneous functions, 353

GTK+
printing under Unix, 167-168
wxButton labels, 87

GTK-Qt, 596
GUI

writing your own controls, 317
wxGrid. See wxGrid
wxHtmlWindow. See wxHtmlWindow
wxListCtrl. See wxListCtrl
wxTaskBarIcon. See wxTaskBarIcon
wxTreeCtrl. See wxTreeCtrl
wxWizard. See wxWizard

GUI applications, event-driven
programming, 25

GUI functions, threads, 448
guidelines, UI design guidelines,

537-539

H
handling

events, creating custom dialogs, 249
UI updates, creating custom dialogs,

250-251
Hardy, 5
HasAlpha, 282
HASH_T, 385
HasInput, 528
Haskell, 594
HasMoreTokens, 378
HasPage, 164
header files, modifying, 556
headers, 572-574
Help, buttons, 538
help, 515

adding, creating custom dialogs,
251-253

authoring, 518-519
context-sensitive help, 251, 520-521
help controllers, 514, 516
menu help, 521
MS HTML Help, 519
online help, 252, 519-520

context-sensitive help, 520-521
implementing, 513, 515
menu help, 521
tooltips, 520-521

tooltips, 251, 520-521
wxModalHelp, 517

help controllers, 513-516
help files, 442
Help Viewer, 510
HelpBlocks, 595
helper data structures

wxLongLong, 392
wxObject, 391
wxPoint, 392
wxRealPoint, 392
wxRect, 392-393
wxRegion, 393-394
wxSize, 394
wxVariant, 394-395

676 Index

Smart_index.qxd 6/10/05 2:38 PM Page 676

hierarchies, sizers, 189
Holzem, Markus, 5
HTML

authoring help, 518-519
embedding windows in HTML pages,

342-344
printing, 344-345

HTML about boxes
creating, 339-340
sample, 340-341

HTML Help, 514-515
extended HTML Help, 517-518
limitations of, 517

I
i18n. See internationalization, 433
icon bundles, 285-288
icons. See also wxTaskBarIcon

adding, 534
associating with applications, 274-275
Mac OS X, 536
UI design guidelines, 538

identifiers
document/view systems, 500
font families, 145
window identifiers, 31

IDEs, Microsoft Visual Studio. See
Microsoft Visual Studio

idle time, windows, 42
idle time processing, 459-460
IFM (Interface Management

System), 597
image classes, 265
image handlers, 280
image lists, 285-288
images

3D graphics, wxGLCanvas, 168-169
loading and saving, wxImage, 280-282

implementing
DoodleApp, 498
DoodleCanvas, 496
DoodleView, 493
drag sources, 294-297

drop targets, 297-298
online help, 513, 515
resource handlers, writing your own

controls, 367
undo/redo, 501-503
validators, writing your own controls,

365-367
include files, 559
includes

adding to Bakefile, 568-569
Bakefile, 569-570

Info.plist file, 436
informative dialogs

wxBusyInfo, 210
wxMessageDialog, 205-207
wxProgressDialog, 208-209
wxShowTip, 210-212

Initialize, 162
initializing

application objects, 415
applications, MFC versus

wxWidgets, 644
Inno Setup script, 533
input

handling, writing your own controls,
363-364

joysticks, 181-183
wxJoystick, 184
wxJoystick events, 183
wxJoystickEvent, 184

keyboards, 175, 177
accelerators, 180-181
example character event

handler, 178
key code translation, 179
modifier key variations, 179-180

mouse input, 171-172
handling buttons and motion

events, 173-174
handling mouse wheel events,

174-175
redirecting, 527-529
windows, 42

InstallAnywhere, 596

Index 677

Smart_index.qxd 6/10/05 2:38 PM Page 677

installing
applications

on Linux, 533-534
on Mac OS X, 535-537
on Windows, 532-533

DialogBlocks
Linux, 576-577
Mac OS X, 577
Windows, 576

wxWidgets, 543
InstallShield, 596
instances

communication, 507
Mac OS, 506
single or multiple instances, 506-510
wxSingleInstanceChecker, 506, 509

Interface Management System
(IFM), 597

interface styles, choosing for docu-
ment/view systems, 483

interfaces, DialogBlocks, 577-578
internal organization, wxWidgets,

12-13
internationalization, 433-434

converting data, 439
help files, 442
outside of a temporary buffer,

441-442
wxCSConv, 440-441
wxEncodingConverter, 440

media, 443
numbers and dates, 443
samples, 444-446
translations, 434

message catalogs, 435-436
poEdit, 434
wxLocale, 437-438

Internet Explorer, 598
invariants, 451
invoking dialogs, 253
IPV4, 468
IPV6, 468
IsPreview, 164

J
Java, 3, 594
JavaScript, 593
joysticks, 181-183

wxJoystick, 184
wxJoystick events, 183
wxJoystickEvent, 184

K
Kay, Alan, 7
KDE, adding icons to desktop, 534
KDevelop, 544, 596

creating wxWidgets applications,
562-563

key code translation, 179
keybinder, 599
keyboard navigation, designing

dialogs, 255
keyboards, 175, 177

accelerators, 180-181
example character event handler, 178
key code translation, 179
modifier key variations, 179-180

KEY_EQ_T, 385
KICAD, 604
Kirix Strata, 605
Koan Software, wxDao, 650

L
labels, button labels (wxButton),

87-88
language bindings, 593-594
launching documents, 525-526
layout

basics of layout, 187-188
dialog units, 201-202
dynamic layouts, 204
platform-adaptive layouts, 202-203

LayoutFrame, 85
LayoutMDIFrame, 85
layouts

coding, 244-246
designing dialogs, 256-257

678 Index

Smart_index.qxd 6/10/05 2:38 PM Page 678

leaks, detecting memory leaks, 416
LED, 586
libgnomeprint, 167
libgnomeprintui, 167
libraries

add-on libraries, 596-599
contributed libraries, 557
dynamic libraries, loading, 427
libgnomeprint, 167
libgnomeprintui, 167
LitWindow Library, 599
multi-libraries versus monolithic

libraries, 546
shared libraries

Linux, 535
versus static libraries, 546

library files, 559
licenses, 7
lightweight processes. See threads
limitations of HTML Help, 517
lines, drawing, 152-155
Linux

development tools, 544-545
GCC, 553-554

compiling sample programs, 555
installing

applications, 533-534
DialogBlocks, 576-577

KDevelop. See KDevelop
shared libraries, 535

list controls
virtual list controls, 330
wxListCtrl. See wxListCtrl

LitWindow Library, 599
LoadFile, 273
loading

dynamic libraries, 427
images, wxImage, 280-282
resources, resource files, 258-259

LoadTextResource, 410
locations, storing application

resources, 524
Lock, 452

logging, 422-423
wxLogChain, 423
wxMessageOutput versus wxLog,

423-424
logging functions, 420-422
logical functions, 158-160
logical units, 132
LogicalToDeviceX, 150
LogicalToDeviceXRel, 150
LogicalToDeviceY, 150
LogicalToDeviceYRel, 150
logs, creating, 422
Loki Setup, 596
Lua, 593

M
Mac OS, instances, 506
Mac OS X

Bakefile, 566
development tools, 544-545
GCC, 553-554

compiling sample programs, 555
icons, 536
installing

applications, 535-537
DialogBlocks, 577

StoryLines, 3
Xcode, 563

Macintosh, event-driven
programming, 25

MacOpenFile, 506
macros

arrays, 379
comparing MFC versus

wxWidgets, 651
defining custom events, 34-37
joystick event table macros, 183
keyboard event table macros, 176
mouse event table macros, 172
wxDYNLIB_FUNCTION, 427

Mahogany Mail, 605
Makefiles, creating wxWidgets

applications, 564-565

Index 679

Smart_index.qxd 6/10/05 2:38 PM Page 679

makeinno.sh, 532
maketarball.sh, 537
manipulating wxImage data

directly, 285
mapping modes, 132
mask flags, wxListItem, 325
MDI (Multiple Document Inter-

face), 413
media, internationalization, 443
member functions

wxButton, 87
wxCheckBox, 95
wxCheckListBox, 98
wxChoice, 91
wxComboBox, 93
wxControlWithItems, 54-55
wxDialog, 71
wxFrame, 60-61
wxGauge, 113
wxGrid, 350-353
wxHtmlWindow, 341-342
wxListBox, 98
wxListCtrl, 327-328
wxMDIChildFrame, 65
wxMDIParentFrame, 65
wxMenu, 120-122
wxMenuBar, 123-124
wxNotebook, 75-76
wxPanel, 72
wxRadioButton, 101
wxScrollBar, 103
wxScrolledWindow, 79-80
wxSlider, 107
wxSocketEvent, 469
wxSocketServer, 472
wxSpinButton, 104
wxSpinCtrl, 106
wxSplitterWindow, 84
wxStaticBitmap, 115
wxStaticBox, 116
wxStaticLine, 116
wxStaticText, 114
wxStatusBar, 129-130
wxTextCtrl, 110-111

wxToggleButton, 112
wxToolBar, 127-128
wxTreeCtrl, 321-322
wxWindow, 50-53
wxWizard, 332

memory leaks, detecting, 416-418
memory management, 413

arrays, 381
cleaning up applications, 416
creating and copying drawing

objects, 415
creating and deleting window objects,

413-414
debugging. See debugging
defensive programming, 418-419
detecting leaks and errors, 416-418
initializing application objects, 415

memory streams, 405
menu help, 521
menus

popup menus, 358
UI design guidelines, 538
windows, 46
wxMenu, 117-118

events, 118-120
member functions, 120-122

message catalogs, 433
distributing, 438
step-by-step guide, 435-436

message maps, MFC versus
wxWidgets, 644-646

META tag, wxHtmlHelpCon-
troller, 442

metafiles, creating with
wxMetafileDC, 138

Metrowerks CodeWarrior, 10
MFC

dialog data exchange, 648-649
recreating dialogs, 647-648
versus wxWidgets, 643

classes, 651-652, 654
configurable control bars, 650
database access, 650
documents and views, 649

680 Index

Smart_index.qxd 6/10/05 2:38 PM Page 680

initializing applications, 644
macros, 651
message maps, 644-646
printing, 649
string handling and

translation, 650
validation, 648-649

Microsoft Visual C++, compi-
ling wxWidgets sample pro-
grams, 549

Microsoft Visual Studio, 544,
547-548, 595

compiling wxWidgets sample
programs, 548

creating wxWidgets applications,
559-561

DLL, 548
multiple configurations, 562
troubleshooting, 561-562
Unicode, 548

Microsoft Word, 483
MinGW, 544, 552-553

compiling sample programs, 553
debugging release builds, 431
with MSYS, 551-552

compiling sample programs, 552
MinGW Developer Studio, 595
mini-frames, wxFrame, 63
mmwx, 598
Model-View-Controller (MVC), 481
modeless dialogs and frames, 414
modifier key variations, 179-180
modifiers, wxDateTime, 388
modifying

header files, 556
setup.h, 555
source files, 556

module systems, wxModule, 426
Mojoworld, 605
monolithic libraries versus

multi-libraries, 546
motion events, mouse input, 173-174

mouse input, 171-172
handling buttons and motion events,

173-174
handling mouse wheel events,

174-175
mouse wheel events, mouse input,

174-175
Mozilla, 596
MS HTML Help, 519
MSYS with MinGW, 551-552

compiling sample programs, 552
multi-libraries versus monolithic

libraries, 546
multi-line text controls, 108
multimedia classes, 590
Multiple Document Interface

(MDI), 413
multiple instances, 506-510
multiplication, 390
multithreaded applications, 448

synchronizing objects, 451
deadlocks, 452
wxCondition, 453-456
wxCriticalSection, 453
wxMutex, 451-452
wxSemaphore, 456

wxThread, 448-449
multithreading, 447
mutexes, 452

deadlocks, 452
wxCriticalSection, 453
wxSemaphore, 456

mutual exclusion, 451
MVC (Model-View-Controller), 481
MyApp, 17
MyCanvas, 182
MyFrame, 17, 338

event handlers, 18-19

N
Navigate, 178
NDEBUG, 431
.NET, 594
network-related classes, 590

Index 681

Smart_index.qxd 6/10/05 2:38 PM Page 681

new, 413
New Project Wizard, Dialog-

Blocks, 582
non-blocking sockets, 475
non-rectangular frames, wxFrame,

61-63
non-static controls, 45, 86

wxBitmapButton, 89-90
wxButton, 86

events, 87
labels, 87-88
member functions, 87
styles, 86

wxCheckBox, 93-94
events, 95
member functions, 95
styles, 94

wxCheckListBox, 95-96
events, 97
member functions, 98
styles, 97

wxChoice, 90-91
wxComboBox, 91-92

events, 93
member functions, 93
styles, 92

wxGauge, 112-113
wxListBox, 95-96

events, 97
member functions, 98
styles, 97

wxRadioBox, 98-99
events, 100
member functions, 100
styles, 99

wxRadioButton, 100-101
wxScrollBar, 101-102

events, 102
member functions, 103
styles, 102

wxSlider, 106
events, 107
member functions, 107
styles, 106

wxSpinButton, 103
events, 104
member functions, 104
styles, 104

wxSpinCtrl, 104-105
events, 105
member functions, 106
styles, 105

wxTextCtrl, 107-109
events, 110
member functions, 110-111
styles, 109

wxToggleButton, 111
events, 112
member functions, 112
styles, 112

notebook theme management,
wxNotebook, 74

Notify, 457
NSIS (Nullsoft Scriptable Install

System), 596
numbers

converting, wxString, 377
formatting for internationaliz-

ation, 443

O
Object Graphics Library (OGL), 588
object-oriented programming and

wxWidgets, 7
objects

application objects, initializing, 415
drawing objects. See drawing objects
synchronizing, 451

deadlocks, 452
wxCondition, 453-456
wxCriticalSection, 453
wxMutex, 451-452
wxSemaphore, 456

windows objects, 413-414
ODBC classes, 589
OGL (Object Graphics Library), 588
Ok, 149
OLE automation,

wxAutomationObject, 591

682 Index

Smart_index.qxd 6/10/05 2:38 PM Page 682

OnAcceptConnection, 508
OnBeginDocument, 164
OnBeginPrinting, 164
OnChangeLanguage, 445-446
OnDraw, 78
OnEndPrinting, 164
OnExecute, 508
OnExit, 19
OnGetItemAttr, 330
OnGetItemImage, 330
OnGetItemLabel, 330
OnInit, 16, 409, 415
OnInternalIdle, 460
online help, 252, 519-520

implementing, 513, 515
menu help, 521

OnPaint, 134
OnPaint handler, 174
OnPreparePrinting, 163
OnPrintPage, 164
OnRun, 428
OnSize event handler, 187
OnSysRead, 403
OnSysWrite, 403
OnTerminate, 527
output, redirecting, 527-529

P
packaging bitmap resources, 272
painting

smooth painting and scrolling, 136
windows, 41

palettes, wxPalette, 147
ParseFormat, 389
parsing

command lines, 521-523
dates, 389

paste, clipboard, 303
Pause, 450
pausing threads, 450
Perl, 593
PersonalRecordDialog, 242

adding help, 251-253
coding controls and layouts, 244-246

data transfer and validation, 247-249
deriving new classes, 243
designing data storage, 243-244
handling events, 249
handling UI updates, 250-251
invoking the dialog, 253

PersonalRecordDialog
header file for, 627-629
implementation file for, 629-634

pgAdmin III, 605
platform symbols, 573
platform-adaptive layouts, 202-203
playing audio files, 526
pluggable event handlers, 29-30
poEdit, 595
point size, 145
popup menus, 358
POSIX regular expressions, 379
presets, Bakefile, 569-570
previewing

document/view systems, 500
printing, 165-167

Print, 161
PrintClasses, 417
printf, 376

wxString, numbers and dates for
internationalization, 443

printing
document/view systems, 500
HTML, 344-345
MFC versus wxWidgets, 649
previewing, 165-167
scaling, 165-167
under Unix with GTK+, 167-168
wxPostScriptDC, 139-140
wxPrinterDC, 139-140

printing dialogs, 232
wxPageSetupDialog, 232-235
wxPrintDialog, 235-239

printing framework, 161-162
wxPrintout, 163-164

priority, specifying threads, 450
process input, redirecting, 527-529
processApp, 529

Index 683

Smart_index.qxd 6/10/05 2:38 PM Page 683

ProcessEvent, 613, 615
event handling, 511

processing events, 613, 615
program flow, 23
programming

with sizers, 192-193
wxBoxSizer, 193-196
wxFlexGridSizer, 198-200
wxGridBagSizer, 200-201
wxGridSizer, 197-198
wxStaticBoxSizer, 196-197

with wxBitmap, 267
creating a wxBitmap, 268-269
drawing with bitmaps, 271
packaging bitmap resources, 272
setting wxMask, 269-270
XPM format, 270-271

with wxCursor, 275
creating wxCursor, 276-278
wxCursor, 278
wxSetCursorEvent, 278-279

with wxIcon, 272-274
associating icons with applications,

274-275
creating wxIcon, 273

with wxImage, 279-280
color reduction, 284-285
loading and saving images,

280-282
manipulating data directly, 285
transformations, 284
transparency, 282-283

project types, Bakefile, 567
autoconf, 568

projects, creating new projects with
DialogBlocks, 582

PushEventHandler, 30

R
RAD (Rapid Application

Development) tool, 575
wxHatch, 595

radio buttons, 100
RC files, 647

reading
data types, 405-406
socket data, 471

recreating dialogs, MFC, 647-648
redirecting process input and out-

put, 527-529
reducing

data files, 523-524
flicker, 512-513

Reference tab, DialogBlocks, 578
refresh speed, 512
Register buttons, 344
RegisterProcess, 529
release builds

versus debug builds, 546
debugging, 430-431

ReleaseCapture, 181
ReleaseMouse, 50
renderer classes, 592
resource files, 257

binary resource files, 259-260
converting dialogs, 647
embedded resource files, 259-260
foreign controls, 263-264
loading resources, 258-259
translating resources, 261
writing resource handlers, 262-263
XRC format, 261-262

resource handlers
implementing, writing your own

controls, 367
writing, 262-263

resources
loading in resource files, 258-259
translating, 261

Resume, 450
Roebling, Robert, 6
RPM, 534
RTTI (run-time type information),

424-426
Ruby, 594
running applications, wxExe-

cute, 525
RunWizard, 332

684 Index

Smart_index.qxd 6/10/05 2:38 PM Page 684

S
SashHitTest, 279
saving images, wxImage, 280-282
scaling for printing, 165-167
Scintilla, 586
SciTech, Inc., 5
screens, accessing with

wxScreenDC, 139
scrollbars, windows, 41
scrolling without

wxScrolledWindow,
80-81

scrolling graphics, 512
selectLanguage, 444
SelectObject, 138
sending commands to debugg-

ers, 527
serialization, 649
Serialize function, 649
servers

connecting sockets to, 467
socket addresses, 468

socket servers, creating, 472
sockets, 466-467

SetAxisOrientation, 131, 150
SetCap, 143
SetCapture, 181
SetCheckpoint, 417
SetData, 292, 309
SetDefaultStyle, 108
SetDeviceOrigin, 131, 150
SetItemData, 327
SetLogicalFunction, 149
SetMapMode, 150
SetMask, 325
SetPageSize, 332
SetScrollbar, 80
SetScrollRate, 77
SetSizeHints, 192
SetState, 326
SetTextBackground, 149
SetTextForeground, 149
settings. See application settings
SetToolTip, 251

setup.h
changes on Windows, 556
modifying, 555

SetupStrings, 445
SetUserScale, 132, 150
ShapeDump, 309
shapes, drawing, 152-155
shared libraries

Linux, 535
versus static libraries, 546

ShellExecute, 526
ShowHelp, 518
showing

taskbar icons, 356-357
wizards, 331

ShowModal, 414
Shrink, 381
Signal, 453-454
SILO, 607
single instances, 506-510
sizers, 188-189

alignment, 191
borders, 191
dialog units, 201-202
dynamic layouts, 204
features of, 190-192
flags, 194
hierarchies, 189
platform-adaptive layouts, 202-203
programming with, 192-193

wxBoxSizer, 193-196
wxFlexGridSizer, 198-200
wxGridBagSizer, 200-201
wxGridSizer, 197-198
wxStaticBoxSizer, 196-197

stretch factor, 192
sizing

issues with wxSplitterWindow, 84-85
windows, 42

Skip, 29, 179
skipping events, 29
Slavik, Vaclav, 5, 434, 565
Smalltalk, 7
Smartphone, 10

Index 685

Smart_index.qxd 6/10/05 2:38 PM Page 685

socket addresses, connecting to
servers, 468

socket API, 463
socket classes, 464
socket clients, connecting to

servers, 468-469
socket data, 471

reading, 471
writing, 472

socket events, 469-470, 473
socket flags, 473-475

behavior of sockets, 475-476
socket status, 470-471
socket streams, 406, 476-477

file receiving threads, 478-479
file sending threads, 477-478

sockets, 463-464
blocking, 474
clients, 465-466
combinations of, 475
connecting to servers, 467

socket addresses, 468
socket clients, 468-469

error codes, 471
event-based sockets, 463
non-blocking, 475
servers, 466-467

creating, 472
SortItems, 328
source files, modifying, 556
sources, adding to Bakefile, 568-569
spell-check, 598
Spencer, Henry, 379
splines, drawing, 156
SQLite, 598
stack size, specifying, 450
standard data formats, 292
standard drop targets, 298-299
standard identifiers, document/view

systems, 500
Standard Template Library

(STL), 373
StartDoc, 150
starting threads, 450

StartPage, 150
state styles, wxListItem, 326
states, setting for wxListItem, 326
static controls, 112

windows, 46
wxStaticBitmap, 114-115

member functions, 115
wxStaticBox, 116
wxStaticLine, 115

member functions, 116
styles, 115

wxStaticText, 113-114
static libraries versus shared

libraries, 546
STL (Standard Template Li-

brary), 373
stock button identifiers, 88
stock cursor identifiers, 276
storing

application resources
finding application paths, 524-525
reducing data files, 523
standard locations, 524

application settings, 529-530
StoryLines, 2, 4-5

Mac OS X, 3
Windows, 2

streams, 403
file streams, 403-405
filter streams, 407
memory streams, 405
reading and writing data types,

405-406
socket streams. See socket streams
string streams, 405
zip streams, 407-408

stretch factor, sizers, 192
string litereals, wxString, 375
string streams, 405
strings, 374

MFC versus wxWidgets, 650
wxArray, 379, 381

array types, 379-380
wxArrayString, 380

686 Index

Smart_index.qxd 6/10/05 2:38 PM Page 686

wxRegEx, 379
wxString, 374

C pointer conversions, 375-376
characters, 375
converting to and from

numbers, 377
standard C string functions,

376-377
string literals, 375

wxStringTokenizer, 378
styles

fonts, 145
state styles, wxListItem, 326
windows, 44
wxBrush, 144
wxButton, 86, 90
wxCheckBox, 94
wxCheckListBox, 97
wxComboBox, 92
wxDialog, 69-70
wxFrame, 58-59
wxGauge, 113
wxHtmlWindow, 341
wxListBox, 97
wxListCtrl, 323
wxMDIChildFrame, 65
wxMDIParentFrame, 64
wxNotebook, 74
wxPanel, 72
wxPen, 142
wxRadioBox, 99
wxRadioButton, 101
wxScrollBar, 102
wxScrolledWindow, 78
wxSlider, 106
wxSpinButton, 104
wxSpinCtrl, 105
wxSplitterWindow, 83
wxStaticLine, 115
wxStaticText, 114
wxStatusBar, 129
wxTextCtrl, 109
wxToolBar, 126
wxTreeCtrl, 319-320

wxWindow, 47-49
wxWizard, 331

subtraction, 390
Support page, DialogBlocks, 578
symbols, 572-574
synchronizing objects, 451

deadlocks, 452
wxCondition, 453-456
wxCriticalSection, 453
wxMutex, 451-452
wxSemaphore, 456

system files, 559

T
tables

Flags for CreateButtonSizer, 203
Joystick Event Table Macros, 183
Keyboard Event Table Macros, 176
Modifier Keys under Windows, Unix,

and Mac OS X, 180
Mouse Event Table Macros, 172
Sizer flags, 194
wxGrid. See wxGrid

targets, Bakefile, 568
taskbar icons, showing. See

wxTaskBarIcon
templates, Bakefile, 569-570
terminating

applications, UI design
guidelines, 539

threads, 451
TestDestroy, 450
text, drawing, 150-152
text controls, multi-line text

controls, 108
Thaw, 513
third-party tools, 594-596
threads. See also multithreaded

applications
creating, 449-450
deciding when to use, 447-448
file receiving threads, socket streams,

478-479

Index 687

Smart_index.qxd 6/10/05 2:38 PM Page 687

file sending threads, socket streams,
477-478

GUI functions, 448
pausing, 450
sample wxWidgets thread, 457
starting, 450
terminating, 451
waiting for external conditions, 450

time, 387
wxDateTime, 388-389

timers, wxTimer, 457-459
ToasterBox, 597
toolkit symbols, 573
tools

development tools. See development
tools

drawing tools. See drawing tools
RAD tool, 575
third-party tools, 594-596

tooltips, help, 251, 520-521
top-level windows, 41, 45, 55

wxDialog, 66-69
member functions, 71
styles, 69-70

wxFrame, 55-57
member functions, 60-61
mini-frames, 63
non-rectangular frames, 61-63
styles, 58-59

wxMDIChildFrame, 65
member functions, 65
styles, 65

wxMDIParentFrame, 63-64
member functions, 65
styles, 64

wxPopupWindow, 71
Tortoise CVS, 607
Transcribe!, 607
TransferDataFromWindow, 247, 648
TransferDataToWindow, 247, 648
transferring, wxString, 440
transformations, programming with

wxImage, 284
translating resources, 261

translations, 433-434
message catalogs, 435-436
MFC versus wxWidgets, 650
poEdit, 434
wxLocale, 437-438

transparency, programming with
wxImage, 282-283

Traverse, 400
tree controls. See wxTreeCtrl
troubleshooting Microsoft Visual

Studio, 561-562
TryLock, 452

U
UDP, 463
UI design guidelines, 537

application termination behavior, 539
colors, 539
fonts, 539
icons, 538
menus, 538
standard buttons, 538

UI separation, designing dia-
logs, 256

UI updates
handling, creating custom dialogs,

250-251
windows, 42

unary minus, 390
underlines, fonts, 145
undo/redo, implementing, 501-503
Unicode

convTo, 440
Microsoft Visual Studio, 548
string literals, 375
wxCSConv, 440

Unicode debug build, 548
Unicode-versus non-Unicode, 546
Unix

Bakefile, 566
GCC, 553-554

compiling sample programs, 555
printing with GTK+, 167-168

688 Index

Smart_index.qxd 6/10/05 2:38 PM Page 688

Unlock, 452
unpacking wxWidgets, 545-546
UnregisterProcess, 529
update region, 41
UpdateBackingFromWindow, 316
updates, UI updates, 43
updating wxWidgets files, 556
upgrading DialogBlocks, 577
useMask, 158

V
Validate, 366
validation

creating custom dialogs, 247-249
MFC, 648-649

validators, 532
implementing, writing your own

controls, 365-367
wxFontSelectorValidator, 365

VideoLAN client (VLC), 607
view classes, defining for docu-

ment/view systems, 486-495
views, MFC versus wxWidgets, 649
virtual file systems, 408-411
virtual list controls, 330
Visual Studio. See Microsoft Visual

Studio
VLC (VideoLAN client), 607
VMware, 596
VTK, 597

W
Wait, 449
WaitOnConnect, wxSocket-

Client, 468
web browsers, embedded web

browsers, 591
weight, fonts, 145
window classes

base classes. See base window classes
container windows, 45
control bars, 46
document/view systems, 495-497

FL (Frame Layout), 589
menus, 46
non-static controls, 45
OGL, 588
static controls, 46
top-level windows, 45
wxCalendarCtrl, 585
wxDatePickerCtrl, 586
wxEditableListBox, 587
wxFoldPanelBar, 587
wxGenericDirCtrl, 585
wxGIFAnimationCtrl, 587
wxLEDNumberCtrl, 586
wxSplashScreen, 588
wxStaticPicture, 586
wxStyledTextCtrl, 586
wxTipWindow, 586

window identifiers, 31-32
window objects, creating and

deleting, 413-414
window variant, 42
windows, 39

Bakefile, 566
bitmap colors, 125
Borland C++, compiling sample

programs, 550
carets, 41
changes to setup.h, 556
client areas, 40
color, 42
concept of, 40
container windows. See container

windows
control bars

MFC versus wxWidgets, 650
windows, 46
wxMenuBar, 122-124
wxStatusBar, 128-130
wxToolBar, 124-128

coordinate systems, 41
creating, 43-44
cursors, 41
deleting, 43-44
development tools, 543-544

Index 689

Smart_index.qxd 6/10/05 2:38 PM Page 689

disabling, 460
drawing on, with wxPaintDC, 135-138
embedding in HTML pages, 342-344
erasing backgrounds, 134-135
fonts, 42
idle time processing, 42
input, 42
installing DialogBlocks, 576
installing applications, 532-533
Microsoft Visual C++, compiling

wxWidgets sample
programs, 549

Microsoft Visual Studio. See Microsoft
Visual Studio

MinGW, 552-553
compiling sample programs, 553
with MSYS, 551-552

non-client areas, 40
non-static controls. See non-static

controls
painting, 41
scrollbars, 41
sizing, 42
static controls. See static controls
StoryLines, 2
styles, 44
top-level windows, 41
top-level windows. See top-

level windows
UI updates, 42

wizards
New Project Wizard, Dialog-

Blocks, 582
showing, 331
wxWizard, 331

events, 331
examples, 332-338
member functions, 332

Writer’s Cafe, 607
writing

data types, 405-406
files, 398
resource handlers, 262-263
socket data, 472

writing your own controls, 359-360
adding DoGetBestSize, 362
control appearance, 367-369, 371
custom control declaration, 360-362
defining default event handlers,

364-365
defining event classes, 363
displaying information on the

control, 363
handling input, 363-364
implementing resource handlers, 367
implementing validators, 365-367

wx-config, 571-572
build directory, 571

wx-dev, 6-7
wx-users, 6-7
wx.NET, 594
wx4j, 594
wxAccessible, 591
wxActivateEvent, 617
wxAND, 160
wxAND_INVERT, 160
wxAND_REVERSE, 160
wxANIHandler, 281
wxApp, 16-17
wxArchiveClassFactory, 407
wxArchiveEntry, 407
wxArray, 379, 381

array types, 379-380
sample code, 381-383

wxArrayString, 380
wxArt2D, 598
wxArtProvider, 288-290
wxASSERT, 418
wxAutomationObject, 591
wxBaseArray, 381
wxBasic, 593
wxBetterDialog, 599
wxBitmap, 265, 417

creating, 268-269
palettes, 147
programming, 267

creating a wxBitmap, 268-269
drawing with bitmaps, 271

690 Index

Smart_index.qxd 6/10/05 2:38 PM Page 690

packaging bitmap resources, 272
setting wxMask, 269-270
XPM format, 270-271

wxBitmapButton, non-static con-
trols, 89-90

wxBitmapType, 266
wxBITMAP_TYPE_ANI, 267
wxBITMAP_TYPE_ANY, 267
wxBITMAP_TYPE_BMP, 266
wxBITMAP_TYPE_BMP_

RESOURCE, 266
wxBITMAP_TYPE_CUR, 266
wxBITMAP_TYPE_CUR_

RESOURCE, 266
wxBITMAP_TYPE_GIF, 266
wxBITMAP_TYPE_ICO, 266
wxBITMAP_TYPE_ICON_

RESOURCE, 267
wxBITMAP_TYPE_ICO_

RESOURCE, 266
wxBITMAP_TYPE_IFF, 267
wxBITMAP_TYPE_JPEG, 266
wxBITMAP_TYPE_MACCUR-

SOR, 267
wxBITMAP_TYPE_MACCURSOR_

RESOURCE, 267
wxBITMAP_TYPE_PCX, 266
wxBITMAP_TYPE_PICT, 266
wxBITMAP_TYPE_PICT_RE-

SOURCE, 267
wxBITMAP_TYPE_PNG, 266
wxBITMAP_TYPE_TIF, 266
wxBITMAP_TYPE_XBM, 266
wxBITMAP_TYPE_XPM, 266
wxBITMAP_TYPE_XPM_DATA, 266
wxBLACK, 141
wxBLUE, 141
wxBMPHandler, 280
wxBoxSizer, 193-196
wxBrush, 143-144, 417

styles, 144
wxBufferedDC, 132, 134
wxBufferedPaintDC, 133, 136-138
wxBUFFER_CLIENT_AREA, 138

wxBUFFER_VIRTUAL_AREA, 138
wxBusyInfo, 210
wxButton, 27, 171

non-static controls, 86
events, 87
labels, 87-88
member functions, 87
styles, 86

wxBZipStream, 599
wxCalendarCtrl, 585
wxCaret, 41
wxCharBuffer, 441
wxCHECK, 418
wxCheckBox, non-static controls,

93-94
events, 95
member functions, 95
styles, 94

wxCheckboxPage, 334
wxCheckListBox, non-static con-

trols, 95-96
events, 97
member functions, 98
styles, 97

wxCHMHelpController, 513, 516
wxChoice, non-static controls, 90-91
wxChoicebook, 76, 531
wxCLEAR, 160
wxClientDC, 132

drawing on windows, 133-134
wxClipboardLocker, 293
wxCLIP_CHILDREN, 512
wxCloseEvent, 619
wxCmdLineParser, 521
wxCocoa, 10
wxColor, 141
wxColour, 141
wxColourDialog, 218-221
wxComboBox, non-static controls,

91-92
events, 93
member functions, 93
styles, 92

Index 691

Smart_index.qxd 6/10/05 2:38 PM Page 691

wxCommandEvent, 27, 87, 617
wxCommandEventHandler, 31
wxConcatFiles, 402
wxCondition, synchronizing

objects, 453
example, 453-456

wxConfig, 530
wxContextMenuEvent, 620
wxControl, base window classes, 54
wxControlWithItems, base window

classes, 54
member functions, 54-55

wxConvCurrent, 441
wxCONVERT_SUBSTITUTE, 440
wxCopy, 158-160
wxCopyFile, 402
wxCrashReport, 599
wxCreateDynamicObject, 425
wxCriticalSection, synchronizing

objects, 453
wxCRP, 595
wxCSConv, 440-441
wxCTB, 598
wxCURHandler, 281
wxCURL, 597
wxCurlDAV, 597
wxCursor, 41, 265, 278

creating, 276-278
programming with, 275

creating wxCursor, 276-278
wxCursor, 278
wxSetCursorEvent, 278-279

wxCURSOR_ARROW, 276
wxCURSOR_ARROWWAIT, 277
wxCURSOR_BLANK, 276
wxCURSOR_BULLSEYE, 276
wxCURSOR_CROSS, 276
wxCURSOR_IBEAM, 276
wxCURSOR_LEFT_BUTTON, 276
wxCURSOR_MAGNIFIER, 276
wxCURSOR_MIDDLE_BUTTON, 276
wxCURSOR_NO_ENTRY, 276
wxCURSOR_PAINT_BRUSH, 276
wxCURSOR_PENCIL, 276

wxCURSOR_RIGHT_ARROW, 276
wxCURSOR_RIGHT_BUTTON, 277
wxCURSOR_SIZENS, 277
wxCURSOR_SIZENWSE, 277
wxCURSOR_SIZEWE, 277
wxCURSOR_SIZING, 277
wxCURSOR_WAIT, 277
wxCURSOR_WATCH, 277
wxCYAN, 141
wxDao, 650
wxDataFormat, 301
wxDataInputStream, 405-406
wxDataObject, 291-292, 300-301

deriving from, 301
drag and drop sample, 302-311

wxDataObjectComposite, 301
wxDataObjectSimple, 301
wxDataOutputStream, 405-406
wxDatePickerCtrl, 586
wxDateSpan, 389
wxDateTime, 387-388

accessors, 388
constructors and modifiers, 388
date arithmetic, 389-391
date comparisons, 389
formatting dates, 389
getting current time, 389

wxDC, 131
wxDebugContext, 417
wxDebugReport, 431
wxDesigner, 594
wxDev-CPP, 595
wxDF_BITMAP, 292
wxDF_FILENAME, 292
wxDF_INVALID, 292
wxDF_METAFILE, 292
wxDF_TEXT, 292
wxDialog, top-level windows, 66-69

member functions, 71
styles, 69-70

wxDialUpManager, 590
wxDir, 400-401
wxDirDialog, 216-218
wxDirExists, 402

692 Index

Smart_index.qxd 6/10/05 2:38 PM Page 692

wxDIR_DIRS, 400
wxDIR_DOTDOT, 400
wxDIR_FILES, 400
wxDIR_HIDDEN, 400
wxDocChildFrame, 483
wxDockIt, 650
wxDocManager, 500, 649

document/view systems, 497-499
wxDocParentFrame, 483
wxDocTemplate, document/view

systems, 497-499
wxDragCancel, 296
wxDragCopy, 296
wxDragError, 296
wxDragImage, 313-316
wxDragLink, 296
wxDragMove, 296
wxDragNone, 296
wxDragResult, 297
wxDrag_AllowMove, 295
wxDrag_CopyOnly, 295
wxDrag_DefaultMove, 295
wxDropSource, 292, 294
wxDropTarget, 297-298
wxDynamicCast, 50, 425
wxDynamicLibrary, 427
wxDYNLIB_FUNCTION, 427
wxEditableListBox, 587
wxEiffel, 594
wxEmail, 590
wxEncodingConverter, 440
wxEncodingCoverter, 439
wxEQUIV, 160
wxEraseEvent, 134-135, 620
wxEuphoria, 594
wxEvent, 620
wxEventLoop, 592
wxEvtHandler, 29
wxEVT_CLOSE_WINDOW, 414
wxEVT_DELETE, 44
wxEVT_IDLE, 42
wxEVT_KILL_FOCUS, 42
wxEVT_SET_FOCUS, 42
wxExecute, 525, 527

wxFAIL, 418
wxFFile, 397-398
wxFile, 397-398
wxFileConfig, 529
wxFileDialog, 212-216
wxFileDropTarget, 298
wxFileExists, 402
wxFileInputStream, 403-405
wxFileModificationTime, 402
wxFileName, 401-402, 523
wxFileNameFromPath, 402
wxFileOutputStream, 403-405
wxFileSystem, 409
wxFileSystemHandler, 409
wxFILE_SEP_PATH, 403
wxFilterInputStream, 407
wxFilterOutputStream, 407
wxFindAppPath, 524
wxFindReplaceDialog, 228-232
wxFIXED_MINSIZE, 84
wxFlexGridSizer, 198-200
wxFocusEvent, 620
wxFoldPanelBar, 587
wxFont, 145-146
wxFontDialog, 221-224
wxFontSelectorCtrl, 35, 359, 363
wxFontSelectorValidator, 365
wxFopen, 402
wxFputc, 402
wxFrame, top-level windows, 55-57

member functions, 60-61
mini-frames, 63
non-rectangular frames, 61-63
styles, 58-59

wxFSFile, 409
wxFTP, 479, 590
wxFULL_REPAINT_ON_RESIZE,

136, 512
wxGauge, non-static controls,

112-113
wxGenericDirCtrl, 585
wxGenericDragImage, 315
wxGenericValidator, 248
wxGetCwd, 402

Index 693

Smart_index.qxd 6/10/05 2:38 PM Page 693

wxGetDiskSpace, 402
wxGIFAnimationCtrl, 587
wxGIFHandler, 280
wxGlade, 595
wxGLCanvas, 168-169
wxGREEN, 141
wxGrid, 77, 317, 345-346, 348

classes, 347-348
code listings, 346-347
events, 349
member functions, 350-353

functions for creation, deletion, and
data retrieval, 350

functions for presentation, 351
functions for selection and

cursors, 352
functions for setting and getting

wxGrid metrics, 351-352
miscellaneous functions, 353

wxGridBagSizer, 200-201
wxGridCellAttr, 348
wxGridCellCoords, 349
wxGridCellCoordsArray, 349
wxGridCellEditor, 348
wxGridCellRenderer, 348
wxGridEditorCreatedEvent, 348
wxGridEvent, 348
wxGridRangeSelectEvent, 348
wxGridSizeEvent, 348
wxGridSizer, 197-198
wxGridTableBase, 346, 348
wxGTK, 8
wxHashMap, 385-387
wxHaskell, 594
wxHatch, 595
wxHelpController, 516
wxHelpControllerHelpProvider, 521
wxHSCROLL, 41
wxHTML Help, 598
wxHtmlContainerCell, 341
wxHtmlEasyPrinting, 139, 649
wxHtmlHelpController, 442, 513, 516
wxHtmlHelpControllerEx, 517
wxHtmlHelpWindowEx, 517

wxHtmlPrintout, 649
wxHtmlWindow, 317, 338, 408-409

embedding windows in HTML pages,
342-344

member functions, 341-342
printing, 344-345
styles, 341

wxHtmlWindows, HTML for about
boxes, 340-341

wxHTTP, 479, 590
wxHTTPServer, 599
wxHyperLink, 599
wxHyperlinkCtrl, 598
wxICOHandler, 281
wxIcon, 265

creating, 273
programming with, 272-274

associating icons with applications,
274-275

creating wxIcon, 273
wxIconBundle, 288
wxID_ABORT, 34
wxID_ABOUT, 32
wxID_ANY, 31-32
wxID_APPLY, 33
wxID_BACKWARD, 33
wxID_BOLD, 34
wxID_CANCEL, 33
wxID_CLEAR, 33
wxID_CLOSE, 32
wxID_CONTEXT_HELP, 34
wxID_COPY, 33
wxID_CUT, 33
wxID_DEFAULT, 33
wxID_DELETE, 33
wxID_DOWN, 34
wxID_DUPLICATE, 33
wxID_EXIT, 32
wxID_FIND, 33
wxID_FORWARD, 33
WXID_HELP, 32
wxID_HELP_COMMANDS, 32
wxID_HELP_CONTENTS, 32
wxID_HELP_CONTEXT, 33

694 Index

Smart_index.qxd 6/10/05 2:38 PM Page 694

wxID_HELP_PROCEDURES, 32
wxID_HIGHEST, 32
wxID_HOME, 34
wxID_IGNORE, 34
wxID_INDENT, 34
wxID_INDEX, 34
wxID_ITALIC, 34
wxID_JUSTIFY_CENTER, 34
wxID_JUSTIFY_FILL, 34
wxID_JUSTIFY_LEFT, 34
wxID_JUSTIFY_RIGHT, 34
wxID_LOWEST, 32
wxID_MORE, 33
wxID_NEW, 32
wxID_NO, 33
wxID_NOTOALL, 34
wxID_OK, 31, 33
wxID_OPEN, 32
wxID_PASTE, 33
wxID_PREVIEW, 32
wxID_PRINT, 32
wxID_PRINT_SETUP, 32
wxID_PROPERTIES, 33
wxID_REDO, 32
wxID_REFRESH, 34
wxID_REPLACE, 33
wxID_REPLACE_ALL, 33
wxID_RESET, 33
wxID_RETRY, 34
wxID_REVERT, 32
wxID_REVERT_TO_SAVED, 34
wxID_SAVE, 32
wxID_SAVEAS, 32
wxID_SELECTALL, 33
wxID_SETUP, 33
wxID_STATIC, 33
wxID_STOP, 34
wxID_UNDELETE, 34
wxID_UNDERLINE, 34
wxID_UNDO, 32
wxID_UNINDENT, 34
wxID_VIEW_DETAILS, 33
wxID_VIEW_LARGEICONS, 33
wxID_VIEW_LIST, 33

wxID_VIEW_SORTDATE, 33
wxID_VIEW_SORTNAME, 33
wxID_VIEW_SORTSIZE, 33
wxID_VIEW_SORTTYPE, 33
wxID_YES, 33
wxID_YESTOALL, 34
wxID_ZOOM_100, 34
wxID_ZOOM_FIT, 34
wxID_ZOOM_IN, 34
wxID_ZOOM_OUT, 34
wxIdleEvent, 620
wxID_ANY, 43
wxID_CANCEL, 414
wxID_COPY, 511
wxID_PREVIEW, 500
wxID_PRINT, 500
wxIE, 591, 598
wxIFFHandler, 281
wxIFM, 597
wxImage, 265

programming with, 279-280
color reduction, 284-285
loading and saving images,

280-282
manipulating data directly, 285
transformations, 284
transparency, 282-283

wxImageList, 285-288
wxImprola, 598
wxIndustrialControls, 596
wxIniConfig, 530
wxInitDialogEvent, 620
wxInternetFSHandler, 411
wxINVERT, 159-160
wxIPV4address, 468, 590
wxIPV6address, 468
wxIsAbsolutePath, 403
wxJavaScript, 593
wxJoystick, 181, 184
wxJoystickEvent, 183-184
wxJPEGHandler, 280
wxKeyEvent, 176, 620
wxLaunchFile, 526

Index 695

Smart_index.qxd 6/13/05 12:27 PM Page 695

wxLayoutAlgorithm, 85
wxLCDWindow, 598
wxLEDNumberCtrl, 586
wxLIGHT_GREY, 141
wxList, 383-385
wxListbook, 76, 531
wxListBox, non-static controls,

95-96
events, 97
member functions, 98
styles, 97

wxListCtrl, 76, 285, 287, 312, 317,
322-323, 328-329

events, 324
member functions, 327-328
styles, 323

wxListCtrlCompare, 328
wxListCtrlEx, 599
wxListItem, 325-326
wxLocal, 434
wxLocale, 437-438
wxLog, 421-422

versus wxMessageOutput, 423-424
wxLogDebug, 419, 421
wxLogError, 419-420
wxLogFatalError, 420
wxLogGui, 422
wxLogMessage, 420-421, 424
wxLogNull, 420, 423
wxLogStatus, 420
wxLogStderr, 422
wxLogStream, 422
wxLogSysError, 421
wxLogTrace, 421
wxLogVerbose, 420
wxLogWarning, 420
wxLogWindow, 422
wxLongLong, 392
wxLua, 593
wxMac, 10
wxMask, 265

setting, 269-270
wxMathPlot, 597
wxMBConv, 440-441

wxMDIChildFrame, 63
top-level windows, 65

wxMDIParentFrame, top-level win-
dows, 63-64

member functions, 65
styles, 64

wxMediaCtrl, 590
wxMemoryDC, 133, 158

drawing on bitmaps, 138
wxMemoryFSHandler, 411
wxMemoryInputStream, 405
wxMemoryOutputStream, 405
wxMenu, 117-118

events, 118-120
member functions, 120-122

wxMenuBar, control bars, 122-123
events, 123
member functions, 123-124

wxMenuEvent, 621
wxMessageBox, 207
wxMessageDialog, 205-207, 414
wxMessageOutput versus wxLog,

423-424
wxMessageOutputDebug, 423
wxMetafileDC, 133

creating metafiles, 138
wxMGL, 12
wxMimeTypesManager, 525, 590
wxMkdir, 403
wxMM_LOMETRIC, 132
wxMM_METRIC, 132
wxMM_POINTS, 132
wxMM_TEXT, 132
wxMM_TWIPS, 132
wxModalHelp, 517
wxModule, 426
wxMotif, 10
wxMouseEvent, 171, 621
wxMoveEvent, 622
wxMozilla, 591, 596
wxMSW, 8
wxMultiChoiceDialog, 225-226
wxMutex, 451-452
wxMutexLocker, 451

696 Index

Smart_index.qxd 6/10/05 2:38 PM Page 696

wxMUTEX_DEAD_LOCK, 452
wxNAND, 160
wxNode, 383-385
wxNodeBase, 383
wxNOR, 160
wxNotebook, 285, 531

container windows, 72-74
alternatives to, 76
events, 75
member functions, 75-76
notebook theme management, 74
styles, 74

wxNotebookEvent, 622
wxNO_BORDER, 47
wxNO_OP, 160
wxNullBitmap, 138
wxNullColor, 141
wxNullPalette, 148
wxNumberEntryDialog, 227
wxObjArray, 380-381

sample code, 381-383
wxObject, 391
wxODBC, 589
wxOR, 160
wxOR_INVERT, 160
wxOR_REVERSE, 160
wxOS2, 12
wxOTL, 598
wxPageSetupDialog, 232-235
wxPaintDC, 133

drawing on windows, 135-138
wxPaintEvent, 134-135, 622
wxPalette, 147-148, 285
wxPalmOS, 12
wxPanel, container windows, 72
wxPassThrough, 423
wxPasswordEntryDialog, 227
wxPathOnly, 403
wxPCXHandler, 280
wxPen, 142-143

styles, 142
wxPerl, 593
wxPlaySound, 526
wxPlaySoundFile, 526

wxPNGHandler, 280
wxPNMHandler, 280
wxPoint, 392
wxPopupWindow, top-level win-

dows, 71
wxPostEvent, 448, 457
wxPostScriptDC, 132, 139-140
wxPrintData, 140
wxPrintDialog, 235-239
wxPrintDialogData, 161
wxPrinter, 161
wxPrinterDC, 133, 139-140
wxPrintout, 161, 163-164, 649
wxPrintPreview, 162
wxProcess, 527
wxProgressDialog, 208-209
wxPropertyGrid, 597
wxPropertySheetDialog, 531
wxPython, 593
wxQueryLayoutInfoEvent, 85
wxRadioBox, non-static controls,

98-99
events, 100
member functions, 100
styles, 99

wxRadioboxPage, 335
wxRadioButton, non-static controls,

100-101
wxRarInputStream, 599
wxRB_GROUP, 100
wxrc commands, 260
wxRealPoint, 392
wxRect, 392-393
wxRED, 141
wxRegConfig, 530
wxRegEx, 379
wxRegion, 393-394
wxRegionIterator, 393
wxRemoveFile, 403
wxRenameFile, 403
wxRendererNative, 592
wxReportWriter, 598
wxResizeableControl, 597
wxRmdir, 403

Index 697

Smart_index.qxd 6/10/05 2:38 PM Page 697

wxRuby, 594
wxSafeYield, 460
wxSashLayoutWindow, 85
wxSashWindow, 85
wxScreenDC, 133

accessing screens, 139
wxScrollBar, non-static controls,

101-102
events, 102
member functions, 103
styles, 102

wxScrolledWindow, 136
container windows, 76-78

events, 78
member functions, 79-80
styles, 78

wxSemaphore, synchronizing
objects, 456

wxSEMA_OVERFLOW, 456
wxSET, 160
wxSetCursorEvent, 278-279
wxSetWorkingDirectory, 403
wxSheet, 599
wxShowTip, 210-212, 519
wxSingleChoiceDialog, 224-225
wxSingleInstanceChecker, 506, 509
wxSize, 394
wxSizeEvent, 624
wxSizer, 188
wxSlider, non-static controls, 106

events, 107
member functions, 107
styles, 106

wxSMTP, 597
wxSockAddress, 468
wxSocket, 476

alternatives to, 479
as a standard socket, 476

wxSocketBase, 464, 471
wxSocketClient, 464, 468
wxSocketEvent, 464, 469-470

member functions, 469
wxSocketInputStream, 406, 464
wxSocketOutputStream, 406, 464

wxSocketServer, 464, 472
connection events, 472

wxSOCKET_BLOCK, 473-474
wxSOCKET_NONE, 473
wxSOCKET_NOWAIT, 473
wxSOCKET_WAITALL, 473-475
wxSortedArray, 380
wxSortedArrayString, 380
wxSound, 590
wxSpellChecker, 598
wxSpinButton, non-static controls,

103-104
wxSpinCtrl, non-static controls,

104-105
events, 105
member functions, 106
styles, 105

wxSpinEvent, 624
wxSplashScreen, 588
wxSplitterEvent, 624
wxSplitterWindow, container

windows, 81-82
alternatives to, 85
events, 83
member functions, 84
sizing issues, 84-85
styles, 83

wxSPL_LIVE_UPDATE, 81
wxSQLite, 598
wxSRC_INVERT, 160
wxSscanf, 402
wxStatic Text, static controls,

113-114
wxStaticBitmap, static controls,

114-115
wxStaticBox, static controls, 116
wxStaticBoxSizer, 196-197
wxStaticLine, static controls, 115

member functions, 116
styles, 115

wxStaticPicture, 586
wxStatusBar, control bars, 128-129

member functions, 129-130
styles, 129

698 Index

Smart_index.qxd 6/10/05 2:38 PM Page 698

wxStEdit, 598
wxStopWatch, 458
wxStreamBase, 403
wxStreamMerger, 599
wxStreamToTextRedirector, 422
wxString, 374, 405, 440-442

C pointer conversions, 375-376
characters, 375
converting to and from numbers, 377
standard C string functions, 376-377
string literals, 375
transferring, 440
wxArrayString, 380

wxStringInputStream, 405
wxStringOutputStream, 405
wxStringTokenizer, 378
wxStyledTextCtrl, 586
wxSUNKEN_BORDER, 47
wxSysColourChangeEvent, 624
wxSystemSettings, 141
wxTaskBarIcon, 317, 354

deriving from, 354-355
events, 358
member functions, 358
showing taskbar icons, 356-357

wxTempFile, 400
wxTextCtrl, 294, 364, 511

non-static controls, 107-109
events, 110
member functions, 110-111
styles, 109

wxTextEntryDialog, 227-228
wxTextFile, 399
wxTextInputStream, 405
wxTextOutputStream, 405-406
wxTextValidator, 248
wxTheColourDatabase, 141
wxThePenList, 143
wxThread, 448-449, 555

creating threads, 449-450
pausing threads, 450
starting threads, 450
terminating, 451

wxThumbnailCtrl, 369, 371
wxTIFFHandler, 281
wxTimer, 457-459
wxTimerEvent, 457
wxTimeSpan, 389
wxTipProvider, 519
wxTipWindow, 586
wxToggleButton, non-static con-

trols, 111-112
wxToolBar, control bars, 124-125

bitmap colors under Windows, 125
events, 126
member functions, 127-128
styles, 126

wxTRANSPARENT, 150
wxTreeCtrl, 285, 287, 311-312,

317-319, 531
events, 320
member functions, 321-322
styles, 319-320

wxTreeEvent, 320
wxTreeItemData, 317
wxTreeItemId, 317
wxTreeMultiCtrl, 531, 597
wxULongLong, 392
wxUpdateUIEvent, 624
wxURI, 590
wxURL, 590
wxUSE_DEBUG_NEW_ALWAYS, 416
wxValidationPage, 336
wxValidator, 648
wxVariant, 394-395
wxViewHTMLFile, 526
wxVirtualDirTreeCtrl, 597
wxVisualAttributes, 368
wxVisualSetup, 595
wxVSCROLL, 41
wxVTK, 597
wxWebKitCtrl, 591
wxWHITE, 141
wxWidgets, 1

architecture of, 8
internal organization, 12-13
wxCocoa, 10

Index 699

Smart_index.qxd 6/10/05 2:38 PM Page 699

wxGTK, 8
wxMac, 10
wxMGL, 12
wxMotif, 10
wxMSW, 8
wxOS2, 12
wxPalmOS, 12
wxWinCE, 10
wxX11, 9

communities, 6-7
history of, 5-6
versus MFC, 643

classes, 651-652, 654
configurable control bars, 650
database access, 650
documents and views, 649
initializing applications, 644
macros, 651
message maps, 644-646
printing, 649
string handling and

translation, 650
and object-oriented programming, 7
reasons for using, 2-5
sample, 15, 20, 22

wxWinCE, 10
wxWinceHelpController, 513
wxWindow, 40, 44

base window classes, 47
wxWindow member functions,

50-53
wxWindow styles, 47-49

events, 49
wxWindowCreateEvent, 625
wxWindowDC, 133
wxWindowDestroyEvent, 625
wxWindows License, 7
wxWinHelpController, 513
wxWinWiz, 595
wxWizard, 317, 331

events, 331
examples, 332-338
member functions, 332
sample code, 635-641
styles, 331

wxWizardPage, 331
wxX11, 9
wxXOR, 160
wxXPMHandler, 281
wxYield, 460, 475
wxZipInputStream, 407
wxZipOutputSTream, 408
wxZlibInputStream, 407
wxZlibOutputStream, 407

X
X11 errors, 429-430
xCHM, 608
Xcode, creating wxWidgets applica-

tions, 563-564
XPM, programming with wxBitmap,

270-271
XRC files, 647

implementing resource handlers,
writing your own controls, 367

XRC format, resource files, 261-262
XRCed, 595

Y
yielding, 460

Z
Zeitlin, Vadim, 5
zip streams, 407-408

700 Index

Smart_index.qxd 6/10/05 2:38 PM Page 700

Smart_index.qxd 6/10/05 2:38 PM Page 701

Smart_index.qxd 6/10/05 2:38 PM Page 702

Smart_index.qxd 6/10/05 2:38 PM Page 703

Smart_index.qxd 6/10/05 2:38 PM Page 704

Smart_index.qxd 6/10/05 2:38 PM Page 705

Smart_index.qxd 6/10/05 2:38 PM Page 706

Smart_index.qxd 6/10/05 2:38 PM Page 707

Smart_index.qxd 6/10/05 2:38 PM Page 708

	Cross-Platform GUI Programming with wxWidgets
	Copyright 2006 Pearson Education, Inc.
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors

	Chapter 1 Introduction
	WHAT IS WXWIDGETS?
	WHY USE WXWIDGETS?
	A BRIEF HISTORY OF WXWIDGETS
	THE WXWIDGETS COMMUNITY
	WXWIDGETS AND OBJECT-ORIENTED PROGRAMMING
	LICENSE CONSIDERATIONS
	THE WXWIDGETS ARCHITECTURE
	SUMMARY

	Chapter 2 Getting Started
	A SMALL WXWIDGETS SAMPLE
	THE APPLICATION CLASS
	THE FRAME CLASS
	THE EVENT HANDLERS
	THE FRAME CONSTRUCTOR
	THE WHOLE PROGRAM
	COMPILING AND RUNNING THE PROGRAM
	PROGRAM FLOW
	SUMMARY

	Chapter 3 Event Handling
	EVENT-DRIVEN PROGRAMMING
	EVENT TABLES AND HANDLERS
	SKIPPING EVENTS
	PLUGGABLE EVENT HANDLERS
	DYNAMIC EVENT HANDLERS
	WINDOW IDENTIFIERS
	DEFINING CUSTOM EVENTS
	SUMMARY

	Chapter 4 Window Basics
	ANATOMY OF A WINDOW
	A QUICK GUIDE TO THE WINDOW CLASSES
	BASE WINDOW CLASSES
	TOP-LEVEL WINDOWS
	CONTAINER WINDOWS
	NON-STATIC CONTROLS
	STATIC CONTROLS
	MENUS
	CONTROL BARS
	SUMMARY

	Chapter 5 Drawing and Printing
	UNDERSTANDING DEVICE CONTEXTS
	DRAWING TOOLS
	DEVICE CONTEXT DRAWING FUNCTIONS
	USING THE PRINTING FRAMEWORK
	3D GRAPHICS WITH WXGLCANVAS
	SUMMARY

	Chapter 6 Handling Input
	MOUSE INPUT
	HANDLING KEYBOARD EVENTS
	HANDLING JOYSTICK EVENTS
	SUMMARY

	Chapter 7 Window Layout Using Sizers
	LAYOUT BASICS
	SIZERS
	PROGRAMMING WITH SIZERS
	FURTHER LAYOUT ISSUES
	SUMMARY

	Chapter 8 Using Standard Dialogs
	INFORMATIVE DIALOGS
	FILE AND DIRECTORY DIALOGS
	CHOICE AND SELECTION DIALOGS
	ENTRY DIALOGS
	PRINTING DIALOGS
	SUMMARY

	Chapter 9 Writing Custom Dialogs
	STEPS IN CREATING A CUSTOM DIALOG
	AN EXAMPLE: PERSONALRECORDDIALOG
	ADAPTING DIALOGS FOR SMALL DEVICES
	FURTHER CONSIDERATIONS IN DIALOG DESIGN
	USING WXWIDGETS RESOURCE FILES
	SUMMARY

	Chapter 10 Programming with Images
	IMAGE CLASSES IN WXWIDGETS
	PROGRAMMING WITH WXBITMAP
	PROGRAMMING WITH WXICON
	PROGRAMMING WITH WXCURSOR
	PROGRAMMING WITH WXIMAGE
	IMAGE LISTS AND ICON BUNDLES
	CUSTOMIZING ART IN WXWIDGETS
	SUMMARY

	Chapter 11 Clipboard and Drag and Drop
	DATA OBJECTS
	USING THE CLIPBOARD
	IMPLEMENTING DRAG AND DROP
	SUMMARY

	Chapter 12 Advanced Window Classes
	WXTREECTRL
	WXLISTCTRL
	WXWIZARD
	WXHTMLWINDOW
	WXGRID
	WXTASKBARICON
	WRITING YOUR OWN CONTROLS
	SUMMARY

	Chapter 13 Data Structure Classes
	WHY NOT STL?
	STRINGS
	WXARRAY
	WXLIST AND WXNODE
	WXHASHMAP
	STORING AND PROCESSING DATES AND TIMES
	HELPER DATA STRUCTURES
	SUMMARY

	Chapter 14 Files and Streams
	FILE CLASSES AND FUNCTIONS
	STREAM CLASSES
	SUMMARY

	Chapter 15 Memory Management, Debugging, and Error Checking
	MEMORY MANAGEMENT BASICS
	DETECTING MEMORY LEAKS AND OTHER ERRORS
	FACILITIES FOR DEFENSIVE PROGRAMMING
	ERROR REPORTING
	PROVIDING RUN-TIME TYPE INFORMATION
	USING WXMODULE
	LOADING DYNAMIC LIBRARIES
	EXCEPTION HANDLING
	DEBUGGING TIPS
	SUMMARY

	Chapter 16 Writing International Applications
	INTRODUCTION TO INTERNATIONALIZATION
	PROVIDING TRANSLATIONS
	CHARACTER ENCODINGS AND UNICODE
	NUMBERS AND DATES
	OTHER MEDIA
	A SIMPLE SAMPLE
	SUMMARY

	Chapter 17 Writing Multithreaded Applications
	WHEN TO USE THREADS, AND WHEN NOT TO
	USING WXTHREAD
	SYNCHRONIZATION OBJECTS
	THE WXWIDGETS THREADS SAMPLE
	ALTERNATIVES TO MULTITHREADING
	SUMMARY

	Chapter 18 Programming with wxSocket
	SOCKET CLASSES AND FUNCTIONALITY OVERVIEW
	INTRODUCTION TO SOCKETS AND BASIC SOCKET PROCESSING
	SOCKET FLAGS
	USING SOCKET STREAMS
	ALTERNATIVES TO wxSocket
	SUMMARY

	Chapter 19 Working with Documents and Views
	DOCUMENT/VIEW BASICS
	OTHER DOCUMENT/VIEW CAPABILITIES
	STRATEGIES FOR IMPLEMENTING UNDO/REDO
	SUMMARY

	Chapter 20 Perfecting Your Application
	IMPLEMENTING ONLINE HELP
	PARSING THE COMMAND LINE
	STORING APPLICATION RESOURCES
	INVOKING OTHER APPLICATIONS
	MANAGING APPLICATION SETTINGS
	APPLICATION INSTALLATION
	FOLLOWING UI DESIGN GUIDELINES
	SUMMARY
	SINGLE INSTANCE OR MULTIPLE INSTANCES?
	MODIFYING EVENT HANDLING
	REDUCING FLICKER

	Appendix A Installing wxWidgets
	Appendix B Building Your Own wxWidgets Applications
	Appendix C Creating Applications with DialogBlocks
	Appendix D Other Features in wxWidgets
	Appendix E Third-Party Tools for wxWidgets
	Appendix F wxWidgets Application Showcase
	Appendix G
	Appendix H How wxWidgets Processes Events
	Appendix I Event Classes and Macros
	Appendix J Code Listings
	Appendix K Porting from MFC
	G L O S S A R Y
	I N D E X

