
CHAPTER 3

Page Table Management

Linux layers the machine independent/dependent layer in an unusual manner in
comparison to other operating systems [CP99]. Other operating systems have ob-
jects that manage the underlying physical pages, such as the pmap object in BSD.
Linux instead maintains the concept of a three-level page table in the architecture-
independent code even if the underlying architecture does not support it. Although
this is conceptually easy to understand, it also means that the distinction between
different types of pages is very blurry, and page types are identified by their flags
or what lists they exist on rather than the objects they belong to.

Architectures that manage their Memory Management Unit (MMU) differently
are expected to emulate the three-level page tables. For example, on the x86 without
PAE enabled, only two page table levels are available. The Page Middle Directory
(PMD) is defined to be of size 1 and “folds back” directly onto the Page Global
Directory (PGD), which is optimized out at compile time. Unfortunately, for ar-
chitectures that do not manage their cache or Translation Lookaside Buffer (TLB)
automatically, hooks that are architecture dependent have to be explicitly left in
the code for when the TLB and CPU caches need to be altered and flushed, even
if they are null operations on some architectures like the x86. These hooks are
discussed further in Section 3.8.

This chapter will begin by describing how the page table is arranged and what
types are used to describe the three separate levels of the page table. Next is how
a virtual address is broken up into its component parts for navigating the table.
After this is covered, I discuss the lowest level entry, the PTE, and what bits are
used by the hardware. After that, the macros used for navigating a page table and
setting and checking attributes will be discussed before talking about how the page
table is populated and how pages are allocated and freed for the use with page
tables. The initialization stage is then discussed, which shows how the page tables
are initialized during boot strapping. Finally, I cover how the TLB and CPU caches
are utilized.

3.1 Describing the Page Directory

Each process is a pointer (mm struct→pgd) to its own PGD which is a physical
page frame. This frame contains an array of type pgd t, which is an architecture-
specific type defined in <asm/page.h>. The page tables are loaded differently

33

34 Page Table Management Chapter 3

Figure 3.1. Page Table Layout

depending on the architecture. On the x86, the process page table is loaded by
copying mm struct→pgd into the cr3 register, which has the side effect of flushing
the TLB. In fact, this is how the function flush tlb() is implemented in the
architecture-dependent code.

Each active entry in the PGD table points to a page frame containing an array
of PMD entries of type pmd t, which in turn points to page frames containing PTEs
of type pte t, which finally point to page frames containing the actual user data.
In the event that the page has been swapped out to backing storage, the swap
entry is stored in the PTE and used by do swap page() during page fault to find
the swap entry containing the page data. The page table layout is illustrated in
Figure 3.1.

Any given linear address may be broken up into parts to yield offsets within
these three page table levels and an offset within the actual page. To help break
up the linear address into its component parts, a number of macros are provided in
triplets for each page table level, namely a SHIFT, a SIZE and a MASK macro. The
SHIFT macros specify the length in bits that are mapped by each level of the page
tables as illustrated in Figure 3.2.

The MASK values can be ANDd with a linear address to mask out all the upper
bits and are frequently used to determine if a linear address is aligned to a given
level within the page table. The SIZE macros reveal how many bytes are addressed

3.1. Describing the Page Directory 35

Figure 3.2. Linear Address Bit Size Macros

by each entry at each level. The relationship between the SIZE and MASK macros is
illustrated in Figure 3.3.

For the calculation of each of the triplets, only SHIFT is important because the
other two are calculated based on it. For example, the three macros for page level
on the x86 are:

5 #define PAGE_SHIFT 12
6 #define PAGE_SIZE (1UL << PAGE_SHIFT)
7 #define PAGE_MASK (~(PAGE_SIZE-1))

PAGE SHIFT is the length in bits of the offset part of the linear address space,
which is 12 bits on the x86. The size of a page is easily calculated as 2PAGE SHIFT

which is the equivalent of the previous code. Finally, the mask is calculated as the
negation of the bits that make up the PAGE SIZE - 1. If a page needs to be aligned
on a page boundary, PAGE ALIGN() is used. This macro adds PAGE SIZE - 1 to
the address before simply ANDing it with the PAGE MASK to zero out the page
offset bits.

PMD SHIFT is the number of bits in the linear address that are mapped by the
second-level part of the table. The PMD SIZE and PMD MASK are calculated in a
similar way to the page-level macros.

Figure 3.3. Linear Address Size and Mask Macros

36 Page Table Management Chapter 3

PGDIR SHIFT is the number of bits that are mapped by the top, or first level,
of the page table. The PGDIR SIZE and PGDIR MASK are calculated in the same
manner.

The last three macros of importance are the PTRS PER x, which determines the
number of entries in each level of the page table. PTRS PER PGD is the number of
pointers in the PGD, which is 1,024 on an x86 without PAE. PTRS PER PMD is for
the PMD, which is one on the x86 without PAE, and PTRS PER PTE is for the lowest
level, which is 1,024 on the x86.

3.2 Describing a Page Table Entry

As mentioned, each entry is described by the structs pte t, pmd t and pgd t for
PTEs, PMDs and PGDs respectively. Even though these are often just unsigned
integers, they are defined as structs for two reasons. The first is for type protection
so that they will not be used inappropriately. The second is for features like PAE
on the x86 where an additional 4 bits is used for addressing more than 4GiB of
memory. To store the protection bits, pgprot t is defined, which holds the relevant
flags and is usually stored in the lower bits of a page table entry.

For type casting, four macros are provided in asm/page.h, which takes the
previous types and returns the relevant part of the structs. They are pte val(),
pmd val(), pgd val() and pgprot val(). To reverse the type casting, four more
macros are provided: pte(), pmd(), pgd() and pgprot().

Where exactly the protection bits are stored is architecture dependent. For
illustration purposes, we will examine the case of an x86 architecture without PAE
enabled, but the same principles apply across architectures. On an x86 without
PAE, the pte t is simply a 32-bit integer within a struct. Each pte t points to
an address of a page frame, and all the addresses pointed to are guaranteed to be
page aligned. Therefore, there are PAGE SHIFT (12) bits in that 32-bit value that
are free for status bits of the page table entry. A number of the protection and
status bits are listed in Table 3.1, but what bits exist and what they mean varies
between architectures.

Bit Function
PAGE PRESENT Page is resident in memory and not swapped out.
PAGE PROTNONE Page is resident, but not accessible.
PAGE RW Set if the page may be written to
PAGE USER Set if the page is accessible from userspace
PAGE DIRTY Set if the page is written to
PAGE ACCESSED Set if the page is accessed

Table 3.1. Page Table Entry Protection and Status Bits

These bits are self-explanatory except for the PAGE PROTNONE, which I will dis-
cuss further. On the x86 with Pentium III and higher, this bit is called the Page

3.3. Using Page Table Entries 37

Attribute Table (PAT) while earlier architectures such as the Pentium II had this
bit reserved. The PAT bit is used to indicate the size of the page that the PTE is
referencing. In a PGD entry, this same bit is instead called the Page Size Extension
(PSE) bit, so obviously these bits are meant to be used in conjunction.

Because Linux does not use the PSE bit for user pages, the PAT bit is free in
the PTE for other purposes. There is a requirement for having a page resident
in memory, but inaccessible to the user space process, such as when a region is
protected with mprotect() with the PROT NONE flag. When the region is to be
protected, the PAGE PRESENT bit is cleared, and the PAGE PROTNONE bit is set.
The macro pte present() checks if either of these bits are set, so the kernel itself
knows the PTE is present. It is just inaccessible to userspace, which is a subtle, but
important, point. Because the hardware bit PAGE PRESENT is clear, a page fault
will occur if the page is accessed so that Linux can enforce the protection while still
knowing the page is resident if it needs to swap it out or the process exits.

3.3 Using Page Table Entries

Macros are defined in <asm/pgtable.h>, which is important for the navigation
and examination of page table entries. To navigate the page directories, three
macros are provided that break up a linear address space into its component parts.
pgd offset() takes an address and the mm struct for the process and returns the
PGD entry that covers the requested address. pmd offset() takes a PGD entry
and an address and returns the relevant PMD. pte offset() takes a PMD and
returns the relevant PTE. The remainder of the linear address provided is the offset
within the page. The relationship between these fields is illustrated in Figure 3.1.

The second round of macros determine if the page table entries are present or
may be used.

• pte none(), pmd none() and pgd none() return 1 if the corresponding entry
does not exist.

• pte present(), pmd present() and pgd present() return 1 if the corre-
sponding page table entries have the PRESENT bit set.

• pte clear(), pmd clear() and pgd clear() will clear the corresponding
page table entry.

• pmd bad() and pgd bad() are used to check entries when passed as input
parameters to functions that may change the value of the entries. Whether
they return 1 varies between the few architectures that define these macros.
However, for those that actually define it, making sure the page entry is
marked as present and accessed are the two most important checks.

Many parts of the VM are littered with page table walk code, and it is impor-
tant to recognize it. A very simple example of a page table walk is the function
follow page() in mm/memory.c. The following is an excerpt from that function.
The parts unrelated to the page table walk are omitted.

38 Page Table Management Chapter 3

407 pgd_t *pgd;
408 pmd_t *pmd;
409 pte_t *ptep, pte;
410
411 pgd = pgd_offset(mm, address);
412 if (pgd_none(*pgd) || pgd_bad(*pgd))
413 goto out;
414
415 pmd = pmd_offset(pgd, address);
416 if (pmd_none(*pmd) || pmd_bad(*pmd))
417 goto out;
418
419 ptep = pte_offset(pmd, address);
420 if (!ptep)
421 goto out;
422
423 pte = *ptep;

It simply uses the three offset macros to navigate the page tables and the none()
and bad() macros to make sure it is looking at a valid page table.

The third set of macros examine and set the permissions of an entry. The
permissions determine what a userspace process can and cannot do with a particular
page. For example, the kernel page table entries are never readable by a userspace
process.

• The read permissions for an entry are tested with pte read(), set with
pte mkread() and cleared with pte rdprotect().

• The write permissions are tested with pte write(), set with pte mkwrite()
and cleared with pte wrprotect().

• The execute permissions are tested with pte exec(), set with pte mkexec()
and cleared with pte exprotect(). It is worth noting that, with the x86
architecture, there is no means of setting execute permissions on pages, so
these three macros act the same way as the read macros.

• The permissions can be modified to a new value with pte modify(), but its
use is almost nonexistent. It is only used in the function change pte range()
in mm/mprotect.c.

The fourth set of macros examine and set the state of an entry. There are only
two bits that are important in Linux, the dirty bit and the accessed bit. To check
these bits, the macros pte dirty() and pte young() are used. To set the bits, the
macros pte mkdirty() and pte mkyoung() are used. To clear them, the macros
pte mkclean() and pte old() are available.

3.4. Translating and Setting Page Table Entries 39

3.4 Translating and Setting Page Table Entries

This set of functions and macros deal with the mapping of addresses and pages to
PTEs and the setting of the individual entries.

The macro mk pte() takes a struct page and protection bits and combines
them together to form the pte t that needs to be inserted into the page table.
A similar macro mk pte phys() exists, which takes a physical page address as a
parameter.

The macro pte page() returns the struct page, which corresponds to
the PTE entry. pmd page() returns the struct page containing the set of
PTEs.

The macro set pte() takes a pte t such as that returned by mk pte() and
places it within the process’s page table. pte clear() is the reverse operation. An
additional function is provided called ptep get and clear(), which clears an entry
from the process page table and returns the pte t. This is important when some
modification needs to be made to either the PTE protection or the struct page
itself.

3.5 Allocating and Freeing Page Tables

The last set of functions deal with the allocation and freeing of page tables. Page
tables, as stated, are physical pages containing an array of entries, and the allocation
and freeing of physical pages is a relatively expensive operation, both in terms of
time and the fact that interrupts are disabled during page allocation. The allocation
and deletion of page tables, at any of the three levels, is a very frequent operation,
so it is important the operation is as quick as possible.

Hence the pages used for the page tables are cached in a number of different
lists called quicklists. Each architecture implements these caches differently, but
the principles used are the same. For example, not all architectures cache PGDs
because the allocation and freeing of them only happens during process creation
and exit. Because both of these are very expensive operations, the allocation of
another page is negligible.

PGDs, PMDs and PTEs have two sets of functions each for the allocation and
freeing of page tables. The allocation functions are pgd alloc(), pmd alloc() and
pte alloc(), respectively, and the free functions are, predictably enough, called
pgd free(), pmd free() and pte free().

Broadly speaking, the three implement caching with the use of three caches
called pgd quicklist, pmd quicklist and pte quicklist. Architectures imple-
ment these three lists in different ways, but one method is through the use of a Last
In, First Out (LIFO) type structure. Ordinarily, a page table entry contains point-
ers to other pages containing page tables or data. While cached, the first element
of the list is used to point to the next free page table. During allocation, one page
is popped off the list, and, during free, one is placed as the new head of the list. A
count is kept of how many pages are used in the cache.

The quick allocation function from the pgd quicklist is not externally defined
outside of the architecture, although get pgd fast() is a common choice for the

40 Page Table Management Chapter 3

function name. The cached allocation function for PMDs and PTEs are publicly
defined as pmd alloc one fast() and pte alloc one fast().

If a page is not available from the cache, a page will be allocated using the
physical page allocator (see Chapter 6). The functions for the three levels of page
tables are get pgd slow(), pmd alloc one() and pte alloc one().

Obviously, a large number of pages may exist on these caches, so a mechanism is
in place for pruning them. Each time the caches grow or shrink, a counter is incre-
mented or decremented, and it has a high and low watermark. check pgt cache()
is called in two places to check these watermarks. When the high watermark is
reached, entries from the cache will be freed until the cache size returns to the low
watermark. The function is called after clear page tables() when a large number
of page tables are potentially reached and is also called by the system idle task.

3.6 Kernel Page Tables

When the system first starts, paging is not enabled because page tables do not
magically initialize themselves. Each architecture implements this differently so
only the x86 case will be discussed. The page table initialization is divided into two
phases. The bootstrap phase sets up page tables for just 8MiB so that the paging
unit can be enabled. The second phase initializes the rest of the page tables. We
discuss both of these phases in the following sections.

3.6.1 Bootstrapping

The assembler function startup 32() is responsible for enabling the paging unit in
arch/i386/kernel/head.S. While all normal kernel code in vmlinuz is compiled
with the base address at PAGE OFFSET + 1MiB, the kernel is actually loaded begin-
ning at the first megabyte (0x00100000) of memory. The first megabyte is used
by some devices for communication with the BIOS and is skipped. The bootstrap
code in this file treats 1MiB as its base address by subtracting PAGE OFFSET from
any address until the paging unit is enabled. Therefore before the paging unit is
enabled, a page table mapping has to be established that translates the 8MiB of
physical memory to the virtual address PAGE OFFSET.

Initialization begins at compile time with statically defining an array called
swapper pg dir, which is placed using linker directives at 0x00101000. It then
establishes page table entries for two pages, pg0 and pg1. If the processor supports
the Page Size Extension (PSE) bit, it will be set so that pages that will be translated
are 4MiB pages, not 4KiB as is the normal case. The first pointers to pg0 and pg1
are placed to cover the region 1-9MiB; the second pointers to pg0 and pg1 are placed
at PAGE OFFSET+1MiB. This means that, when paging is enabled, they will map to
the correct pages using either physical or virtual addressing for just the kernel
image. The rest of the kernel page tables will be initialized by paging init().

After this mapping has been established, the paging unit is turned on by setting a
bit in the cr0 register, and a jump takes places immediately to ensure the Instruction
Pointer (EIP register) is correct.

3.6. Kernel Page Tables 41

3.6.2 Finalizing

The function responsible for finalizing the page tables is called paging init(). The
call graph for this function on the x86 can be seen on Figure 3.4.

paging_init

pagetable_init kmap_init zone_sizes_init

alloc_bootmem_low_pages

fixrange_init kmap_get_fixmap_pte

Figure 3.4. Call Graph: paging init()

The function first calls pagetable init() to initialize the page tables necessary
to reference all physical memory in ZONE DMA and ZONE NORMAL. Remember that
high memory in ZONE HIGHMEM cannot be directly referenced and that mappings
are set up for it temporarily. For each pgd t used by the kernel, the boot memory
allocator (see Chapter 5) is called to allocate a page for the PGD, and the PSE
bit will be set if available to use 4MiB TLB entries instead of 4KiB. If the PSE
bit is not supported, a page for PTEs will be allocated for each pmd t. If the CPU
supports the PGE flag, it also will be set so that the page table entry will be global
and visible to all processes.

Next, pagetable init() calls fixrange init() to set up the fixed address
space mappings at the end of the virtual address space starting at FIXADDR START.
These mappings are used for purposes such as the local Advanced Programmable
Interrupt Controller (APIC) and the atomic kmappings between FIX KMAP BEGIN
and FIX KMAP END required by kmap atomic(). Finally, the function calls
fixrange init() to initialize the page table entries required for normal high mem-
ory mappings with kmap().

After pagetable init() returns, the page tables for kernel space are now fully
initialized, so the static PGD (swapper pg dir) is loaded into the CR3 register so
that the static table is now being used by the paging unit.

The next task of the paging init() is responsible for calling kmap init() to
initialize each of the PTEs with the PAGE KERNEL protection flags. The final task is
to call zone sizes init(), which initializes all the zone structures used.

42 Page Table Management Chapter 3

3.7 Mapping Addresses to a struct page

There is a requirement for Linux to have a fast method of mapping virtual addresses
to physical addresses and for mapping struct pages to their physical address.
Linux achieves this by knowing where, in both virtual and physical memory, the
global mem map array is because the global array has pointers to all struct pages
representing physical memory in the system. All architectures achieve this with
very similar mechanisms, but, for illustration purposes, we will only examine the
x86 carefully. This section will first discuss how physical addresses are mapped to
kernel virtual addresses and then what this means to the mem map array.

3.7.1 Mapping Physical to Virtual Kernel Addresses

As we saw in Section 3.6, Linux sets up a direct mapping from the physical address
0 to the virtual address PAGE OFFSET at 3GiB on the x86. This means that any
virtual address can be translated to the physical address by simply subtracting
PAGE OFFSET, which is essentially what the function virt to phys() with the macro
pa() does:

/* from <asm-i386/page.h> */
132 #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

/* from <asm-i386/io.h> */
76 static inline unsigned long virt_to_phys(volatile void * address)
77 {
78 return __pa(address);
79 }

Obviously, the reverse operation involves simply adding PAGE OFFSET, which is
carried out by the function phys to virt() with the macro va(). Next we see
how this helps the mapping of struct pages to physical addresses.

There is one exception where virt to phys() cannot be used to convert vir-
tual addresses to physical ones.1 Specifically, on the PPC and ARM architectures,
virt to phys() cannot be used to convert addresses that have been returned by
the function consistent alloc(). consistent alloc() is used on PPC and ARM
architectures to return memory from non-cached for use with DMA.

3.7.2 Mapping struct pages to Physical Addresses

As we saw in Section 3.6.1, the kernel image is located at the physical address 1MiB,
which of course translates to the virtual address PAGE OFFSET + 0x00100000, and
a virtual region totaling about 8MiB is reserved for the image, which is the region
that can be addressed by two PGDs. This would imply that the first available
memory to use is located at 0xC0800000, but that is not the case. Linux tries
to reserve the first 16MiB of memory for ZONE DMA, so the first virtual area used

1This tricky issue was pointed out to me by Jeffrey Haran.

3.8. Translation Lookaside Buffer (TLB) 43

for kernel allocations is actually 0xC1000000. This is where the global mem map is
usually located. ZONE DMA will still get used, but only when absolutely necessary.

Physical addresses are translated to struct pages by treating them as an index
into the mem map array. Shifting physical address PAGE SHIFT bits to the right will
treat them as a Page Frame Number (PFN) from physical address 0, which is also
an index within the mem map array. This is exactly what the macro virt to page()
does, which is declared as follows in <asm-i386/page.h>:

#define virt_to_page(kaddr) (mem_map + (__pa(kaddr) >> PAGE_SHIFT))

The macro virt to page() takes the virtual address kaddr, converts it to
the physical address with pa(), converts it into an array index by bit shifting
PAGE SHIFT bits right and indexing into the mem map by simply adding them to-
gether. No macro is available for converting struct pages to physical addresses,
but, at this stage, you should see how it could be calculated.

3.8 Translation Lookaside Buffer (TLB)

Initially, when the processor needs to map a virtual address to a physical address, it
must traverse the full page directory searching for the PTE of interest. This would
normally imply that each assembly instruction that references memory actually
requires several separate memory references for the page table traversal [Tan01].
To avoid this considerable overhead, architectures take advantage of the fact that
most processes exhibit a locality of reference, or, in other words, large numbers of
memory references tend to be for a small number of pages. They take advantage of
this reference locality by providing a Translation Lookaside Buffer (TLB), which is
a small associative memory that caches virtual to physical page table resolutions.

Linux assumes that most architectures support some type of TLB, although the
architecture-independent code does not care how it works. Instead, architecture-
dependent hooks are dispersed throughout the VM code at points where it is known
that some hardware with a TLB would need to perform a TLB-related operation.
For example, when the page tables have been updated, such as after a page fault
has completed, the processor may need to update the TLB for that virtual address
mapping.

Not all architectures require these type of operations, but, because some do,
the hooks have to exist. If the architecture does not require the operation to be
performed, the function for that TLB operation will be a null operation that is
optimized out at compile time.

A quite large list of TLB API hooks, most of which are declared in
<asm/pgtable.h>, are listed in Tables 3.2 and 3.3, and the APIs are quite well doc-
umented in the kernel source by Documentation/cachetlb.txt [Mil00]. It is pos-
sible to have just one TLB flush function, but, because both TLB flushes and TLB
refills are very expensive operations, unnecessary TLB flushes should be avoided if
at all possible. For example, when context switching, Linux will avoid loading new
page tables using Lazy TLB Flushing, discussed further in Section 4.3.

44 Page Table Management Chapter 3

void flush tlb all(void)
This flushes the entire TLB on all processors running in the system, which

makes it the most expensive TLB flush operation. After it completes, all modi-
fications to the page tables will be visible globally. This is required after the
kernel page tables, which are global in nature, have been modified, such as
after vfree() (see Chapter 7) completes or after the PKMap is flushed (see
Chapter 9).

void flush tlb mm(struct mm struct *mm)
This flushes all TLB entries related to the userspace portion (i.e., below

PAGE OFFSET) for the requested mm context. In some architectures, such as
MIPS, this will need to be performed for all processors, but usually it is confined
to the local processor. This is only called when an operation has been performed
that affects the entire address space, such as after all the address mapping has
been duplicated with dup mmap() for fork or after all memory mappings have
been deleted with exit mmap().

void flush tlb range(struct mm struct *mm, unsigned long start,
unsigned long end)

As the name indicates, this flushes all entries within the requested user
space range for the mm context. This is used after a new region has been
moved or changed as during mremap(), which moves regions, or mprotect(),
which changes the permissions. The function is also indirectly used during un-
mapping a region with munmap(), which calls tlb finish mmu(), which tries
to use flush tlb range() intelligently. This API is provided for architec-
tures that can remove ranges of TLB entries quickly rather than iterating with
flush tlb page().

Table 3.2. Translation Lookaside Buffer Flush API

3.9 Level 1 CPU Cache Management

Because Linux manages the CPU cache in a very similar fashion to the TLB, this
section covers how Linux uses and manages the CPU cache. CPU caches, like
TLB caches, take advantage of the fact that programs tend to exhibit a locality
of reference [Sea00] [CS98]. To avoid having to fetch data from main memory for
each reference, the CPU will instead cache very small amounts of data in the CPU
cache. Frequently, there are two levels called the Level 1 and Level 2 CPU caches.
The Level 2 CPU caches are larger, but slower than the L1 cache, but Linux only
concerns itself with the Level 1 or L1 cache.

CPU caches are organized into lines. Each line is typically quite small, usually
32 bytes, and each line is aligned to its boundary size. In other words, a cache line
of 32 bytes will be aligned on a 32-byte address. With Linux, the size of the line is
L1 CACHE BYTES, which is defined by each architecture.

How addresses are mapped to cache lines vary between architectures, but the
mappings come under three headings, direct mapping , associative mapping and set

3.9. Level 1 CPU Cache Management 45

void flush tlb page(struct vm area struct *vma, unsigned long addr)
Predictably, this API is responsible for flushing a single page from the TLB.

The two most common uses of it are for flushing the TLB after a page has been
faulted in or has been paged out.

void flush tlb pgtables(struct mm struct *mm, unsigned long start,
unsigned long end)

This API is called when the page tables are being torn down and freed. Some
platforms cache the lowest level of the page table, i.e., the actual page frame
storing entries, which needs to be flushed when the pages are being deleted.
This is called when a region is being unmapped and the page directory entries
are being reclaimed.

void update mmu cache(struct vm area struct *vma, unsigned long
addr, pte t pte)

This API is only called after a page fault completes. It tells the architecture-
dependent code that a new translation now exists at pte for the virtual address
addr. Each architecture decides how this information should be used. For ex-
ample, Sparc64 uses the information to decide if the local CPU needs to flush its
data cache or does it need to send an Inter Processor Interrupt (IPI) to a remote
processor.

Table 3.3. Translation Lookaside Buffer Flush API (cont.)

associative mapping . Direct mapping is the simplest approach where each block
of memory maps to only one possible cache line. With associative mapping, any
block of memory can map to any cache line. Set associative mapping is a hybrid
approach where any block of memory can map to any line, but only within a subset
of the available lines. Regardless of the mapping scheme, they each have one thing
in common. Addresses that are close together and aligned to the cache size are
likely to use different lines. Hence Linux employs simple tricks to try and maximize
cache use:

• Frequently accessed structure fields are at the start of the structure to increase
the chance that only one line is needed to address the common fields.

• Unrelated items in a structure should try to be at least cache-size bytes in
part to avoid false sharing between CPUs.

• Objects in the general caches, such as the mm struct cache, are aligned to the
L1 CPU cache to avoid false sharing.

If the CPU references an address that is not in the cache, a cache miss occurs,
and the data is fetched from main memory. The cost of cache misses is quite high
because a reference to a cache can typically be performed in less than 10ns where a
reference to main memory typically will cost between 100ns and 200ns. The basic
objective is then to have as many cache hits and as few cache misses as possible.

46 Page Table Management Chapter 3

Just as some architectures do not automatically manage their TLBs, some do
not automatically manage their CPU caches. The hooks are placed in locations
where the virtual to physical mapping changes, such as during a page table update.
The CPU cache flushes should always take place first because some CPUs require a
virtual to physical mapping to exist when the virtual address is being flushed from
the cache. The three operations that require proper ordering are important and are
listed in Table 3.4.

Flushing Full MM Flushing Range Flushing Page
flush cache mm() flush cache range() flush cache page()
Change all page tables Change page table range Change single PTE
flush tlb mm() flush tlb range() flush tlb page()

Table 3.4. Cache and TLB Flush Ordering

The API used for flushing the caches is declared in <asm/pgtable.h> and is
listed in Table 3.5. In many respects, it is very similar to the TLB flushing API.

void flush cache all(void)
This flushes the entire CPU cache system, which makes it the most severe

flush operation to use. It is used when changes to the kernel page tables, which
are global in nature, are to be performed.

void flush cache mm(struct mm struct mm)
This flushes all entries related to the address space. On completion, no cache

lines will be associated with mm.

void flush cache range(struct mm struct *mm, unsigned long start,
unsigned long end)

This flushes lines related to a range of addresses in the address space. Like
its TLB equivalent, it is provided in case the architecture has an efficient way of
flushing ranges instead of flushing each individual page.

void flush cache page(struct vm area struct *vma, unsigned long
vmaddr)

This is for flushing a single-page-sized region. The VMA is supplied because
the mm struct is easily accessible through vma→vm mm. Additionally, by testing
for the VM EXEC flag, the architecture will know if the region is executable for
caches that separate the instructions and data caches. VMAs are described
further in Chapter 4.

Table 3.5. CPU Cache Flush API

It does not end there, though. A second set of interfaces is required to avoid
virtual aliasing problems. The problem is that some CPUs select lines based on
the virtual address, which means that one physical address can exist on multiple

3.10. What’s New in 2.6 47

lines leading to cache coherency problems. Architectures with this problem may
try and ensure that shared mappings will only use addresses as a stop-gap measure.
However, a proper API to address this problem is also supplied, which is listed in
Table 3.6.

void flush page to ram(unsigned long address)
This is a deprecated API that should no longer be used and, in fact, will be

removed totally for 2.6. It is covered here for completeness and because it is still
used. The function is called when a new physical page is about to be placed in
the address space of a process. It is required to avoid writes from kernel space
being invisible to userspace after the mapping occurs.

void flush dcache page(struct page *page)
This function is called when the kernel writes to or copies from a page cache

page because these are likely to be mapped by multiple processes.

void flush icache range(unsigned long address, unsigned long
endaddr)

This is called when the kernel stores information in addresses that is likely
to be executed, such as when a kernel module has been loaded.

void flush icache user range(struct vm area struct *vma, struct
page *page, unsigned long addr, int len)

This is similar to flush icache range() except it is called when a userspace
range is affected. Currently, this is only used for ptrace() (used when
debugging) when the address space is being accessed by access process vm().

void flush icache page(struct vm area struct *vma, struct page
*page)

This is called when a page-cache page is about to be mapped. It is up to the
architecture to use the VMA flags to determine whether the I-Cache or D-Cache
should be flushed.

Table 3.6. CPU D-Cache and I-Cache Flush API

3.10 What’s New in 2.6

Most of the mechanics for page table management are essentially the same for
2.6, but the changes that have been introduced are quite wide reaching and the
implementations are in depth.

MMU-less Architecture Support A new file has been introduced called
mm/nommu.c. This source file contains replacement code for functions that assume
the existence of a MMU, like mmap() for example. This is to support architectures,
usually microcontrollers, that have no MMU. Much of the work in this area was
developed by the uCLinux Project (www.uclinux.org).

48 Page Table Management Chapter 3

Reverse Mapping The most significant and important change to page table man-
agement is the introduction of Reverse Mapping (rmap). Referring to it as “rmap” is
deliberate because it is the common use of the acronym and should not be confused
with the -rmap tree developed by Rik van Riel, which has many more alterations
to the stock VM than just the reverse mapping.

In a single sentence, rmap grants the ability to locate all PTEs that map a
particular page given just the struct page. In 2.4, the only way to find all PTEs
that mapped a shared page, such as a memory mapped shared library, is to linearly
search all page tables belonging to all processes. This is far too expensive, and
Linux tries to avoid the problem by using the swap cache (see Section 11.4). This
means that, with many shared pages, Linux may have to swap out entire processes
regardless of the page age and usage patterns. 2.6 instead has a PTE chain asso-
ciated with every struct page, which may be traversed to remove a page from all
page tables that reference it. This way, pages in the LRU can be swapped out in
an intelligent manner without resorting to swapping entire processes.

As might be imagined by the reader, the implementation of this simple con-
cept is a little involved. The first step in understanding the implementation is the
union pte that is a field in struct page. This union has two fields, a pointer
to a struct pte chain called chain and a pte addr t called direct. The union
is an optization whereby direct is used to save memory if there is only one PTE
mapping the entry. Otherwise, a chain is used. The type pte addr t varies between
architectures, but, whatever its type, it can be used to locate a PTE, so we will
treat it as a pte t for simplicity.

The struct pte chain is a little more complex. The struct itself is very sim-
ple, but it is compact with overloaded fields, and a lot of development effort has
been spent on making it small and efficient. Fortunately, this does not make it
indecipherable.

First, it is the responsibility of the slab allocator to allocate and manage
struct pte chains because it is this type of task that the slab allocator is best at.
Each struct pte chain can hold up to NRPTE pointers to PTE structures. After
that many PTEs have been filled, a struct pte chain is allocated and added to
the chain.

The struct pte chain has two fields. The first is unsigned long
next and idx, which has two purposes. When next and idx is ANDed with NRPTE,
it returns the number of PTEs currently in this struct pte chain and indicates
where the next free slot is. When next and idx is ANDed with the negation of
NRPTE (i.e., ∼NRPTE), a pointer to the next struct pte chain in the chain is re-
turned2. This is basically how a PTE chain is implemented.

To give you a taste of the rmap intricacies, I’ll give an example of what happens
when a new PTE needs to map a page. The basic process is to have the caller
allocate a new pte chain with pte chain alloc(). This allocated chain is passed
with the struct page and the PTE to page add rmap(). If the existing PTE
chain associated with the page has slots available, it will be used, and the pte chain

2I told you it was compact.

3.10. What’s New in 2.6 49

allocated by the caller is returned. If no slots were available, the allocated pte chain
will be added to the chain, and NULL returned.

There is a quite substantial API associated with rmap for tasks such as creating
chains and adding and removing PTEs to a chain, but a full listing is beyond
the scope of this section. Fortunately, the API is confined to mm/rmap.c, and the
functions are heavily commented so that their purpose is clear.

There are two main benefits, both related to pageout, with the introduction of
reverse mapping. The first is with the set up and tear down of page tables. As
will be seen in Section 11.4, pages being paged out are placed in a swap cache,
and information is written into the PTE that is necessary to find the page again.
This can lead to multiple minor faults because pages are put into the swap cache
and then faulted again by a process. With rmap, the setup and removal of PTEs
is atomic. The second major benefit is when pages need to paged out, finding all
PTEs referencing the pages is a simple operation, but impractical with 2.4, hence
the swap cache.

Reverse mapping is not without its cost, though. The first, and obvious one,
is the additional space requirements for the PTE chains. Arguably, the second is
a CPU cost associated with reverse mapping, but it has not been proved to be
significant. What is important to note, though, is that reverse mapping is only a
benefit when pageouts are frequent. If the machines workload does not result in
much pageout or memory is ample, reverse mapping is all cost with little or no
benefit. At the time of writing, the merits and downsides to rmap are still the
subject of a number of discussions.

Object-Based Reverse Mapping The reverse mapping required for each page can
have very expensive space requirements. To compound the problem, many of the
reverse mapped pages in a VMA will be essentially identical. One way of addressing
this is to reverse map based on the VMAs rather than individual pages. That
is, instead of having a reverse mapping for each page, all the VMAs that map
a particular page would be traversed and unmap the page from each. Note that
objects in this case refer to the VMAs, not an object in the object-orientated sense
of the word3. At the time of writing, this feature has not been merged yet and was
last seen in kernel 2.5.68-mm1, but a strong incentive exists to have it available
if the problems with it can be resolved. For the very curious, the patch for just
file/device backed objrmap at this release is available4, but it is only for the very
very curious reader.

Two tasks require all PTEs that map a page to be traversed. The first task is
page referenced(), which checks all PTEs that map a page to see if the page has
been referenced recently. The second task is when a page needs to be unmapped
from all processes with try to unmap(). To complicate matters further, two types
of mappings must be reverse mapped, those that are backed by a file or device
and those that are anonymous. In both cases, the basic objective is to traverse all

3Don’t blame me, I didn’t name it. In fact, the original patch for this feature came with the
comment “From Dave. Crappy name.”

4ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.5/2.5.68/2.5.68-
mm2/experimental

50 Page Table Management Chapter 3

VMAs that map a particular page and then walk the page table for that VMA to
get the PTE. The only difference is how it is implemented. The case where it is
backed by some sort of file is the easiest case and was implemented first so I’ll deal
with it first. For the purposes of illustrating the implementation, I’ll discuss how
page referenced() is implemented.

page referenced() calls page referenced obj(), which is the top-level func-
tion for finding all PTEs within VMAs that map the page. As the page is mapped
for a file or device, page→mapping contains a pointer to a valid address space.
The address space has two linked lists that contain all VMAs that use the mapping
with the address space→i mmap and address space→i mmap shared fields. For
every VMA that is on these linked lists, page referenced obj one() is called with
the VMA and the page as parameters. The function page referenced obj one()
first checks if the page is in an address managed by this VMA and, if so, traverses
the page tables of the mm struct using the VMA (vma→vm mm) until it finds the
PTE mapping the page for that mm struct.

Anonymous page tracking is a lot trickier and was implented in a number of
stages. It only made a very brief appearance and was removed again in 2.5.65-
mm4 because it conflicted with a number of other changes. The first stage in
the implementation was to use page→mapping and page→index fields to track
mm struct and address pairs. These fields previously had been used to store a
pointer to swapper space and a pointer to the swp entry t (See Chapter 11).
Exactly how it is addressed is beyond the scope of this section, but the summary is
that swp entry t is stored in page→private.

try to unmap obj() works in a similar fashion, but, obviously, all the PTEs
that reference a page with this method can do so without needing to reverse map
the individual pages. A serious search complexity problem prevents it from being
merged. The scenario that describes the problem is as follows.

Take a case where 100 processes have 100 VMAs mapping a single file. To
unmap a single page in this case with object-based reverse mapping would require
10,000 VMAs to be searched, most of which are totally unnecessary. With page-
based reverse mapping, only 100 pte chain slots need to be examined, one for each
process. An optimization was introduced to order VMAs in the address space
by virtual address, but the search for a single page is still far too expensive for
object-based reverse mapping to be merged.

PTEs in High Memory In 2.4, page table entries exist in ZONE NORMAL because
the kernel needs to be able to address them directly during a page table walk. This
was acceptable until it was found that, with high memory machines, ZONE NORMAL
was being consumed by the third-level page table PTEs. The obvious answer is to
move PTEs to high memory, which is exactly what 2.6 does.

As we will see in Chapter 9, addressing information in high memory is far from
free, so moving PTEs to high memory is a compile-time configuration option. In
short, the problem is that the kernel must map pages from high memory into the
lower address space before it can be used but a very limited number of slots are
available for these mappings, which introduces a troublesome bottleneck. However,
for applications with a large number of PTEs, there is little other option. At the

3.10. What’s New in 2.6 51

time of writing, a proposal has been made for having a User Kernel Virtual Area
(UKVA), which would be a region in kernel space private to each process, but it is
unclear if it will be merged for 2.6 or not.

To take the possibility of high memory mapping into account, the macro
pte offset() from 2.4 has been replaced with pte offset map() in 2.6. If PTEs
are in low memory, this will behave the same as pte offset() and return the ad-
dress of the PTE. If the PTE is in high memory, it will first be mapped into low
memory with kmap atomic(), so it can be used by the kernel. This PTE must be
unmapped as quickly as possible with pte unmap().

In programming terms, this means that page table walk code looks slightly
different. In particular, to find the PTE for a given address, the code now reads as
(taken from mm/memory.c):

640 ptep = pte_offset_map(pmd, address);
641 if (!ptep)
642 goto out;
643
644 pte = *ptep;
645 pte_unmap(ptep);

Additionally, the PTE allocation API has changed. Instead of pte alloc(),
there is now a pte alloc kernel() for use with kernel PTE mappings and
pte alloc map() for userspace mapping. The principal difference between them
is that pte alloc kernel() will never use high memory for the PTE.

In memory management terms, the overhead of having to map the PTE from
high memory should not be ignored. Only one PTE at a time may be mapped
per CPU, although a second may be mapped with pte offset map nested().
This introduces a penalty when all PTEs need to be examined, such as during
zap page range() when all PTEs in a given range need to be unmapped.

At the time of writing, a patch has been submitted that places PMDs in high
memory using essentially the same mechanism and API changes. It is likely that it
will be merged.

Huge TLB Filesystem Most modern architectures support more than one page
size. For example, on many x86 architectures, there is an option to use 4KiB pages
or 4MiB pages. Traditionally, Linux only used large pages for mapping the actual
kernel image and nowhere else. Because TLB slots are a scarce resource, it is
desirable to be able to take advantage of the large pages, especially on machines
with large amounts of physical memory.

In 2.6, Linux allows processes to use huge pages, the size of which is determined
by HPAGE SIZE. The number of available huge pages is determined by the system
administrator by using the /proc/sys/vm/nr hugepages proc interface, which ul-
timately uses the function set hugetlb mem size(). Because the success of the
allocation depends on the availability of physically contiguous memory, the alloca-
tion should be made during system startup.

The root of the implementation is a Huge TLB Filesystem (hugetlbfs),
which is a pseudofilesystem implemented in fs/hugetlbfs/inode.c. Basically,

52 Page Table Management Chapter 3

each file in this filesystem is backed by a huge page. During initialization,
init hugetlbfs fs() registers the file system and mounts it as an internal filesys-
tem with kern mount().

There are two ways that huge pages may be accessed by a process. The first is
by using shmget() to set up a shared region backed by huge pages, and the second
is the call mmap() on a file opened in the huge page filesystem.

When a shared memory region should be backed by huge pages, the process
should call shmget() and pass SHM HUGETLB as one of the flags. This results in
hugetlb zero setup() being called, which creates a new file in the root of the
internal hugetlbfs. A file is created in the root of the internal filesystem. The name
of the file is determined by an atomic counter called hugetlbfs counter, which is
incremented every time a shared region is set up.

To create a file backed by huge pages, a filesystem of type hugetlbfs must first be
mounted by the system administrator. Instructions on how to perform this task are
detailed in Documentation/vm/hugetlbpage.txt. After the filesystem is mounted,
files can be created as normal with the system call open(). When mmap() is called
on the open file, the file operations struct hugetlbfs file operations ensures
that hugetlbfs file mmap() is called to set up the region properly.

Huge TLB pages have their own function for the management of page tables,
address space operations and filesystem operations. The names of the functions
for page table management can all be seen in <linux/hugetlb.h>, and they are
named very similar to their normal page equivalents. The implementation of the
hugetlbfs functions are located near their normal page equivalents, so are easy to
find.

Cache Flush Management The changes here are minimal. The API function
flush page to ram() has been totally removed, and a new API
flush dcache range() has been introduced.

