
51

C H A P T E R 2

SQL: THE BASICS

C H A P T E R O B J E C T I V E S

In this chapter, you will learn about:

✔ The SQL*Plus Environment Page 52

✔ The Anatomy of a SELECT Statement Page 67

✔ Editing a SQL Statement Page 79

✔ The WHERE Clause: Comparison

and Logical Operators Page 95

✔ The ORDER BY Clause Page 114

Now that you are familiar with the concepts of databases and schema dia-
grams, you are ready to start with hands-on exercises. You will learn the

basics of SQL*Plus, the software tool that allows you to execute statements against
the Oracle database. After you familiarize yourself with SQL*Plus, you will be
ready to write SQL statements, or queries, to retrieve the data. SQL statements can
range from very simple to highly complex; they can be a few words long or a few
hundred words long. In this chapter, you begin by writing simple SQL statements,
but you will be able to build longer, more complex SQL queries very quickly.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 51

LAB
2.1

L A B 2 . 1

THE SQL*PLUS ENVIRONMENT

Oracle software runs on many different operating systems and hardware environ-
ments. You can use the SQL*Plus software under three different architectural con-
figurations: as a stand-alone machine, in a client–server setup, or as iSQL*Plus
within a three-tier architecture. Another piece of Oracle software, called SQL*Net
(Version 7), Net8 (Version 8), or Oracle Net (Version 9i and 10g), provides the
required communication protocol to the server.

STAND-ALONE ENVIRONMENT

SQL*Plus may be run in a stand-alone environment, where both the SQL*Plus
client software and the Oracle database software reside on the same physical
machine. This is the case when you install both the Oracle database server and
the SQL*Plus software on your individual computer.

CLIENT–SERVER

A common setup is a client–server environment, also referred to as two-tier archi-
tecture, where a client communicates with the server. In this type of environ-
ment, Oracle’s SQL*Plus tool resides on a client computer such as a PC or Unix
workstation; the Oracle RDBMS software resides on a server. Figure 2.1 shows such
a client–server architecture.

The client sends SQL statements to the server, and the server responds back with
the result set. The job of the database server involves listening and managing
many clients’ requests, because in this configuration there are often multiple
client machines involved.

52 Lab 2.1: The SQL*Plus Environment

L A B O B J E C T I V E S

After this lab, you will be able to:
✔ Identify Oracle’s Client/Server Software
✔ Login and Logout of SQL*Plus

5730ch02.qxd_cc 6/3/04 12:46 PM Page 52

LAB
2.1

Instead of Oracle’s SQL*Plus program, the client machine may run any other pro-
gram with the ability to execute SQL statements against a database (e.g., Visual
Basic or a custom-built Java program). For the client computer’s programs to com-
municate with the Oracle database server, the individual client machine is typi-
cally configured with the Oracle Net software, or the client may establish an Open
Database Connectivity (ODBC) connection.

THREE-TIER ARCHITECTURE

Starting with Oracle 8.1.7, you can use the iSQL*Plus interface in a Web browser
to access the Oracle database. It performs the same actions as SQL*Plus. The
advantage of iSQL*Plus is that you don’t need to install and configure the
SQL*Plus program or Oracle Net software on your client machine. As long as you
use a compatible browser on your machine and know the URL of the Oracle HTTP
server, you can access the database. As with any connection, you obviously need
a valid user account and password.

Figure 2.2 shows the three-tiered architecture of an iSQL*Plus configuration. The
first tier is the client’s Web browser, and the middle tier is the Oracle HTTP server
(Web server) that receives requests from the browser and forwards them via Oracle
Net to the third tier, the Oracle database server. The Oracle Web server returns

Lab 2.1: The SQL*Plus Environment 53

Figure 2.1 � Client–server architecture.

Figure 2.2 � Three-tier architecture.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 53

LAB
2.1

results from the database server back to the Web browser for display. The three
tiers may be on one machine but are typically on three different ones.

SQL AND THE ORACLE DATABASE SERVER

In the midst of all this software lies the SQL language. SQL commands are sent
from the client software, also known as the front end, to the server, or back end.
These commands send instructions to the server to tell it what services to provide.
The server responds by sending back a result to the client, where it is displayed by
the client software. Figure 2.3 shows a SQL statement that queries the DESCRIP-
TION column of the COURSE table. The SQL statement is sent to the Oracle server
and the result is displayed by SQL*Plus.

USER ID AND PASSWORD

To connect to the database and communicate via SQL*Plus, you must have a user
ID that has been created for you. For the purposes of all examples in this book,
you use the user name STUDENT and the password LEARN. Note that the user ID
and password are not case sensitive.

If you have not yet created the STUDENT schema according to the
instructions on the companion Web site located at http://authors.
phptr.com/rischert3e, you will not be able to log in with the STUDENT
user ID and the LEARN password.You may want to continue to read
through this lab first, create the STUDENT schema, and then
perform the exercises in this lab.

54 Lab 2.1: The SQL*Plus Environment

Figure 2.3 � SQL and the Oracle database server.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 54

LAB
2.1

ACCESSING THE ORACLE DATABASE SERVER

You can access the Oracle server through various front-end tools. This book will
discuss the use of Oracle’s own SQL*Plus software (available as a graphical
Windows environment and as a command line interface) and the browser-based
iSQL*Plus.

This lab will teach you some of the basics of SQL*Plus, as this tool is almost always
found in any Oracle database environment. The log on screens for SQL*Plus and
the browser-based iSQL*Plus are slightly different, but easily understood. You can
use either SQL*Plus or iSQL*Plus to execute your SQL statements, or perhaps you
chose another front-end query tool that also allows you to enter SQL commands.
(The companion Web site to this book lists other alternative query tools.)
Differences between SQL*Plus or iSQL*Plus are pointed out to you as you work
through the book. You can assume that with very few exceptions the functional-
ity of iSQL*Plus and SQL*Plus are very similar, if not identical.

When working through this book, you have a choice to use either a
browser and access iSQL*Plus or use the SQL*Plus software installed
on your machine.

SQL*PLUS CLIENT FOR WINDOWS

If the SQL*Plus program is installed on your Windows machine, you can access it
by choosing Programs, then Oracle, Application Development, and SQL Plus. This
launches the program and displays the Log On dialog box similar to Figure 2.4.
Enter as the User Name STUDENT and as the Password LEARN.

If your database is installed on the same machine as your SQL*Plus client, you
don’t need to enter a value in the Host String field. If you are connecting to a

Lab 2.1: The SQL*Plus Environment 55

Figure 2.4 � Windows graphical user interface log on dialog box.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 55

LAB
2.1

remote Oracle database, enter the Oracle Net connection string supplied to you
by your Oracle database administrator and recorded in your TNSNAMES.ORA file.
You will learn more about this special file later.

Figure 2.5 shows how your screen looks once you have successfully connected to
the server. Effectively, you have established a connection with the Oracle database
as the user STUDENT. The client and the server may now communicate with each
other.

When you see the SQL> command prompt, SQL*Plus is ready to accept your com-
mands and you may begin to type. This is the default prompt for SQL*Plus.

To log out, either type EXIT or QUIT and press enter. Alternatively, you can
choose Exit from the File menu or simply use your mouse to close the window.

56 Lab 2.1: The SQL*Plus Environment

Figure 2.5 � SQL*Plus prompt.

CONNECTING WITH A WEB BROWSER: iSQL*PLUS

Instead of the SQL*Plus software program, you can also use the Web-based version
called iSQL*Plus. To access the iSQL*Plus interface through your Web browser,
you enter a URL. A Log on dialog similar to Figure 2.6 will appear. Here, the URL

5730ch02.qxd_cc 6/3/04 12:46 PM Page 56

LAB
2.1

is http://scooby:5560/isqlplus and will obviously be different for your individual
installation.

A valid URL to connect to iSQL*Plus is in the form of http://machine_name
.domain:port/isqlplus. For example, http://mymachine.acme.com:5560/isqlplus
is an example of a URL format. As part of the default Oracle installation, you will
usually see the iSQL*Plus port number displayed. If you are unsure about your
specific port number, try the default port 5560.

Also notice in Figure 2.6 that the domain is not shown, only the machine name
scooby. Because the machine is on a local network, you can omit the domain.
Instead of the name of the machine, you can also enter the IP address. If your
Oracle database server is on your own machine and you want to access iSQL*Plus,
you can substitute localhost instead and your URL will read http://localhost:
5560/isqlplus. Alternatively, you can use the IP address of 127.0.0.1.

Enter the user ID and password in the appropriate boxes. You don’t need to sup-
ply the Connection Identifier (also called Host string) to connect to the default
database instance.

Figure 2.7 displays the screen you see once you have successfully logged in. Notice
the iSQL*Plus Workspace and the message “Connected as STUDENT@orcl” on the
upper right-hand side of the screen. This indicates the name of the login user,

Lab 2.1: SQL*Plus Environment 57

Figure 2.6 � iSQL*Plus login screen.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 57

LAB
2.1

which is STUDENT, and the name of the Oracle database instance you are con-
nected to, called ORCL.

At the Enter statements text box, also referred to as the input area, you can enter
commands. If you want to run a script (e.g., the script you need to execute to gen-
erate the STUDENT schema), you can enter the path and name of the script or
click the Load Script button to locate the script. Once the script is loaded into the
input area, you can edit the script or simply click the Execute button to execute
the script. To logout and return to the Login screen, click on the Logout icon.

STARTING THE iSQL*PLUS APPLICATION SERVER

For the Windows environment, the iSQL*Plus application server is installed as a
Windows service as part of the default Oracle database server installation and
usually started automatically.

For other operating systems—or if you prefer to start iSQL*Plus from the com-
mand prompt—use the following syntax %oracle_home%\bin\isqlplusctl
start. For example, if C:\ORACLE\ORA10 is your Windows Oracle home direc-
tory where the files for the Oracle database and application server are installed,
you start the iSQL*Plus application server with this command C:\oracle\
ora10\bin\isqlplusctl start.

58 Lab 2.1: The SQL*Plus Environment

Figure 2.7 � iSQL*Plus Workspace.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 58

LAB
2.1

Refer to the companion Web site for more information on general iSQL*Plus
installation and configuration questions.

COMMAND-LINE INTERFACES FOR SQL*PLUS

In place of a graphical user interface such as SQL*Plus for Windows or iSQL*Plus,
you may use a command-line interface. A command-line interface is available
with every Oracle version. Frequently, you will use this interface in operating sys-
tems such as Linux or Unix. Even Windows has a command-line interface and
you will see it displayed in Figure 2.8. All SQL*Plus and SQL commands operate
for this interface just the same. Note that depending on the operating system,
your editor, as well as the cut and paste commands, may be different.

To invoke SQL*Plus, you type sqlplus at the respective operating system’s com-
mand prompt. For Windows you start SQL*Plus by typing C:\> sqlplus from
the Windows command prompt. In this example, the username and password is
supplied to start SQL*Plus. You can also enter sqlplus and you will be prompted
for the user name and password or sqlplus student, which will prompt for the
password.

THE REMOTE DATABASE AND COMMON
LOG-ON PROBLEMS

Often the database resides on a machine other than your client machine, or you
have a choice of accessing different databases. In these cases you need to supply
the name of the database in the Host String box of the Log On dialog box (see
Figure 2.9) or the Connection Identifier box in iSQL*Plus. For example, to con-
nect to a database called ITCHY you have enter this name in the Host String box.

Lab 2.1: The SQL*Plus Environment 59

Figure 2.8 � Command line-based SQL*Plus under the Windows operating system.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 59

LAB
2.1

The host string matches an entry in a file called TNSNAMES.ORA, which lists the
database’s IP address (or the machine name) and database instance name.

Essentially, the TNSNAMES.ORA file is a file containing a list of databases with
their respective technical connection information. Your database administrator
can help you with the configuration and setup of this file if you have a remote
database setup.

Following is an excerpt of a TNSNAMES.ORA file. The entries in your file will
obviously vary. If you supply the host string ITCHY at log in, SQL*Plus will look
up the ITCHY entry in the TNSNAMES.ORA file. The HOST entry shows the IP
address (if you use a TCP/IP network), which is listed as 169.254.147.245.
Alternatively, you can enter the machine name. The SID entry identifies the name
of the Oracle instance; here the instance is called ORCL. (When you install Oracle
with the default options, you will be asked to supply such an instance name [SID].
A common default name is ORCL.)

ITCHY =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS =

(PROTOCOL = TCP)

(Host = 169.254.147.245)

(Port = 1521)

)

)

(CONNECT_DATA = (SID = ORCL)

)

)

SCRATCHY =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = milly.columbia.edu)(PORT = 1521))

)

(CONNECT_DATA =

60 Lab 2.1: The SQL*Plus Environment

Figure 2.9 � SQL*Plus Windows graphical user interface log on dialog box.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 60

LAB
2.1

(SERVER = DEDICATED)

(SERVICE_NAME = scraty.columbia.edu)

)

)

Your TNSNAMES.ORA file may contain an entry called DEFAULT. If you do not
supply a Host String in the Log On dialog box, you will be connected to the data-
base listed under the DEFAULT option. Note, depending on your individual setup,
you may at times need to specify or omit the .WORLD suffix next to the host
name (such as ITCHY.WORLD or simply ITCHY) in the TNSNAMES.ORA file.
Additionally, Oracle 9i and 10g installations allow the use the format of the sec-
ond entry called SCRATCHY. It uses a service name instead of the SID.

If you are using an Oracle 10g client such as SQL*Plus for Windows, you can use
a new feature called easyconnect. It allows you to make a connection without the
entry being present in the TNSNAMES.ORA file. For example, you can connect to
SCRATCHY by using this connect identifier in the Host String box:
milly.columbia.edu:1521/scraty.columbia.edu. It lists the machine
name called MILLY.COLUMBIA.EDU followed by the port number (the default
port of the Oracle database is typically 1521), followed by the service name
SCRATY.COLUMBIA.EDU.

COMMON LOG-ON PROBLEMS

Although we cannot possibly list all the errors and solutions to all log-on prob-
lems, here are two very common Oracle error messages.

A TNS error usually deals with the connectivity between the server and the client.
The following message is displayed if the connect identifier could not be resolved.
This may be due to an invalid host string. Check the values and retry.

ORA-12154: TNS: could not resolve the connect identifier specified

The next error occurs if you entered the wrong password or user name when the
Oracle server attempted to authenticate you as a valid user. Double-check the
spelling of your user name, which is STUDENT, and password, which is LEARN.
(If you cannot log on with this ID and password, check the readme.txt file regard-
ing the installation of the STUDENT schema.)

ORA-01017: invalid username/password; logon denied

EXITING FROM SQL*PLUS OR iSQL*PLUS

There are a number of ways to exit SQL*Plus. You can type EXIT or select Exit
from the File menu in the SQL*Plus Windows version. For iSQL*Plus, you click the
Logout icon rather than typing EXIT as this will free up system resources. Exiting
ends the session and the STUDENT user is no longer connected to the database.

Lab 2.1: The SQL*Plus Environment 61

5730ch02.qxd_cc 6/3/04 12:46 PM Page 61

LAB
2.1

However, there may be other client machines connected to the Oracle database;
the server software continues to run, regardless of whether a client is connected
to it.

CREATING THE STUDENT SCHEMA

Now that you know how to log on to the Oracle database using SQL*Plus or
iSQL*Plus, this is a good time to read the readme.txt file you downloaded from
the Web site located at http://authors.phptr.com/rischert3e and create the STU-
DENT schema if you have not already done so.

Unless specifically mentioned, we will not differentiate between SQL*Plus and
iSQL*Plus commands because many are almost identical. For a list of unsupported
commands see Appendix C, “SQL*Plus Command Reference.”

All commands in SQL*Plus require the user to press the Enter key to
execute them. In iSQL*Plus you always need to press the Execute
button.The reminder to press the Enter key or the Execute button
will not be included in the rest of the examples and exercises in this
book.

LAB 2.1 EXERCISES

2.1.1 IDENTIFY ORACLE’S CLIENT/SERVER SOFTWARE

a) Identify which piece of Oracle software is the client, which is
the server, and how they communicate with each other.

b) What is the role of SQL between client and server?

2.1.2 LOGIN AND LOGOUT OF SQL*PLUS

a) Once you have logged into SQL*Plus (not iSQL*Plus) with the
user ID STUDENT and password LEARN, what information
does the SQL*Plus screen show you? (If you do not have
access to SQL*Plus, please answer the question by referring to
Figure 2.5.)

b) What do you learn when you type DESCRIBE student and
press Enter? If you use iSQL*Plus, click the Execute button
instead of pressing Enter.

c) Execute the following command and describe what you see:
SHOW ALL.

62 Lab 2.1: The SQL*Plus Environment

5730ch02.qxd_cc 6/3/04 12:46 PM Page 62

LAB
2.1

LAB 2.1 EXERCISE ANSWERS

2.1.1 ANSWERS

a) Identify which piece of Oracle software is the client, which is the server, and
how they communicate with each other.

Answer: SQL*Plus or the browser displaying iSQL*Plus is the client and the Oracle
RDBMS is the server. In an Oracle 9i or 10g environment, Oracle Net is the protocol
that facilitates the communications.

b) What is the role of SQL between client and server?

Answer: SQL commands are issued from the client, telling the server to perform spe-
cific actions.The server sends back the results of those instructions to the client soft-
ware, where they are displayed.

2.1.2 ANSWERS

a) Once you have logged into SQL*Plus (not iSQL*Plus) with the user ID STU-
DENT and password LEARN, what information does the SQL*Plus screen show
you? (If you do not have access to SQL*Plus, please answer the question by
referring to Figure 2.5.)

Answer:The screen shows which version of SQL*Plus you are using, the current date
and time, Oracle copyright information, and the version of the Oracle database you are
connected to. After this information is displayed, you see the SQL> command prompt.
At this prompt you are able to enter commands.

PL/SQL is another Oracle language addressed in a separate book in this series
Oracle PL/SQL by Example by Benjamin Rosenzweig and Elena Silvestrova (Prentice
Hall, 2004).

b) What do you learn when you type DESCRIBE student and press Enter? If
you use iSQL*Plus, click the Execute button instead of pressing Enter.

Answer:You find out about the structure of the STUDENT table, specifically its column
names, whether those columns allow nulls and the datatype of each column.

To write SQL statements, you need to know a table’s column names and their
datatypes. The SQL*Plus DESCRIBE command displays this information and
shows if a column does not allow null values.

Many SQL*Plus commands may be abbreviated. For instance, DESCRIBE may be
shortened to DESC. Retype the command using this abbreviation and compare
the results. Figure 2.10 displays the result of the DESCRIBE command executed in
SQL*Plus.

Lab 2.1: The SQL*Plus Environment 63

5730ch02.qxd_cc 6/3/04 12:46 PM Page 63

LAB
2.1

SQL*Plus is not case sensitive; the user ID, password, and SQL*Plus
commands may all be entered in either upper or lowercase, or a
combination of the two.Throughout this book, they are in uppercase
for easy identification. In the next lab you will learn about formatting
your SQL statements and when it is appropriate to capitalize words.

COMMON DATATYPES

Every column in Oracle must have a datatype, which determines what type of
data can be stored.

DATE

The DATE datatype is used to store date and time information. By default the dis-
play format for a date is DD-MON-YY. For example, July 4, 2003 displays as 04-
JUL-03. There are a number of functions you can use to change the display for-
mat or to show the time, which you will learn about in “Chapter 4, Date and
Conversion Functions.”

64 Lab 2.1: The SQL*Plus Environment

Figure 2.10 � Executing the SQL*Plus DESCRIBE command.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 64

LAB
2.1

NUMBER

Columns with the datatype NUMBER only allow numerical data; no text,
hyphens, or dashes are allowed. A column defined as NUMBER(5,2) can have a
maximum of three digits before the decimal point and two digits after the deci-
mal point. The first digit (5) is called the precision; the second digit (2) is referred
to as the scale. The smallest allowed number is –999.99 and the largest is 999.99.
A column definition with a zero scale such as NUMBER(5) or NUMBER(5,0) allows
integers in the range from –99,999 to 99,999.

VARCHAR2 AND CHAR

The VARCHAR2 and CHAR datatypes store alphanumeric data (e.g., text, numbers,
special characters, etc.). VARCHAR2 is the variable length datatype and the most
commonly used alphanumeric datatype; its maximum size is 4,000 characters. The
main difference between VARCHAR2 and CHAR is that the CHAR datatype is a
fixed-length datatype and any unused room is blank padded with spaces.

For example, a column defined as CHAR(10) and containing the four-character
length value of JOHN in a row will have six blank characters padded at the end
to make the total length 10 spaces. (If the column is stored in a VARCHAR2(10)
column instead, it stores four characters only.) A CHAR column can store up to
2,000 characters.

The CLOB database allows you to store large amounts of textual data. It replaces
the LONG datatype, which is desupported in Oracle 10g.

OTHER

Datatypes such as BFILE or BLOB require access through specific purpose func-
tions in very highly specialized ways that go beyond the objectives of this book.
In addition to the datatypes mentioned, Oracle also has additional datatypes to
support specific national character sets (e.g., NCLOB, NVARCHAR2), intermedia
datatypes, and spatial (geographic) data. Oracle also gives you the ability to cre-
ate your own customized object datatypes.

Refer to Appendix I, “Oracle Datatypes,” for a detailed listing of the various
datatypes. For most SQL operations, you typically use the NUMBER, VARCHAR2,
and various DATE-related datatypes. They are the most commonly used datatypes
where the vast majority of data is stored.

c) Execute the following command and describe what you see: SHOW ALL.

Answer: You will see a list of SQL*Plus environmental variables and their current set-
tings. Using the SET command, many of them can be changed to suit your needs for a
SQL*Plus session, which is defined as the time in between when you log in and log out
of SQL*Plus.When you start your next SQL*Plus session, however, all commands will
be set back to their defaults.

Lab 2.1: The SQL*Plus Environment 65

5730ch02.qxd_cc 6/3/04 12:46 PM Page 65

LAB
2.1

It is important to note here that SQL*Plus commands, such as SHOW and
DESCRIBE, are not part of the SQL language. You will begin to type SQL com-
mands using the SQL*Plus tool in the next lab.

If you use iSQL*Plus, you can change the environment variables and settings by
clicking the Preferences icon.

LAB 2.1 SELF-REVIEW QUESTIONS
In order to test your progress, you should be able to answer the following
questions.

1) The DESC command displays column names of a table.

a) ______ True
b) ______ False

2) Anyone can connect to an Oracle database as long as he or she has the
SQL*Plus software.

a) ______ True
b) ______ False

3) The SQL*Plus command SHOW USER displays your login name.

a) ______ True
b) ______ False

4) Typing SHOW RELEASE at the prompt displays the version number of
SQL*Plus you are using.

a) ______ True
b) ______ False

5) The COST column of the COURSE table is defined as NUMBER(9,2).The maxi-
mum cost of an individual course is 9,999,999.99.

a) ______ True
b) ______ False

Answers appear in Appendix A, Section 2.1.

66 Lab 2.1: The SQL*Plus Environment

5730ch02.qxd_cc 6/3/04 12:46 PM Page 66

LAB
2.2

L A B 2 . 2

THE ANATOMY
OF A SELECT STATEMENT

THE SELECT STATEMENT

When you write a SQL query, it is usually to answer a question such as “How
many students live in New York?” or “Where, and at what time, does the Unix
class meet?” A SQL SELECT statement, or SQL query, is used to answer these ques-
tions. A SELECT statement can be broken down into a minimum of two parts: the
SELECT list and the FROM clause. The SELECT list usually consists of the column
or columns of a table(s) from which you want to display data. The FROM clause
states on what table or tables this column or columns are found. Later in this
chapter, you will learn some of the other clauses that can be used in a SELECT
statement.

HOW DO YOU WRITE A SQL QUERY?

Before formulating the SELECT statement, you must first determine the table
where the information is located. A study of the schema diagram reveals that the
COURSE table provides descriptions of courses. (You can also refer to Appendix E,
“Table and Column Descriptions.”)

The following SELECT statement provides a list of course descriptions:

Lab 2.2: The Anatomy of a SELECT Statement 67

L A B O B J E C T I V E S

After this lab, you will be able to:
✔ Write a SQL SELECT Statement
✔ Use DISTINCT in a SQL Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 67

LAB
2.2

SELECT description
FROM course

The SELECT list shows the single column called DESCRIPTION, which contains
this information. The DESCRIPTION column is found on the COURSE table as
specified in the FROM clause. When the statement is executed, the result set is a
list of all the values found in the DESCRIPTION column of the COURSE table:

DESCRIPTION

DP Overview
Intro to Computers
...
JDeveloper Techniques
DB Programming in Java

30 rows selected.

Many of the result sets displayed throughout this book do not list all
the rows.This is denoted with a line of “...” in the middle of the
output.Typically, you will see the beginning and the ending rows of the
result set and the number of rows returned. The resulting output of
the SQL command is displayed in a bold font to easily distinguish the
output from the commands you enter.

EXECUTING THE SQL STATEMENT

SQL*Plus does not require a new line for each clause, but it requires the use of a
semicolon (;) at the end of each SQL statement to execute it. (Figure 2.11 shows
the result of the execution of the previously mentioned SQL query in SQL*Plus.)
Alternatively, the forward slash (/) may be used on a separate line to accomplish
the same. In iSQL*Plus a semicolon or forward slash is not required, you only
need to press the Execute button:

SQL> SELECT description
2 FROM course;

Or:
SQL> SELECT description
2 FROM course
3 /

The SQL*Plus commands such as DESC or SHOW USER discussed
in the previous lab are not SQL commands and therefore do not
require a semicolon or forward slash.

68 Lab 2.2: The Anatomy of a SELECT Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 68

LAB
2.2

RETRIEVING MULTIPLE COLUMNS

To retrieve a list of course descriptions and the cost of each course, include the
COST column in the SELECT list:

SELECT description, cost
FROM course

DESCRIPTION COST
------------------------ ----
DP Overview 1195
Intro to Computers 1195
...
JDeveloper Techniques 1195
DB Programming in Java

30 rows selected.

When you want to display more than one column in the SELECT list, separate the
columns with commas. It is good practice to include a space after the comma for
readability. The order of columns in a SELECT list will determine the order in
which the columns are displayed in the output.

Lab 2.2: The Anatomy of a SELECT Statement 69

Figure 2.11 � Executing the SELECT statement in SQL*Plus.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 69

LAB
2.2

SELECTING ALL COLUMNS

You can also select all columns in a table with the asterisk (*) wildcard character.
This is handy so you don’t have to type all columns in the SELECT list. The
columns are displayed in the order in which they are defined in the table. This is
the same order you see when you use the SQL*Plus DESCRIBE command. If you
execute this command you will notice that the columns wrap in SQL*Plus (not
iSQL*Plus) as there is not sufficient room to display them in one line. You will
learn how to format the output shortly.

SELECT *
FROM course

ELIMINATING DUPLICATES WITH DISTINCT

The use of DISTINCT in the SELECT list eliminates duplicate data in the result set.
The following SELECT statement retrieves the last name and the corresponding
zip code for all rows of the INSTRUCTOR table.

SELECT last_name, zip
FROM instructor

LAST_NAME ZIP
------------------------- -----
Hanks 10015
Wojick 10025
Schorin 10025
Pertez 10035
Morris 10015
Smythe 10025
Chow 10015
Lowry 10025
Frantzen 10005
Willig

10 rows selected.

Notice that there are 10 rows, yet only nine instructors have zip codes. Instructor
Willig has a NULL value in the ZIP column. If you want to show only the distinct
zip codes of the table, you write the following SELECT statement. The last row
shows the NULL value.

SELECT DISTINCT zip
FROM instructor

ZIP

10005
10015

70 Lab 2.2: The Anatomy of a SELECT Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 70

LAB
2.2

10025
10035

5 rows selected.

By definition, a NULL is an unknown value, and a NULL does not
equal another NULL. However, there are exceptions: If you write a
SQL query using DISTINCT, SQL will consider a NULL value equal to
another NULL value.

From Chapter 1, “SQL and Data,” you already know that a primary key is always
unique or distinct. Therefore, the use of DISTINCT in a SELECT list containing the
primary key column(s) is unnecessary. The ZIP column in the INSTRUCTOR table
is not the primary key and can therefore contain duplicate values.

DISPLAYING THE NUMBER OF ROWS RETURNED

You may notice that SQL*Plus sometimes does not show the number of rows
returned by the query, but rather depends on the feedback settings for your
SQL*Plus session. Typically, the feedback is set to 6 or more rows. In the previous
example the feedback was set to 1, which displays the feedback line even when
there is only one row returned. You will find this setting useful if your result set
returns less than the default six rows and if any of the rows return nulls, which
display as a blank. Otherwise, you may think it is not a row or value. To display
the exact number of rows returned until you exit SQL*Plus, enter the SQL*Plus
command:

SET FEEDBACK 1

To display your current settings use the SHOW ALL command or simply SHOW
FEEDBACK. (If you want to retain certain SQL*Plus settings, you can create a
login.sql file for your individual computer in a client–server setup. You can also
create a glogin.sql file for all users if you want all to have the identical settings or
if you use iSQL*Plus. See the companion Web site for more information.)

SQL STATEMENT FORMATTING CONVENTIONS

You will notice that the SQL statements presented in this and all other books in
this series follow a common format. The use of uppercase for SELECT, FROM, and
other Oracle keywords is for emphasis only, and distinguishes them from table
and column names, which you see in the SQL statement as lowercase letters. A
standard format enhances the clarity and readability of your SQL statements and
helps you detect errors more easily. Refer to Appendix B, “SQL Formatting Guide,”
for the formatting guidelines used throughout.

Lab 2.2: The Anatomy of a SELECT Statement 71

5730ch02.qxd_cc 6/3/04 12:46 PM Page 71

LAB
2.2

CANCELLING A COMMAND AND PAUSING THE OUTPUT

If you want to stop a command while the statement is still executing, you can
press CTRL+C in SQL*Plus for Windows or the Cancel button in iSQL*Plus.

If your result in SQL*Plus is fairly large, you can examine the output by scrolling
up and down. If you wish to look at the rows one screen at a time, use the
SQL*Plus SET PAUSE ON command. This commands displays one screen at a time
and to change the number of lines displayed per screen to use the SET PAGESIZE
n command where n is the number of rows per page. To continue to the next
screen, press the Enter key in SQL*Plus. If you want to stop scrolling through the
screens and return to the SQL> prompt, press CTRL + C. Remember to issue the
SET PAUSE OFF command to stop the feature when you are done!

In iSQL*Plus you can choose to display only a specific number of rows per page
by clicking on Preferences, Interface Configuration, Output Page Setup, and then
Multiple Pages. If the output has more than the specified number of rows, you
will see a Next Page button that lets you move to the next page of rows.

LAB 2.2 EXERCISES

2.2.1 WRITE A SQL SELECT STATEMENT

a) Write a SELECT statement to list the first and last names of all
students.

b) Write a SELECT statement to list all cities, states, and zip codes.

c) Describe the result set of the following SQL statement:

SELECT *
FROM grade_type

2.2.2 USE DISTINCT IN A SQL STATEMENT

a) Why are the result sets of each of the following SQL statements
the same?

SELECT letter_grade
FROM grade_conversion

SELECT DISTINCT letter_grade
FROM grade_conversion

b) Explain the result set of the following SQL statement:

SELECT DISTINCT cost
FROM course

72 Lab 2.2: The Anatomy of a SELECT Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 72

LAB
2.2

c) Explain what happens, and why, when you execute the follow-
ing SQL statement:

SELECT DISTINCT course_no
FROM class

LAB 2.2 EXERCISE ANSWERS

2.2.1 ANSWERS

a) Write a SELECT statement to list the first and last names of all students.

Answer:The SELECT list contains the two columns that provide the first and last
names of students; the FROM clause lists the STUDENT table where these columns
are found.

SELECT first_name, last_name
FROM student

FIRST_NAME LAST_NAME
------------------------- ----------
George Eakheit
Leonard Millstein
...
Kathleen Mastandora
Angela Torres

268 rows selected.

You will also notice many rows are returned; you can examine each of the rows
by scrolling up and down. There are many SET options in SQL*Plus that allow you
to change the headings and the overall display of the data. As you work your way
through this book, you will examine and learn about the most important
SQL*Plus settings.

b) Write a SELECT statement to list all cities, states, and zip codes.

Answer:The SELECT list contains the three columns that provide the city, state, and zip
code; the FROM clause contains the ZIPCODE table where these columns are found.

SELECT city, state, zip
FROM zipcode

CITY ST ZIP
------------------------- --------
Santurce PR 00914

Lab 2.2: The Anatomy of a SELECT Statement 73

5730ch02.qxd_cc 6/3/04 12:46 PM Page 73

LAB
2.2

North Adams MA 01247
...
New York NY 10005
New York NY 10035

227 rows selected.

c) Describe the result set of the following SQL statement:

SELECT *
FROM grade_type

Answer: All columns and rows of the GRADE_TYPE table are returned in the result set.
If you use iSQL*Plus, your result will look similar to Figure 2.12. If you use SQL*Plus,
your result may resemble the first listing of SQL output in Figure 2.13.

FORMATTING YOUR RESULT:THE SQL*PLUS
COLUMN AND FORMAT COMMANDS

If you are using SQL*Plus, not iSQL*Plus, you will notice that the result set is dif-
ficult to read when data “wraps” itself onto the next line. The result may look sim-
ilar to the screen you see in Figure 2.13. This will often occur when your SELECT

74 Lab 2.2: The Anatomy of a SELECT Statement

Figure 2.12 � SELECT statement against the GRADE_TYPE table issued in iSQL*Plus.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 74

LAB
2.2

statement contains multiple columns. To help you view the output more easily,
SQL*Plus offers a number of formatting commands.

The SQL*Plus COLUMN command allows you to specify format attributes for spe-
cific columns. Because the SQL statement contains three alphanumeric columns,
format each using these SQL*Plus commands:

COL description FORMAT A13
COL created_by FORMAT A8
COL modified_by FORMAT A8

When you re-execute the SQL statement, the result is more readable, as you see in
the last result set shown in Figure 2.13.

The DESCRIPTION column is formatted to display a maximum of 13 characters;
the CREATED_BY and MODIFIED_BY columns are formatted to display 8 charac-
ters. If the values in the columns do not fit into the space allotted, the data will
wrap within the column. The column headings get truncated to the specified
length.

Lab 2.2: The Anatomy of a SELECT Statement 75

Figure 2.13 � SELECT issued in SQL*Plus for Windows.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 75

LAB
2.2

The format for the column stays in place until you either respecify the format for
the columns, specifically clear the format for the column, or exit SQL*Plus. To
clear all the column formatting, execute the CLEAR COLUMNS command in
SQL*Plus.

The two DATE datatype columns of this statement, CREATED_DATE and MODI-
FIED_DATE, are not formatted by the COL command. By default, Oracle displays
all DATE datatype columns with a 9-character width. You will learn about for-
matting columns with the DATE datatype in Chapter 4, “Date and Conversion
Functions.”

FORMATTING NUMBERS

If the column is of a NUMBER datatype column, you can change the format with
a format model in the COLUMN command. For example, the 9 in the format
model 999.99 represents the numeric digits, so the number 100 is displayed as
100.00. You can add dollar signs, leading zeros, angle brackets for negative num-
bers, and round values to format the display to your desire.

COL cost FORMAT $9,999.99
SELECT DISTINCT cost
FROM course

COST

$1,095.00
$1,195.00
$1,595.00

4 rows selected.

If you did not allot sufficient room for the number to fit in the column, SQL*Plus
will show a # symbol instead.

COL cost FORMAT 999.99
COST

#######
#######
#######

4 rows selected.

For more SQL*Plus COLUMN FORMAT commands, see Appendix C, “SQL*Plus
Command Reference.”

76 Lab 2.2: The Anatomy of a SELECT Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 76

LAB
2.2

Throughout this book you notice that the output is displayed in
SQL*Plus rather than iSQL*Plus format. The reason for this is simply
that it takes up less space in the book.

2.2.2 ANSWERS

a) Why are the result sets of each of the following SQL statements the same?

SELECT letter_grade
FROM grade_conversion

SELECT DISTINCT letter_grade
FROM grade_conversion

Answer:The result sets are the same because the data values in the LETTER_GRADE
column in the GRADE_CONVERSION table are not repeated; the LETTER_GRADE col-
umn is the primary key of the table, so by definition its values are already distinct.

b) Explain the result set of the following SQL statement:

SELECT DISTINCT cost
FROM course

Answer:The result set contains four rows of distinct costs in the COURSE table, includ-
ing the NULL value.

SET FEEDBACK 1

SELECT DISTINCT cost
FROM course

COST

1095
1195
1595

4 rows selected.

Note that if you changed the feedback SQL*Plus environment variable to 1, using
the SQL*Plus command SET FEEDBACK 1, the result will include the “4 rows
selected.” statement. There is one row in the COURSE table containing a null
value in the COST column. Even though null is an unknown value, DISTINCT
recognizes one or more null values in a column as one distinct value when return-
ing a result set.

Lab 2.2: The Anatomy of a SELECT Statement 77

5730ch02.qxd_cc 6/3/04 12:46 PM Page 77

LAB
2.2

c) Explain what happens, and why, when you execute the following SQL statement:

SELECT DISTINCT course_no
FROM class

Answer: Oracle returns an error because a table named CLASS does not exist.

FROM class
*

ERROR at line 2:
ORA-00942: table or view does not exist

The asterisk in the error message indicates the error in the query. SQL is an exact-
ing language. As you learn to write SQL, you will inevitably make mistakes. It is
important to pay attention to the error messages returned to you from the data-
base to learn from and correct your mistakes. This Oracle error message tells you
that you referenced a table or a view does not exist in this database schema.
(Views are discussed in Chapter 12, “Views, Indexes, and Sequences.”) Correct
your SQL statement and execute it again.

LAB 2.2 SELF-REVIEW QUESTIONS
In order to test your progress, you should be able to answer the following
questions.

1) The column names listed in the SELECT list must be separated by commas.

a) ______ True
b) ______ False

2) A SELECT list may contain all the columns in a table.

a) ______ True
b) ______ False

3) The asterisk may be used as a wildcard in the FROM clause.

a) ______ True
b) ______ False

4) The following statement contains an error:

SELECT courseno
FROM course

a) ______ True
b) ______ False

Answers appear in Appendix A, Section 2.2.

78 Lab 2.2: The Anatomy of a SELECT Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 78

LAB
2.3

L A B 2 . 3

EDITING A SQL STATEMENT

THE LINE EDITOR

In iSQL*Plus you can easily edit your statement just as any text. Sometimes you
may not have access to iSQL*Plus, therefore you must learn how to write and edit
a statement using the SQL*Plus line editor.

When using SQL*Plus, you may have noticed that typing the same SQL statement
over and over again to make a small change quickly becomes very tedious. You
can use SQL*Plus’s line editor to change your statement, indicating which line to
change, then use a command to execute the change.

At the SQL prompt, type and execute the following statement to retrieve a list of
course numbers:

SELECT course_no
FROM course

SQL*Plus stores the last SQL command you typed in what is referred to as the SQL
buffer. You can re-execute a statement by just pressing the “/”, which reruns the
command. The statement stays in the buffer until you enter another SQL com-
mand. Use the SQL*Plus LIST command, or simply the letter L, to list the contents
of the buffer. The semicolon or the slash, both of which execute the statement,
are not stored in the buffer. The asterisk next to the number 2 indicates this is the
current line in the buffer.

Lab 2.3: Editing a SQL Statement 79

L A B O B J E C T I V E S

After this lab, you will be able to:
✔ Edit a SQL Statement Using SQL*Plus Commands
✔ Edit a SQL Statement Using an Editor
✔ Save, Retrieve, and Run a SQL Statement in iSQL*Plus

5730ch02.qxd_cc 6/3/04 12:46 PM Page 79

LAB
2.3

SQL>LIST
1 SELECT course_no
2* FROM course

For example, if you want to retrieve a list of descriptions instead, simply change
the column course_no to description using the line editor. To make a change,
indicate to the line editor which line to make current. To change it to the first
line, type the number 1 at the SQL prompt:

SQL> 1
1* SELECT course_no

Just the first line of the two-line statement is displayed, and the asterisk indicates
this is now the current line in the buffer. You can make a change to that line with
the CHANGE command:

SQL>CHANGE/course_no/description

The newly changed line is presented back to you:

1* SELECT description

The CHANGE command is followed by a forward slash, followed by the text you
want to change, and separated from the new text with another forward slash. The
abbreviated command for the CHANGE command is the letter C. You are now
ready to execute your statement to produce the new result set. Because you are
not typing the statement for the first time, you cannot use the semicolon. Type a
forward slash to execute the statement instead. The forward slash will always exe-
cute the current SQL statement in the buffer. Remember that certain commands
you have learned so far, such as the LIST command, are not SQL, but SQL*Plus
commands. Only SQL statements are saved in the buffer, never SQL*Plus com-
mands.

USING AN EDITOR IN SQL*PLUS FOR WINDOWS

Although handy, using SQL*Plus’s line editor capabilities can still be tedious, espe-
cially as your SQL statements grow in size and complexity. You may also want to
save some statements for later use. This is where a text editor becomes useful. A
text editor is a software program with no ability to format the text, such as with
boldface or italics. Notepad, a text editor that comes with the Microsoft Windows
operating systems, is one example of a text editor and is referenced in this book.
Any other text editor will work just as well. For more about setting the default edi-
tor in SQL*Plus, see Appendix C, “SQL*Plus Command Reference.”

To use a text editor in SQL*Plus for Windows or a SQL*Plus version with the com-
mand line interface, simply execute the EDIT or ED command. This command
will invoke, or open, the default editor currently set in SQL*Plus. When you use

80 Lab 2.3: Editing a SQL Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 80

LAB
2.3

the EDIT command at the SQL prompt, SQL*Plus will stay open in the back-
ground and your text editor will be in the foreground, automatically displaying
the SQL statement in the buffer. The file already has a name, which can also be
set as a default in SQL*Plus. For quick editing of statements, simply make your
changes here, save the file, and exit Notepad, which brings you back to SQL*Plus.
If you wish to save the file for future reference, while still in Notepad select Save
As to save the file with a different name and any extension you wish. It is com-
mon to save SQL files with a .sql extension.

If your editor puts a .txt after the file name (effectively creating a myfile.sql.txt
file), change the Save As type to All Files instead of Text documents (*.txt). Another
way to ensure the file contains a .sql extension is to enclose the entire file name
in quotes, (e.g., “myfile.sql” or if you want to include the path “c:\examples\
myfile.sql”). Figure 2.14 displays the Save As dialog in SQL*Plus.

Notice that when you invoke an editor, the SQL statement ends with
a forward slash on a separate line at the end. SQL*Plus adds this
character to the file so the file can be executed in SQL*Plus. When

Lab 2.3: Editing a SQL Statement 81

Figure 2.14 � Use of the Notepad text editor in SQL*Plus for Windows.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 81

LAB
2.3

you invoke the editor from SQL*Plus, you can’t go back to the
SQL*Plus screen until you close the editor.

Type the following statement:

SELECT *
FROM course

Now edit the file in Notepad and select Save As to save a second file with the
name myfile2.sql. Exit Notepad and type and execute a new, different SQL state-
ment:

SELECT state
FROM zipcode

This statement is now in the buffer; however, you can execute a different SQL state-
ment, such as the one you saved in myfile2.sql, with the START or @ command.

SQL>@myfile2

If the myfile2.sql file is stored in a directory other than the default directory, you
need to specify the drive and directory name. You can also specify a valid URL
such as @http://script.repository/alice/myfile2.sql.

SQL>@c:\examples\myfile2

The statement in the file runs, producing a result set. Because the file already con-
tains a forward slash, the SQL statement is executed automatically. If you save
myfile2 with an extension other than .sql, you must type the file name and exten-
sion. If you want to change myfile2 again, simply type the following. Notepad
will open with myfile2.sql containing your SQL statement.

ED c:\examples\myfile2

CHANGING THE DEFAULT DIRECTORY
OF SQL*PLUS FOR WINDOWS

Whenever you execute a script or save a file in SQL*Plus without specifying a
directory, it is assumed to be in the default directory. Typically, this directory
is named similar to C:\oracle\product\10.1.0\Db_2\BIN or C:\oracle
\ora10\BIN. To change it to a different directory, such as the c:\guest direc-
tory, you need to create a shortcut. Modify the properties of the shortcut (see
Figure 2.15) on the desktop to change the Start in field to the value c:\guest
and then click OK. Whenever you invoke SQL*Plus through the shortcut, the
c:\guest directory will be your default directory. If you are unsure how to cre-
ate a shortcut in your Windows operating system, refer to the Windows docu-
mentation that came with your system. (Another way to change your default

82 Lab 2.3: Editing a SQL Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 82

LAB
2.3

directory is by modifying your Windows registry. Only make these modifications
if you are sufficiently knowledgeable about the Windows operating system. For
more information, see Oracle’s SQL*Plus User’s Guide and Reference Manual.)

COPYING AND PASTING STATEMENTS
IN SQL*PLUS FOR WINDOWS

SQL*Plus for Windows allows you to copy and paste statements. You can open an
editor such as Notepad in a separate window (without invoking it from SQL*Plus
with the EDIT command) and enter your statements. Then select the text and
copy the statement (CTRL + C or Copy from the Edit menu) and paste it into
SQL*Plus using the Paste menu option or the CTRL + V command key.

EDITING IN iSQL*PLUS

Editing a SQL statement in iSQL*Plus is rather intuitive. You can enter the state-
ments in the input area, also called the Workspace, and make changes using the
delete and backspace keys or simply cut and paste. To save a statement to a text
file, click on the Save Script button. You can reload the file later using the Load
Script button. iSQL*Plus has a History tab that allows you to see the previously
issued statements. Alternatively, you can also click the History link.

Figure 2.16 shows the last four statements that were issued. By default, at most the
last ten statements or scripts are shown; you can increase this number when

Lab 2.3: Editing a SQL Statement 83

Figure 2.15 � Changing the default directory in SQL*Plus for Windows.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 83

LAB
2.3

choosing Preferences, Interface Configuration, and then History Size. A history is
only available for the duration of your current session. If you want to retain your
statements after logout, you want to consider saving them to a file.

To run an individual statement, check the Select button and click the Load icon
to bring the statement into the Workspace. You can load multiple statements at
once, be sure to end each statement with a semicolon or a forward slash. You’ll
learn more about running multiple statements shortly.

PREFERENCES SCREEN

Either the Preferences icon on top or the Preference link on the bottom of the
screen displays the Preferences screen. It allows you to customize your iSQL*Plus
interface and execution environmental variables. Here you can change your pass-
word, modify the number of statements retained in the History screen, or change
your display output location and page setup preferences. The menu choices on
the left show Script Formatting, Script Execution, and Database Administration.
These options allow you to change SQL*Plus environmental variables. You can
leave them at their default setting. Most of these variables have equivalent SET
commands that can be executed both in SQL*Plus and iSQL*Plus. You will learn
more about these settings in Chapter 13, “The Data Dictionary and Advanced
SQL*Plus Commands.”

DIFFERENCES BETWEEN SQL*PLUS AND iSQL*PLUS

Throughout this book you will see both SQL*Plus and iSQL*Plus mentioned. For
the most part the functionality between the two products is identical and does
not impact on the result set, other than a different graphical output. If you are

84 Lab 2.3: Editing a SQL Statement

Figure 2.16 � History screen.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 84

LAB
2.3

unclear if a certain SQL*Plus command performs identical in iSQL*Plus, refer to
Appendix C, “SQL*Plus Command Reference.”

Overall, there are a small number of differences between the two products, par-
ticularly with respect to edits of SQL statements and the display of data. You will
find these differences highlighted in Table 2.1.

Unless specifically pointed out, all the mentioned SQL*Plus
commands apply to both SQL*Plus and iSQL*Plus.

Lab 2.3: Editing a SQL Statement 85

Table 2.1 � Differences between SQL*Plus and iSQL*Plus

SQL*Plus iSQL*Plus

Requires installation of SQL*Plus and No need to install special software, only
Oracle Net software on individual browser is required.
machine.

Runs on individual workstation or on the Runs from a browser, which is typically
server. a workstation with access to the Web

server where iSQL*Plus is running.

Editing via line editor or with your own Editing in the Workspace box.
editor.

SET commands control environmental Most of the SET commands can also be
variables that effect default formats issued in iSQL*Plus. (See Appendix C,
and interface configuration settings “SQL*Plus Command Reference” for
among others. differences). Alternatively, you can use

the Preferences menu to modify the
values.

Use the @ or START command to For the @ or START command, only the
run scripts from a file or a URL. URL format is supported.

Columns may not fit the whole width The browser automatically handles the
of your screen. Use various SQL*Plus formatting of columns to fit the width
formatting commands to make them of the screen.
display on one line.

To recall any previously issued statements To recall any previous statement, use the
use the SAVE command, write the state- History tab, History link, or save the
ment to file, or scroll back and cut and statement to file.
paste.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 85

LAB
2.3

LAB 2.3 EXERCISES

If you have access to only SQL*Plus but not iSQL*Plus or vice versa,
just perform the exercises that are applicable for the specific
environment. Exercises 2.3.1 and 2.3.2 use SQL*Plus only, not
iSQL*Plus.

2.3.1 EDIT A SQL STATEMENT USING SQL*PLUS COMMANDS

Type and execute the following SQL statement (use SQL*Plus, not iSQL*Plus):

SELECT employer
FROM student

a) Using SQL*Plus commands, change the column employer to
registration_date and execute the statement again.

b) Using SQL*Plus commands, add a second column, phone, to
the statement you changed. Display the PHONE column first,
then the REGISTRATION_DATE column, in the result set.

2.3.2 EDIT A SQL STATEMENT USING AN EDITOR

Perform these exercises using SQL*Plus, not iSQL*Plus.

a) Invoke the editor and change the statement in your buffer to
the following. Then save the file and execute it in SQL*Plus.

SELECT salutation, first_name, last_name, phone
FROM instructor

b) Edit the preceding statement, which is now in your buffer, save
it as inst.sql, and use the START or @ command to execute it in
SQL*Plus.

c) Edit inst.sql, save it as inst.x, and use the START or @ com-
mand to execute it in SQL*Plus.

2.3.3 SAVE, RETRIEVE, AND RUN A SQL STATEMENT IN iSQL*PLUS

a) Enter the following SELECT statement into the Workspace area
and execute the statement. Then save the statement in a file
called state_zip.sql and press the Clear button.

SELECT DISTINCT state
FROM zipcode

86 Lab 2.3: Editing a SQL Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 86

LAB
2.3

b) Click the Load Script button and then the Browse… button
and locate the state_zip.sql file you just saved. Then press the
Load button to load it into the Workspace. Execute the state-
ment.

c) Explain the difference between the SQL language and SQL*Plus
or iSQL*Plus.

LAB 2.3 EXERCISE ANSWERS

2.3.1 ANSWERS

Type and execute the following SQL statement (use SQL*Plus, not iSQL*Plus):

SELECT employer
FROM student

a) Using SQL*Plus commands, change the column employer to registra-
tion_date and execute the statement again.

Answer: Select the first line in the buffer, then use the CHANGE command to change
EMPLOYER to REGISTRATION_DATE.

Type 1 to select the first line in the buffer:

SQL> 1
1* SELECT employer

Then use the CHANGE command:

SQL> c/employer/registration_date
1* SELECT registration_date

Type L to list the changed statement:

SQL> L
1 SELECT registration_date
2* FROM student

If you care to run the query, you can do so with the forward slash “/”, which then
executes the statement currently in the buffer.

b) Using SQL*Plus commands, add a second column, phone, to the statement you
changed. Display the PHONE column first, then the REGISTRATION_DATE col-
umn, in the result set.

Answer:You must again select the first line in the buffer, then use the CHANGE com-
mand to add the PHONE column to the SELECT list.

Lab 2.3: Editing a SQL Statement 87

5730ch02.qxd_cc 6/3/04 12:46 PM Page 87

LAB
2.3

Type 1 to select the first line in the buffer:

SQL> 1
1* SELECT registration_date

Then use the CHANGE command:

C/SELECT/SELECT phone,

Here, the CHANGE command will replace SELECT with SELECT phone, (includ-
ing the comma), changing your statement to the following:

1 SELECT phone, registration_date
2* FROM student

The result set will display phone first, then the registration date:

PHONE REGISTRAT
--------------- ---------
201-555-5555 18-FEB-03
201-555-5555 22-FEB-03
...
718-555-5555 22-FEB-03
718-555-5555 28-JAN-03

268 rows selected.

The CHANGE command looks for the first occurrence, from left to right, of the text
you wish to change. When it locates it, it replaces this occurrence with the new
text you wish to change it to.

OTHER USEFUL LINE EDITOR COMMANDS

Besides the CHANGE and LIST commands, the SQL*Plus line editor has a number of
other commands. For example, to add another column to the SQL statement you use
the APPEND command. The statement currently in the buffer lists as follows:

SQL> L
1 SELECT phone, registration_date
2* FROM student

First choose the line to which you want to add at the end, then use the A com-
mand and add the text you want to append. In the following example the
", last_name" text was added to the statement.

88 Lab 2.3: Editing a SQL Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 88

LAB
2.3

SQL> 1
1* SELECT phone, registration_date

SQL> A , last_name
1* SELECT phone, registration_date, last_name

Another useful command is the INPUT command; it adds a new line after the cur-
rent line. To insert the text ", first_name" on the next line, use the INPUT or
I command. SQL*Plus prompts you for a new line and you enter the text and
press Enter. SQL*Plus prompts you once more for another new line and if you are
finished adding, you press Enter again to indicate that you are done.

SQL> 1
1* SELECT phone, registration_date, last_name

SQL> I
2i , first_name
3i

SQL> L
1 SELECT phone, registration_date, last_name
2 , first_name
3* FROM student

If you need to insert the line before line 1, enter a 0 (zero) followed by a space and
text. Use the DEL command if you want to delete lines in the buffer. To delete line
2, you enter:

SQL> DEL 2
SQL> L
1 SELECT phone, registration_date, last_name
2* FROM student

You can also save the statement using the SQL*Plus SAVE command. In the next
example, the SQL query is saved in the c:\guest directory under the file name
myexample.sql; if you don’t specify the extension, by default it will be .sql.

SQL> SAVE c:\guest\myexample
Created file c:\guest\myexample

You do not need to type a semicolon or forward slash, it will automatically be
added. The statement can now be run either with the START or @ command. If
you subsequently write other SQL statements and the statement is no longer in
the SQL buffer, you can load it back into the buffer with the GET command. (The
.sql extension is optional). You can then re-execute the statement with the for-
ward slash.

SQL> GET c:\guest\myexample
1 SELECT phone, registration_date, last_name
2* FROM student

Lab 2.3: Editing a SQL Statement 89

5730ch02.qxd_cc 6/3/04 12:46 PM Page 89

LAB
2.3

2.3.2 ANSWERS

a) Invoke the editor and change the statement in your buffer to the following.Then
save the file and execute it in SQL*Plus.

SELECT salutation, first_name, last_name, phone
FROM instructor

Answer: Use the EDIT command to edit the file and execute the changed statement
in SQL*Plus with the forward slash.

b) Edit the preceding statement, which is now in your buffer, save it as inst.sql, and
use the START or @ command to execute it in SQL*Plus.

Answer: Use the EDIT command to edit the file and save it as inst.sql. Execute the
changed statement in SQL*Plus with the START or @ command.

SQL>@inst.sql

c) Edit inst.sql, save it as inst.x, and use the START or @ command to execute it in
SQL*Plus.

Answer: At the SQL prompt, type EDIT,edit the file in your editor, save the file as
inst.x, exit the editor, type at the SQL>prompt the command @inst.x to execute
the changed statement.

Because you saved the file with an extension other than .sql, you must explicitly
reference both the file name and its extension. If you want to edit this file, you
must type EDIT inst.x at the SQL prompt.

2.3.3 ANSWERS

a) Enter the following SELECT statement into the Workspace area and execute the
statement.Then save the statement in a file called state_zip.sql and press the
Clear button.

SELECT DISTINCT state
FROM zipcode

Answer:When you execute this statement, it returns a list of the state abbreviations
from the ZIPCODE table. When you click on the Save Script button, a message box
informs you that the file is transferred from the Web browser to your individual com-
puter. Click the Save button to save it on your computer (see Figure 2.17).

After you click the Save button you are prompted to enter the file name. You see
a suggested file name, but change it to state_zip.sql instead and change the Save

90 Lab 2.3: Editing a SQL Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 90

LAB
2.3

as type to “All Files”. The term script is just another word for command file con-
taining one or multiple commands.

If you click the Clear button, the input area and output area are cleared, but note
the SQL buffer is not cleared and it will still list the last statement if you were to
enter the LIST command.

b) Click the Load Script button and then the Browse… button and locate the
state_zip.sql file you just saved. Then press the Load button to load it into the
Workspace. Execute the statement.

Answer:When you click the Browse. . . button, you will see a dialog box that displays
the directory and file name similar to Figure 2.18. Then you need to press the Load
button to transfer the file into the Workspace for execution. Afterwards, you can click
the Execute button to run the statement. It is useful to save a file, if you want to retain
the statement. iSQL*Plus retains a history of SQL statements you can access after you
have cleared the screeen, but it is no longer available after your session ends.

RUNNING MULTIPLE STATEMENTS IN iSQL*PLUS

You can run multiple SQL statements in iSQL*Plus. For example, if you want to
run the following two statements, you either place them in a script file or simply
type them into the input area. Just be sure to end every statement with either a
semicolon or a forward slash at the beginning of a separate line. Note: you don’t
need a semicolon or forward slash for the last statement unless you run the state-
ments inside a script file. In this case you must end each statement with either

Lab 2.3: Editing a SQL Statement 91

Figure 2.17 � Save a file in iSQL*Plus.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 91

LAB
2.3

one. Therefore, it is a good habit to place either the semicolon or forward slash
after each statement.

In Figure 2.19, you see two query results. One shows the distinct zip codes for all
instructors, and the second result is a listing of first and last names for all stu-
dents. The second statement does not quite fit on one screen, but you can scroll
down to see the rest.

92 Lab 2.3: Editing a SQL Statement

Figure 2.18 � The Choose file dialog in iSQL*Plus.

Figure 2.19 � Executing multiple SQL statements.

5730ch02.qxd_cc 6/3/04 12:46 PM Page 92

LAB
2.3

Be careful, do not add both a semicolon and a forward slash to the same state-
ment, otherwise it will be executed twice. For example, the next SQL statement
will be executed twice.

SELECT DISTINCT zip
FROM zipcode;

/

COMMENTS IN SQL SCRIPTS

Placing comments or remarks into a SQL script is very useful when you revisit the
script later. It helps document the purpose, thoughts, and ideas or simply lists the
author and creation date. You must identify the comment; otherwise you will
receive an error when running the command. You can distinguish between two
different types of comments: a single-line comment denoted with double dashes
or a multiline comment spawning multiple lines, which starts with an opening
comment like this, /*, and ends with a closing comment, which looks like this, */.

Following is an example of a script file that includes comments, but comments
can also be embedded within the SQL statement itself.

/* Multi-line comment
Homework #2
By: Kirsten Soehner
Date created: 4/30/2002
*/

-- Answer #1: This is a single-line comment!
SELECT DISTINCT state
FROM zipcode;

-- Answer #2:
COL cost FORMAT $9,999.99
SELECT DISTINCT cost
FROM course;

-- Answer #3:
SELECT instructor_id, -- Comment within a SQL statement!

zip
FROM instructor;

Note that SQL*Plus also has a REMARK command abbreviated as REM that allows
single-line comments. This command is not recognized as a comment when your
SQL statement is executed in an environment other than SQL*Plus or iSQL*Plus;
it can also not be embedded in a SQL statement. Use the single-line and double-
line comments mentioned previously instead!

Lab 2.3: Editing a SQL Statement 93

5730ch02.qxd_cc 6/3/04 12:46 PM Page 93

LAB
2.3

c) Explain the difference between the SQL language and SQL*Plus or iSQL*Plus.

Answer: SQL is a language that allows you to retrieve, manipulate, define, and control
access to the database. SQL*Plus and iSQL*Plus are environments in which to execute
the SQL statements and display the results.

iSQL*Plus is the Web-based version of SQL*Plus and both programs are Oracle pro-
prietary products. You can use other software programs to execute your SQL state-
ments against an Oracle database. If you want to format your results in special
ways use the SQL*Plus commands such as COLUMN FORMAT. If you don’t exe-
cute the commands in iSQL*Plus or SQL*Plus these formatting commands are not
available and you will need to use specific SQL functions to achieve somewhat
similar results. Some of these SQL functions are discussed in the next chapter.

LAB 2.3 SELF-REVIEW QUESTIONS
In order to test your progress, you should be able to answer the following
questions.

1) You can save a SQL statement to the SQL buffer for it to be referenced later.

a) ______ True
b) ______ False

2) After typing a SQL statement, you can execute it with either the semicolon or
the forward slash.

a) ______ True
b) ______ False

3) You cannot save a .sql file to the A: drive.

a) ______ True
b) ______ False

4) The SQL*Plus START command can execute what is in the SQL buffer.

a) ______ True
b) ______ False

Answers appear in Appendix A, Section 2.3.

94 Lab 2.3: Editing a SQL Statement

5730ch02.qxd_cc 6/3/04 12:46 PM Page 94

LAB
2.4

L A B 2 . 4

THE WHERE CLAUSE:
COMPARISON AND

LOGICAL OPERATORS

The WHERE clause, also called the predicate, provides the power to narrow down
the scope of data retrieved. In fact, most SQL statements you write will contain a
WHERE clause.

COMPARISON OPERATORS

Comparison operators compare expressions. An expression can be a column of any
datatype, a string or text literal (sometimes referred to as a text constant or character
literal), a number, or any combination of these. An expression can also be a func-
tion or mathematical computation, which you will learn about in Chapter 3,
“Character, Number, and Miscellaneous Functions.” An expression always results
in a value.

TESTING FOR EQUALITY AND INEQUALITY

Comparison operators compare one expression with another expression. One of
the most commonly used comparison operators is the equal operator, denoted by
the = symbol. For example, if you are asked to provide the first name, last name,

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 95

L A B O B J E C T I V E S

After this lab, you will be able to:
✔ Use Comparison and Logical Operators in a WHERE Clause
✔ Use NULL in a WHERE Clause

5730ch02.qxd_cc 6/3/04 12:46 PM Page 95

LAB
2.4

and phone number of a teacher with the last name of Schorin, you write the fol-
lowing SQL statement:

SELECT first_name, last_name, phone
FROM instructor
WHERE last_name = 'Schorin'
FIRST_NAME LAST_NAME PHONE
---------- ---------- ----------
Nina Schorin 2125551212

1 row selected.

Here, the column LAST_NAME is the left side of the equation and the text literal
'Schorin' is the right side. Single quotes are used around the text literal 'Schorin'.
This statement will only retrieve rows from the INSTRUCTOR table that satisfy this
condition in the WHERE clause. In this case, only one row is retrieved.

When you describe the INSTRUCTOR table, you see the datatype of the LAST_
NAME column is VARCHAR2. This means the data contained in this column is
alphanumeric. When two values are compared to each other, they must be of the
same datatype; otherwise, Oracle returns an error. You will learn more about con-
verting from one datatype to another in Chapter 4, “Date and Conversion
Functions.”

SQL> DESCR instructor
Name Null? Type
------------------------------- -------- ------------
INSTRUCTOR_ID NOT NULL NUMBER(8)
SALUTATION VARCHAR2(5)
FIRST_NAME VARCHAR2(25)
LAST_NAME VARCHAR2(25)
STREET_ADDRESS VARCHAR2(50)
ZIP VARCHAR2(5)
PHONE VARCHAR2(15)
CREATED_BY NOT NULL VARCHAR2(30)
CREATED_DATE NOT NULL DATE
MODIFIED_BY NOT NULL VARCHAR2(30)
MODIFIED_DATE NOT NULL DATE

SQL is case insensitive when it comes to column names, table names, and key-
words such as SELECT. (There are some exceptions with regard to column names
and table names. For more information see Chapter 11, “Create, Alter, and Drop
Tables.”) When you compare a text literal to a database column, the case of the
data must match exactly. The syntax of the following statement is correct, but it
does not yield any rows because the instructor’s last name is obviously not in the
correct case.

96 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

5730ch02.qxd_cc 6/3/04 12:46 PM Page 96

LAB
2.4

SELECT first_name, last_name, phone
FROM instructor
WHERE last_name = 'schorin'

no rows selected

Just as equality is useful, so is inequality.

SELECT first_name, last_name, phone
FROM instructor
WHERE last_name <> 'Schorin'
FIRST_NAME LAST_NAME PHONE
---------- ---------- ----------
Fernand Hanks 2125551212
Tom Wojick 2125551212
...
Marilyn Frantzen 2125551212
Irene Willig 2125551212

9 rows selected.

All rows except the one with the last name of ‘Schorin’, are retrieved. Inequality
can also be expressed with the != notation.

THE GREATER THAN AND LESS THAN OPERATORS

The comparison operators >, <, >=, and <= can all be used to compare values in
columns. In the following example, the >=, or greater than or equal to, operator is
used to retrieve a list of course descriptions whose cost is greater than or equal to
1195:

SELECT description, cost
FROM course
WHERE cost >= 1195
DESCRIPTION COST
---------------------------- ----
DP Overview 1195
Intro to Computers 1195
...
Database System Principles 1195
PL/SQL Programming 1195

26 rows selected.

The value 1195 is not enclosed in single quotes because it is a number literal.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 97

5730ch02.qxd_cc 6/3/04 12:46 PM Page 97

LAB
2.4

THE BETWEEN COMPARISON OPERATOR

The BETWEEN operator tests for a range of values:

SELECT description, cost
FROM course
WHERE cost BETWEEN 1000 AND 1100
DESCRIPTION COST
-------------------------------- ----
Unix Tips and Techniques 1095
Intro to Internet 1095
Intro to the Basic Language 1095

3 rows selected.

BETWEEN is inclusive of both values defining the range; the result set includes courses
that cost 1000 and 1100 and everything in between. The lower end of the range must
be listed first.

If you use iSQL*Plus then your result may look similar to Figure 2.20. Note that the
result is identical; the only difference is the formatting.

98 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

Figure 2.20 � iSQL*Plus result.

BETWEEN is most useful for number and date comparisons, but it can also be used for
comparing text strings in alphabetical order. Date comparisons are discussed in
Chapter 4, “Date and Conversion Functions.”

THE IN OPERATOR

The IN operator works with a list of values, separated by commas, contained
within a set of parentheses. The following query looks for courses where the cost
is either 1095 or 1595.

SELECT description, cost
FROM course
WHERE cost IN (1095, 1595)
DESCRIPTION COST
-------------------------------------- ----
Structured Programming Techniques 1595
Unix Tips and Techniques 1095

5730ch02.qxd_cc 6/3/04 12:46 PM Page 98

LAB
2.4

Intro to Internet 1095
Intro to the Basic Language 1095

4 rows selected.

THE LIKE OPERATOR

Another very useful comparison operator is LIKE, which performs pattern-matching
using the percent (%) or underscore (_) characters as wildcards. The percent wild-
card is used to denote multiple characters, while the underscore wildcard is used
to denote a single character. The next query retrieves rows where the last name
begins with the uppercase letter S and ends in anything else:

SELECT first_name, last_name, phone
FROM instructor
WHERE last_name LIKE 'S%'
FIRST_NAME LAST_NAME PHONE
---------- --------- -----------
Nina Schorin 2125551212
Todd Smythe 2125551212

2 rows selected.

The % character may be placed at the beginning, end, or anywhere within the lit-
eral text, but always within the single quotes. This is also true of the underscore
wildcard character, as in this statement:

SELECT first_name, last_name
FROM instructor
WHERE last_name LIKE '_o%'
FIRST_NAME LAST_NAME
------------------------- ---------
Tom Wojick
Anita Morris
Charles Lowry

3 rows selected.

The WHERE clause returns only rows where the last name begins with any char-
acter, but the second letter must be a lowercase o. The rest of the last name is irrel-
evant.

NEGATING USING NOT

All the previously mentioned operators can be negated with the NOT comparison
operator; for example, NOT BETWEEN, NOT IN, NOT LIKE.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 99

5730ch02.qxd_cc 6/3/04 12:46 PM Page 99

LAB
2.4

SELECT phone
FROM instructor
WHERE last_name NOT LIKE 'S%'

In the SQL statement the LAST_NAME column used in the WHERE clause doesn’t
appear in the SELECT list. There is no rule about columns in the WHERE clause
having to exist in the SELECT list.

The LIKE operator works well for simple pattern matching. If your
pattern is more complex, you may want to consider using Oracle’s
regular expression functionality discussed in Chapter 15,“Regular
Expressions and Hierarchical Queries.”

EVALUATING NULL VALUES

Recall that NULL means an unknown value. The IS NULL and IS NOT NULL oper-
ators evaluate whether a data value is NULL or not. The following SQL statement
returns courses that do not have a prerequisite:

SELECT description, prerequisite
FROM course
WHERE prerequisite IS NULL
DESCRIPTION PREREQUISITE
---------------------------- ------------
DP Overview
Intro to Computers
Java for C/C++ Programmers
Operating Systems

4 rows selected.

Null values represent the unknown; a null cannot be equal or
unequal to any value or to another null. Therefore, always use the IS
NULL or IS NOT NULL operator when testing for nulls. There are a
few exceptions when nulls are treated differently and a null can be
equal to another null. One such example is the use of DISTINCT
(see Lab 2.2). You will learn about the exceptions in the treatment of
nulls throughout this book.

OVERVIEW OF COMPARISON OPERATORS

The comparison operators you have learned about so far are sometimes referred
to as predicates or search conditions. A predicate is an expression that results in
either a true, false, or unknown value. Table 2.2 provides you with a list of the

100 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

5730ch02.qxd_cc 6/3/04 12:46 PM Page 100

LAB
2.4

most common comparison operators. You will learn about additional operators
such as EXISTS, ANY, SOME, ALL in Chapter 7, “Subqueries,” and the OVERLAPS
operator in Chapter 4, “Date and Conversion Functions.” All these operators can
be negated with the NOT logical operator.

LOGICAL OPERATORS

To harness the ultimate power of the WHERE clause, comparison operators can be
combined with the help of the logical operators AND and OR. These logical opera-
tors are also referred to as boolean operators. They group expressions, all within the
same WHERE clause of a single SQL statement.

For example, the following SQL query combines two comparison operators with
the help of the AND boolean operator. The result shows rows where a course costs
1095 and the course description starts with the letter I:

SELECT description, cost
FROM course
WHERE cost = 1095
AND description LIKE 'I%'

DESCRIPTION COST
-------------------------------------- ----
Intro to Internet 1095
Intro to the Basic Language 1095

2 rows selected.

With just the = operator in the WHERE clause, the result set contains three rows.
With the addition of the AND description LIKE 'I%', the result is further
reduced to two rows.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 101

Table 2.2 � SQL Comparison Operators

Comparison Operator Definition

= Equal

!=, <> Not equal

>, >= Greater than, greater than or equal to

<, <= Less than, less than or equal to

BETWEEN . . . AND . . . Inclusive of two values

LIKE Pattern matching with wildcard characters % and _

IN (. . .) List of values

IS NULL Test for null values

5730ch02.qxd_cc 6/3/04 12:46 PM Page 101

LAB
2.4

PRECEDENCE OF LOGICAL OPERATORS

When AND and OR are used together in a WHERE clause, the AND operator
always takes precedence over the OR operator, meaning any AND conditions are
evaluated first. If there are multiple operators of the same precedence, the left
operator is executed before the right. You can manipulate the precedence in the
WHERE clause with the use of parentheses. In the following SQL statement, the
AND and OR logical operators are combined:

SELECT description, cost, prerequisite
FROM course
WHERE cost = 1195
AND prerequisite = 20
OR prerequisite = 25

DESCRIPTION COST PREREQUISITE
----------------------------------- ---- ------------
Hands-On Windows 1195 20
Structured Analysis 1195 20
Project Management 1195 20
GUI Programming 1195 20
Intro to SQL 1195 20
Intro to the Basic Language 1095 25
Database System Principles 1195 25

7 rows selected.

The preceding SQL statement selects any record that has either a cost of 1195 and
a prerequisite of 20, or just has a prerequisite of 25 no matter what the cost. The
sixth row, Intro to the Basic Language, is selected because it satisfies the
OR expression prerequisite = 25. The seventh row, Database System
Principles, only satisfies one of the AND conditions, not both. However, the
row is part of the result set because it satisfies the OR condition.

Here is the same SQL statement, but with parentheses to group the expressions in
the WHERE clause:

SELECT description, cost, prerequisite
FROM course
WHERE cost = 1195
AND (prerequisite = 20

OR prerequisite = 25)
DESCRIPTION COST PREREQUISITE
----------------------------------- ---- ------------
Database System Principles 1195 25
Hands-On Windows 1195 20
Structured Analysis 1195 20
Project Management 1195 20

102 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

5730ch02.qxd_cc 6/3/04 12:46 PM Page 102

LAB
2.4

GUI Programming 1195 20
Intro to SQL 1195 20

6 rows selected.

The first expression selects only courses where the cost is equal to 1195. If the pre-
requisite is either 25 or 20, then the second condition is also true. Both expres-
sions need to be true for the row to be displayed. These are the basic rules of
logical operators. If two conditions are combined with the AND operator, both
conditions must be true; if two conditions are connected by the OR operator, only
one of the conditions needs to be true for the record to be selected.

The result set returns six rows instead of seven. The order in which items in the
WHERE clause are evaluated is changed by the use of parentheses and results in a
different output.

To ensure that your SQL statements are clearly understood, it is
always best to use parentheses.

NULLS AND LOGICAL OPERATORS

SQL uses tri-value logic; this means a condition can evaluate to true, false, or
unknown. (This is in contrast to boolean logic, where a condition must be either
true or false.) A row gets returned when the condition evaluates to true. The fol-
lowing query returns rows from the COURSE table starting with the words Intro
to as the description and a value equal or larger than 140 in the PREREQUISITE
column.

SELECT description, prerequisite
FROM course
WHERE description LIKE 'Intro to%'
AND prerequisite >= 140

DESCRIPTION PREREQUISITE
----------------------------------- ------------
Intro to Programming 140
Intro to Unix 310

2 rows selected.

Rows with a null value in the PREREQUISITE column are not included because
null is an unknown value. This null value in the column is not equal or greater to
140. Therefore, the row Intro to Computers does not satisfy both conditions
and is excluded from the result set. Following is the list of course descriptions
with null values in the PREREQUISITE column. It shows the row Intro to
Computers with a null value in the PREREQUISITE column.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 103

5730ch02.qxd_cc 6/3/04 12:46 PM Page 103

LAB
2.4

SELECT description, prerequisite, cost
FROM course
WHERE prerequisite IS NULL
DESCRIPTION PREREQUISITE COST
---------------------------- ----------------- ----
Operating Systems 1195
Java for C/C++ Programmers 1195
DP Overview 1195
Intro to Computers 1195

4 rows selected.

The AND truth table in Table 2.3 illustrates the combination of two conditions
with the AND operator. Only if both conditions are true is a row returned for out-
put. In this example, with the prerequisite being null, the condition is unknown
and therefore the row not included in the result. The comparison against a null
value yields unknown unless you specifically test for it with the IS NULL or IS
NOT operators.

104 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

Table 2.3 � AND Truth Table

AND TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

For the OR condition, just one of the conditions needs to be true. Again, let’s
examine how nulls behave under this scenario using the same query, but this time
with the OR operator. The Intro to Computers course is now listed because it sat-
isfies the 'Intro to%' condition only. In addition, you will notice that rows
such as DB Programming in Java do not start with the 'Intro to' as the
description, but satisfy the second condition, which is a prerequisite of greater or
equal to 140.

SELECT description, prerequisite
FROM course
WHERE description LIKE 'Intro to%'

OR prerequisite >= 140
DESCRIPTION PREREQUISITE
----------------------------------- ------------
DB Programming in Java 350
Database Design 420
Internet Protocols 310
Intro to Computers

5730ch02.qxd_cc 6/3/04 12:46 PM Page 104

LAB
2.4

Intro to Internet 10
Intro to Java Programming 80
Intro to Programming 140
Intro to SQL 20
Intro to Unix 310
Intro to the Basic Language 25
JDeveloper Techniques 350
Oracle Tools 220
Structured Programming Techniques 204

13 rows selected.

Table 2.4 shows the truth table for the OR operator; it highlights the fact that just
one of the conditions need be true for the row to be returned in the result set. It
is irrelevant if the second condition evaluates to false or unknown.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 105

Table 2.4 � OR Truth Table

OR TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

When you negate a condition with the NOT operator and the value you are com-
paring against is a null value, it also results in a null (see Table 2.5). The follow-
ing query demonstrates that none of the null prerequisites are included in the
result set.

SELECT description, prerequisite
FROM course
WHERE NOT prerequisite >= 140

DESCRIPTION PREREQUISITE
----------------------------------- ------------
Intro to Internet 10
GUI Programming 20
Intro to SQL 20
Hands-On Windows 20
Structured Analysis 20
Project Management 20
Intro to the Basic Language 25
Database System Principles 25
PL/SQL Programming 80
Intro to Java Programming 80
Intermediate Java Programming 120

5730ch02.qxd_cc 6/3/04 12:46 PM Page 105

LAB
2.4

Advanced Java Programming 122
JDeveloper 122
JDeveloper Lab 125
Basics of Unix Admin 130
Network Administration 130
Advanced Unix Admin 132
Unix Tips and Techniques 134

18 rows selected.

106 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

Table 2.5 � NOT Truth Table

NOT TRUE FALSE UNKNOWN

NOT FALSE TRUE UNKNOWN

LAB 2.4 EXERCISES

2.4.1 USE COMPARISON AND LOGICAL OPERATORS IN A WHERE CLAUSE

a) Write a SELECT statement to list the last names of students liv-
ing either in zip code 10048, 11102, or 11209.

b) Write a SELECT statement to list the first and last names of
instructors with the letter “i” (either uppercase or lowercase) in
their last name living in the zip code 10025.

c) Does the following statement contain an error? Explain.

SELECT last_name
FROM instructor
WHERE created_date = modified_by

d) What do you observe when you execute the following SQL
statement?

SELECT course_no, cost
FROM course
WHERE cost BETWEEN 1500 AND 1000

e) Execute the following query and determine how many rows
the query returns.

SELECT last_name, student_id
FROM student
WHERE ROWNUM <= 10

5730ch02.qxd_cc 6/3/04 12:46 PM Page 106

LAB
2.4

2.4.2 USE NULL IN A WHERE CLAUSE

a) Write a SELECT statement to list descriptions of courses with
prerequisites and cost less than 1100.

b) Write a SELECT statement to list the cost of courses without a
prerequisite; do not repeat the cost.

LAB 2.4 EXERCISE ANSWERS

2.4.1 ANSWERS

a) Write a SELECT statement to list the last names of students living either in zip
code 10048, 11102, or 11209.

Answer:The SELECT statement selects a single column and uses the IN comparison
operator in the WHERE clause.

SELECT last_name
FROM student
WHERE zip IN ('10048', '11102', '11209')
LAST_NAME

Masser
Allende
Winnicki
Wilson
Williams
McLean
Lefkowitz

7 rows selected.

The statement can also be written using the equal operator (=), in combination
with the logical operator OR, and yields the same result set:

SELECT last_name
FROM student
WHERE zip = '10048'

OR zip = '11102'
OR zip = '11209'

There will be times when a SELECT statement can be written more than one way.
The preceding statements are logically equivalent.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 107

5730ch02.qxd_cc 6/3/04 12:46 PM Page 107

LAB
2.4

b) Write a SELECT statement to list the first and last names of instructors with
the letter “i” (either uppercase or lowercase) in their last name living in the zip
code 10025.

Answer:The SELECT statement selects two columns and uses the LIKE, =, and the
AND and OR logical operators, combined with parentheses, in the WHERE clause.

SELECT first_name, last_name
FROM instructor
WHERE (last_name LIKE '%i%' OR last_name LIKE '%I%')
AND zip = '10025'

FIRST_NAME LAST_NAME
------------------------- ---------
Tom Wojick
Nina Schorin

2 rows selected.

The LIKE operator must be used twice in this example because there is no way of
knowing whether there is an upper or lowercase ‘i’ anywhere in the last name. You
must test for both conditions, which cannot be done using a single LIKE operator. If
one of the OR conditions is true, the expression is true.

If you need to search for the actual % symbol within a column value, you can use a
SQL function or an escape character. You learn more about this in Chapter 3,
“Character, Number, and Miscellaneous Functions.”

c) Does the following statement contain an error? Explain.

SELECT last_name
FROM instructor
WHERE created_date = modified_by

Answer:Yes.The two columns in the WHERE clause are not the same datatype and
the Oracle database returns an error when this statement is executed.

You will get an error similar to the following when you execute the statement.

SQL> SELECT last_name

2 FROM instructor

3 WHERE created_date = modified_by

4 /

WHERE created_date = modified_by

*

ERROR at line 3:

ORA-01858: a non-numeric character was found where a numeric was expected

108 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

5730ch02.qxd_cc 6/3/04 12:46 PM Page 108

LAB
2.4

There are times when the datatypes of columns do not agree and you need to con-
vert from one datatype to another. You will learn about these circumstances in
Chapter 4, “Date and Conversion Functions.” (In this exercise example, data con-
version is not fruitful because the data in these two columns is of a very different
nature.)

d) What do you observe when you execute the following SQL statement?

SELECT course_no, cost
FROM course
WHERE cost BETWEEN 1500 AND 1000
no rows selected

Answer:The query returns no rows. Although there are courses that cost between
1000 and 1500, the BETWEEN clause requires the lower end of the range to be
listed first. If the query is rewritten as follows, it returns rows.

SELECT course_no, cost
FROM course
WHERE cost BETWEEN 1000 AND 1500

BETWEEN AND TEXT LITERALS

As mentioned previously, BETWEEN is most often used for numbers and dates,
which you will learn about in Chapter 4, “Date and Conversion Functions.” You
can apply the BETWEEN functions to text columns as you see in the next exam-
ple, which utilizes the BETWEEN operator with text literals W and Z. The query
lists the student’s ID and the last name. Notice any students whose last name
begins with the letter “Z” are not included, because the STUDENT table has no
student with a last name of the single letter “Z”. If a student’s last name was
spelled “waldo”, this student would not be included in the result, because the
WHERE clause is only looking for last names that fall between the uppercase let-
ters of W and Z.

SELECT student_id, last_name
FROM student
WHERE last_name BETWEEN 'W' AND 'Z'
STUDENT_ID LAST_NAME
---------- ---------

142 Waldman
...

241 Yourish

11 rows selected.

If you are looking for “waldo”, regardless of the case, use the OR operator to
include both conditions.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 109

5730ch02.qxd_cc 6/3/04 12:46 PM Page 109

LAB
2.4

SELECT student_id, last_name
FROM student
WHERE last_name BETWEEN 'W' AND 'Z'

OR last_name BETWEEN 'w' AND 'z'

Here is another example of how you can use the BETWEEN and the >= and <=
operators with text literals.

SELECT description
FROM grade_type
WHERE description BETWEEN 'Midterm' and 'Project'

This would be equivalent to:

SELECT description
FROM grade_type
WHERE description >= 'Midterm'
AND description <= 'Project'

DESCRIPTION

Midterm
Participation
Project

3 rows selected.

e) Execute the following query and determine how many rows the query returns.

SELECT last_name, student_id
FROM student
WHERE ROWNUM <= 10

Answer:The query returns ten rows.The WHERE clause uses the pseudocolumn
ROWNUM, which restricts the result to the first ten or less rows. A pseudocolumn is
not a real column that exists on a table; you can select the column, but you cannot
manipulate its value.

LAST_NAME STUDENT_ID
------------------------- ----------
Kocka 230
Jung 232
Mulroy 233
Brendler 234
Carcia 235
Tripp 236
Frost 237
Snow 238

110 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

5730ch02.qxd_cc 6/3/04 12:46 PM Page 110

LAB
2.4

Scrittorale 240
Yourish 241

10 rows selected.

The next statement shows the value of the ROWNUM pseudocolumn column in
the SELECT list. The first row displays the ROWNUM value of 1,the second the
ROWNUM value of 2, and so on. The ROWNUM pseudocolumn is useful if you
want to limit the number of rows returned by a query. You will see additional
examples of this and other pseudocolumns in subsequent chapters.

SELECT ROWNUM, last_name, student_id
FROM student
WHERE ROWNUM <= 10

ROWNUM LAST_NAME STUDENT_ID
---------- ------------------------- ----------

1 Kocka 230
2 Jung 232
3 Mulroy 233
4 Brendler 234

...
9 Scrittorale 240
10 Yourish 241

10 rows selected.

2.4.2 ANSWERS

a) Write a SELECT statement to list descriptions of courses with prerequisites
and cost less than 1100.

Answer:The SELECT statement uses the IS NOT NULL and less than (<) comparison
operators in the WHERE clause.

SELECT description, cost, prerequisite
FROM course
WHERE prerequisite IS NOT NULL
AND cost < 1100

DESCRIPTION COST PREREQUISITE
-------------------------------------- ---- ------------
Intro to Internet 1095 10
Intro to the Basic Language 1095 25
Unix Tips and Techniques 1095 134

3 rows selected.

Both conditions need to be true for the row to be returned. If the one of the con-
ditions is not met, the row simply is not selected for output.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 111

5730ch02.qxd_cc 6/3/04 12:46 PM Page 111

LAB
2.4

b) Write a SELECT statement to list the cost of courses without a prerequisite; do
not repeat the cost.

Answer:The SELECT statement selects a single column in combination with DISTINCT,
and uses the IS NULL comparison operator in the WHERE clause.

SELECT DISTINCT cost
FROM course
WHERE prerequisite IS NULL

COST

1195

1 row selected.

LAB 2.4 SELF-REVIEW QUESTIONS
In order to test your progress, you should be able to answer the following
questions.

1) Comparison operators always compare two values only.

a) ______ True
b) ______ False

2) The BETWEEN operator uses a list of values.

a) ______ True
b) ______ False

3) The following statement is incorrect:

SELECT first_name, last_name
FROM student
WHERE employer = NULL

a) ______ True
b) ______ False

4) The following statement is incorrect:

SELECT description
FROM course
WHERE cost NOT LIKE (1095, 1195)

a) ______ True
b) ______ False

112 Lab 2.4: The WHERE Clause: Comparison and Logical Operators

5730ch02.qxd_cc 6/3/04 12:46 PM Page 112

LAB
2.4

5) The following statement is incorrect:

SELECT city
FROM zipcode
WHERE state != 'NY'

a) ______ True
b) ______ False

6) The following statement returns rows in the STUDENT table where the last
name begins with the letters SM.

SELECT last_name, first_name
FROM student
WHERE last_name = 'SM%'

a) ______ True
b) ______ False

Answers appear in Appendix A, Section 2.4.

Lab 2.4: The WHERE Clause: Comparison and Logical Operators 113

5730ch02.qxd_cc 6/3/04 12:46 PM Page 113

LAB
2.5

L A B 2 . 5

THE ORDER BY CLAUSE

USING THE ORDER BY CLAUSE

Recall from Chapter 1, “SQL and Data,” that data is not stored in a table in any
particular order. In all of the examples used thus far, the result sets display data in
the order in which they happen to be returned from the database. However, you
may want to view data in a certain order and the ORDER BY clause accomplishes
this by ordering the data any way you wish.

For example, the following statement retrieves a list of course numbers and descrip-
tions for courses without a prerequisite, in alphabetical order by their descriptions:

SELECT course_no, description
FROM course
WHERE prerequisite IS NULL
ORDER BY description
COURSE_NO DESCRIPTION
--------- --------------------------

10 DP Overview
20 Intro to Computers
146 Java for C/C++ Programmers
310 Operating Systems

4 rows selected.

By default, when the ORDER BY is used, the result set is sorted in ascending order;
or you can be explicit by adding the abbreviation ASC after the column. If
descending order is desired, the abbreviation DESC is used after the column in the
ORDER BY clause:

114 Lab 2.5: The ORDER BY Clause

L A B O B J E C T I V E S

After this lab, you will be able to:
✔ Custom Sort Query Results

5730ch02.qxd_cc 6/3/04 12:46 PM Page 114

LAB
2.5

SELECT course_no, description
FROM course
WHERE prerequisite IS NULL
ORDER BY description DESC
COURSE_NO DESCRIPTION
--------- --------------------------

310 Operating Systems
146 Java for C/C++ Programmers
20 Intro to Computers
10 DP Overview

4 rows selected.

Instead of listing the name of the column to be ordered, you can list the sequence
number of the column in the SELECT list. The next SQL statement returns the
same result as the prior SQL statement, but uses a different ORDER BY clause. The
number 2 indicates the second column of the SELECT list.

SELECT course_no, description
FROM course
WHERE prerequisite IS NULL
ORDER BY 2 DESC

A result set can be sorted by more than one column. The columns you wish to
sort by need only be included in the ORDER BY clause, separated by commas. The
ORDER BY clause is always the last clause in an SQL statement.

COLUMN ALIAS

A column alias can be used in the SELECT list to give a column or value an alias;
it can also make the result much easier to read. In next example, different forms
of a column alias are used to take the place of the column name in the result set.
An alias may also contain one or more words or be spelled in exact case when
enclosed in double quotes. The optional keyword AS can precede the alias name.

SELECT first_name first,
first_name "First Name",
first_name AS "First"

FROM student
WHERE zip = '10025'
FIRST First Name First
------------------------- ------------------------- ------
Jerry Jerry Jerry
Nicole Nicole Nicole
Frank Frank Frank

3 rows selected.

Lab 2.5: The ORDER BY Clause 115

5730ch02.qxd_cc 6/3/04 12:46 PM Page 115

LAB
2.5

To format the column with the SQL*Plus COLUMN format, you must specify the
alias in quotes as well. For example:

COL "First" FORMAT A13

You can also use the column alias to order by a specific column.

SELECT first_name first, first_name "First Name",
first_name AS "First"

FROM student
WHERE zip = '10025'
ORDER BY "First Name"
FIRST First Name First
------------------------- ------------------------- ------
Frank Frank Frank
Jerry Jerry Jerry
Nicole Nicole Nicole

3 rows selected.

DISTINCT AND ORDER BY

The ORDER BY clause often contains columns listed in the SELECT clause, but it
is also possible to ORDER BY columns that are not selected. One exception is
columns qualified using the DISTINCT keyword—if the SELECT list contains DIS-
TINCT, the column(s) the keyword pertains to must also be listed in the ORDER
BY clause.

The next example shows that the STUDENT_ID column is not a column listed in
the DISTINCT SELECT list and therefore results in an Oracle error message.

SQL> SELECT DISTINCT first_name, last_name
2 FROM student
3 WHERE zip = '10025'
4 ORDER BY student_id
5 /
ORDER BY student_id

*
ERROR at line 4:
ORA-01791: not a SELECTed expression

NULL VALUES AND ORDER BY

The following statement orders the COST column by the default sort order. Note
that the row with a COST column value of NULL is the last row in the sort order.

116 Lab 2.5: The ORDER BY Clause

5730ch02.qxd_cc 6/3/04 12:46 PM Page 116

LAB
2.5

SELECT DISTINCT cost
FROM course
ORDER BY cost

COST

1095
1195
1595

4 rows selected.

You can change the default ordering of the nulls with the NULLS FIRST or NULLS
LAST option in the ORDER BY clause as you see in the next statement. Here the
requested order is to list the NULL value first followed by the other values in the
default ascending sort order.

SELECT DISTINCT cost
FROM course
ORDER BY cost NULLS FIRST

COST

1095
1195
1595

4 rows selected.

UNDERSTANDING ORACLE ERROR MESSAGES

As you begin to learn SQL, you will inevitably make mistakes when writing state-
ments. Oracle returns an error number and error message to inform you of your
mistake. Some error messages are easy to understand; others are not. While we
cannot anticipate every possible error you may encounter, you will see that
throughout the book I point out common mistakes. Here are some general guide-
lines when dealing with Oracle errors.

1. READ THE ORACLE ERROR MESSAGE CAREFULLY

Oracle will tell you on which line the error occurred.

SQL> SELECT salutation, first_name, las_name
2 FROM student
3 WHERE first_name = 'John'
4 /

Lab 2.5: The ORDER BY Clause 117

5730ch02.qxd_cc 6/3/04 12:46 PM Page 117

LAB
2.5

SELECT salutation, first_name, las_name
*

ERROR at line 1:
ORA-00904: "LAS_NAME": invalid identifier

In this example the error is very easy to spot and the error message is self-explana-
tory. One of the column names is invalid, and Oracle points out the error by indi-
cating the line number. The error is on line 1, and the asterisk indicates in what
position within the line the error is found; it is the misspelled LAST_NAME col-
umn name.

2. RESOLVE ONE ERROR AT A TIME

Sometimes you may have multiple errors in a single SQL statement. The Oracle
parser, which checks the syntax of all statements, starts checking from the end of
the entire statement.

SQL> SELECT salutation, first_name, las_name
2 FROM studen
3 WHER first_name = 'John'
4 /
WHER first_name = 'John'

*
ERROR at line 3:
ORA-00933: SQL command not properly ended

This type of error message may leave you clueless as to what could be wrong with
this query. In fact, the statement contains three errors, one in each line. Because
the parser works its way backwards, it complains about the first error on line 3. The
position of the asterisk suggests that there is something wrong with the spelling of
the FIRST_NAME column. But in fact, it is spelled correctly; otherwise, you would
see the ORA-00904 invalid identifier error listed as in one of the previous examples
complaining about the incorrect column name. The WHERE key word is missing
the letter E; therefore, Oracle cannot interpret what you are attempting to do.

After you correct this error, you will see line 2 reported, exemplifying how the
parser works its way backward.

SQL> SELECT salutation, first_name, las_name
2 FROM studen
3 WHERE first_name = 'John'
4 /
FROM studen

*
ERROR at line 2:
ORA-00942: table or view does not exist

Here the table name is misspelled and Oracle indicates that such a table does not exist.

118 Lab 2.5: The ORDER BY Clause

5730ch02.qxd_cc 6/3/04 12:46 PM Page 118

LAB
2.5

The last error in the statement is found on line 1 and is the misspelled
LAST_NAME column name. The parser will report this error as the last error. If you
are unsure about the spelling of a column or table name, you can always use the
DESCRIBE SQL*Plus command to list the column names and their respective data
types, or you can refer to Appendix D, “Student Database Schema,” for a list of
table and column names.

3. DOUBLE-CHECK THE SYNTAX OF YOUR STATEMENT

Simple typos, such as a stray period or comma, a missing space, or single quote,
can cause very strange and seemingly unrelated error message that may have
nothing to do with the problem. Therefore, carefully reread the statement or sim-
ply retype it. After looking at a statement for a long time, the error may not be
apparent. Perhaps put it aside, take a break, and look at it with a fresh mind later,
or ask someone for help in spotting the error.

4. LOOK UP THE ORACLE ERROR NUMBER

You can look up the Oracle error number in the Oracle Database Error Messages
Manual. If the error starts with an ORA message type, it is typically a database-related
error, whereas an error with an SP2 prefix indicates a SQL*Plus or iSQL*Plus specific
error. Once you found the error in the manual, you will see the reason for the error
and a recommended action on how to correct it. The recommended action may be
general or very specific, once again depending on what type of error occurred.

Initially, the challenge may be finding the correct manual to look up the error mes-
sage. Following are some suggestions on how to find this information. Besides look-
ing at the online documentation that comes with your Oracle software and which
is either found on your CDs or installed on your machine, you can also find the
online manual on the Oracle Technology Network (OTN) Web site. Oracle offers a
free subscription to the site, which includes a number of features such as access to
the online manuals and discussion groups. The URL for OTN is http://
otn.oracle.com; you must register first to become a member. Also refer to Appendix
H, “Navigating through the Oracle Documentation” and Appendix G, “Resources.”
These appendixes offer you tips on how to find the needed information.

In some operating systems such as Unix, Linux, and VMS, you can also use the
Oracle program called oerr to look up the error message from the operating sys-
tem prompt. This does not work in the Windows environment. For example, to
look up the ORA-00939 error you type at the Unix operating system prompt (indi-
cated with the $ sign):

$ oerr ora 00939
00939, 00000, " too many arguments for function"
// *Cause: The function was referenced with too many arguments.
// *Action: Check the function syntax and specify only the
// required number of arguments.
$

Lab 2.5: The ORDER BY Clause 119

5730ch02.qxd_cc 6/3/04 12:46 PM Page 119

LAB
2.5

LAB 2.5 EXERCISES

2.5.1 CUSTOM SORT QUERY RESULTS

a) Write a SELECT statement to list each city and zip code in New
York or Connecticut. Sort the result in ascending order by zip
code.

b) Write a SELECT statement to list course descriptions and their
prerequisite course numbers, sorted in ascending order by
description. Do not list courses without a prerequisite.

c) Show the salutation, first, and last name of students with the
last name Grant. Order the result by salutation in descending
order and the first name in ascending order.

d) Execute the following query. What do you observe about the
last row returned by the query?

SELECT student_id, last_name
FROM student
ORDER BY last_name

LAB 2.5 EXERCISE ANSWERS

2.5.1 ANSWERS

a) Write a SELECT statement to list each city and zip code in New York or
Connecticut. Sort the result in ascending order by zip code.

Answer:The SELECT statement selects two columns, uses the equal operator and OR
logical operator to combine expressions in the WHERE clause, and uses ORDER BY
with a single column to sort the results in ascending order.

SELECT city, zip
FROM zipcode
WHERE state = 'NY'

OR state = 'CT'
ORDER BY zip
CITY ZIP
------------------------- -----
Ansonia 06401
Middlefield 06455
...

120 Lab 2.5: The ORDER BY Clause

5730ch02.qxd_cc 6/3/04 12:46 PM Page 120

LAB
2.5

Hicksville 11802
Endicott 13760

142 rows selected.

Alternatively, the WHERE clause can be written as:

WHERE state IN ('NY', 'CT')

b) Write a SELECT statement to list course descriptions and their prerequisite
course numbers, sorted in ascending order by description. Do not list courses
without a prerequisite.

Answer:The following query shows the use of the IS NOT NULL comparison operator
in the WHERE clause.The result is sorted by the DESCRIPTION column in ascending
order.

SELECT description, prerequisite
FROM course
WHERE prerequisite IS NOT NULL
ORDER BY description
DESCRIPTION PREREQUISITE
--------------------------------- ------------
Advanced Java Programming 122
Advanced Unix Admin 132
...
Structured Programming Techniques 204
Unix Tips and Techniques 134

26 rows selected.

Alternatively, the ORDER BY clause can be written as:

ORDER BY 1

You can even use the column alias.

SELECT description "Descr", prerequisite
FROM course
WHERE prerequisite IS NOT NULL
ORDER BY "Descr"

In most of the previous examples, you see the SELECT list is taking up one line
only. By spreading it over several lines, it sometimes makes it easier to read and
this is perfectly acceptable formatting. By putting elements in the SELECT list on
separate lines, you control exactly when the next line begins and indent it for
easy readability below the line above it. The following SELECT statement has mul-
tiple columns in the SELECT list.

Lab 2.5: The ORDER BY Clause 121

5730ch02.qxd_cc 6/3/04 12:46 PM Page 121

LAB
2.5

SELECT description, prerequisite,
cost, modified_date

FROM course
WHERE prerequisite IS NOT NULL
ORDER BY description
DESCRIPTION PREREQUISITE COST MODIFIED_
------------------------- ------------ ---- ---------
Advanced Java Programming 122 1195 05-APR-03
...
Unix Tips and Techniques 134 1095 05-APR-03

26 rows selected.

c) Show the salutation, first, and last name of students with the last name Grant.
Order the result by salutation in descending order and the first name in ascend-
ing order.

Answer:The ORDER BY clause contains two columns, the SALUTATION and the
FIRST_NAME.The salutation is sorted first in descending order.Within each salutation,
the first name is sorted in ascending order.

SELECT salutation, first_name, last_name
FROM student

WHERE last_name = 'Grant'
ORDER BY salutation DESC, first_name ASC
SALUT FIRST_NAME LAST_NAME
----- ----------------- ---------
Ms. Eilene Grant
Ms. Verona Grant
Mr. Omaira Grant
Mr. Scott Grant

4 rows selected.

Again, you can write the query also with this ORDER BY clause:

ORDER BY 1 DESC, 2 ASC

Or to use the default order for the second column, which is ASC and can be
omitted:

ORDER BY 1 DESC, 2

If you give your column a column alias, you can also use the column alias in the
ORDER BY clause.

SELECT salutation "Sal", first_name "First Name",
last_name "Last Name"

FROM student

122 Lab 2.5: The ORDER BY Clause

5730ch02.qxd_cc 6/3/04 12:46 PM Page 122

LAB
2.5

WHERE last_name = 'Grant'
ORDER BY "Sal" DESC, "First Name" ASC
Sal First Name Last Name
----- ----------------- ---------
Ms. Eilene Grant
Ms. Verona Grant
Mr. Omaira Grant
Mr. Scott Grant

4 rows selected.

d) Execute the following query.What do you observe about the last row returned
by the query?

SELECT student_id, last_name
FROM student
ORDER BY last_name

Answer:The student with the STUDENT_ID of 206 has the last name entered in
lowercase.When ordering the result set, the lowercase letters are listed after the
uppercase letters.

STUDENT_ID LAST_NAME
---------- ----------

119 Abdou
399 Abdou

...
184 Zuckerberg
206 annunziato

268 rows selected.

LAB 2.5 SELF-REVIEW QUESTIONS
In order to test your progress, you should be able to answer the following
questions.

1) The following is the correct order of all clauses in this SELECT statement:

SELECT ...
FROM ...
ORDER BY ...
WHERE ...

a) ______ True
b) ______ False

Lab 2.5: The ORDER BY Clause 123

5730ch02.qxd_cc 6/3/04 12:46 PM Page 123

LAB
2.5

2) You must explicitly indicate whether an ORDER BY is ascending.

a) ______ True
b) ______ False

3) The following statement is correct:

SELECT *
FROM instructor
ORDER BY phone

a) ______ True
b) ______ False

4) The following statement is incorrect:

SELECT description "Description",
prerequisite AS prereqs,
course_no "Course#"

FROM course
ORDER BY 3, 2

a) ______ True
b) ______ False

5) You can order by a column you have not selected.

a) ______ True
b) ______ False

Answers appear in Appendix A, Section 2.5.

124 Lab 2.5: The ORDER BY Clause

5730ch02.qxd_cc 6/3/04 12:46 PM Page 124

C H A P T E R 2

TEST YOUR THINKING

The projects in this section are meant to have you utilize all of the skills
that you have acquired throughout this chapter.The answers to these pro-
jects can be found at the companion Web site to this book, located at

http://authors.phptr.com/rischert3e.Visit the Web site periodically to share and discuss
your answers.

1) Invoke an editor from SQL*Plus; create a file called first.sql containing
an SQL statement that retrieves data from the COURSE table for
courses that cost 1195, and whose descriptions start with ‘Intro’,
sorted by their prerequisites.

2) Create another file called second.sql that retrieves data from the STU-
DENT table for students whose last names begin with ‘A’, ‘B’, or ‘C’,
and who work for ‘Competrol Real Estate’, sorted by their last names.

3) Create yet another file called third.sql that retrieves all the descrip-
tions from the GRADE_TYPE table, for rows that were modified by
the user MCAFFREY.

4) Execute each of the files, in the order they were created.

Chapter 2: Test Your Thinking 125

5730ch02.qxd_cc 6/3/04 12:46 PM Page 125

5730ch02.qxd_cc 6/3/04 12:46 PM Page 126

