
WINDOWS FORMS
CONTROLS

Topics in This Chapter

• Introduction: A class hierarchy diagram offers a natural way to
group Windows Forms controls by their functionality.

• Button Controls: The Button, CheckBox, and RadioButton
controls are designed to permit users to make one or more
selections on a form.

• PictureBox and TextBoxt Controls: The PictureBox control is
used to display and scale images; the TextBox control can be
used to easily display and edit single or multiple lines of text.

• List Controls: The ListBox, ComboBox, and CheckListBox
offer different interfaces for displaying and manipulating data in a
list format.

• ListView and TreeView Controls: The ListView offers multiple
views for displaying data items and their associated icons. The
TreeView presents hierarchical information in an
easy-to-navigate tree structure.

• Timer and Progress Bar Controls: A timer can be used to control
when an event is invoked, a ProgressBar to visually monitor
the progress of an operation.

• Building a User Control: When no control meets an application’s
needs, a custom one can be crafted by combining multiple
controls or adding features to an existing one.

• Moving Data Between Controls: Drag and drop provides an easy
way for users to copy or move an item from one control to
another. .NET offers a variety of classes and events required to
implement this feature.

• Using Resources: Resources required by a program, such as title,
descriptive labels, and images, can be embedded within an
application’s assembly or stored in a satellite assembly. This is
particularly useful for developing international applications.

ch07.fm Page 318 Thursday, August 11, 2005 10:44 AM

319

7

The previous chapter introduced the Control class and the methods, properties,
and events it defines for all controls. This chapter moves beyond that to examine the
specific features of individual controls. It begins with a survey of the more important
.NET controls, before taking an in-depth look at how to implement controls such as
the TextBox, ListBox, TreeView, and ListView. Also included is a discussion of
the .NET drag-and-drop features that are used to move or copy data from one con-
trol to another.

Windows Forms (WinForms) are not restricted to using the standard built-in con-
trols. Custom GUI controls can be created by extending an existing control, building
a totally new control, or fashioning a user control from a set of related widgets.
Examples illustrate how to extend a control and construct a user control. The chapter
concludes with a look at resource files and how they are used to create GUI applica-
tions that support users from multiple countries and cultures.

7.1 A Survey of .NET Windows
Forms Controls

The System.Windows.Forms namespace contains a large family of controls that add
both form and function to a Windows-based user interface. Each control inherits a
common set of members from the Control class. To these, it adds the methods, prop-
erties, and events that give the control its own distinctive behavior and appearance.

ch07.fm Page 319 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls320

Figure 7-1 shows the inheritance hierarchy of the Windows Forms controls. The
controls marked by an asterisk (*) exist primarily to provide backward compatibility
between .NET 2.0 and .NET 1.x. Specifically, the DataGrid has been superseded by
the DataGridView, the StatusBar by the StatusStrip, and the ToolBar by the
ToolStrip. Table 7-1 provides a summary of the more frequently used controls in
this hierarchy.

Figure 7-1 Windows Forms control hierarchy

Control

<< ButtonBase >>

Button

CheckBox

RadioButton

DataGridView

DataGrid

<< TextBoxBase >>

TextBox

RichTextBox

GroupBox

PictureBox

StatusBar

ToolBar

TreeView

*

*

*

Label

<< ListControl >>

ComboBox

ListBox

CheckedListbox

ListView

Splitter

TabControl

ScrollableControl

Panel

Flow/Table LayoutPanel

ToolStrip

MenuStrip

StatusStrip

* Superseded by new control
<< >> Abstract class

ch07.fm Page 320 Thursday, August 11, 2005 10:52 AM

7.1 A Survey of .NET Windows Forms Controls 321

Table 7-1 Selected Windows Forms Controls

Control Use Description

Button Fires an event when a
mouse click occurs or the
Enter or Esc key is
pressed.

Represents a button on a form. Its
text property determines the caption
displayed on the button’s surface.

CheckBox Permits a user to select
one or more options.

Consists of a check box with text or an
image beside it. The check box can also
be represented as a button by setting:
checkBox1.Appearance =
 Appearance.Button

CheckedListBox Displays list of items. ListBox with checkbox preceding
each item in list.

ComboBox Provides TextBox and
ListBox functionality.

Hybrid control that consists of a text-
box and a drop-down list. It combines
properties from both the TextBox and
the ListBox.

DataGridView
GridView

Manipulates data in a grid
format.

The DataGridView is the foremost
control to represent relational data.
It supports binding to a database.
The DataGridView was introduced
in .NET 2.0 and supersedes the
DataGrid.

GroupBox Groups controls. Use primarily to group radio buttons; it
places a border around the controls it
contains.

ImageList Manages a collection of
images.

Container control that holds a collec-
tion of images used by other controls
such as the ToolStrip, ListView,
and TreeView.

Label Adds descriptive informa-
tion to a form.

Text that describes the contents of a
control or instructions for using a con-
trol or form.

ListBox Displays a list of items—
one or more of which may
be selected.

May contain simple text or objects. Its
methods, properties, and events allow
items to be selected, modified, added,
and sorted.

ch07.fm Page 321 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls322

Control Use Description

ListView Displays items and
subitems.

May take a grid format where each row
represents a different item and sub-
items. It also permits items to be dis-
played as icons.

MenuStrip Adds a menu to a form. Provides a menu and submenu system
for a form. It supersedes the Main-
Menu control.

Panel
FlowPanelLayout
TablePanelLayout

Groups controls. A visible or invisible container
that groups controls. Can be made
scrollable.

FlowPanelLayout automatically aligns
controls vertically or horizontally.

TablePanelLayout aligns controls in
a grid.

PictureBox Contains a graphic. Used to hold images in a variety of
standard formats. Properties enable
images to be positioned and sized
within control’s borders.

ProgressBar Depicts an application’s
progress.

Displays the familiar progress bar that
gives a user feedback regarding the
progress of some event such as file
copying.

RadioButton Permits user to make one
choice among a group of
options.

Represents a Windows radio button.

StatusStrip Provides a set of panels that
indicate program status.

Provides a status bar that is used to
provide contextual status information
about current form activities.

TextBox Accepts user input. Can be designed to accept single- or
multi-line input. Properties allow it to
mask input for passwords, scroll, set
letter casing automatically, and limit
contents to read-only.

TreeView Displays data as nodes in a
tree.

Features include the ability to collapse
or expand, add, remove, and copy
nodes in a tree.

Table 7-1 Selected Windows Forms Controls (continued)

ch07.fm Page 322 Thursday, August 11, 2005 10:44 AM

7.2 Button Classes, Group Box, Panel, and Label 323

This chapter lacks the space to provide a detailed look at each control. Instead, it
takes a selective approach that attempts to provide a flavor of the controls and fea-
tures that most benefit the GUI developer. Notable omissions are the DataGrid-
View control, which is included in the discussion of data binding in Chapter 12,
“Data Binding with Windows Forms Controls,” and the menu controls that were dis-
cussed in Chapter 6, “Building Windows Forms Applications.”

7.2 Button Classes, Group Box,
Panel, and Label

The Button Class
A button is the most popular way to enable a user to initiate some program action.
Typically, the button responds to a mouse click or keystroke by firing a Click event
that is handled by an event handler method that implements the desired response.

constructor: public Button()

The constructor creates a button instance with no label. The button’s Text prop-
erty sets its caption and can be used to define an access key (see Handling Button
Events section); its Image property is used to place an image on the button’s back-
ground.

Setting a Button’s Appearance
Button styles in .NET are limited to placing text and an image on a button, making it
flat or three-dimensional, and setting the background/foreground color to any avail-
able color. The following properties are used to define the appearance of buttons,
check boxes, and radio buttons:

FlatStyle This can take four values: FlatStyle.Flat, FlatStyle.Popup,
FlatStyle.Standard, and FlatStyle.System. Standard is the
usual three-dimensional button. Flat creates a flat button. Popup
creates a flat button that becomes three-dimensional on a mouse-
over. System results in a button drawn to suit the style of the operat-
ing system.

Image Specifies the image to be placed on the button. The Image.From-
File method is used to create the image object from a specified file:
button1.Image = Image.FromFile("c:\\book.gif");

ch07.fm Page 323 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls324

ImageAlign Specifies the position of the image on the button. It is set to a value
of the ContentAlignment enum:
button1.ImageAlign = ContentAlignment.MiddleRight;

TextAlign Specifies the position of text on the image using the Content-
Alignment value.

Handling Button Events
A button’s Click event can be triggered in several ways: by a mouse click of the but-
ton, by pressing the Enter key or space bar, or by pressing the Alt key in combination
with an access key. An access key is created by placing an & in front of one of the
characters in the control’s Text property value.

The following code segment declares a button, sets its access key to C, and regis-
ters an event handler to be called when the Click event is triggered:

Button btnClose = new Button();
btnClose.Text= "&Close"; // Pushing ALT + C triggers event
btnClose.Click += new EventHandler(btnClose_Clicked);
// Handle Mouse Click, ENTER key, or Space Bar
private void btnClose_Clicked(object sender, System.EventArgs e)
{ this.Close(); }

Note that a button’s Click event can also occur in cases when the button does not
have focus. The AcceptButton and CancelButton form properties can specify a but-
ton whose Click event is triggered by pushing the Enter or Esc keys, respectively.

Core Suggestion

Set a form’s CancelButton property to a button whose Click event
handler closes the form. This provides a convenient way for users to
close a window by pushing the Esc key.

The CheckBox Class
The CheckBox control allows a user to select a combination of options on a form—in
contrast to the RadioButton, which allows only one selection from a group.

constructor: public CheckBox()

The constructor creates an unchecked check box with no label. The Text and
Image properties allow the placement of an optional text description or image beside
the box.

ch07.fm Page 324 Thursday, August 11, 2005 10:44 AM

7.2 Button Classes, Group Box, Panel, and Label 325

Setting a CheckBox’s Appearance
Check boxes can be displayed in two styles: as a traditional check box followed by text
(or an image) or as a toggle button that is raised when unchecked and flat when
checked. The appearance is selected by setting the Appearance property to
Appearance.Normal or Appearance.Button. The following code creates the two
check boxes shown in Figure 7-2.

// Create traditional check box
this.checkBox1 = new CheckBox();
this.checkBox1.Location =
 new System.Drawing.Point(10,120);
this.checkBox1.Text = "La Traviata";
this.checkBox1.Checked = true;
// Create Button style check box
this.checkBox2 = new CheckBox();
this.checkBox2.Location =
 new System.Drawing.Point(10,150);
this.checkBox2.Text = "Parsifal";
this.checkBox2.Appearance = Appearance.Button;
this.checkBox2.Checked = true;
this.checkBox2.TextAlign = ContentAlignment.MiddleCenter;

The RadioButton Class
The RadioButton is a selection control that functions the same as a check box
except that only one radio button within a group can be selected. A group consists of
multiple controls located within the same immediate container.

constructor: public RadioButton()

The constructor creates an unchecked RadioButton with no associated text. The
Text and Image properties allow the placement of an optional text description or
image beside the box. A radio button’s appearance is defined by the same properties
used with the check box and button: Appearance and FlatStyle.

Figure 7-2 CheckBox styles

ch07.fm Page 325 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls326

Placing Radio Buttons in a Group
Radio buttons are placed in groups that allow only one item in the group to be
selected. For example, a 10-question multiple choice form would require 10 groups
of radio buttons. Aside from the functional need, groups also provide an opportunity
to create an aesthetically appealing layout.

The frequently used GroupBox and Panel container controls support back-
ground images and styles that can enhance a form’s appearance. Figure 7-3 shows the
striking effect (even more so in color) that can be achieved by placing radio buttons
on top of a GroupBox that has a background image.

Listing 7-1 presents a sample of the code that is used to place the radio buttons on
the GroupBox control and make them transparent so as to reveal the background
image.

Figure 7-3 Radio buttons in a GroupBox that has a background image

Listing 7-1 Placing Radio Buttons in a GroupBox

using System.Drawing;
using System.Windows.Forms;
public class OperaForm : Form
{
 private RadioButton radioButton1;
 private RadioButton radioButton2;
 private RadioButton radioButton3;
 private GroupBox groupBox1;
 public OperaForm()
 {
 this.groupBox1 = new GroupBox();
 this.radioButton3 = new RadioButton();
 this.radioButton2 = new RadioButton();

ch07.fm Page 326 Thursday, August 11, 2005 10:44 AM

7.2 Button Classes, Group Box, Panel, and Label 327

Note that the BackColor property of the radio button is set to Color.Trans-
parent. This allows the background image of groupBox1 to be displayed. By
default, BackColor is an ambient property, which means that it takes the color of its
parent control. If no color is assigned to the radio button, it takes the BackColor of
groupBox1 and hides the image.

The GroupBox Class
A GroupBox is a container control that places a border around its collection of con-
trols. As demonstrated in the preceding example, it is often used to group radio but-
tons; but it is also a convenient way to organize and manage any related controls on a
form. For example, setting the Enabled property of a group box to false disables
all controls in the group box.

constructor: public GroupBox()

The constructor creates an untitled GroupBox having a default width of 200 pixels
and a default height of 100 pixels.

 this.radioButton1 = new RadioButton();
 // All three radio buttons are created like this
 // For brevity only code for one button is included
 this.radioButton3.BackColor = Color.Transparent;
 this.radioButton3.Font = new Font("Microsoft Sans Serif",
 8.25F, FontStyle.Bold);
 this.radioButton3.ForeColor =
 SystemColors.ActiveCaptionText;
 this.radioButton3.Location = new Point(16, 80);
 this.radioButton3.Name = "radioButton3";
 this.radioButton3.Text = "Parsifal";
 // Group Box
 this.groupBox1 = new GroupBox();
 this.groupBox1.BackgroundImage =
 Image.FromFile("C:\\opera.jpg");
 this.groupBox1.Size = new Size(120, 112);
 // Add radio buttons to groupbox
 groupBox1.Add(new Control[]{radioButton1,radiobutton2,
 radioButton3});
 }
}

Listing 7-1 Placing Radio Buttons in a GroupBox (continued)

ch07.fm Page 327 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls328

The Panel Class
The Panel control is a container used to group a collection of controls. It’s closely
related to the GroupBox control, but as a descendent of the ScrollableControl
class, it adds a scrolling capability.

constructor: public Panel()

Its single constructor creates a borderless container area that has scrolling dis-
abled. By default, a Panel takes the background color of its container, which makes
it invisible on a form.

Because the GroupBox and Panel serve the same purpose, the programmer is
often faced with the choice of which to use. Here are the factors to consider in select-
ing one:

• A GroupBox may have a visible caption, whereas the Panel does not.
• A GroupBox always displays a border; a Panel’s border is determined

by its BorderStyle property. It may be set to BorderStyle.None,
BorderStyle.Single, or BorderStyle.Fixed3D.

• A GroupBox does not support scrolling; a Panel enables automatic
scrolling when its AutoScroll property is set to true.

A Panel offers no features to assist in positioning or aligning the controls it con-
tains. For this reason, it is best used when the control layout is known at design time.
But this is not always possible. Many applications populate a form with controls
based on criteria known only at runtime. To support the dynamic creation of con-
trols, .NET offers two layout containers that inherit from Panel and automatically
position controls within the container: the FlowLayoutPanel and the TableLay-
outPanel.

The FlowLayoutPanel Control
Figure 7-4 shows the layout of controls using a FlowLayoutPanel.

This “no-frills” control has a single parameterless constructor and two properties
worth noting: a FlowDirection property that specifies the direction in which controls

Figure 7-4 FlowLayoutPanel

ch07.fm Page 328 Thursday, August 11, 2005 10:44 AM

7.2 Button Classes, Group Box, Panel, and Label 329

are to be added to the container, and a WrapControls property that indicates
whether child controls are rendered on another row or truncated.

The following code creates a FlowLayoutPanel and adds controls to its collec-
tion:

FlowLayoutPanel flp = new FlowLayoutPanel();
flp.FlowDirection = FlowDirection.LefttoRight;
// Controls are automatically positioned left to right
flp.Controls.Add(Button1);
flp.Controls.Add(Button2);
flp.Controls.Add(TextBox1);
flp.Controls.Add(Button3);
this.Controls.Add(flp); // Add container to form

The FlowDirection enumerator members are BottomUp, LeftToRight,
RighttoLeft, and TopDown. LefttoRight is the default.

TableLayoutPanel Control
Figure 7-5 shows the grid layout that results from using a TableLayoutPanel
container.

This code segment creates a TableLayoutPanel and adds the same four controls
used in the previous example. Container properties are set to define a layout grid
that has two rows, two columns, and uses an Inset border style around each cell.
Controls are always added to the container moving left-to-right, top-to-bottom.

TableLayoutPanel tlp = new TableLayoutPanel();
// Causes the inset around each cell
tlp.CellBorderStyle = TableLayoutPanelCellBorderStyle.Inset;
tlp.ColumnCount = 2; // Grid has two columns
tlp.RowCount = 2; // Grid has two rows
// If grid is full add extra cells by adding column
tlp.GrowStyle = TableLayoutPanelGrowStyle.AddColumns;
// Padding (pixels)within each cell (left, top, right, bottom)

Figure 7-5 TableLayoutPanel organizes controls in a grid

ch07.fm Page 329 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls330

tlp.Padding = new Padding(1,1,4,5);
tlp.Controls.Add(Button1);
tlp.Controls.Add(Button2);
// Other controls added here

The GrowStyle property is worth noting. It specifies how controls are added to
the container when all of its rows and columns are filled. In this example, AddCol-
umns specifies that a column be added to accommodate new controls. The other
options are AddRows and None; the latter causes an exception to be thrown if an
attempt is made to add a control when the panel is filled.

The Label Class
The Label class is used to add descriptive information to a form.

constructor: public Label()

The constructor creates an instance of a label having no caption. Use the Text
property to assign a value to the label. The Image, BorderStyle, and TextAlign
properties can be used to define and embellish the label’s appearance.

The following code creates the label shown in Figure 7-6:

Label imgLabel = new Label();
imgLabel.BackColor= Color.White;
Image img = Image.FromFile("c:\\rembrandt.jpg");
imgLabel.Image= img;
imgLabel.ImageAlign= ContentAlignment.TopCenter;
imgLabel.Text="Rembrandt";
imgLabel.TextAlign= ContentAlignment.BottomCenter;
imgLabel.BorderStyle= BorderStyle.Fixed3D;
imgLabel.Size = new Size(img.Width+10, img.Height+25);

Figure 7-6 Label containing an image and text

ch07.fm Page 330 Thursday, August 11, 2005 10:44 AM

7.3 PictureBox and TextBox Controls 331

One of its less familiar properties is UseMnemonic. By setting it to true and plac-
ing a mnemonic (& followed by a character) in the label’s text, you can create an
access key. For example, if a label has a value of &Sum, pressing Alt-S shifts the focus
to the control (based on tab order) following the label.

7.3 PictureBox and TextBox Controls

The PictureBox Class
The PictureBox control is used to display images having a bitmap, icon, metafile,
JPEG, GIF, or PNG format. It is a dynamic control that allows images to be selected
at design time or runtime, and permits them to be resized and repositioned within
the control.

constructor: public PictureBox()

The constructor creates an empty (Image = null) picture box that has its Size-
Mode property set so that any images are displayed in the upper-left corner of the
box.

The two properties to be familiar with are Image and SizeMode. Image, of
course, specifies the graphic to be displayed in the PictureBox. SizeMode specifies
how the image is rendered within the PictureBox. It can be assigned one of four
values from the PictureBoxSizeMode enumeration:

1. AutoSize. PictureBox is sized to equal the image.
2. CenterImage. Image is centered in box and clipped if necessary.
3. Normal. Image is place in upper-left corner and clipped if necessary.
4. StretchImage. Image is stretched or reduced to fit in box.

Figure 7-7 illustrates some of the features of the PictureBox control. It consists
of a form with three small picture boxes to hold thumbnail images and a larger pic-
ture box to display a full-sized image. The large image is displayed when the user
double-clicks on a thumbnail image.

The code, given in Listing 7-2, is straightforward. The event handler ShowPic
responds to each DoubleClick event by setting the Image property of the large
PictureBox (bigPicture) to the image contained in the thumbnail. Note that the
original images are the size of bigPicture and are automatically reduced (by setting
SizeMode) to fit within the thumbnail picture boxes.

ch07.fm Page 331 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls332

Figure 7-7 Thumbnail images in small picture boxes are displayed
at full size in a larger viewing window

Listing 7-2 Working with Picture Boxes

using System;
using System.Drawing;
using System.Windows.Forms;
public class ArtForm : Form
{
 private PictureBox bigPicture;
 private PictureBox tn1;
 private PictureBox tn2;
 private PictureBox tn3;
 private Button btnClear;
 public ArtForm()
 {
 bigPicture = new PictureBox();
 tn1 = new PictureBox();
 tn2 = new PictureBox();
 tn3 = new PictureBox();
 btnClear = new Button();
 bigPicture.Location = new Point(90, 30);
 bigPicture.Name = "bigPicture";
 bigPicture.Size = new Size(160, 160);
 this.Controls.Add(bigPicture);

ch07.fm Page 332 Thursday, August 11, 2005 10:44 AM

7.3 PictureBox and TextBox Controls 333

The TextBox Class
The familiar TextBox is an easy-to-use control that has several properties that affect
its appearance, but few that control its content. This leaves the developer with the
task of setting up event handlers and data verification routines to control what is
entered in the box.

 // Define picturebox to hold first thumbnail image
 tn1.BorderStyle = BorderStyle.FixedSingle;
 tn1.Cursor = Cursors.Hand;
 tn1.Image = Image.FromFile("C:\\schiele1.jpg");
 tn1.Location = new Point(8, 16);
 tn1.Name = "tn1";
 tn1.Size = new Size(56, 56);
 tn1.SizeMode = PictureBoxSizeMode.StretchImage;
 this.Controls.Add(tn1);
 // Code for other thumbnails would go here
 // Button to clear picture box
 btnClear.Location = new Point(136, 192);
 btnClear.Name = "btnClear";
 btnClear.Size = new Size(88, 24);
 btnClear.Text = "Clear Image";
 this.Controls.Add(btnClear);
 btnClear.Click += new EventHandler(this.btnClear_Click);
 // Set up event handlers for double click events
 tn1.DoubleClick += new EventHandler(ShowPic);
 tn2.DoubleClick += new EventHandler(ShowPic);
 tn3.DoubleClick += new EventHandler(ShowPic);
 }
 static void Main()
 {
 Application.Run(new ArtForm());
 }
 private void btnClear_Click(object sender, EventArgs e)
 {
 bigPicture.Image = null; // Clear image
 }
 private void ShowPic (object sender, EventArgs e)
 {
 // Sender is thumbnail image that is double clicked
 bigPicture.Image = ((PictureBox) sender).Image;
 }
}

Listing 7-2 Working with Picture Boxes (continued)

ch07.fm Page 333 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls334

constructor: public TextBox()

The constructor creates a TextBox that accepts one line of text and uses the color
and font assigned to its container. From such humble origins, the control is easily
transformed into a multi-line text handling box that accepts a specific number of
characters and formats them to the left, right, or center. Figure 7-8 illustrates some
of the properties used to do this.

The text is placed in the box using the Text property and AppendText method:

txtPoetry.Text =
 "In Xanadu did Kubla Khan\r\na stately pleasure dome decree,";
txtPoetry.AppendText("\r\nWhere Alph the sacred river ran");

A couple of other TextBox properties to note are ReadOnly, which prevents text
from being modified, and PasswordChar, which is set to a character used to mask
characters entered—usually a password.

TextBoxes and Carriage Returns
When storing data from a TextBox into a database, you want to make sure there are
no special characters embedded in the text, such as a carriage return. If you look at
the TextBox properties, you’ll find AcceptsReturn, which looks like a simple solu-
tion. Setting it to false should cause a TextBox to ignore the user pressing an Enter
key. However, the name of this property is somewhat misleading. It only works when
the form’s AcceptButton property is set to a button on the form. Recall that this
property causes the associated button’s Click handler to be executed when the
Enter key is pressed. If AcceptButton is not set (and the MultiLine property of
the text box is set to true), the TextBox receives a newline (\r\n) when the Enter
key is pushed.

Figure 7-8 TextBox properties

ch07.fm Page 334 Thursday, August 11, 2005 10:44 AM

7.4 ListBox, CheckedListBox, and ComboBox Classes 335

This leaves the developer with the task of handling unwanted carriage returns.
Two approaches are available: capture the keystrokes as they are entered or extract
the characters before storing the text. The first approach uses a keyboard event han-
dler, which you should be familiar with from the previous chapter.

// Set up event handler in constructor for TextBox txtPoetry
txtPoetry.KeyPress += new KeyPressEventHandler(onKeyPress);

private void onKeyPress(object sender, KeyPressEventArgs e)
{
 if(e.KeyChar == (char)13) e.Handled = true;
}

Setting Handled to true prevents the carriage return/linefeed from being added
to the text box. This works fine for keyboard entry but has no effect on a
cut-and-paste operation. To cover this occurrence, you can use the keyboard han-
dling events described in Chapter 6 to prevent pasting, or you can perform a final
verification step that replaces any returns with a blank or any character of your
choice.

txtPoetry.Text = txtPoetry.Text.Replace(Environment.NewLine," ");

Core Note

Two common approaches for entering a carriage return/linefeed
programmatically into a TextBox are

txtPoetry.Text = "Line 1\r\nLine 2";
txtPoetry.Text = "Line 1"+Environment.NewLine+"Line 2";

7.4 ListBox, CheckedListBox,
and ComboBox Classes

The ListBox Class
The ListBox control is used to provide a list of items from which the user may select
one or more items. This list is typically text but can also include images and objects.
Other features of the ListBox include methods to perform text-based searches,
sorting, multi-column display, horizontal and vertical scroll bars, and an easy way to
override the default appearance and create owner-drawn ListBox items.

ch07.fm Page 335 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls336

constructor: public ListBox()

The constructor creates an empty ListBox. The code to populate a ListBox is
typically placed in the containing form’s constructor or Form.Load event handler. If
the ListBox.Sorted property is set to true, ListBox items are sorted alphabeti-
cally in ascending order. Also, vertical scroll bars are added automatically if the con-
trol is not long enough to display all items.

Adding Items to a ListBox
A ListBox has an Items collection that contains all elements of the list. Elements
can be added by binding the ListBox to a data source (described in Chapter 11,
“ADO.NET”) or manually by using the Add method. If the Sorted property is
false, the items are listed in the order they are entered. There is also an Insert
method that places an item at a specified location.

lstArtists.Items.Add("Monet");
lstArtists.Items.Add("Rembrandt");
lstArtists.Items.Add("Manet");
lstArtists.Items.Insert(0, "Botticelli"); //Place at top

Core Note

To prevent a ListBox from repainting itself each time an item is added,
execute the ListBox.BeginUpdate method prior to adding and
ListBox.EndUpdate after the last item is added.

List boxes may also contain objects. Because an object may have many members,
this raises the question of what is displayed in the TextBox list. Because by default a
ListBox displays the results of an item’s ToString method, it is necessary to over-
ride this System.Object method to return the string you want displayed. The fol-
lowing class is used to create ListBox items:

// Instances of this class will be placed in a ListBox
public class Artist
{
 public string BDate, DDate, Country;
 private string firstname;
 private string lastname;
 public Artist(string birth, string death, string fname,
 string lname, string ctry)
 {
 BDate = birth;

ch07.fm Page 336 Thursday, August 11, 2005 10:44 AM

7.4 ListBox, CheckedListBox, and ComboBox Classes 337

 DDate = death;
 Country = ctry;
 firstname = fname;
 lastname = lname;
 }
 public override string ToString() {
 return (lastname+" , "+firstname);
 }
 public string GetLName {
 get{ return lastname;}
 }
 public string GetFName {
 get{ return firstname;}
 }
}

ToString has been overridden to return the artist’s last and first names, which
are displayed in the ListBox. The ListBox (Figure 7-9) is populated using these
statements:

lstArtists.Items.Add
 (new Artist("1832", "1883", "Edouard", "Manet","Fr"));
lstArtists.Items.Add
 (new Artist("1840", "1926", "Claude", "Monet","Fr"));
lstArtists.Items.Add
 (new Artist("1606", "1669", "Von Rijn", "Rembrandt","Ne"));
lstArtists.Items.Add
 (new Artist("1445", "1510", "Sandre", "Botticelli","It"));

Figure 7-9 ListBox items: (A) Default and (B) Custom drawn

ch07.fm Page 337 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls338

Selecting and Searching for Items in a ListBox
The SelectionMode property determines the number of items a ListBox allows to
be selected at one time. It takes four values from the SelectionMode enumeration:
None, Single, MultiSingle, and MultiExtended. MultiSingle allows selection
by clicking an item or pressing the space bar; MultiExtended permits the use of the
Shift and Ctrl keys.

The SelectedIndexChanged event provides an easy way to detect when an item
in a ListBox is selected. It is fired when the user clicks on an item or uses the arrow
keys to traverse a list. A common use is to display further information about the
selection in other controls on the form. Here is code that displays an artist’s dates of
birth and death when the artist’s name is selected from the ListBox in Figure 7-9:

// Set up event handler in constructor
lstArtists.SelectedIndexChanged += new EventHandler(ShowArtist);
//
private void ShowArtist(object sender, EventArgs e)
{
 // Cast to artist object in order to access properties
 Artist myArtist = lstArtists.SelectedItem as Artist;
 if (myArtist != null) {
 txtBirth.Text = myArtist.Dob; // Place dates in text boxes
 txtDeath.Text = myArtist.Dod;
 }
}

The SelectedItem property returns the item selected in the ListBox. This
object is assigned to myArtist using the as operator, which ensures the object is an
Artist type. The SelectedIndex property can also be used to reference the
selected item:

myArtist = lstArtists.Items[lstArtists.SelectedIndex] as Artist;

Working with a multi-selection ListBox requires a different approach. You typi-
cally do not want to respond to a selection event until all items have been selected.
One approach is to have the user click a button to signal that all choices have been
made and the next action is required. All selections are exposed as part of the
SelectedItems collection, so it is an easy matter to enumerate the items:

foreach (Artist a in lstArtists.SelectedItems)
 MessageBox.Show(a.GetLName);

The SetSelected method provides a way to programatically select an item or items
in a ListBox. It highlights the item(s) and fires the SelectedIndexChanged event. In
this example, SetSelected is used to highlight all artists who were born in France:

ch07.fm Page 338 Thursday, August 11, 2005 10:44 AM

7.4 ListBox, CheckedListBox, and ComboBox Classes 339

lstArtists.ClearSelected(); // Clear selected items
for (int ndx =0; ndx < lstArtists.Items.Count-1; ndx ++)
{
 Artist a = lstArtists.Items[ndx] as Artist;
 if (a.country == "Fr") lstArtists.SetSelected(ndx,true);
}

Customizing the Appearance of a ListBox
The ListBox, along with the ComboBox, MenuItem, and TabControl controls, is an
owner-drawn control. This means that by setting a control property, you can have it
fire an event when the control’s contents need to be drawn. A custom event handler
takes care of the actual drawing.

To enable owner drawing of the ListBox, the DrawMode property must be set to
one of two DrawMode enumeration values: OwnerDrawFixed or OwnerDrawVari-
able. The former draws each item a fixed size; the latter permits variable-sized
items. Both of these cause the DrawItem event to be fired and rely on its event han-
dler to perform the drawing.

Using the ListBox from the previous example, we can use the constructor to set
DrawMode and register an event handler for the DrawItem event:

lstArtists.DrawMode = DrawMode.OwnerDrawFixed;
lstArtists.ItemHeight = 16; // Height (pixels) of item
lstArtists.DrawItem += new DrawItemEventHandler(DrawList);

The DrawItemEventHandler delegate has two parameters: the familiar sender
object and the DrawItemEventArgs object. The latter is of more interest. It con-
tains properties related to the control’s appearance and state as well as a couple of
useful drawing methods. Table 7-2 summarizes these.

Table 7-2 DrawItemEventArgs Properties

Member Description

BackColor Background color assigned to the control.

Bounds Defines the coordinates of the item to be drawn as a
Rectangle object.

Font Returns the font assigned to the item being drawn.

ForeColor Foreground color of the control. This is the color of the text
displayed.

Graphics Represents the surface (as a Graphics object) on which the
drawing occurs.

ch07.fm Page 339 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls340

Index is used to locate the item. Font, BackColor, and ForeColor return the
current preferences for each. Bounds defines the rectangular area circumscribing
the item and is used to indicate where drawing should occur. State is useful for
making drawing decisions based on whether the item is selected. This is particularly
useful when the ListBox supports multiple selections. We looked at the Graphics
object briefly in the last chapter when demonstrating how to draw on a form. Here, it
is used to draw in the Bounds area. Finally, the two methods, DrawBackground and
DrawFocusRectangle, are used as their name implies.

The event handler to draw items in the ListBox is shown in Listing 7-3. Its
behavior is determined by the operation being performed: If an item has been
selected, a black border is drawn in the background to highlight the selection; if an
item is added, the background is filled with a color corresponding to the artist’s coun-
try, and the first and last names of the artist are displayed.

The routine does require knowledge of some GDI+ concepts (see Chapter 8,
“.NET Graphics Using GDI+”). However, the purpose of the methods should be
clear from their name and context: FillRectangle fills a rectangular area defined
by the Rectangle object, and DrawString draws text to the Graphics object using
a font color defined by the Brush object. Figure 7-9(B) shows the output.

Member Description

Index The index in the control where the item is being drawn.

State The state of the item being drawn. This value is a DrawItem-
State enumeration. For a ListBox, its value is Selected
(1) or None(0).

DrawBackground() Draws the default background.

DrawFocusRectangle() Draws the focus rectangle around the item if it has focus.

Listing 7-3 Event Handler to Draw Items in a ListBox

private void DrawList(object sender, DrawItemEventArgs e)
{
 // Draw ListBox Items
 string ctry;
 Rectangle rect = e.Bounds;
 Artist a = lstArtists.Items[e.Index] as Artist;
 string artistName = a.ToString();
 if ((e.State & DrawItemState.Selected) ==
 DrawItemState.Selected)
 {

Table 7-2 DrawItemEventArgs Properties (continued)

ch07.fm Page 340 Thursday, August 11, 2005 10:44 AM

7.4 ListBox, CheckedListBox, and ComboBox Classes 341

Other List Controls: the ComboBox
and the CheckedListBox

The ComboBox control is a hybrid control combining a ListBox with a TextBox (see
Figure 7-10). Like the ListBox, it derives from the ListControl and thus pos-
sesses most of the same properties.

Visually, the ComboBox control consists of a text box whose contents are available
through its Text property and a drop-down list from which a selected item is avail-
able through the SelectedItem property. When an item is selected, its textual rep-
resentation is displayed in the text box window. A ComboBox can be useful in
constructing questionnaires where the user selects an item from the drop-down list
or, optionally, types in his own answer. Its construction is similar to the ListBox:

 // Draw Black border around the selected item
 e.Graphics.DrawRectangle(Pens.Black,rect);
 } else {
 ctry = a.Country;
 Brush b; // Object used to define backcolor
 // Each country will have a different backcolor
 b = Brushes.LightYellow; // Netherlands
 if (ctry == "Fr") b = Brushes.LightGreen;
 if (ctry == "It") b = Brushes.Yellow;
 e.Graphics.FillRectangle(b,rect);}
 e.Graphics.DrawString(artistName,e.Font,
 Brushes.Black,rect);
 }
}

Figure 7-10 ComboBox and CheckedListBox controls are variations on ListBox

Listing 7-3 Event Handler to Draw Items in a ListBox (continued)

ch07.fm Page 341 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls342

ComboBox cbArtists = new ComboBox();
cbArtists.Size = new System.Drawing.Size(120, 21);
cbArtists.MaxDropDownItems= 4; // Max number of items to display
cbArtists.DropDownWidth = 140; // Width of drop-down portion
cbArtists.Items.Add(new Artist("1832", "1883",
 "Edouard", "Manet","Fr"));
// Add other items here...

The CheckedListBox is a variation on the ListBox control that adds a check box
to each item in the list. The default behavior of the control is to select an item on the
first click, and check or uncheck it on the second click. To toggle the check on and off
with a single click, set the CheckOnClick property to true.

Although it does not support multiple selections, the CheckedListBox does
allow multiple items to be checked and includes them in a CheckedItems collec-
tion. The code here loops through a collection of Artist objects that have been
checked on the control:

// List all items with checked box.
foreach (Artist a in clBox.CheckedItems)
 MessageBox.Show(a.ToString()); // –> Monet, Claude

You can also iterate through the collection and explicitly determine the checked
state:

For (int i=0; I< clBox.Items.Count; i++)
{
 if(clBox.GetItemCheckState(i) == CheckState.Checked)
 { Do something } else {do something if not checked }
}

7.5 The ListView and TreeView Classes

The ListView Class
ListView is another control that displays lists of information. It represents data rela-
tionally as items and subitems. The data can be represented in a variety of formats
that include a multi-column grid and large or small icons to represent item data.
Also, images and check boxes can adorn the control.

Figure 7-11 illustrates the basic properties and methods used to lay out a Details
view of the control—a format obviously tailored to displaying database tables. The
first column contains text for an item—as well as a picture—the remaining columns
contain subitems for the parent item.

ch07.fm Page 342 Thursday, August 11, 2005 10:44 AM

7.5 The ListView and TreeView Classes 343

Let’s look at how this style of the ListView is constructed.

Creating a ListView Object
The ListView is created with a parameterless constructor:

ListView listView1 = new ListView();

Define Appearance of ListView Object
// Set the view to show details
listView1.View = View.Details;

The View property specifies one of five layouts for the control:

• Details. An icon and item’s text are displayed in column one. Sub-
items are displayed in the remaining columns.

• LargeIcon. A large icon is shown for each item with a label below the
icon.

• List. Each item is displayed as a small icon with a label to its right.
The icons are arranged in columns across the control.

• SmallIcon. Each item appears in a single column as a small icon with
a label to its right.

• *Tile. Each item appears as a full-size icon with the label and sub-
item details to the right of it. Only available for Windows XP and 2003.

Figure 7-11 ListView control

ch07.fm Page 343 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls344

Core Note

The ListView.View property can be changed at runtime to switch
among the possible views. In fact, you may recognize that the view
options correspond exactly to the View menu options available in
Windows Explorer.

After the Details view is selected, other properties that define the control’s
appearance and behavior are set:

// Allow the user to rearrange columns
listView1.AllowColumnReorder = true;
// Select the entire row when selection is made
listView1.FullRowSelect = true;
// Display grid lines
listView1.GridLines = true;
// Sort the items in the list in ascending order
listView1.Sorting = SortOrder.Ascending;

These properties automatically sort the items, permit the user to drag columns
around to rearrange their order, and cause a whole row to be highlighted when the
user selects an item.

Set Column Headers
In a Details view, data is not displayed until at least one column is added to the
control. Add columns using the Columns.Add method. Its simplest form is

ListView.Columns.Add(caption, width, textAlign)

Caption is the text to be displayed. Width specifies the column’s width in pixels.
It is set to –1 to size automatically to the largest item in the column, or –2 to size to
the width of the header.

// Create column headers for the items and subitems
 listView1.Columns.Add("Artist", -2, HorizontalAlignment.Left);
 listView1.Columns.Add("Born", -2, HorizontalAlignment.Left);
 listView1.Columns.Add("Died", -2, HorizontalAlignment.Left);
 listView1.Columns.Add("Country", -2, HorizontalAlignment.Left);

The Add method creates and adds a ColumnHeader type to the ListView’s Col-
umns collection. The method also has an overload that adds a ColumnHeader object
directly:

ch07.fm Page 344 Thursday, August 11, 2005 10:44 AM

7.5 The ListView and TreeView Classes 345

ColumnHeader cHeader:
cHeader.Text = "Artist";
cHeader.Width = -2;
cHeader.TextAlign = HorizontalAlignment.Left;
ListView.Columns.Add(ColumnHeader cHeader);

Create ListView Items
Several overloaded forms of the ListView constructor are available. They can be
used to create a single item or a single item and its subitems. There are also options
to specify the icon associated with the item and set the foreground and background
colors.

Constructors:

public ListViewItem(string text);
public ListViewItem(string[] items);
public ListViewItem(string text,int imageIndex);
public ListViewItem(string[] items,int imageIndex);
public ListViewItem(string[] items,int imageIndex,
 Color foreColor,Color backColor,Font font);

The following code demonstrates how different overloads can be used to create
the items and subitems shown earlier in Figure 7-8:

// Create item and three subitems
ListViewItem item1 = new ListViewItem("Manet",2);
item1.SubItems.Add("1832");
item1.SubItems.Add("1883");
item1.SubItems.Add("France");
// Create item and subitems using a constructor only
ListViewItem item2 = new ListViewItem
 (new string[] {"Monet","1840","1926","France"}, 3);
// Create item and subitems with blue background color
ListViewItem item3 = new ListViewItem
 (new string[] {"Cezanne","1839","1906","France"}, 1,
 Color.Empty, Color.LightBlue, null);

To display the items, add them to the Items collection of the ListView control:

// Add the items to the ListView
 listView1.Items.AddRange(
 new ListViewItem[]{item1,item2,item3,item4,item5});

Specifying Icons
Two collections of images can be associated with a ListView control as ImageList
properties: LargeImageList, which contains images used in the LargeIcon view;

ch07.fm Page 345 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls346

and SmallImageList, which contains images used in all other views. Think of these
as zero-based arrays of images that are associated with a ListViewItem by the
imageIndex parameter in the ListViewItem constructor. Even though they are
referred to as icons, the images may be of any standard graphics format.

The following code creates two ImageList objects, adds images to them, and
assigns them to the LargeImageList and SmallImageList properties:

// Create two ImageList objects
 ImageList imageListSmall = new ImageList();
 ImageList imageListLarge = new ImageList();
 imageListLarge.ImageSize = new Size(50,50); // Set image size
 // Initialize the ImageList objects
 // Can use same images in both collections since they're resized
 imageListSmall.Images.Add(Bitmap.FromFile("C:\\botti.gif"));
 imageListSmall.Images.Add(Bitmap.FromFile("C:\\cezanne.gif"));
 imageListLarge.Images.Add(Bitmap.FromFile("C:\\botti.gif"));
 imageListLarge.Images.Add(Bitmap.FromFile("C:\\cezanne.gif"));
 // Add other images here
 // Assign the ImageList objects to the ListView.
 listView1.LargeImageList = imageListLarge;
 listView1.SmallImageList = imageListSmall;
 ListViewItem lvItem1 = new ListViewItem("Cezanne",1);

An index of 1 selects the cezanne.gif images as the large and small icons. Spec-
ifying an index not in the ImageList results in the icon at index 0 being displayed. If
neither ImageList is defined, no icon is displayed. Figure 7-12 shows the ListView
from Figure 7-11 with its view set to View.LargeIcon:

listView1.View = View.LargeIcon;

Figure 7-12 LargeIcon view

ch07.fm Page 346 Thursday, August 11, 2005 10:44 AM

7.5 The ListView and TreeView Classes 347

Working with the ListView Control
Common tasks associated with the ListView control include iterating over the con-
tents of the control, iterating over selected items only, detecting the item that has
focus, and—when in Details view—sorting the items by any column. Following are
some code segments to perform these tasks.

Iterating over All Items or Selected Items
You can use foreach to create nested loops that select an item and then iterate
through the collection of subitems for the item in the outside loop:

foreach (ListViewItem lvi in listView1.Items)
{
 string row = "";
 foreach(ListViewItem.ListViewSubItem sub in lvi.SubItems)
 {
 row += " " + sub.Text;
 }
 MessageBox.Show(row); // List concatenated subitems
}

There are a couple of things to be aware of when working with these collections.
First, the first subitem (index 0) element actually contains the text for the item—not
a subitem. Second, the ordering of subitems is not affected by rearranging columns
in the ListView control. This changes the appearance but does not affect the under-
lying ordering of subitems.

The same logic is used to list only selected items (MultiSelect = true permits
multiple items to be selected). The only difference is that the iteration occurs over
the ListView.SelectedItems collection:

foreach (ListViewItem lvisel in listView1.SelectedItems)

Detecting the Currently Selected Item
In addition to the basic control events such as Click and DoubleClick, the List-
View control adds a SelectedIndexChanged event to indicate when focus is
shifted from one item to another. The following code implements an event handler
that uses the FocusedItem property to identify the current item:

// Set this in the constructor
listView1.SelectedIndexChanged +=
 new EventHandler(lv_IndexChanged);
// Handle SelectedIndexChanged Event
private void lv_IndexChanged(object sender, System.EventArgs e)

ch07.fm Page 347 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls348

{
 string ItemText = listView1.FocusedItem.Text;
}

Note that this code can also be used with the Click events because they also use
the EventHandler delegate. The MouseDown and MouseUp events can also be used
to detect the current item. Here is a sample MouseDown event handler:

private void listView1_MouseDown(object sender, MouseEventArgs e)
{
 ListViewItem selection = listView1.GetItemAt(e.X, e.Y);
 if (selection != null)
 {
 MessageBox.Show("Item Selected: "+selection.Text);
 }
}

The ListView.GetItemAt method returns an item at the coordinates where the
mouse button is pressed. If the mouse is not over an item, null is returned.

Sorting Items on a ListView Control
Sorting items in a ListView control by column values is a surprisingly simple feature
to implement. The secret to its simplicity is the ListViewItemSorter property that
specifies the object to sort the items anytime the ListView.Sort method is called.
Implementation requires three steps:

1. Set up a delegate to connect a ColumnClick event with an event
handler.

2. Create an event handler method that sets the ListViewItemSorter
property to an instance of the class that performs the sorting compari-
son.

3. Create a class to compare column values. It must inherit the
IComparer interface and implement the IComparer.Compare
method.

The following code implements the logic: When a column is clicked, the event
handler creates an instance of the ListViewItemComparer class by passing it the
column that was clicked. This object is assigned to the ListViewItemSorter prop-
erty, which causes sorting to occur. Sorting with the IComparer interface is dis-
cussed in Chapter 4, “Working with Objects in C#”).

// Connect the ColumnClick event to its event handler
listView1.ColumnClick +=new ColumnClickEventHandler(ColumnClick);
// ColumnClick event handler
private void ColumnClick(object o, ColumnClickEventArgs e)

ch07.fm Page 348 Thursday, August 11, 2005 10:44 AM

7.5 The ListView and TreeView Classes 349

{
 // Setting this property immediately sorts the
 // ListView using the ListViewItemComparer object
 this.listView1.ListViewItemSorter =
 new ListViewItemComparer(e.Column);
}
// Class to implement the sorting of items by columns
class ListViewItemComparer : IComparer
{
 private int col;
 public ListViewItemComparer()
 {
 col = 0; // Use as default column
 }
 public ListViewItemComparer(int column)
 {
 col = column;
 }
 // Implement IComparer.Compare method
 public int Compare(object x, object y)
 {
 string xText = ((ListViewItem)x).SubItems[col].Text;
 string yText = ((ListViewItem)y).SubItems[col].Text;
 return String.Compare(xText, yText);
 }
}

The TreeView Class
As the name implies, the TreeView control provides a tree-like view of hierarchical
data as its user interface. Underneath, its programming model is based on the famil-
iar tree structure consisting of parent nodes and child nodes. Each node is imple-
mented as a TreeNode object that can in turn have its own Nodes collection. Figure
7-13 shows a TreeView control that is used in conjunction with a ListView to dis-
play enum members of a selected assembly. (We’ll look at the application that creates
it shortly.)

The TreeNode Class
Each item in a tree is represented by an instance of the TreeNode class. Data is asso-
ciated with each node using the TreeNode’s Text, Tag, or ImageIndex properties.
The Text property holds the node’s label that is displayed in the TreeView control.
Tag is an object type, which means that any type of data can be associated with the
node by assigning a custom class object to it. ImageIndex is an index to an Image-
List associated with the containing TreeView control. It specifies the image to be
displayed next to the node.

ch07.fm Page 349 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls350

In addition to these basic properties, the TreeNode class provides numerous
other members that are used to add and remove nodes, modify a node’s appearance,
and navigate the collection of nodes in a node tree (see Table 7-3).

Figure 7-13 Using TreeView control (left) and ListView (right) to list enum values

Table 7-3 Selected Members of the TreeNode Class

Use Member Description

Appearance BackColor,
ForeColor

Sets the background color and text color of the
node.

Expand(),
Collapse()

Expands the node to display child nodes or col-
lapses the tree so no child nodes are shown.

Navigation FirstNode,
LastNode,
NextNode,
PrevNode

Returns the first or last node in the collection.
Returns the next or previous node (sibling) rel-
ative to the current node.

 Index The index of the current node in the collection.

 Parent Returns the current node’s parent.

Node
Manipulation

Nodes.Add(),
Nodes.Remove(),
Nodes.Insert(),
Nodes.Clear()

Adds or removes a node to a Nodes collection.
Insert adds a node at an indexed location, and
Clear removes all tree nodes from the collec-
tion.

 Clone() Copies a tree node and entire subtree.

ch07.fm Page 350 Thursday, August 11, 2005 10:44 AM

7.5 The ListView and TreeView Classes 351

Let’s look at how TreeView and TreeNode members are used to perform funda-
mental TreeView operations.

Adding and Removing Nodes
The following code creates the tree in Figure 7-14 using a combination of Add,
Insert, and Clone methods. The methods are performed on a preexisting
treeView1 control.

TreeNode tNode;
// Add parent node to treeView1 control
tNode = treeView1.Nodes.Add("A");
// Add child node: two overloads available
tNode.Nodes.Add(new TreeNode("C"));
tNode.Nodes.Add("D"));
// Insert node after C
tNode.Nodes.Insert(1,new TreeNode("E"));
// Add parent node to treeView1 control
tNode = treeView1.Nodes.Add("B");

At this point, we still need to add a copy of node A and its subtree to the parent
node B. This is done by cloning the A subtree and adding it to node B. Node A is ref-
erenced as treeView1.Nodes[0] because it is the first node in the control’s collec-
tion. Note that the Add method appends nodes to a collection, and they can be
referenced by their zero-based position within the collection:

// Clone first parent node and add to node B
TreeNode clNode = (TreeNode) treeView1.Nodes[0].Clone();
tNode.Nodes.Add(clNode);
// Add and remove node for demonstration purposes
tNode.Nodes.Add("G");
tNode.Nodes.Remove(tNode.LastNode);

Figure 7-14 TreeView node representation

A B

C E D A

C E D

ch07.fm Page 351 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls352

Iterating Through the Nodes in a TreeView
As with any collection, the foreach statement provides the easiest way to loop
through the collection’s members. The following statements display all the top-level
nodes in a control:

foreach (TreeNode tn in treeView1.Nodes)
{
 MessageBox.Show(tn.Text);
 // If (tn.IsVisible) true if node is visible
 // If (tn.IsSelected) true if node is currently selected
}

An alternate approach is to move through the collection using the Tree-
Node.NextNode property:

tNode = treeView1.Nodes[0];
while (tNode != null) {
 MessageBox.Show(tNode.Text);
 tNode = tNode.NextNode;
}

Detecting a Selected Node
When a node is selected, the TreeView control fires an AfterSelect event that
passes a TreeViewEventArgs parameter to the event handling code. This parame-
ter identifies the action causing the selection and the node selected. The TreeView
example that follows illustrates how to handle this event.

You can also handle the MouseDown event and detect the node using the Get-
NodeAt method that returns the node—if any—at the current mouse coordinates.

private void treeView1_MouseDown(object sender, MouseEventArgs e)
{
 TreeNode tn = treeView1.GetNodeAt(e.X, e.Y);
 // You might want to remove the node: tn.Remove()
}

A TreeView Example That Uses Reflection
This example demonstrates how to create a simple object browser (refer to Figure
7-13) that uses a TreeView to display enumeration types for a specified assembly.
When a node on the tree is clicked, the members for the selected enumeration are
displayed in a ListView control.

Information about an assembly is stored in its metadata, and .NET provides
classes in the System.Reflection namespace for exposing this metadata. The code
in Listing 7-4 iterates across the types in an assembly to build the TreeView. The

ch07.fm Page 352 Thursday, August 11, 2005 10:44 AM

7.5 The ListView and TreeView Classes 353

parent nodes consist of unique namespace names, and the child nodes are the types
contained in the namespaces. To include only enum types, a check is made to ensure
that the type inherits from System.Enum.

Listing 7-4
Using a TreeView and Reflection to List Enums in an
Assembly

using System.Reflection;
//
private void GetEnums()
{
 TreeNode tNode=null;
 Assembly refAssembly ;
 Hashtable ht= new Hashtable(); // Keep track of namespaces
 string assem = AssemName.Text; // Textbox with assembly name
 tvEnum.Nodes.Clear(); // Remove all nodes from tree
 // Load assembly to be probed
 refAssembly = Assembly.Load(assem);
 foreach (Type t in refAssembly.GetTypes())
 {
 // Get only types that inherit from System.Enum
 if(t.BaseType!=null && t.BaseType.FullName=="System.Enum")
 {
 string myEnum = t.FullName;
 string nSpace =
 myEnum.Substring(0,myEnum.LastIndexOf("."));
 myEnum= myEnum.Substring(myEnum.LastIndexOf(".")+1) ;
 // Determine if namespace in hashtable
 if(ht.Contains(nSpace))
 {
 // Find parent node representing this namespace
 foreach (TreeNode tp in tvEnum.Nodes)
 {
 if(tp.Text == myEnum) { tNode=tp; break;}
 }
 }
 else
 {
 // Add parent node to display namespace
 tNode = tvEnum.Nodes.Add(nSpace);
 ht.Add(nSpace,nSpace);
 }

ch07.fm Page 353 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls354

Notice how reflection is used. The static Assembly.Load method is used to cre-
ate an Assembly type. The Assembly.GetTypes is then used to return a Type
array containing all types in the designated assembly.

refAssembly = Assembly.Load(assem);
foreach (Type t in refAssembly.GetTypes())

The Type.FullName property returns the name of the type, which includes the
namespace. This is used to extract the enum name and the namespace name. The
Type is stored in the Tag field of the child nodes and is used later to retrieve the
members of the enum.

After the TreeView is built, the final task is to display the field members of an
enumeration when its node is clicked. This requires registering an event handler to
be notified when an AfterSelect event occurs:

tvEnum.AfterSelect += new
 TreeViewEventHandler(tvEnum_AfterSelect);

The event handler identifies the selected node from the TreeViewEvent-
Args.Node property. It casts the node’s Tag field to a Type class (an enumerator in
this case) and uses the GetMembers method to retrieve the type’s members as Mem-
berInfo types. The name of each field member—exposed by the Member-
Info.Name property—is displayed in the ListView:

// ListView lView;
// lView.View = View.List;
private void tvEnum_AfterSelect(Object sender,
 TreeViewEventArgs e)
{
 TreeNode tn = e.Node; // Node selected
 ListViewItem lvItem;

 // Add Child - name of enumeration
 TreeNode cNode = new TreeNode();
 cNode.Text= myEnum;
 cNode.Tag = t; // Contains specific enumeration
 tNode.Nodes.Add(cNode);
 }
 }
}

Listing 7-4 Using a TreeView and Reflection to List Enums in an
Assembly (continued)

ch07.fm Page 354 Thursday, August 11, 2005 10:44 AM

7.6 The ProgressBar, Timer, and StatusStrip Classes 355

 if(tn.Parent !=null) // Exclude parent nodes
 {
 lView.Items.Clear(); // Clear ListView before adding items
 Type cNode = (Type) tn.Tag;
 // Use Reflection to iterate members in a Type
 foreach (MemberInfo mi in cNode.GetMembers())
 {
 if(mi.MemberType==MemberTypes.Field &&
 mi.Name != "value__") // skip this
 {
 lView.Items.Add(mi.Name);
 }
 }
 }
}

7.6 The ProgressBar, Timer,
and StatusStrip Classes

The ProgressBar and Timer are lightweight controls that have complementary
roles in an application: The Timer initiates action and the ProgressBar reflects the
status of an operation or action. In fact, the Timer is not a control, but a component
that inherits from the ComponentModel.Component class. It is used most often in
processes to regulate some background activity. This may be a periodic update to a
log file or a scheduled backup of data. A ProgressBar, on the other hand, provides
visual feedback regarding the progress of an operation—such as file copying or steps
in an installation.

The third class discussed in this section is the StatusStrip, which is often used
in conjunction with a timer and ProgressBar. It’s rendered on a form as a strip
divided into one or more sections or panes that provide status information. Each sec-
tion is implemented as a control that is added to the StatusStrip container. For a
control to be included in the StatusStrip, it must inherit from the ToolStrip-
Item class.

Building a StatusStrip
Let’s now build a form that includes a multi-pane StatusStrip. As shown in Figure
7-15, the strip consists of a label, progress bar, and panel controls. The label (Tool-
StripLabel) provides textual information describing the overall status of the appli-
cation. The progress bar is implemented as a ToolStripProgressBar object. It is
functionally equivalent to a ProgressBar, but inherits from ToolStripItem. A

ch07.fm Page 355 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls356

StatusStripPanel shows the elapsed time since the form was launched. An event
handler that is triggered by a timer updates both the progress bar and clock panel
every five seconds.

Listing 7-5 contains the code to create the StatusStrip. The left and right ends
of the progress bar are set to represent the values 0 and 120, respectively. The bar is
set to increase in a step size of 10 units each time the PerformStep method is exe-
cuted. It recycles every minute.

The Timer controls when the bar is incremented and when the elapsed time is
updated. Its Interval property is set to a value that controls how frequently its
Tick event is fired. In this example, the event is fired every 5 seconds, which results
in the progress bar being incremented by 10 units and the elapsed time by 5 seconds.

Figure 7-15 StatusStrip with Label, ProgressBar, and Panel

Listing 7-5 StatusStrip That Uses a ProgressBar
and Timer

// These variables have class scope
Timer currTimer;
StatusStrip statusStrip1;
StatusStripPanel panel1;
ToolStripProgressBar pb;
DateTime startDate = DateTime.Now;

private void BuildStrip()
{
 currTimer = new Timer();
 currTimer.Enabled = true;
 currTimer.Interval = 5000; // Fire tick event every 5 seconds
 currTimer.Tick += new EventHandler(timer_Tick);
 // Panel to contain elapsed time

ch07.fm Page 356 Thursday, August 11, 2005 10:44 AM

7.6 The ProgressBar, Timer, and StatusStrip Classes 357

The StatusStripPanel that displays the elapsed time has several properties
that control its appearance and location. In addition to those shown here, it has an
Image property that allows it to display an image. The StatusStripPanel class

 panel1 = new StatusStripPanel();
 panel1.BorderStyle = Border3DStyle.Sunken;
 panel1.Text = "00:00:00";
 panel1.Padding = new Padding(2);
 panel1.Name = "clock";
 panel1.Alignment = ToolStripItemAlignment.Tail; //Right align
 // Label to display application status
 ToolStripLabel ts = new ToolStripLabel();
 ts.Text = "Running...";
 // ProgressBar to show time elapsing
 pb = new ToolStripProgressBar();
 pb.Step = 10; // Size of each step or increment
 pb.Minimum = 0;
 pb.Maximum = 120; // Allow 12 steps
 // Status strip to contain components
 statusStrip1 = new StatusStrip();
 statusStrip1.Height = 20;
 statusStrip1.AutoSize = true;
 // Add components to strip
 statusStrip1.Items.AddRange(new ToolStripItem[] {
 ts, pb, panel1 });
 this.Controls.Add(statusStrip1);
}
private void timer_Tick(object sender, EventArgs e)
{
 // Get difference between current datetime
 // and form startup time
 TimeSpan ts = DateTime.Now.Subtract(startDate);
 string elapsed = ts.Hours.ToString("00") + ":" +
 ts.Minutes.ToString("00") +
 ":" + ts.Seconds.ToString("00");
 ((StatusStripPanel)statusStrip1.Items[
 "clock"]).Text= elapsed;
 // Advance progress bar
 if (pb.Value == pb.Maximum) pb.Value = 0;
 pb.PerformStep(); // Increment progress bar
}

Listing 7-5 StatusStrip That Uses a ProgressBar
and Timer (continued)

ch07.fm Page 357 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls358

inherits from the ToolStripLabel class that is used in the first pane. Both can be
used to display text, but the panel includes a BorderStyle property that Tool-
StripLabel lacks.

7.7 Building Custom Controls

At some point, you will face a programming task for which a standard WinForms
control does not provide the functionality you need. For example, you may want to
extend a TextBox control so that its background color changes according to its con-
tent, group a frequently used set of radio buttons into a single control, or create a
new control that shows a digital clock face with the date underneath. These needs
correspond to the three principal types of custom controls:

1. A control that derives from an existing control and extends its func-
tionality.

2. A control that can serve as container to allow multiple controls to
interact. This type of control is referred to as a user control. It derives
directly from System.Windows.Forms.UserControl rather than
Control, as do standard controls.

3. A control that derives directly from the Control class. This type of
control is built “from scratch,” and it is the developer’s responsibility
to draw its GUI interface and implement the methods and properties
that allow it to be manipulated by code.

Let’s now look at how to extend an existing control and create a user control.

Extending a Control
The easiest way to create a custom control is to extend an existing one. To demon-
strate this, let’s derive a TextBox that accepts only digits. The code is quite simple.
Create a new class NumericTextBox with TextBox as its base class. The only code
required is an event handler to process the KeyPress event and accept only a digit.

class NumericTextBox: TextBox
{
 public NumericTextBox()
 {
 this.KeyPress += new KeyPressEventHandler(TextBoxKeyPress);
 }
 protected void TextBoxKeyPress(object sender,
 KeyPressEventArgs e)

ch07.fm Page 358 Thursday, August 11, 2005 10:44 AM

7.7 Building Custom Controls 359

 {
 if (! char.IsDigit(e.KeyChar)) e.Handled = true;
 }
}

After the extended control is compiled into a DLL file, it can be added to any
form.

Building a Custom UserControl
Think of a user control as a subform. Like a form, it provides a container surface on
which related widgets are placed. When compiled, the entire set of controls is
treated as a single user control. Of course, users still can interact directly with any of
the member controls. Programmatic and design-time access to control members is
available through methods and properties defined on the user control.

The easiest way to design a control is with an IDE such as Visual Studio.NET
(VS.NET), which makes it easy to position and size controls. The usual way to create
a user control in VS.NET is to open a project as a Windows Control Library type.
This immediately brings up a control designer window. The design window can also
be accessed in a Windows Application by selecting Project – Add User Control from
the top menu bar or right-clicking on the Solution Explorer and selecting Add – Add
User Control. Although VS.NET can speed up the process of creating a control, it
does not generate any proprietary code that cannot be duplicated using a text editor.

A UserControl Example
As an example, let’s create a control that can be used to create a questionnaire. The
control consists of a label whose value represents the question, and three radio but-
tons contained on a panel control that represent the user’s choice of answers. The
control exposes three properties: one that assigns the question to the label, one to set
the background color of the panel control, and another that identifies the radio but-
ton associated with the user’s answer.

Figure 7-16 shows the layout of the user control and the names assigned to each
contained control.

Here is how the members are represented as fields within the UserControl1
class:

public class UserControl1 : System.Windows.Forms.UserControl
{
 private Panel panel1;
 private RadioButton radAgree;
 private RadioButton radDisagree;
 private RadioButton radUn;
 private Label qLabel;

ch07.fm Page 359 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls360

Listing 7-6 contains the code for three properties: SetQ that sets the label’s text
property to the question, PanelColor that sets the color of the panel, and Choice,
which returns the answer selected by the user as a Choices enum type.

Figure 7-16 Layout of a custom user control

Listing 7-6 Implementing Properties for a Custom
User Control

public enum Choices
{
 Agree = 1,
 DisAgree = 2,
 Undecided = 3,
}
public string SetQ
{
 set {qLabel.Text = value;}
 get {return(qLabel.Text);}
}
public Color PanelColor
{
 set {panel1.BackColor= value;}
 get {return(panel1.BackColor);}
}
public Choices Choice
{
 get
 {

ch07.fm Page 360 Thursday, August 11, 2005 10:44 AM

7.7 Building Custom Controls 361

Using the Custom User Control
If the user control is developed as part of a VS.NET Windows Application project, it
is automatically added to the tool box under the Windows Forms tab. Simply select it
and drop it onto the form. Otherwise, you have to right-click on a tool box tab, select
Customize ToolBox, browse for the control, and add it to the tool box.

Figure 7-17 provides an example of using this new control. In this example, we
place two control instances on the form and name them Q1 and Q2:

private usercontrol.UserControl1 Q1;
private usercontrol.UserControl1 Q2;

 Choices usel;
 usel = Choices.Undecided;
 if (radDisagree.Checked) usel= Choices.DisAgree;
 if (radAgree.Checked) usel = Choices.Agree;
 return(usel);}
 }
}

Figure 7-17 Custom user controls on a form

Listing 7-6 Implementing Properties for a Custom
User Control (continued)

ch07.fm Page 361 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls362

The properties can be set in the constructor or at runtime in the Form.Load
event handler. If using VS.NET, the properties can be set at design time using the
Property Browser.

Q1.SetQ = "The economy is performing well";
Q2.SetQ = "I'm not worried about the budget deficit.";
Q1.PanelColor = Color.Beige;

The final step in the application is to do something with the results after the ques-
tionnaire has been completed. The following code iterates through the controls on
the form when the button is clicked. When a UserControl1 type is encountered, its
Choice property is used to return the user’s selection.

private void button1_Click(object sender, System.EventArgs e)
{
 foreach (Control ct in this.Controls)
 {
 if (ct is usercontrol.UserControl1)
 {
 UserControl1 uc = (UserControl1)ct;
 // Display control name and user's answer
 MessageBox.Show(ct.Name+" "+
 uc.Choice.ToString());
 }
 }
 }

Working with the User Control at Design Time
If you are developing an application with VS.NET that uses this custom control, you
will find that the Property Browser lists all of the read/write properties. By default,
they are placed in a Misc category and have no description associated with them. To
add a professional touch to your control, you should create a category for the con-
trol’s events and properties and add a textual description for each category member.

The categories and descriptions available in the Property Browser come from
metadata based on attributes attached to a type’s members. Here is an example of
attributes added to the PanelColor property:

[Browsable(true),
Category("QControl"),
Description("Color of panel behind question block")]
public Color PanelColor
{
 set {panel1.BackColor = value;}
 get {return (panel1.BackColor);}
}

ch07.fm Page 362 Thursday, August 11, 2005 10:44 AM

7.8 Using Drag and Drop with Controls 363

The Browsable attribute indicates whether the property is to be displayed in the
browser. The default is true. The other two attributes specify the category under
which the property is displayed and the text that appears below the Property Browser
when the property is selected.

Always keep in mind that the motive for creating custom user controls is reusabil-
ity. There is no point in spending time creating elaborate controls that are used only
once. As this example illustrates, they are most effective when they solve a problem
that occurs repeatedly.

7.8 Using Drag and Drop with Controls

The ability to drag data from one control and drop it onto another has long been a
familiar feature of GUI programming. .NET supports this feature with several
classes and enumerations that enable a control to be the target and/or source of the
drag-and-drop operation.

Overview of Drag and Drop
The operation requires a source control that contains the data to be moved or copied,
and a target control that receives the dragged data. The source initiates the action in
response to an event—usually a MouseDown event. The source control’s event han-
dler begins the actual operation by invoking its DoDragDrop method. This method
has two parameters: the data being dragged and a DragDropEffects enum type
parameter that specifies the effects or actions the source control supports (see Table
7-4).

Table 7-4 DragDropEffects Enumeration

Member Description

All The data is moved to the target control, and scrolling occurs in the target
control to display the newly positioned data.

Copy Data is copied from target to source.

Link Data from the source is linked to the target.

Move The data is moved from the source to the target control.

None The target control refuses to accept data.

Scroll Scrolling occurs or will occur on the target control.

ch07.fm Page 363 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls364

As the mouse moves across the form, the DoDragDrop method determines the
control under the current cursor location. If this control has its AllowDrop property
set to true, it is a valid drop target and its DragEnter event is raised. The
DragEnter event handler has two tasks: to verify that the data being dragged is an
acceptable type and to ensure the requested action (Effect) is acceptable. When
the actual drop occurs, the destination control raises a DragDrop event. This event
handler is responsible for placing the data in the target control (see Figure 7-18).

After the DragDrop event handler finishes, the source control performs any
cleanup operations. For example, if the operation involves moving data—as opposed
to copying—the data must be removed from the source control.

To demonstrate these ideas, let’s create an application that assigns players to a
team from a roster of available players (see Figure 7-19). Team A is created by drag-
ging names from the Available Players to the Team A list. Both lists are implemented
with list boxes, and the Available Players list is set for single selection.

A name is selected by pressing the right mouse button and dragging the name to
the target list. To add some interest, holding the Ctrl key copies a name rather than
moving it.

After the form and controls are created, the first step is to set up the source con-
trol (lstPlayers) to respond to the MouseDown event and the target control (lst-
TeamA) to handle the DragEnter and DragDrop events:

lstPlayers.MouseDown +=
 new MouseEventHandler(Players_MouseDown);
lstTeamA.DragEnter += new DragEventHandler(TeamA_DragEnter);
lstTeamA.DragDrop += new DragEventHandler(TeamA_Drop);

Figure 7-18 Sequence of events in drag-and-drop operation

MouseDown event

DoDragDrop(data, DragDropEffects.Move)

Perform any housekeeping.

DragEnter event

Is data type correct?

DragDrop event

Y

Source Control

Target Control

N

ch07.fm Page 364 Thursday, August 11, 2005 10:44 AM

7.8 Using Drag and Drop with Controls 365

The next step is to code the event handlers on the source and target control(s) that
implement the drag-and-drop operation.

 Source Control Responsibilities
The MouseDown event handler for the source ListBox first checks to ensure that an
item has been selected. It then calls DoDragDrop, passing it the value of the selected
item as well as the acceptable effects: Move and Copy. The DragDropEffects enu-
meration has a FlagsAttribute attribute, which means that any bitwise combina-
tion of its values can be passed. The value returned from this method is the effect
that is actually used by the target. The event handler uses this information to perform
any operations required to implement the effect. In this example, a move operation
means that the dragged value must be removed from the source control.

Figure 7-19 Drag-and-drop example

Listing 7-7 Initiating a Drag-and-Drop Operation from the Source
Control

private void Players_MouseDown(object sender, MouseEventArgs e)
{
 if (lstPlayers.SelectedIndex >=0)
 {
 string players;
 int ndx = lstPlayers.SelectedIndex;
 DragDropEffects effect;
 players = lstPlayers.Items[ndx].ToString();
 if(players != "")
 {

ch07.fm Page 365 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls366

Target Control Responsibilities
The destination control must implement the event handlers for the DragEnter and
DragDrop events. Both of these events receive a DragEventArgs type parameter
(see Table 7-5) that contains the information required to process the drag-and-drop
event.

 // Permit target to move or copy data
 effect = lstPlayers.DoDragDrop(players,
 DragDropEffects.Move | DragDropEffects.Copy);
 // Remove item from ListBox since move occurred
 if (effect == DragDropEffects.Move)
 lstPlayers.Items.RemoveAt(ndx);
 }
 }
}

Table 7-5 DragEventArgs Properties

Member Description

AllowedEffect The effects that are supported by the source control.
Example to determine if Move is supported:
if ((e.AllowedEffect & DragDropEffects.Move) ==
 DragDropEffects.Move)

Data Returns the IDataObject that contains data associated with this
operation. This object implements methods that return information
about the data. These include GetData, which fetches the data, and
GetDataPresent, which checks the data type.

Effect Gets or sets the target drop effect.

KeyState Returns the state of the Alt key, Ctrl key, Shift key, and mouse buttons
as an integer:
1—Left mouse button 8—Ctrl key
2—Right mouse button 16—Middle mouse button
4—Shift key 32—Alt key

X, Y x and y coordinates of the mouse pointer.

Listing 7-7 Initiating a Drag-and-Drop Operation from the Source
Control (continued)

ch07.fm Page 366 Thursday, August 11, 2005 10:44 AM

7.8 Using Drag and Drop with Controls 367

The Data, Effect, and KeyState members are used as follows:

• Data.GetDataPresent is used by the DragEnter event handler to
ensure that the data is a type the target control can process.

• The DragDrop event handler uses Data.GetData to access the data
being dragged to it. The parameter to this method is usually a static
field of the DataFormats class that specifies the format of the
returned data.

• The DragEnter event handler uses KeyState to determine the status
of the mouse and keys in order to determine the effect it will use to
process the data. Recall that in this example, pressing the Ctrl key sig-
nals that data is to copied rather than moved.

• Effect is set by the DragEnter event handler to notify the source
as to how—or if—it processed the data. A setting of DragDrop-
Effects.None prevents the DragDrop event from firing.

Listing 7-8 shows the code for the two event handlers.

Listing 7-8 Handling the DragEnter and DragDrop
Events

[FlagsAttribute]
enum KeyPushed
{
 // Corresponds to DragEventArgs.KeyState values
 LeftMouse = 1,
 RightMouse = 2,
 ShiftKey = 4,
 CtrlKey = 8,
 MiddleMouse = 16,
 AltKey = 32,
}
private void TeamA_DragEnter(object sender, DragEventArgs e)
{
 KeyPushed kp = (KeyPushed) e.KeyState;
 // Make sure data type is string
 if (e.Data.GetDataPresent(typeof(string)))
 {
 // Only accept drag with left mouse key
 if ((kp & KeyPushed.LeftMouse) == KeyPushed.LeftMouse)
 {
 if ((kp & KeyPushed.CtrlKey) == KeyPushed.CtrlKey)
 {
 e.Effect = DragDropEffects.Copy; // Copy

ch07.fm Page 367 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls368

An enum is created with the FlagsAttributes attribute to make checking the
KeyState value easier and more readable. The logical “anding” of KeyState with
the value of the CtrlKey (8) returns a value equal to the value of the CtrlKey if the
Ctrl key is pressed.

A control can serve as source and target in the same application. You could make
this example more flexible by having the list boxes assume both roles. This would
allow you to return a player from lstTeamA back to the lstPlayers ListBox. All
that is required is to add the appropriate event handlers.

Core Note

Drag and drop is not just for text. The DataFormats class predefines the
formats that can be accepted as static fields. These include Bitmap,
PenData, WaveAudio, and numerous others.

 }
 else
 {
 e.Effect = DragDropEffects.Move; // Move
 }
 }
 else // Is not left mouse key
 {
 e.Effect = DragDropEffects.None;
 }
 } else // Is not a string
 {
 e.Effect = DragDropEffects.None;
 }
}
// Handle DragDrop event
private void TeamA_Drop(object sender, DragEventArgs e)
{
 // Add dropped data to TextBox
 lstTeamA.Items.Add(
 (string) e.Data.GetData(DataFormats.Text));
}

Listing 7-8 Handling the DragEnter and DragDrop
Events (continued)

ch07.fm Page 368 Thursday, August 11, 2005 10:44 AM

7.9 Using Resources 369

7.9 Using Resources

Figure 7-7, shown earlier in the chapter, illustrates the use of PictureBox controls
to enlarge and display a selected thumbnail image. Each thumbnail image is loaded
into the application from a local file:

tn1 = new PictureBox();
tn1.Image = Image.FromFile("c:\\schiele1.jpg");

This code works fine as long as the file schiele1.jpg exists in the root directory
of the user’s computer. However, relying on the directory path to locate this file has
two obvious disadvantages: The file could be deleted or renamed by the user, and it’s
an external resource that has to be handled separately from the code during installa-
tion. Both problems can be solved by embedding the image in the assembly rather
than treating it as an external resource.

Consider a GUI application that is to be used in multiple countries with different
languages. The challenge is to adapt the screens to each country. At a minimum, this
requires including text in the native language, and may also require changing images
and the location of controls on the form. The ideal solution separates the logic of the
program from the user interface. Such a solution treats the GUI for each country as
an interchangeable resource that is loaded based on the culture settings (the country
and language) of the computer.

The common denominator in these two examples is the need to bind an external
resource to an application. .NET provides special resource files that can be used to
hold just about any nonexecutable data such as strings, images, and persisted data.
These resource files can be included in an assembly—obviating the need for external
files—or compiled into satellite assemblies that can be accessed on demand by an
application’s main assembly.

Let’s now look at the basics of working with resource files and how to embed them in
assemblies; then, we will look at the role of satellite assemblies in localized applications.

Working with Resource Files
Resource files come in three formats: *.txt files in name/value format, *.resx files
in an XML format, and *.resources files in a binary format. Why three? The text
format provides an easy way to add string resources, the XML version supports both
strings and other objects such as images, and the binary version is the binary equiva-
lent of the XML file. It is the only format that can be embedded in an assembly—the
other formats must be converted into a .resources file before they can be linked to
an assembly. Figure 7-20 illustrates the approaches that can be used to create a
.resources file.

ch07.fm Page 369 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls370

The System.Resources namespace contains the types required to manipulate
resource files. It includes classes to read from and write to both resource file formats,
as well as load resources from an assembly into a program.

Creating Resource Strings from a Text File
Resource files containing string values are useful when it is necessary for a single
application to present an interface that must be customized for the environment in
which it runs. A resource file eliminates the need to code multiple versions of an
application; instead, a developer creates a single application and multiple resource
files that contain the interface captions, text, messages, and titles. For example, an
English version of an application would have the English resource file embedded in
its assembly; a German version would embed the German resource file. Creating
resource strings and accessing them in an application requires four steps:

1. Create a text file with the name/value strings to be used in the applica-
tion. The file takes this format:

;German version (this is a comment)
Language=German
Select=Wählen Sie aus
Page=Seite
Previous=Vorherig
Next=Nächst

2. Convert the text file to a .resources file using the Resource File
Generator utility resgen.exe:

> resgen german.txt german.resources

Note that the text editor used to create the text file should save it
using UTF-8 encoding, which resgen expects by default.

Figure 7-20 A .resources file can be created
from a text file, resources, or a .resx file

• strings
• images
• cursors

.resources

.txt resgen.exe

ResourceWriter

resgen.exe.resx

Resources

ResXResourceWriter

ch07.fm Page 370 Thursday, August 11, 2005 10:44 AM

7.9 Using Resources 371

3. Use the System.Resources.ResourceManager class to read the
strings from the resource file. As shown here, the ResourceManager
class accepts two arguments: the name of the resource file and the
assembly containing it. The Assembly class is part of the System.
Reflection namespace and is used in this case to return the current
assembly. After the resource manager is created, its GetString
method is used by the application to retrieve strings from the resource
file by their string name:

// new ResourceManager(resource file, assembly)
ResourceManager rm = new ResourceManager(
 "german",Assembly.GetExecutingAssembly());
nxtButton.Text= rm.GetString("Next");

4. For this preceding code to work, of course, the resource file must be
part of the application’s assembly. It’s bound to the assembly during
compilation:

csc /t:exe /resource:german.resources myApp.cs

Using the ResourceWriter Class to
Create a .resources File

The preceding solution works well for adding strings to a resource file. However, a
resource file can also contain other objects such as images and cursor shapes. To
place these in a .resources file, .NET offers the System.Resources.Resource-
Writer class. The following code, which would be placed in a utility or helper file,
shows how to create a ResourceWriter object and use its AddResource method to
store a string and image in a resource file:

IResourceWriter writer = new ResourceWriter(
 "myResources.resources"); // .Resources output file
Image img = Image.FromFile(@"c:\schiele1.jpg");
rw.AddResource("Page","Seite"); // Add string
rw.AddResource("artistwife",img); // Add image
rw.Close(); // Flush resources to the file

Using the ResourceManager Class
to Access Resources

As we did with string resources, we use the ResourceManager class to access object
resources from within the application. To illustrate, let’s return to the code presented
at the beginning of this section:

tn1.Image = Image.FromFile("C:\\schiele1.jpg");

ch07.fm Page 371 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls372

The ResourceManager allows us to replace the reference to an external file, with
a reference to this same image that is now part of the assembly. The GetString
method from the earlier example is replaced by the GetObject method:

ResourceManager rm = new
 ResourceManager("myresources",
 Assembly.GetExecutingAssembly());
// Extract image from resources in assembly
tn1.Image = (Bitmap) rm.GetObject("artistwife");

Using the ResXResourceWriter Class
to Create a .resx File

The ResXResourceWriter class is similar to the ResourceWriter class except that
it is used to add resources to a .resx file, which represents resources in an interme-
diate XML format. This format is useful when creating utility programs to read, man-
age, and edit resources—a difficult task to perform with the binary .resources file.

ResXResourceWriter rwx = new
 ResXResourceWriter(@"c:\myresources.resx");
Image img = Image.FromFile(@"c:\schiele1.jpg");
rwx.AddResource("artistwife",img); // Add image
rwx.Generate(); // Flush all added resources to the file

The resultant file contains XML header information followed by name/value tags
for each resource entry. The actual data—an image in this case—is stored between
the value tags. Here is a section of the file myresources.resx when viewed in a
text editor:

<data name="face" type="System.Drawing.Bitmap, System.Drawing,
 Version=1.0.3300.0,Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" mimetype="application/x-
 microsoft.net.object.bytearray.base64">
<value> ---- Actual Image bytes go here ----
</value>

Note that although this example stores only one image in the file, a .resx file can
contain multiple resource types.

Using the ResXResourceReader Class
to Read a .resx file

The ResXResourceReader class provides an IDictionaryEnumerator (see Chap-
ter 4) that is used to iterate through the tag(s) in a .resx file. This code segment lists
the contents of a resource file:

ch07.fm Page 372 Thursday, August 11, 2005 10:44 AM

7.9 Using Resources 373

ResXResourceReader rrx = new
 ResXResourceReader("c:\\myresources.resx");
// Enumerate the collection of tags
foreach (DictionaryEntry de in rrx)
{
 MessageBox.Show("Name: "+de.Key.ToString()+"\nValue: " +
 de.Value.ToString());
 // Output --> Name: artistwife
 // --> Value: System.Drawing.Bitmap
}
rrx.Close();

Converting a .resx File to a .resources File
The .resx file is converted to a .resources file using resgen.exe:

resgen myresources.resx myresources.resources

If the second parameter is not included, the output file will have the same base
name as the source file. Also, note that this utility can be used to create a
.resources file from a .resx file. The syntax is the same as in the preceding exam-
ple—just reverse the parameters.

VS.NET and Resources
Visual Studio.NET automatically creates a .resx file for each form in a project and
updates them as more resources are added to the project. You can see the resource
file(s) by selecting the Show All Files icon in the Solution Explorer.

When a build occurs, .resources files are created from the .resx files. In the
code itself, a ResourceManager object is created to provide runtime access to the
resources:

ResourceManager resources = new ResourceManager(typeof(Form1));

Using Resource Files to
Create Localized Forms

In .NET vernacular, a localized application is one that provides multi-language sup-
port. This typically means providing user interfaces that display text and images cus-
tomized for individual countries or cultures. The .NET resource files are designed to
support such applications.

In a nutshell, resource files can be set up for each culture being supported. For
example, one file may have all the control labels and text on its interface in German;
another may have the same controls with French text. When the application runs, it

ch07.fm Page 373 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls374

looks at the culture settings of the computer it is running on and pulls in the appro-
priate resources. This little bit of magic is accomplished by associating resource files
with the CultureInfo class that designates a language, or language and culture. The
resource files are packaged as satellite assemblies, which are resource files stored as
DLLs.

Resource Localization Using Visual Studio.NET
To make a form localized, you must set its Localizable property to true. This has
the effect of turning each control on a form into a resource that has its properties
stored in the form’s .resx file. This sets the stage for creating separate .resx files
for each culture a form supports.

Recall from Chapter 5, “C# Text Manipulation and File I/O,” that a culture is
specified by a two-character language code followed by an optional two-character
country code. For example, the code for English in the United States is en-US. The
terms neutral culture and specific culture are terms to describe a culture. A specific
culture has both the language and country specified; a neutral culture has only the
language. Consult the MSDN documentation on the CultureInfo class for a com-
plete list of culture names.

To associate other cultures with a form, set the form’s Language property to
another locale from the drop-down list in the Properties window. This causes a
.resx file to be created for the new culture. You can now customize the form for this
culture by changing text, resizing controls, or moving controls around. This new
property information is stored in the .resx file for this culture only—leaving the
.resx files for other cultures unaffected.

The resource files are stored in folders, as shown in Figure 7-21. When the project
is built, a satellite assembly is created to contain the resources for each culture, as
shown in Figure 7-22. This DLL file has the same name in each folder.

Figure 7-21 VS.NET resource files
for multiple cultures

Figure 7-22 Satellite assembly

ch07.fm Page 374 Thursday, August 11, 2005 10:44 AM

7.9 Using Resources 375

Determining Localization Resources at Runtime
By default, an application’s thread has its CurrentThread.CurrentUICulture
property set to the culture setting of the machine it is running on. Instances of the
ResourceManager, in turn, use this value to determine which resources to load.
They do this by searching for the satellite assembly in the folder associated with the
culture—a reason why the naming and location of resource folders and files is impor-
tant. If no culture-specific resources are found, the resources in the main assembly
are used.

Core Note

The easiest way to test an application with other culture settings is to set
the CurrentUICulture to the desired culture. The following statement,
for example, is placed before InitializeComponent() in VS.NET to
set the specific culture to German:

System.Threading.Thread.CurrentThread.CurrentUICulture =
 new System.Globalization.CultureInfo("de-DE");

Creating a Satellite Assembly Without VS.NET
One of the advantages of using satellite assemblies is that they can be added to an
application, or modified, without recompiling the application. The only requirements
are that a folder be set up along the proper path, and that the folder and satellite
assembly have the proper name.

Suppose you have a .resx file that has been converted by your translator to
French Canadian. You can manually create and add a satellite assembly to the appli-
cation in three steps:

1. Convert the.resx file to a .resources file:

filmography.Form1.fr-CA.resources

2. Convert the .resources file to a satellite assembly using the Assembly
Linker (Al.exe):

Al.exe
 /t:lib
 /embed:filmography.Form1.fr-CA.resources
 /culture:fr-CA
 /out:filmography.resources.dll

3. Create the fr-CA folder beneath Release folder and copy the new
assembly file into it.

ch07.fm Page 375 Thursday, August 11, 2005 10:44 AM

Chapter 7 � Windows Forms Controls376

Placing the satellite assembly in the proper folder makes it immediately available
to the executable and does not require compiling the application.

7.10 Summary

There are more than 50 GUI controls available in the .NET Framework Class
Library. This chapter has taken a selective look at some of the more important ones.
They all derive from the System.Windows.Forms.Control class that provides the
inherited properties and methods that all the controls have in common.

Although each control is functionally unique, it is possible to create a taxonomy of
controls based on similar characteristics and behavior. The button types, which are
used to intitiate an action or make a selection, include the simple Button, Check-
Box, and RadioButton. These are often grouped using a GroupBox or Panel con-
trol. The TextBox can be used to hold a single line of text or an entire document.
Numerous methods are available to search the box and identify selected text within
it. The PictureBox is available to hold images and has a SizeMode property that is
used to position and size an image within the box.

Several controls are available for presenting lists of data. The ListBox and Com-
boBox display data in a simple text format. However, the underlying data may be a
class object with multiple properties. The TreeView and ListView are useful for
displaying data with a hierarchical relationship. The ListView can display data in
multiple views that include a grid layout and icon representation of data. The Tree-
View presents a tree metaphor to the developer, with data represented as parent and
child nodes.

Most of the controls support the drag-and-drop operation that makes it easy to
move or copy data from one control to another. The source control initiates the
action by calling a DoDragDrop method that passes the data and permissible effects
to the target control.

For applications that require nonstandard controls, .NET lets you create custom
controls. They may be created from scratch, derived from an existing control, or cre-
ated as a combination of controls in a user control container.

7.11 Test Your Understanding

1. Why is a container control such as a GroupBox used with radio buttons?

2. What is the SizeMode property set to in order to automatically resize
and fill an image in a PictureBox?

ch07.fm Page 376 Thursday, August 11, 2005 10:44 AM

7.11 Test Your Understanding 377

3. Suppose you place objects in a ListBox that have these properties:

string Vendor, string ProductID, int Quantity

How do you have the ListBox display the ProductID and
Quantity?

4. What event is fired when an item in a ListBox is selected? What
ListBox properties are used to identify the selected item?

5. What property and value are set on a ListView to display its full con-
tents in a grid layout?

6. Which TreeNode property can be used to store object data in a Tree-
View node?

7. Which two events must the destination control in a drag-and-drop
operation support?

8. The Property Browser in VS.NET uses metadata to categorize a con-
trol’s properties and events and assign default values. How do you gen-
erate this information for the properties in a custom control?

9. What class is used to read text from a text resource file embedded in
an assembly? What method is used to read values from the file?

ch07.fm Page 377 Thursday, August 11, 2005 10:44 AM

